WorldWideScience

Sample records for silver ion hplc

  1. Analysis of molecular species of triacylglycerols from vegetable oils containing fatty acids with non-methylene-interrupted double bonds, by HPLC in the silver-ion mode

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Y.; Kim, S. [Dong A Univ., Pusan (Korea, Republic of)

    1998-10-20

    The possibilities for application of silver ion HPLC to analysis of the triacylglycerols containing conjugate trienoic acids and {Delta}{sup 5}-polymethylene-interrupted acids and proportions of triacylglycerol fractions obtained by silver-ion HPLC from the seed oil of Momordica charantia double bonds were examined, respectively. The triacylglycerols of seed oils containing conjugate trienoic acids such as {alpha}-eleostearic acid (C{sub 18:3 9c,11t,13t}) and punicic acid (C{sub 18:3} {sub 9c,11t,13c}) were resolved by silver-ion HPLC. Fractions were fractionated on the basis of the number and configuration of double bonds in the species, and the elution profile is quite different from that of the species comprising exclusively saturated and unsaturated fatty acids with methylene-interrupted double bonds ; for instance, the species (DT(c2)) composed of one dienoic acid and two conjugate trienoic acids eluted much earlier than the species (D{sub 2}T{sub c}) composed of two dienoic acids and one conjugate trienoic acid, in spite of having larger number of double bonds. This means that the interaction of conjugate double bonds with silver ions is weaker than that of methylene-interrupted double bonds, presumably because of the delocalization of {pi}-electrons in conjugate double bonds. In this instance, the strength of interaction of a conjugate trienoic double bond system with silver ions seemed to be between that of methylene-interrupted dienoic and monoenoic double bond systems. Triacylglycerols of the seeds of Ginkgo biloba have been resolved by HPLC in the silver-ion mode according to the number and position of double bonds. In this instance, the strength of interaction between the {pi}-electrons of double bonds in the fatty acyl residues and silver ions is in the order; C{sub 18:3{omega}3}>C(20:3){Delta}{sup 5,11,14}C{sub 18:3}{Delta}{sup 5,9,12}>= C{sub 18:2{omega}6}>C{sub 18:2}{Delta}{sup 5,9}>C{sub 18:1{omega}9}>C{sub 18:1ome= ga7}. 49 refs., 2 figs., 2 tabs.

  2. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-01-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag + ) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg −1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  3. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A., E-mail: joseph.caruso@uc.edu; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag{sup +}) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg{sup −1} detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  4. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  5. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  6. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  7. Stability-Indicating RP-HPLC Method for Assay of Silver Lactate

    Directory of Open Access Journals (Sweden)

    V. Srinivasan

    2011-01-01

    Full Text Available A simple, economic and time-efficient stability-indicating, reverse-phase high-performance liquid chromatographic (RP-HPLC method has been developed for analysis of silver lactate in the presence of degradation products generated by decomposition. When silver lactate was subjected to acid hydrolysis, base hydrolysis, oxidative, photolytic, humidity and thermal stress, degradation was observed during base hydrolysis, oxidation, humidity and thermal stress. The drug was found to be stable to other stress conditions. Successful chromatographic condition of the drug from the degradation products formed under stress conditions was achieved on a phenomenex Gemini column with potassium dihydrogen phosphate buffer, pH adjusted to 2.2 with orthophosphoric acid, as mobile phase. The method was validated for linearity, precision, specificity and robustness and can be used for quality-control during manufacture and assessment of the stability of samples of silver lactate. To the best of our knowledge, a validated stability-indicating LC assay method for silver lactate based on lactic acid is reported for the first time.

  8. Characterization of fatty acid and triacylglycerol composition in animal fats using silver-ion and non-aqueous reversed-phase high-performance liquid chromatography/mass spectrometry and gas chromatography/flame ionization detection

    Czech Academy of Sciences Publication Activity Database

    Lísa, M.; Netušilová, K.; Franěk, L.; Dvořáková, H.; Vrkoslav, Vladimír; Holčapek, M.

    2011-01-01

    Roč. 1218, č. 42 (2011), s. 7499-7510 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : silver-ion HPLC * non-aqueous reversed-phase HPLC * triacylglycerol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.531, year: 2011

  9. Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry: Comparison of five different mass analyzers

    Czech Academy of Sciences Publication Activity Database

    Holčapek, M.; Dvořáková, H.; Lísa, M.; Girón, A. J.; Sandra, P.; Cvačka, Josef

    2010-01-01

    Roč. 1217, č. 52 (2010), s. 8186-8194 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : triacylglycerols * silver-ion liquid chromatography * regioisomer * HPLC/MS * APCI Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  10. USE OF SILVER IONS IN PASTEURIZED MILK PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. Mamaev

    2012-10-01

    Full Text Available The means of pasteurized milk shelf life prolongation by electro-chemical diffusion of silver ions has been introduced. Three samples of pasteurized milk were test subjects. In the course of study the following data have been examined: organoleptic, physicochemical, microbiological parameters of check samples and pilot samples of raw and pasteurized milk. Its shelf life has been determined. It has been determined that the test results of raw and pasteurized milk samples processed by various concentration of silver ions showed minor difference in organoleptic, physic-chemical, microbiological parameters and shelf life span. In this connection it appears reasonable to use the smallest concentration of silver ions - 50 micrograms per liter for milk shelf life prolongation as it is considered the least harmful for person's organism. Infusion of silver ions in the concentration of 50 micrograms per liter allows to prolong raw and pasteurized milk shelf life by two days.

  11. Analysis of conjugated linoleic acid-enriched triacylglycerol mixtures by isocratic silver-ion high-performance liquid chromatography.

    Science.gov (United States)

    Adlof, R O; Menzel, A; Dorovska-Taran, V

    2002-04-12

    Silver-ion HPLC (Ag-HPLC) was applied to the fractionation of a triacylglycerol (TAG) sample enriched (>80%) with conjugated linoleic acid (CLA). After conversion of the TAGs to fatty acid methyl esters using sodium methoxide in methanol, Ag-HPLC (dual-column; isocratic solvent system of 0.1% acetonitrile in hexane; UV detection at 233 nm) was used to determine the CLA isomer distribution (50:50 mixture of 9c 11t- and 10t,12c-18:2). Three or four Ag-HPLC columns connected in series (0.6-1.0% acetonitrile in hexane as solvent; UV detection at 206 nm) were used to analyze the sample in TAG form. Elution times for CLA-enriched TAGs averaged 30 min or less. Isocratic solvent conditions were used to eliminate the solvent equilibration times (often 30 min or more) required between sample injections when solvent programming is used. The ratio of TAGs containing three vs. only two CLA molecules was found to be approximately 3 to 1. Ag-HPLC has thus been shown to be a useful method for rapidly analyzing not only CLA isomers as esters, but also in the TAG form.

  12. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    Science.gov (United States)

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  14. Characterization and antibacterial properties of porous fibers containing silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Nantong Textile Institute of Soochow University, 58 Chong-chuan Road, Nantong 226018 (China)

    2016-11-30

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag{sup +} porous fibers were investigated. • The antibacterial effects of PLA/Ag{sup +} porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  15. Characterization and antibacterial properties of porous fibers containing silver ions

    International Nuclear Information System (INIS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-01-01

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag + porous fibers were investigated. • The antibacterial effects of PLA/Ag + porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  16. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  17. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    Directory of Open Access Journals (Sweden)

    Kuppan Gokulan

    2017-04-01

    Full Text Available Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1 the presence of silver resistance genes in tested bacteria; or 2 lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]. This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.

  18. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    Science.gov (United States)

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  19. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  20. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    Science.gov (United States)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  1. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    OpenAIRE

    Kuppan Gokulan; Katherine Williams; Sangeeta Khare

    2017-01-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysi...

  2. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection.

    Science.gov (United States)

    Pathak, Satya P; Gopal, K

    2012-07-01

    The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.

  3. Stereophotogrammetric study of surface topography in ion irradiated silver

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Fayazov, I.M.

    1993-01-01

    The irradiated surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The surface of silver was irradiated with 30 keV argon ions at variation for the ion incidence angle in interval of 0-80 deg relative to a surface normal. The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture of the irradiated surface is discussed. The parameters of cones on the irradiated surface of silver were measured by the SEM-stereomethod. The measurements of the sample section perpendicular to the incidence plane are also carried out

  4. Electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.

    1981-01-01

    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various

  5. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  6. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  7. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  8. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  9. Adhesion of silver films to ion-bombarded alumina

    International Nuclear Information System (INIS)

    Erck, R.A.; Fenske, G.R.

    1990-01-01

    This paper reports on silver films deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment

  10. Proteomic Analysis to Elucidate the Antibacterial Action of Silver Ions Against Bovine Mastitis Pathogens.

    Science.gov (United States)

    Kang, Seog Jin; Cho, Yong Il; Kim, Ki Hyun; Cho, Eun Seok

    2016-05-01

    Silver ions act as a powerful, broad-spectrum antimicrobial agent and are known to kill over 650 different kinds of pathogens. We investigated the protein expression pattern and identity after silver ion treatment in Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases using proteomics. Two-dimensional electrophoresis showed that silver ion treatment significantly reduced 5 spot's density in E. coli and S. aureus, respectively. We identified 10 proteins (alkyl hydroperoxide reductase C22 subunit, phosphoglucomutase, fructose-1-phosphate kinase, putative carbamoyl transferase, alpha-galactosidase, carbamate kinase, ornithine transcarbamoylase, fumarate hydratase class II, alcohol dehydrogenase, and conserved hypothetical protein) by matrix-assisted laser desorption ionization time of flight (MALDI-TOF). These results demonstrated that silver ions have bactericidal effects through energy deprivation, inhibition of DNA replication, and accumulation of oxidants in bovine mastitis pathogens and suggested that silver ions can be applied for the treatment of bovine mastitis.

  11. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography.

    Science.gov (United States)

    Sehat, N; Rickert, R; Mossoba, M M; Kramer, J K; Yurawecz, M P; Roach, J A; Adlof, R O; Morehouse, K M; Fritsche, J; Eulitz, K D; Steinhart, H; Ku, Y

    1999-04-01

    Operating from one to six silver ion-high-performance liquid chromatography (Ag+-HPLC) columns in series progressively improved the resolution of the methyl esters of conjugated linoleic acid (CLA) isomeric mixtures from natural and commercial products. In natural products, the 8 trans, 10 cis-octadecadienoic (18:2) acid was resolved from the more abundant 7 trans, 9 cis-18:2, and the 10 trans, 12 cis-18:2 was separated from the major 9 cis, 11 trans-18:2 peak. In addition, both 11 trans, 13 cis-18:2 and 11 cis, 13 trans-18:2 isomers were found in natural products and were separated; the presence of the latter, 11 cis, 13 trans-18:2, was established in commercial CLA preparations. Three Ag+-HPLC columns in series appeared to be the best compromise to obtain satisfactory resolution of most CLA isomers found in natural products. A single Ag+-HPLC column in series with one of several normal-phase columns did not improve the resolution of CLA isomers as compared to that of the former alone. The 20:2 conjugated fatty acid isomers 11 cis, 13 trans-20:2 and 12 trans, 14 cis-20:2, which were synthesized by alkali isomerization from 11 cis, 14 cis-20:2, eluted in the same region of the Ag+-HPLC chromatogram just before the corresponding geometric CLA isomers. Therefore, CLA isomers will require isolation based on chain length prior to Ag+-HPLC separation. The positions of conjugated double bonds in 20:2 and 18:2 isomers were established by gas chromatography-electron ionization mass spectrometry as their 4,4-dimethyloxazoline derivatives. The double-bond geometry was determined by gas chromatography-direct deposition-Fourier transform infrared spectroscopy and by the Ag+-HPLC relative elution order.

  12. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  13. A Study of Antibioactivity of Nanosilver Colloid and Silver Ion Solution

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2014-01-01

    Full Text Available The colloidal silver solution was successfully prepared in dielectric fluid by using electrical spark discharge (ESD without any surfactants. It does not require the toxic chemical agents in the process, which may affect the effectiveness of nanosilver colloid as an antibacterial agent. Nanocolloidal silver produced by ESD is characterized as low cost, zero environmental pollution, continuous, and rapid mass production process. In order to test the effect of antibioactivity, nanosilver dough was tested; the silver nanofluid was prepared by ESD machine, made into dough at different concentrations, and fermented for three hours in order to observe changes in the diameter of the dough. The results showed that the effect of effectiveness of nanosilver at the concentration of 100 ppm was weak, whereas the effect of 60 ppm silver ion (100 ppm AgNO3 was significant, as the dissociation rate of silver ion concentration correlates to the antibioactivity.

  14. A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayaz Ahmed, Khan Behlol; P, Suresh Kumar; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-09-15

    Herein, we report a laboratory convenient method for the preparation of blue color emitting fluorescent carbon dots (C-dots) in 60 min by boiling the alkaline solution of pectin. The C-dots derived from pectin detects selectively silver ion by forming silver nanoparticles (AgNPs) without any irradiation or heating or additional reducing agents. As prepared AgNPs appears yellow in color and showed the characteristic surface plasmon resonance maximum at 410 nm. Transmission electron microscopy (TEM) revealed crystalline, spherical AgNPs with size range from 10–15 nm. Cyclic voltammetry study revealed that the lower reduction potential of C-dots than that of silver ion favors the reduction of Ag{sup +} to Ag°. Electrochemical impedance spectroscopy showed the charge transfer value for the redox reaction of C-dots as 200 Ωcm{sup 2}. In the presence of Ag{sup +}, C-dots fluorescence emission was turned from blue to cyan to green to colorless, accompanying the quenching and red shift in emission maximum at 450 nm. Interference study clearly showed that the C-dots have high preference for Ag{sup +} ion than the other interfering metal ions. The proposed sensor system selectively senses Ag{sup +} ion in water at micromolar concentration and also offers an easy procedure to prepare AgNPs in the presence of other interfering metal ions. - Highlights: • Blue color emitting C-dots was prepared by boiling alkaline pectin solution. • C-dots sense silver ion at micromolar concentration. • C-dots recognize silver ion in the presence of interfering metal ions. • Reduction potential of C-dots was estimated by cyclic voltammeter as – 0.2 V.

  15. Silver ion recognition using potentiometric sensor based on recently synthesized isoquinoline-1,3-dione derivatives

    Directory of Open Access Journals (Sweden)

    AJAR KAMAL

    2012-08-01

    Full Text Available The four derivatives of isoquinoline-1,3-dione based on β-lactum (I-IV, have been explored as neutral ionophores for preparing poly(vinylchloride based polymeric membrane electrodes (PME selective to silver(I ions. The addition of sodium tetraphenylborate (NaTPB and dioctylsebacate (DOS as a plasticizer was found to improve the performance of ion selective electrodes. The best performance was obtained with PME-1 based on ionophore I having composition: ionophore (9.2 mg, PVC (100.1 mg, DOS (201.1 mg and NaTPB (1.5 mg in 5 mL tetrahydrofuran. The electrode response was linear with Nernstian slope of 58.44 mV/decade in the concentration range of 1.0 x 10-1 M to 5.0 x 10-6 M and detection limit of 5.83 x 10-6 M. It performs satisfactorily over wide pH range of 1.0-5.5. The proposed sensor can be used over a period of more than three months without any significant drift in potential and shows good selectivity to silver(I ion over a number of cations especially with no interference of mercury(II ions. Sharp end point was obtained when the sensor was used as an indicator electrode for the potentiometric titration of silver(I ions with chloride ions and therefore this electrode (PME-1 could be used for quantitative determination of silver(I ion in synthetic water, silver foil and dental amalgam samples.

  16. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, S., E-mail: stanislav.stanek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Oswald, J. [Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10/112, 162 00 Prague (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Spirkova, J. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic)

    2016-03-15

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 10{sup 16} cm{sup −2} was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the {sup 4}I{sub 11/2}–{sup 4}I{sub 15/2} transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  17. Energy distribution of ions produced by laser ablation of silver in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided......The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4Jcm−2, typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize...

  18. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Czech Academy of Sciences Publication Activity Database

    Žouželka, Radek; Čiháková, P.; Říhová Ambrožová, J.; Rathouský, Jiří

    2016-01-01

    Roč. 23, č. 19 (2016), s. 8317-8326 ISSN 0944-1344 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : silver nanoparticles * silver ions * concentration of silver ions in equilibrium with silver nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.741, year: 2016

  19. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  20. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  1. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Long Y

    2017-04-01

    Full Text Available Yan-Min Long,1,2 Li-Gang Hu,1,3 Xue-Ting Yan,1,3 Xing-Chen Zhao,1,3 Qun-Fang Zhou,1,3 Yong Cai,2,4 Gui-Bin Jiang1,3 1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Beijing, China; 2Institute of Environment and Health, Jianghan University, Wuhan, Hubei, China; 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; 4Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, Miami, FL, USA Abstract: Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli, when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD+/NADH ratio increase, and intracellular reactive oxygen species (ROS generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli. Altogether, this study demonstrated that AgNPs exerted

  2. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    Science.gov (United States)

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  3. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    Science.gov (United States)

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Energy distribution of ions produced by laser ablation of silver in vacuum

    International Nuclear Information System (INIS)

    Toftmann, B.; Schou, J.; Canulescu, S.

    2013-01-01

    The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4 J cm −2 , typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355 nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided. The angular energy distribution of ions in forward direction exceeds values of 500 eV, while at large angles the ion energy tail is below 100 eV. The maximum for the time-of-flight distributions agrees consistently with the prediction of Anisimov's model in the low fluence range, in which hydrodynamic motion prevails.

  5. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  6. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  7. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  8. Determination of Silver Ions Toxicity in Short-Term and Long-Term Experiments Using a Luminescent Recombinant Strain of E. coli

    Directory of Open Access Journals (Sweden)

    Tatiana P. Yudina

    2013-01-01

    Full Text Available The effects of silver ions on the luminescent recombinant strain of Escherichia coli carrying luxCDABE operon of Vibrio fischeri were investigated. The toxicity of silver ions was determined in 30 minutes and in chronic 24 hours experiments. Changes in the luminescence intensity and in the growth rate of bacteria were considered as a measure of silver ions toxicity within the range of concentrations applied. The effect of silver ions was demonstrated to be strongly dependent on the concentration of bacteria and on the medium composition. EC50 values were 0.018 mg/l after 30 min exposure and 0.014 mg/l after 10 hours of bacterial growth. Comparison of two modifications of the experiment showed that silver ions have a strong non-specific toxicity, as well as a specific effect on bacterial cells

  9. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    Science.gov (United States)

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-05-01

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  10. Fabrication of Conductive Nanostructures by Femtosecond Laser Induced Reduction of Silver Ions

    Science.gov (United States)

    Barton, Peter G.

    Nanofabrication through multiphoton absorption has generated considerable interest because of its unique ability to generate 2D and 3D structures in a single laser-direct-write step as well as its ability to generate feature sizes well below the diffraction limited laser spot size. The majority of multiphoton fabrication has been used to create 3D structures of photopolymers which have applications in a wide variety of fields, but require additional post-processing steps to fabricate conductive structures. It has been shown that metal ions can also undergo multiphoton absorption, which reduces the metal ions to stable atoms/nanoparticles which are formed at the laser focal point. When the focus is located at the substrate surface, the reduced metal is deposited on the surface, which allows arbitrary 2D patterning as well as building up 3D structures from this first layer. Samples containing the metal ions can be prepared either in a liquid solution, or in a polymer film. The polymer film approach has the benefit of added support for the 3D metallic structures; however it is difficult to remove the polymer after fabrication to leave a free standing metallic structure. With the ion solution method, free standing metallic structures can be fabricated but need to be able to withstand surface tension forces when the remaining unexposed solution is washed away. So far, silver nanowires with resistivity on the order of bulk silver have been fabricated, as well as a few small 3D structures. This research focuses on the surfactant assisted multiphoton reduction of silver ions in a liquid solution. The experimental setup consists of a Coherent Micra 10 Ultrafast laser with 30fs pulse length, 80MHz repetition rate, and a wavelength centered at 800nm. This beam is focused into the sample using a 100x objective with a N.A. of 1.49. Silver structures such as nanowires and grid patterns have been produced with minimum linewidth of 180nm. Silver nanowires with resistivity down to

  11. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

    Science.gov (United States)

    Nagy, Amber; Harrison, Alistair; Sabbani, Supriya; Munson, Robert S; Dutta, Prabir K; Waldman, W James

    2011-01-01

    Background The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM). Methods and Results These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity. Conclusion These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+. PMID:21931480

  12. Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2,4,6-trimorpholino-1,3,5-triazin

    International Nuclear Information System (INIS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Zolfigol, Mohammad Ali; Solgi, Mohammad

    2006-01-01

    A new modified silica gel using 2,4,6-trimorpholino-1,3,5-triazin was used for separation, preconcentration and determination of silver ion in natural water by atomic absorption spectrometry (AAS). This new bonded silica gel was used as an effective sorbent for the solid-phase extraction (SPE) of silver ion from aqueous solutions. Experimental conditions for effective adsorption of trace levels of silver ion were optimized with respect to different experimental parameters in column process. Common coexisting ions did not interfere with the separation and determination of silver at pH 3.5 so that silver ion completely adsorbed on the column. The preconcentration factor is 130 (1 mL elution volume for a 130 mL sample volume). The relative standard deviation (R.S.D.) under optimum conditions is 3.03% (n = 5). The accuracy of the method was estimated by using spring and tap water samples that were spiked with different amounts of silver ion. The adsorption isotherm of silver ion was obtained. The capacity of the sorbent at optimum conditions has been found to be 384 μg of silver per gram of sorbent

  13. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography.

    Science.gov (United States)

    Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei

    2009-05-29

    Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.

  14. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  15. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements.

    Science.gov (United States)

    Czajkowska-Mysłek, Anna; Siekierko, Urszula; Gajewska, Magdalena

    2016-04-01

    The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA-LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high-performance liquid chromatography coupled to a diode array detector (Ag-HPLC-DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1% acetonitrile in n-hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n-3 and n-6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L(-1). The developed method was used to evaluate of n-3 and n-6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC-FID based method.

  16. Leaching and antimicrobial properties of silver nanoparticles loaded onto natural zeolite clinoptilolite by ion exchange and wet impregnation

    CSIR Research Space (South Africa)

    Missengue, RNM

    2015-11-01

    Full Text Available This study aimed to compare the leaching and antimicrobial properties of silver that was loaded onto the natural zeolite clinoptilolite by ion exchange and wet impregnation. Silver ions were reduced using sodium borohydride (NaBH(sub4...

  17. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  18. Plasma-assisted reduction of silver ions impregnated into a natural zeolite framework

    Science.gov (United States)

    Osonio, Airah P.; Vasquez, Magdaleno R.

    2018-02-01

    A green, dry, and energy-efficient method for the fabrication of silver-zeolite (AgZ) composite via 13.56 MHz radio-frequency plasma reduction is demonstrated. Impregnation by soaking and ion-exchange deposition were performed to load the silver ions (Ag+) into the sodium-zeolite samples. Characterization was performed by optical emission spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analyses. Results indicate the successful reduction of Ag+ to its metallic state on the surface of the zeolite with a mean diameter of 165 nm. This plasma-induced reduction technique opens possibilities in several areas including catalysis, adsorption, water treatment, and medicine.

  19. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  20. Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism

    Science.gov (United States)

    Jiang, Wen-Yan; Ran, Shi-Yong

    2018-05-01

    The interaction between silver ions and DNA plays an important role in the therapeutic use of silver ions and in related technologies such as DNA sensors. However, the underlying mechanism has not been fully understood. In this study, the dynamics of Ag+-DNA interaction at a single-molecule level was studied using magnetic tweezers. AgNO3 solutions with concentrations ranging from 1 μM to 20 μM led to a 1.4-1.8 μm decrease in length of a single λ-DNA molecule, indicating that Ag+ has a strong binding with DNA, causing the DNA conformational change. The compaction process comprises one linear declining stage and another sigmoid-shaped stage, which can be attributed to the interaction mechanism. Considering the cooperative effect, the sigmoid trend was well explained using a phenomenological model. By contrast, addition of silver nanoparticle solution induced no detectable transition of DNA. The dependence of the interaction on ionic strength and DNA concentration was examined via morphology characterization and particle size distribution measurement. The size of the Ag+-DNA complex decreased with an increase in Ag+ ionic strength ranging from 1 μM to 1 mM. Morphology characterization confirmed that silver ions induced DNA to adopt a compacted globular conformation. At a fixed [AgNO3]:[DNA base pairs] ratio, increasing DNA concentration led to increased sizes of the complexes. Intermolecular interaction is believed to affect the Ag+-DNA complex formation to a large extent.

  1. Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011.

    Science.gov (United States)

    Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2012-01-01

    An effort is made to critically present the achievements in silver ion chromatography during the last decade. Novelties in columns, mobile-phase compositions and detectors are described. Recent applications of silver ion chromatography in the analysis of fatty acids and triacylglycerols are presented while stressing novel analytical strategies or new objects. The tendencies in the application of the method in complementary ways with reversed-phase chromatography, chiral chromatography and, especially, mass detection are outlined.

  2. Compact Chemical Monitor for Silver Ions in Spacecraft Water Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified silver ions as the best candidate biocide for use in the potable water system on next-generation spacecraft. Though significant work has been...

  3. Ion time-of-flight study of laser ablation of silver in low pressure gases

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    The dynamics of ions from a laser-ablated silver target in low pressure background atmospheres have been investigated in a simple geometry using an electrical probe. A simple scattering picture for the first transmitted peak of the observed plume splitting has been used to calculate cross section...... of the ablated silver ions in oxygen (sigma{O(2)} = 4.8 x 10(-16) cm(2)) and in argon (sigma{Ar} = 6.7 x 10(-16) cm(2)). The dynamics of the blast wave is well described by blast wave theory. (C) 1999 Elsevier Science B.V. All rights reserved....

  4. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  5. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium

    Directory of Open Access Journals (Sweden)

    Abraham Daniel Arulraj

    2015-12-01

    Full Text Available The chemical sensing for the trace level detection of silver ion in aqueous solution still remains a challenge using simple, rapid, and inexpensive method. We report that thionine can be used as a fluorescent probe for the detection of Ag+ ion. The successive addition of Ag+ ion to the solution containing thionine quenches (turns-off the fluorescence intensity of thionine. Association and quenching constants have been estimated by the Benesi–Hildebrand method and Stern–Volmer plot, respectively. From the plot, the nature of the fluorescence quenching was confirmed as static quenching. An important feature of our chemosensor is high selectivity towards the determination of silver ion in aqueous solution over the other competitive metal ions. The detection limit of the sensor achieved 5 fM for Ag+ ion, which is superior to all previously reported chemosensors. The NMR and FT-IR studies were also carried out to support the complex formation between thionine and Ag+ ion. The practicality of the proposed chemosensor for determination of Ag+ ion was carried in untreated water samples.

  6. USE OF SILVER IONS IN PASTEURIZED MILK PRODUCTION

    OpenAIRE

    A. Mamaev; K. Leshukov; S. Stepanova

    2012-01-01

    The means of pasteurized milk shelf life prolongation by electro-chemical diffusion of silver ions has been introduced. Three samples of pasteurized milk were test subjects. In the course of study the following data have been examined: organoleptic, physicochemical, microbiological parameters of check samples and pilot samples of raw and pasteurized milk. Its shelf life has been determined. It has been determined that the test results of raw and pasteurized milk samples processed by various c...

  7. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    International Nuclear Information System (INIS)

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-01-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu 3+ ions to Eu 2+ ions is presented in this material. • The intensity of Ag + luminescence. • The introduction of Eu ions accelerated the reaction between Eu 2+ ions and silver ions inducing the silver clusters formation. - Abstract: Ag + doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag + decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu 3+ to Eu 2+ in our glass system, it revealed that Ag + has been reduced by the neighboring Eu 2+ which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag + /Ag aggregates to the Eu 3+ was investigated for the enhancement of Eu 3+ luminescence

  8. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  9. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  10. Study of ion-bombardment-induced surface topography of silver by stereophotogrammetric method

    International Nuclear Information System (INIS)

    Fayazov, I.M.; Sokolov, V.N.

    1992-01-01

    The ion-bombardment-induced surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The samples were irradiated with 30keV argon ions at fairly high fluences (> 10 17 ions/cm 2 ). The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture is discussed. To analyse the irradiated surfaces covered with cones, the SEM-stereotechnique is proposed. The measurements of the sample section perpendicular to the incidence plane are also carried out. (author)

  11. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    International Nuclear Information System (INIS)

    Su, Cheng-Kuan; Hsieh, Meng-Hsuan; Sun, Yuh-Chang

    2016-01-01

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag + ) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag + ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag + ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L −1 when determining Ag + ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L −1 when determining Ag + ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag + /AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag + ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag + ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is available for retaining Ag + ion species. • The

  12. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Vytykačová, S.; Švecová, B.; Nekvindová, P.; Špirková, J.; Macková, Anna; Mikšová, Romana; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 245-255 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * silver nanoparticles * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  13. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  14. Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: effects of silver ion, medium and energy sources

    Directory of Open Access Journals (Sweden)

    Hadi Abdollahi

    2017-12-01

    Full Text Available This study evaluates the effects of different additives such as silver ion, medium and energy sources on the efficiency of mixed moderate thermophilic bioleaching approach to extract Cu, Mo and Re from molybdenite concentrate containing 0.98% Cu, 1.56% Fe, 53.84% Mo, and 0.055% Re. Molybdenite was the major phase of Mo-bearing mineral and chalcopyrite, covellite and pyrite were distinguished as minor phases. The higher copper extraction was obtained in tests with silver additives in all types and quantities rather than tests without silver ion. Kinetic of copper dissolution varied in these experiments and depended on the types and amounts of silver, and other supplemented additives such as ferric ion. There was no clear difference in the copper extraction by various culture media and 100% of Cu was dissolved after 30 days of treatment, using 50 mg/L of silver nitrate as additives. In the best condition and without silver additives, maximum 60% of copper was extracted even in the presence of energy sources such as sulfur, ferrous and ferric ions. In the most effective test with initial pH 1.57, 50 mg/L silver nitrate, and 50 g/L ferric sulfate, 100% of copper was dissolved in less than a week with highest kinetics rate. Molybdenum and rhenium extraction had the same tends with redox potential graph. By increasing the redox potential to the 550-600mV, molybdenite started to dissolve and finally, molybdenum and rhenium were extracted 2% and 9.53% in the best condition; respectively.

  15. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  16. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg"2"+ or As"3"+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg"2"+ ions. • The Hg"2"+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg"2"+ or As"3"+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg"2"+, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg"2"+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  17. Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods

    International Nuclear Information System (INIS)

    Wang, Xiaokun; Chen, Lingxin; Chen, Ling

    2014-01-01

    We have developed a method for the colorimetric determination of copper ions (Cu 2+ ) that is based on the use of silver-coated gold nanorods (Au–Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu 2+ , thiosulfate (S 2 O 3 2− ), and the surface of the Au–Ag NRs. The intrinsic color of the Au–Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu 2+ accelerates the leaching of silver from the shell caused in the presence of S 2 O 3 2− . This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu 2+ over the 3–1,000 nM concentration range (R = 0.996). The method is cost effective and was applied to the determination of Cu 2+ in real water samples. (author)

  18. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Staněk, S.; Nekvindová, P.; Švecová, B.; Vytykáčová, S.; Míka, M.; Oswald, Jiří; Macková, Anna; Malinský, Petr; Špirková, J.

    2016-01-01

    Roč. 371, Mar (2016), s. 350-354 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion implantation * silicate glass * silver * nanoparticles * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 1.109, year: 2016

  19. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  20. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cheng-Kuan, E-mail: chengkuan@ntou.edu.tw [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC (China); Hsieh, Meng-Hsuan [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China); Sun, Yuh-Chang, E-mail: ycsun@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China)

    2016-03-31

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag{sup +}) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag{sup +} ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag{sup +} ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L{sup −1} when determining Ag{sup +} ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L{sup −1} when determining Ag{sup +} ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag{sup +}/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag{sup +} ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag{sup +} ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is

  1. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry.

    Science.gov (United States)

    Kim, So-Hee; Cha, Eun-Ju; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2014-01-01

    Metal ion coordination ionspray (M(+) CIS) ionization is a powerful technique to enhance ionization efficiency and sensitivity. In this study, we developed and validated an analytical method for simultaneous ionization and analysis of 84 anabolic androgenic steroids (65 exogenous and 19 endogenous) using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry (LC-Ag(+) CIS/MS/MS). The concentrations of silver ions and organic solvents have been optimized to increase the amount of silver ion coordinated complexes. A combination of 25 μM of silver ions and methanol showed the best sensitivity. The validation results showed the intra- (0.8-9.2%) and inter-day (2.5-14.9%) precisions, limits of detection (0.0005-5.0 ng/mL), and matrix effect (71.8-100.3%) for the screening analysis. No significant ion suppression was observed. In addition, this method was successfully applied to analysis of positive samples from suspected abusers and useful for the detection of the trace levels of anabolic steroids in human urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Synthesis of silver nanoparticles using Matricaria recutita (Babunah plant extract and its study as mercury ions sensor

    Directory of Open Access Journals (Sweden)

    Imran Uddin

    2017-11-01

    Full Text Available Silver (Ag nanoparticles comprise a highly selective approach for development of nanosensors for the detection of Hg2+ ions. When Ag nanoparticles mixes with Hg2+ ions, loses its UV–Vis absorption intensity. Here, green synthesis of Ag nanoparticles was done using plant extract of Matricaria recutita (Babunah under ambient conditions. Biosynthesized Ag nanoparticles are well-dispersed having quasi-spherical shape and average particle size of 11nm. XRD, SAED and HRTEM analysis showed that nanoparticles are well crystalline in nature and having cubic phase of geometry. We report here highly selective colorimetric detection of mercury ions (Hg2+ using biosynthesized Ag nanoparticles. Keywords: Herbal extract, Nanosensor, Biosynthesis, Matricaria recutita, Silver nanoparticles

  3. Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Kapoor, S.; Gopinathan, C.

    1998-01-01

    Radiolytic reduction of silver, copper and cadmium ions and the subsequent formation of their clusters was studied in aqueous gelatin or carboxy methyl cellulose (CMC) solutions. Presence of gelatin or CMC in the solution affects the early processes. The rate of reduction by hydrated electron reduces due to complexation. However, when the ratio of silver ions to monomeric chains decreases over a certain limit the process of reduction inhibits completely. The effect of ionic strength or pH and the reducing radical on the rate of formation of colloidal Cu and Cd is also discussed

  4. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  5. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  6. Interactive Relationship between Silver Ions and Silver Nanoparticles with PVA Prepared by the Submerged Arc Discharge Method

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2018-01-01

    Full Text Available This study uses the submerged arc discharge method (SADM and the concentrated energy of arc to melt silver metal in deionized water (DW so as to prepare metal fluid with nanoparticles and submicron particles. The process is free from any chemical agent; it is rapid and simple, and rapid and mass production is available (0.5 L/min. Aside from the silver nanoparticle (Ag0, silver ions (Ag+ exist in the colloidal Ag prepared by the system. In the preparation of colloidal Ag, polyvinyl alcohol (PVA is used as an additive so that the Ag0/Ag+ concentration, arcing rate, peak, and scanning electron microscopic (SEM images in the cases with and without PVA can be analyzed. The findings show that the Ag0/Ag+ concentration increases with the addition level of PVA, while the nano-Ag and Ag+ electrode arcing rate rises. The UV-Vis absorption peak increases Ag0 absorbance and shifts as the dispersity increases with PVA addition. Lastly, with PVA addition, the proposed method can prepare smaller and more amounts of Ag0 nanoparticles, distributed uniformly. PVA possesses many distinct features such as cladding, dispersion, and stability.

  7. Ion Production by Laser Impact on a Silver Surface

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. Even at this low fluence the particles ejected from a surface interact with each other in a so-called laser ablation plume. The ablated particles...... are largely neutrals at low fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes...... range considered is also a typical range for pulsed laser deposition (PLD), by which the material is collected on a suitable substrate for thin film growth. PLD has the advantage compared with other film deposition methods, that even a complicated stoichiometry, e.g. metal oxides or alloys, can...

  8. Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass

    International Nuclear Information System (INIS)

    Jimenez, J.A.; Lysenko, S.; Liu, H.; Fachini, E.; Cabrera, C.R.

    2010-01-01

    Europium-doped aluminophosphate glasses prepared by the melt-quenching technique have been studied by photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The effects of silver and tin doping, and of further thermal processing on Eu 3+ ions luminescence have been assessed. For the glass system containing only europium, Eu 3+ PL observed under UV excitation is suggested to occur through energy transfer from the excited glass host. After silver and tin doping, an enhanced UV excited Eu 3+ PL has been indicated to occur essentially due to radiative energy transfer from isolated Ag + ions and/or two fold-coordinated Sn centers. Since thermal processing of the material leads to a quenching effect on Eu 3+ PL and Ag nanoparticles (NPs) formation due to reduction of silver ions by tin, XPS was employed in order to investigate the possibility for Eu 3+ →Eu 2+ reduction during HT as a potential source of the PL decrease. The data points towards Ag NPs as main responsible for the observed weakening of Eu 3+ PL.

  9. The Effect of Annealing at 15000C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    International Nuclear Information System (INIS)

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-01-01

    The transport of silver in CVD β-SiC has been studied using ion implantation. Silver ions were implanted in β-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 (micro)m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion

  10. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  11. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion

    Directory of Open Access Journals (Sweden)

    Xiugong Gao

    2015-01-01

    Full Text Available Male and female rats (26-day-old were exposed to 0.0, 0.4, 4 or 40 mg/kg body weight silver acetate (AgAc in drinking water for 10 weeks prior to and during mating. Sperm-positive females remained within their dose groups and were exposed to silver acetate during gestation and lactation. At postnatal day 26, the effect of silver ions on the developing F1 generation rat thymus was evaluated at the transcriptional level using whole-genome microarrays. Gene expression profiling analyses identified a dozen differentially expressed genes (DEGs in each dose group using a loose criterion of fold change (FC >1.5 and unadjusted p < 0.05, regardless of whether the analysis was conducted within each gender group or with both gender groups combined. No dose-dependent effect was observed on the number of DEGs. In addition, none of these genes had a false discovery rate (FDR <0.05 after correction for multiple testing. These results in combination with the observation that thymus-to-body-weight ratios were not affected and no histopathological abnormalities were identified indicate that in utero exposure to silver ions up to 26.0 mg/kg (equivalent to 40.0 mg/kg silver acetate did not have an adverse effect on the developing thymus.

  12. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  13. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  14. Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst.

    Science.gov (United States)

    Luna, Pilar; Juárez, Manuela; de la Fuente, Miguel Angel

    2008-09-12

    This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.

  15. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle.

    Science.gov (United States)

    Yildiz, Leyla; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2008-10-19

    This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g(-1)plant) were in the order: celery leaves>nettle>parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step.

  16. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium

    OpenAIRE

    Arulraj, Abraham Daniel; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Vasantha, Vairathevar Sivasamy; Wang, Sea-Fue

    2015-01-01

    The chemical sensing for the trace level detection of silver ion in aqueous solution still remains a challenge using simple, rapid, and inexpensive method. We report that thionine can be used as a fluorescent probe for the detection of Ag+ ion. The successive addition of Ag+ ion to the solution containing thionine quenches (turns-off) the fluorescence intensity of thionine. Association and quenching constants have been estimated by the Benesi–Hildebrand method and Stern–Volmer plot, respectiv...

  17. Formation of silver colloids on ion exchanged soda lime silicate glasses by irradiation

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Okuno, E.

    1998-01-01

    The effect of ionizing radiation (gamma rays, X-rays and electrons) on soda lime silicate glasses, in which part of the Na + was substituted by Ag + by means of an ionic exchange process, was studied. The techniques of thermally stimulated depolarization current (TSDC) and transmission electron microscopy (TEM) were employed to follow the formation of silver colloids by irradiation. Also the thermoluminescence (TL) of the samples was measured and three peaks between room temperature and 450 C were observed. The TEM and TSDC results agree that, as expected, ionizing radiation promotes the formation of silver colloids on the ion exchanged surface of soda lime glasses. Soft X-rays are much more efficient in the process than gamma rays and electrons. The correlation with thermoluminescence glow curves indicates that the intensity of a TL peak at 230 C can provide a rapid means of evaluating the presence of silver colloids. TL sensitivities, measured as area under the glow curve per unit mass and unit dose, are very similar for ion exchanged and not exchanged samples submitted to X-ray irradiation, although the peak temperatures differ in about 40 C in the two cases. For both electron and gamma irradiated samples, the TL sensitivity drops about an order of magnitude when compared to the X-ray irradiated ones. (orig.)

  18. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  19. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils

    International Nuclear Information System (INIS)

    Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A.M.; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J.

    2015-01-01

    This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. - Highlights: • Toxicity of silver nanoparticles in soils increased with time. • Standard tests do not adequately assess toxicity of silver NPs to earthworms. • Internal Ag in earthworms did not always explain toxicity after shorter aging times. • With aging time, Ag ion and Ag NP effect in soils will merge to a common value. - Toxicity of silver nanoparticles in soils increased with time with the result that commonly applied tests of 28 days exposure with freshly spiked soils do not adequately assess the environmental hazard of silver nanoparticles

  20. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fluorescent carbon quantum dot hydrogels for direct determination of silver ions.

    Science.gov (United States)

    Cayuela, A; Soriano, M L; Kennedy, S R; Steed, J W; Valcárcel, M

    2016-05-01

    The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  3. Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kostic, Danijela, E-mail: dkostic@tmf.bg.ac.rs [Innovation Center of the Faculty of Technology and Metallurgy (Serbia); Vidovic, Srđan, E-mail: srdjanhi@gmail.com; Obradovic, Bojana, E-mail: bojana@tmf.bg.ac.rs [University of Belgrade, Faculty of Technology and Metallurgy (Serbia)

    2016-03-15

    A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10{sup −18} m{sup 2} s{sup −1}, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl{sup −} and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.

  4. Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I Ions – Plants as Bioindicators of Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-01-01

    Full Text Available The aim of this work is to investigate sunflower plants response on stressinduced by silver(I ions. The sunflower plants were exposed to silver(I ions (0, 0.1, 0.5,and 1 mM for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such aslignified cell walls, it was possible to determine the changes of important shoot and rootstructures, mainly vascular bungles and development of secondary thickening. Thedifferences in vascular bundles organisation, parenchymatic pith development in the rootcentre and the reduction of phloem part of vascular bundles were well observable.Moreover with increasing silver(I ions concentration the vitality of rhizodermal cellsdeclined; rhizodermal cells early necrosed and were replaced by the cells of exodermis.Further we employed laser induced breakdown spectroscopy for determination of spatialdistribution of silver(I ions in tissues of the treated plants. The Ag is accumulated mainlyin near-root part of the sample. Moreover basic biochemical indicators of environmentalstress were investigated. The total content of proteins expressively decreased withincreasing silver(I ions dose and the time of the treatment. As we compare the resultsobtained by protein analysis – the total protein contents in shoot as well as root parts – wecan assume on the transport of the proteins from the roots to shoots. This phenomenon canbe related with the cascade of processes connecting with photosynthesis. The secondbiochemical parameter, which we investigated, was urease activity. If we compared theactivity in treated plants with control, we found out that presence of silver(I ions markedlyenhanced the activity of urease at all applied doses of this toxic metal. Finally we studiedthe effect of silver(I ions on activity of urease

  5. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    Science.gov (United States)

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  6. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Hashemi, Beshare; Dehdashtian, Sara; Mohammadi, Moslem; Gholivand, Mohammad Bagher [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Garau, Alessandra; Lippolis, Vito [Dipartimento di Scienze Chimiche e Geologiche, Universita' degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, CA (Italy)

    2014-12-10

    Highlights: • Preparation of Ag{sup +} imprinted polymeric nanobeads via precipitation polymerization. • Use of a mixed aza-thioether crown containing a 1,10-phenanthroline subunit a selective host for Ag{sup +} ion. • Highly selective, sensitive and fast recognition of traces of Ag{sup +} ions. • Use of the prepared Ag{sup +}-IIP for preparation of an Ag{sup +}-voltammetric sensor with LOD of 9.0 × 10{sup −10} M. • Use of the prepared Ag{sup +}-IIP for preparation of Ag{sup +}-ISEs with LOD of 1.2 × 10{sup −9} M 9.0 × 10{sup −10} M. - Abstract: A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag{sup +} and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO{sub 3} solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag{sup +} was 18.08 μmol g{sup −1}. The relative standard deviation and limit of detection (LOD = 3S{sub b}/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10{sup −8} M, respectively. The new Ag{sup +}-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10{sup −10} and 1.2 × 10{sup −9} M, respectively.

  7. Unraveling the reaction mechanism of silver ions reduction by chitosan from so far neglected spectroscopic features.

    Science.gov (United States)

    Carapeto, Ana Patrícia; Ferraria, Ana Maria; do Rego, Ana Maria Botelho

    2017-10-15

    Metallic silver nanoparticles were synthesized in aqueous solution using chitosan, as both reducing and stabilizing agent, and AgNO 3 as silver precursor aiming the production of solid ultra-thin films. A systematic characterization of the resulting system as a function of the initial concentrations was performed. The combination of UV-vis absorption - and its quantitative analysis - with X-ray photoelectron spectra, light scattering measurements and atomic force microscopy allowed obtaining a rational picture of silver reduction mechanism through the identification of the nature of the formed reduced/oxidized species. Nanoparticle mean sizes and sizes distributions were rather independent from the precursors initial absolute and relative concentrations ([AgNO 3 ]/[chitosan]). This work clarifies some points of the mechanism involved showing experimental evidence of the early stages of the very fast silver reduction in chitosan aqueous solutions through the spectral signature of the smallest silver aggregate (Ag 2 + ) even at room temperature. The characterized system is believed to be useful for research fields where silver nanoparticles completely exempt of harmful traces of inorganic ions, coming from additional reducing agents, are needed, especially to be used in biocompatible in films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  9. Redox behavior of transition metal ions in zeolites 6. Reversibility of the reduction reaction in silver zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P A; Uytterhoeven, J B; Beyer, H K

    1977-01-01

    Degassing above 573/sup 0/K of Ag-Y or Ag-mordenite previously reduced by hydrogen at 623/sup 0/K resulted in hydrogen evolution, the amount of hydrogen increasing to a maximum at about 873/sup 0/K. No hydrogen was evolved when the zeolite was reduced by hydrazine or hydroxylamine, indicating that hydrogen is formed by reaction between silver metal and hydroxyl groups formed in the reduction step (i.e., the reverse of the reduction step). Consumption of hydroxyl groups was proven by IR studies of pyridine chemisorption which occurs entirely as pyridinium ions on Broensted sites or reduced samples but with increasing formation of pyridine on Lewis acid sites as the degassing temperature increases; formation of silver(I) ions was proven by carbon monoxide complexation. Silver metal outside the zeolite pores was not affected by the degassing, and the amount of hydrogen evolved upon degassing decreased with increasing number of reduction-degassing cycles, probably as a result of dehydroxylation or sintering. Spectra, graphs, tables, and 21 references.

  10. Ammonium ion interaction with conditioned natural zeolite with silver and its effect on the disinfection of polluted water in front of a consortium of gram (+) and gram (-) microorganisms

    International Nuclear Information System (INIS)

    Gonzaga G, V. E.

    2013-01-01

    Clinoptilolite zeolite material is a relative abundance in Mexico, which has ion exchange properties, therefore, has the ability to retain metal ions giving it an application in the process of disinfecting of water contaminated with pathogenic microorganisms. In this research, we conducted a study of disinfection of water contaminated with a microbial consortium, from a zeolite rock clinoptilolite from a deposit located in the State of Guerrero. Initially, the zeolite prepared by the grinding and sieving, for conditioning with NaCl and subsequently with AgNO 3 , finally to be characterized using the techniques of scanning electron microscopy and X-ray diffraction. Tests using columns packed with zeolite material, the effect of zeolite bactericidal conditioned with silver (ZGAg) against a microbial consortium consisting of Escherichia coli and Sthapyloccocus aureus in aqueous solution in the presence of ammonium ions used to increase the ion exchange with zeolite fitted with silver. To describe curves disinfecting a continuous flow system is adapted Gu pta model, which describes the kinetics and equilibrium adsorption process, considering the microorganisms as the adsorbate and the sanitizing agent (conditioned with silver zeolite) as the adsorbent. Characterization results show that in the scanning electron microscopy (Sem), no changes were obtained on the morphology of typical clinoptilolite crystals before and after that was modified with sodium and then with silver, it is worth mentioning however that fitted with silver zeolite (ZGAg), small particles are seen on the zeolite material which when analyzed by energy dispersive spectroscopy (EDS), we found a high concentration of Ag +. The disinfection period is increased as the concentration increased ammonium ions, this behavior is attributed to the ion exchange that occurs between the ammonium ions and silver ions. A lower percentage of inactivation is due, therefore, to a lesser amount of money available to be

  11. Nucleic acid nanomaterials: Silver-wired DNA

    Science.gov (United States)

    Auffinger, Pascal; Ennifar, Eric

    2017-10-01

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.

  12. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II ions

    Directory of Open Access Journals (Sweden)

    R. Sithara

    2017-11-01

    Full Text Available This study was focused on the synthesis of silver nanoparticles using Acalypha hispida leaf extract and the characterization of the particles using UV–Vis spectroscopy, XRD, FT-IR, and TEM. The results showed the formation of silver nanoparticles, crystalline in nature, with an average size of 20–50 nm. The leaf extract components were analyzed with GC–MS and exhibited a high content of Phytol (40.52%, n-Hexadecanoic acid (9.67%, 1,2,3-Benzenetriol (7.04%, α-d-Mannofuranoside methyl (6.22%, and d-Allose (4.45%. The optimization and statistical investigation of reaction parameters were studied and maximum yield with suitable properties of silver nanoparticles was obtained at leaf extract volume (0.5 mL, the concentration of silver nitrate (1.75 mM, and reaction temperature (50 °C. The method of detecting Mn2+ ions using the colloidal silver nanoparticles was discussed. The minimum and maximum detection limit were found to be 50 and 200 µM of Mn(II ions, respectively. Thus, the obtained results encourage the use of economical synthesis of silver nanoparticles in the development of nanosensors to detect the pollutants present in industrial effluents.

  13. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Martina; Cvačka, Josef

    2013-01-01

    Roč. 1302, Aug 9 (2013), s. 105-110 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : jojoba * human hair * wax esters * mass spectrometry * silver-ion liquid chromatography * long-chain esters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  14. Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Arai, Nobutoshi; Matsumoto, Takuya; Ueno, Kazuya; Gotoh, Yasuhito; Adachi, Kouichiro; Kotaki, Hiroshi; Ishikawa, Junzo

    2004-01-01

    Formation of silver nanoparticles formed by silver negative-ion implantation in a thin SiO 2 layer and its I-V characteristics were investigated for development single electron devices. In order to obtain effective Coulomb blockade phenomenon at room temperature, the isolated metal nanoparticles should be in very small size and be formed in a thin insulator layer such as gate oxide on the silicon substrate. Therefore, conditions of a fine particles size, high particle density and narrow distribution should be controlled at their formation without any electrical breakdown of the thin insulator layer. We have used a negative-ion implantation technique with an advantage of 'charge-up free' for insulators, with which no breakdown of thin oxide layer on Si was obtained. In the I-V characteristics with Au electrode, the current steps were observed with a voltage interval of about 0.12 V. From the step voltage the corresponded capacitance was calculated to be 0.7 aF. In one nanoparticle system, this value of capacitance could be given by a nanoparticle of about 3 nm in diameter. This consideration is consistent to the measured particle size in the cross-sectional TEM observation. Therefore, the observed I-V characteristics with steps are considered to be Coulomb staircase by the Ag nanoparticles

  15. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  16. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    Science.gov (United States)

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  17. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  18. Chitosan–silver oxide nanocomposite film: Preparation and ...

    Indian Academy of Sciences (India)

    (Yoshida et al 1999; Herrera et al 2001), ion exchange fibres. (Nonaka et al ... In this communication, we report the synthesis of .... The SEM pictures of chitosan, silver oxide and .... system for silver ions or as a contact-active material (Chan.

  19. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.

    Science.gov (United States)

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin

    2017-08-01

    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Chen, Yu-Chun; Shyue, Jing-Jong

    2011-01-01

    This article presents an electrochemical discharge (ECD) method that consists of a combination of chemical methods and electric arc discharges. In the method, 140 V is applied to an Ag electrode from a DC power supply. The arc-discharge between the electrodes produces metallic silver nanoparticles and silver ions in the aqueous solution. Compared with the original arc discharge, this ECD method creates smaller nanoparticles, prevents clumping of the nanoparticles, and shortens the production time. The citrate ions also reduce the silver ions to silver nanoparticles. In addition, the citrate ions cap the surface of the produced silver nanoparticles and the zeta potential increases. In this article, the weight loss of the electrodes and the reduction of silver ions to silver nanoparticles as a function of citrate concentration and electric conductivity of the medium are discussed. Furthermore, the properties of the colloidal silver prepared with ECD are analyzed by UV–Vis spectroscopy, dynamic light scattering, electrophoresis light scattering, and scanning electron microscopy. Finally, a continuous production apparatus is presented for the continuous production of colloidal silver.

  2. Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition

    Science.gov (United States)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-06-01

    A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.

  3. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    Science.gov (United States)

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures

    Science.gov (United States)

    Janardhanan, S.; Kalidas, C.

    1984-06-01

    The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.

  5. Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cassandra E. Nix

    2018-05-01

    Full Text Available Elevated levels of silver in the environment are anticipated with an increase in silver nanoparticle (AgNP production and use in consumer products. To potentially reduce the burden of silver ion release from conventional solid core AgNPs, a lignin-core particle doped with silver ions and surface-stabilized with a polycationic electrolyte layer was engineered. Our objective was to determine whether any of the formulation components elicit toxicological responses using embryonic zebrafish. Ionic silver and free surface stabilizer were the most toxic constituents, although when associated separately or together with the lignin core particles, the toxicity of the formulations decreased significantly. The overall toxicity of lignin formulations containing silver was similar to other studies on a silver mass basis, and led to a significantly higher prevalence of uninflated swim bladder and yolk sac edema. Comparative analysis of dialyzed samples which had leached their loosely bound Ag+, showed a significant increase in mortality immediately after dialysis, in addition to eliciting significant increases in types of sublethal responses relative to the freshly prepared non-dialyzed samples. ICP-OES/MS analysis indicated that silver ion release from the particle into solution was continuous, and the rate of release differed when the surface stabilizer was not present. Overall, our study indicates that the lignin core is an effective alternative to conventional solid core AgNPs for potentially reducing the burden of silver released into the environment from a variety of consumer products.

  6. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...

  7. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    International Nuclear Information System (INIS)

    Zhang Ting; Chai Yaqin; Yuan Ruo; Guo Junxiang

    2012-01-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag + ion ranging from 1.0 × 10 −6 to 1.0 × 10 −1 M with a detection limit of 9.5 × 10 −7 M and a slope of 60.4 ± 0.2 mV dec −1 over a wide pH range (4.0–9.0) with a fast response time (50 s) at 25 °C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl − and Br − ions. - Highlights: ► Functionalized silica gels have become promising materials. ► This work is the first attempt to apply triazene functionalized silica gel. ► The Functionalized silica gels were used to detect silver. ► The response of the previously reported papers are compared with this work. ► The result indicates the proposed electrode is better than reported Ag + electrodes.

  8. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  9. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  10. Silver as antibacterial towards Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Simone eBelluco

    2016-03-01

    Full Text Available Listeria monocytogenes is a serious foodborne pathogen that can contaminate food during processing and can grow during food shelf-life. New types of safe and effective food contact materials embedding antimicrobial agents, like silver, can play an important role in the food industry. The present work aimed at evaluating the in vitro growth kinetics of different strains of L. monocytogenes in the presence of silver, both in its ionic and nano form. The antimicrobial effect was determined by assaying the number of culturable bacterial cells, which formed colonies after incubation in the presence of silver nanoparticles (AgNPs or silver nitrate (AgNO3. Ionic release experiments were performed in parallel. A different reduction of bacterial viability between silver ionic and nano forms was observed, with a time delayed effect exerted by AgNPs. An association between antimicrobial activity and ions concentration was shown by both silver chemical forms, suggesting the major role of ions in the antimicrobial mode of action.

  11. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    International Nuclear Information System (INIS)

    Williamson, Jill P.; Emmert, Gary L.

    2013-01-01

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag + or I 2 residuals in recycled drinking water. •Method detection limits of Ag + of 52 μg L −1 and I 2 of 2 μg L −1 . •Mean % recoveries for Ag + of 104 ± 1% and for I 2 of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag + of 1.4% and for I 2 of 5.7%. •Bias measurements agreed to 11.3 μg L −1 for Ag + and to 27.3 μg L −1 for I 2 . -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag + and I 2 are 52 μg L −1 Ag + and 2 μg L −1 I 2 ; the mean percent recoveries were 104% and 96.2% for Ag + and I 2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag + and 5.7% for I 2 . The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates

  12. Anodic stripping voltammetric determination of silver ion at a carbon paste electrode modified with carbon nanotubes

    International Nuclear Information System (INIS)

    Tashkhourian, J.; Javadi, S.; Ana, F.N.

    2011-01-01

    A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2 min in -0.4 V, this followed by an anodic potential scan between +0.2 and + 0.6 V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0 x 10 -8 to 1.0 x 10 -5 mol L -1 , with a detection limit of 1.8 x 10 -9 mol L -1 after an accumulation time of 120 s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1 μM concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters. (author)

  13. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  14. Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan.

    Science.gov (United States)

    Petrova, Yulia S; Pestov, Alexandr V; Usoltseva, Maria K; Neudachina, Ludmila K

    2015-12-15

    This study presents a simple and effective method of preparation of N-(2-sulfoethyl) chitosan (NSE-chitosan) that allows obtaining a product with a degree of modification up to 1.0. The chemical structure of the obtained polymers was confirmed by FT-IR and 1H NMR spectroscopies. Cross-linking of N-(2-sulfoethyl) chitosans by glutaraldehyde allows preparation of sorbents for removal and concentration of metal ions. Capacity of sorbents towards hydroxide ions was determined depending on the degree of sulfoethylation under static and dynamic conditions. Dissociation constants of functional amino groups of the analyzed sorbents were determined by potentiometric titration. It was shown that basicity of the amino groups decreased (wherein pKa decreased from 6.53 to 5.67) with increase in degree of sulfoethylation. It explains the significant influence of sulfo groups on selectivity of sorption of metal ions on N-(2-sulfoethyl) chitosan-based sorbents. The investigated substances selectively remove copper(II) and silver(I) ions from solutions of complex composition. Wherein the selectivity coefficient KAg/Cu increased to 20 (pH 6.5, ammonium acetate buffer solution) with increase in degree of sulfoethylation of the sorbent up to 1.0. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Neuron cell positioning on polystyrene in culture by silver-negative ion implantation and region control of neural outgrowth

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Sato, Hiroko; Baba, Takahiro; Ikemura, Shin'ichi; Gotoh, Yasuhito; Ishikawa, Junzo

    2000-01-01

    A new method to control the position of neuron cell attachment and extension region of neural outgrowth has been developed by using a pattering ion implantation with silver-negative ions into polystyrene dishes. This technique offers a promising method to form an artificially designed neural network in cell culture in vitro. Silver-negative ions were implanted into non-treated polystyrene dishes (NTPS) at conditions of 20 keV and 3x10 15 ions/cm 2 through a pattering mask, which had as many as 67 slits of 60 μm in width and 4 mm in length with a spacing of 60 μm. For cell culture in vitro, nerve cells of PC-12h (rat adrenal phechromocytoma) were used because they respond to a nerve growth factor (NGF). In the first 2 days in culture without NGF, we observed a selective cell attachment only to the ion-implanted region in patterning Ag - implanted polystyrene sample (p-Ag/NTPS). In another 2 days in culture with NGF, the nerve cells expanded neurites only over the ion-implanted region. For collagen-coated p-Ag/NTPS sample of which collagen was coated after the ion implantation (Collagen/p-Ag/NTPS), most nerve cells were also attached on the ion-implanted region. However, neurites expanded in both ion-implanted and unimplanted regions. The contact angle of NTPS decreased after the ion implantation from 86 deg. to 74 deg. . The region selectivity of neuron attachment and neurite extension is considered to be due to contact angle lowering by the ion implantation as radiation effect on the surface

  16. Formation of conductive and reflective silver nanolayers on plastic films via ion doping and solid–liquid interfacial reduction at ambient temperature

    International Nuclear Information System (INIS)

    Cui, Guanghui; Wu, Dezhen; Zhao, Yuan; Liu, Wei; Wu, Zhanpeng

    2013-01-01

    Conductive and reflective silver layers on both sides of polyimide films have been prepared by doping silver–ammonia ions into the surfaces of polyimide film, and subsequent solid–liquid interfacial reduction, during which double diffusion of silver ions and newly formed silver crystals occurred between the interfaces of polyimide films and the aqueous reducing surroundings. The newly formed silver nanoparticles could migrate and aggregate onto both sides of substrate films, forming continuous and compact silver layers that result in excellent conductivity, i.e. ∼0.6 and 0.5 Ω/sq on the upside and downside surfaces, respectively. The surface reflectivity could be detected up to 80% on the downside and 90% on the upside surface as well. The effects of the silver contents and reducing conditions on the morphologies and properties have been investigated comprehensively, and the two-side properties differences were discussed. A convictive relationship between the morphologies and properties has been established, providing reliable and general guidance in terms of preparation of inorganic nanoparticles on plastic substrates. This novel and simple strategy can be extended to fabricate many other metal, metal oxide and metal sulfide nanoparticles on plastic substrates, using proper oxidants or sulfions to replace the diverse reductants. The films were characterized by inductively coupled plasma, contact angle measurement, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, four-point probe instrument and ultraviolet spectrophotometry

  17. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  18. Synthesis of New Polyether Ether Ketone Derivatives with Silver Binding Site and Coordination Compounds of Their Monomers with Different Silver Salts

    Directory of Open Access Journals (Sweden)

    Jérôme Girard

    2016-05-01

    Full Text Available Polyether ether ketone (PEEK is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4′-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of these new monomers with different silver salts was studied. Crystal structures of different intermediates were obtained with a linear coordination between two pyridine groups and the silver ions in all cases. The mechanical and thermal properties of different new polymers were characterized. The synthesized PEEKN5 polymers showed similar properties than the PEEK ones whereas the PEEKN7 polymers showed similar thermal properties but the mechanical properties are not as good as the ones of PEEK. To improve these properties, these polymers were complexed with silver nitrate in order to “cross-link” with silver ions. The presence of ionic silver in the polymer was then confirmed by thermogravimetric analysis (TGA and X-ray powder diffraction (XRPD. Finally, a silver-based antimicrobial compound was successfully coated on the surface of PEEKN5.

  19. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  20. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  1. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ting; Chai Yaqin, E-mail: yqchai@swu.edu.cn; Yuan Ruo; Guo Junxiang

    2012-07-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag{sup +} ion ranging from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -1} M with a detection limit of 9.5 Multiplication-Sign 10{sup -7} M and a slope of 60.4 {+-} 0.2 mV dec{sup -1} over a wide pH range (4.0-9.0) with a fast response time (50 s) at 25 Degree-Sign C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl{sup -} and Br{sup -} ions. - Highlights: Black-Right-Pointing-Pointer Functionalized silica gels have become promising materials. Black-Right-Pointing-Pointer This work is the first attempt to apply triazene functionalized silica gel. Black-Right-Pointing-Pointer The Functionalized silica gels were used to detect silver. Black-Right-Pointing-Pointer The response of the previously reported papers are compared with this work. Black-Right-Pointing-Pointer The result indicates the proposed electrode is better than reported Ag{sup +} electrodes.

  2. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  3. Characterization of a silica-PVA hybrid for high density and stable silver dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Bryce, E-mail: bryce.dorin@postgrad.manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Zhu, Guangyu, E-mail: g.zhu@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Parkinson, Patrick, E-mail: patrick.parkinson@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Perrie, Walter, E-mail: wpfemto1@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Benyezzar, Med, E-mail: med.benyezzar@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Scully, Patricia, E-mail: patricia.scully@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-07-01

    A silica and polyvinyl alcohol (PVA) hybrid material mixed with a high density of silver ions is synthesised and characterized in this work. The hybrid material can be cast into thick films, which we determined to be homogeneous using Raman spectroscopy. We observed that the silver ions remain stable in the material over time and at temperatures of 100 °C, which represents a marked improvement over previous solid solutions of silver. Differential scanning calorimetry and thermogravimetric analysis indicate the rapid activation of silver at 173 °C, resulting in a dense formation of silver nanoparticles within the hybrid. The activation of silver was also demonstrated in 3-dimensional geometries using femtosecond duration laser pulses. These results illustrate the silica-PVA hybrid is an attractive material for developing silver-insulator composites. - Highlights: • A novel PVA-silica hybrid is developed for silver ion dissolution. • The hybrid exhibits a high silver saturation point and good silver stability. • Heating and laser irradiation are capable of converting the silver ions to metal. • The hybrid material enables the fabrication of 3D metal-insulator composites.

  4. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  5. Dynamic electrochemical measurement of chloride ions

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, Derk B.; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement,

  6. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  7. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  8. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  9. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  10. Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver graphene oxide nanocomposite materials

    International Nuclear Information System (INIS)

    Kamali, Khosro Zangeneh; Pandikumar, Alagarsamy; Jayabal, Subramaniam; Huang, Nay Ming; Ramaraj, Ramasamy; Lim, Hong Ngee; Ong, Boon Hoong; Bien, Chia Sheng Daniel; Kee, Yeh Yee

    2016-01-01

    The article describes a facile method for the preparation of a conjugate composed of silver nanoparticles and graphene oxide (Ag GO) via chemical reduction of silver precursors in the presence of graphene oxide (GO) while sonicating the solution. The Ag GO was characterized by X-ray photoelectron spectroscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. The nanocomposite undergoes a color change from yellow to colorless in presence of Hg(II), and this effect is based on the disappearance of the localized surface plasmon resonance absorption of the AgNPs due to the formation of silver-mercury amalgam. The presence of GO, on the other hand, prevents the agglomeration of the AgNPs and enhances the stability of the nanocomposite material in solution. Hence, the probe represents a viable optical probe for the determination of mercury(II) ions in that it can be used to visually detect Hg(II) concentrations as low as 100 μM. The instrumental LOD is 338 nM. (author)

  11. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  12. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima; Hong, Pei-Ying; Sougrat, Rachid; Nunes, Suzana Pereira

    2014-01-01

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  13. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    International Nuclear Information System (INIS)

    Gao Shuyan; Jia Xiaoxia; Chen Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag + /Ag (0.7996 V) and Hg 2+ /Hg 2 2+ (0.920 V) that makes colorless Hg 2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg 2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg 2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg 2+ ions sensing motif shows great promise for sensing Hg 2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  14. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shuyan, E-mail: shuyangao@htu.cn; Jia Xiaoxia; Chen Yanli [Henan Normal University, College of Chemistry and Environmental Science (China)

    2013-01-15

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag{sup +}/Ag (0.7996 V) and Hg{sup 2+}/Hg{sub 2}{sup 2+} (0.920 V) that makes colorless Hg{sup 2+} ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg{sup 2+} ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg{sup 2+} ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg{sup 2+} ions sensing motif shows great promise for sensing Hg{sup 2+} ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  15. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Science.gov (United States)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  16. Chitosan-stabilized Silver Nanoparticles for Colorimetric Assay of Mercury (II) Ions in aqueous system

    Science.gov (United States)

    Zarlaida, Fitri; Adlim, M.; Syukri Surbakti, M.; Fairuz Omar, Ahmad

    2018-05-01

    Mercury is considered as dangerous pollutant. Among the many form of mercury, the most stable and soluble in water is mercury (II) ions which it cause threat to human health and surroundings. Silver nanoparticles (AgNPs) used in this method were prepared by chitosan (chi) which act as stabilizing agent. The Chi-AgNPs has good dispersity with size ranging from 2.50 to 6.00 nm as shown by transmission electron microscopy (TEM) analysis and it is stable for 3 months. Color of Chi-AgNPs fades from brownish-yellow to colorless only with Hg2+ ions, but it shows no significant changes upon addition of other metal ions such as Al3+, Ba2+, Ca2+, Cd2+, Cr3+, Co2+, Cu2+, Fe2+, K+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, and Zn2+. The detection limit for Hg2+ ions by bare-eye is estimated to be ∼1µM. This method can be used for sensing mercury(II) ions in numerous water samples.

  17. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Jill P.; Emmert, Gary L., E-mail: gemmert@memphis.edu

    2013-08-20

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag{sup +} or I{sub 2} residuals in recycled drinking water. •Method detection limits of Ag{sup +} of 52 μg L{sup −1} and I{sub 2} of 2 μg L{sup −1}. •Mean % recoveries for Ag{sup +} of 104 ± 1% and for I{sub 2} of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag{sup +} of 1.4% and for I{sub 2} of 5.7%. •Bias measurements agreed to 11.3 μg L{sup −1} for Ag{sup +} and to 27.3 μg L{sup −1} for I{sub 2}. -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag{sup +} and I{sub 2} are 52 μg L{sup −1} Ag{sup +} and 2 μg L{sup −1} I{sub 2}; the mean percent recoveries were 104% and 96.2% for Ag{sup +} and I{sub 2} respectfully; and percent relative standard deviations were estimated at 1.4% for Ag{sup +} and 5.7% for I{sub 2}. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates.

  18. The effects of silver ions on copper metabolism in rats.

    Science.gov (United States)

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  19. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  20. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    OpenAIRE

    Lushi Kong; Guanchun Rui; Guangyu Wang; Rundong Huang; Ran Li; Jiajie Yu; Shengli Qi; Dezhen Wu

    2017-01-01

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for u...

  1. Temperature, pressure, and density of electron, atom and ion, in the breaking arc of silver-cadmium contacts used in medium current region

    International Nuclear Information System (INIS)

    Aida, Teizo

    1979-01-01

    Wear of silver-cadmium contacts at the time of breaking was studied. The materials of the contacts were silver-cadmium alloy and silver-cadmium oxide sinter. The spectra of arc discharge generated at the time of breaking contact were analyzed with a monochromator photo multiplier. The ratio of the densities of cadmium and silver atoms in the arc can be estimated from the observed intensities of spectrum lines. The electron density is obtained from the arc current density. The proportion of the cadmium atoms in the arc was about 30 percent. The densities of silver atoms and cadmium atoms can be estimated by the principle of thermal ionization equilibrium. The ion densities were also estimated. The partial pressures of silver and cadmium atoms in the arc can be obtained from the Boyle-Charles' law. A formula which gives the number of atoms liberated from the surfaces of contacts at the time of breaking was given by Boddy et al. (Kato, T.)

  2. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...

  3. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  4. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade; Cunha, Frederico Guilherme Carvalho [Clinica de Medicina Nuclear e Radiologia de Maceio (MedRadiUS), Radiology and Imaging Diagnosis at Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 deg C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  5. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Fisica; Cunha, Frederico Guilherme Carvalho [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 Degree-Sign C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  6. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Directory of Open Access Journals (Sweden)

    José Elisandro de Andrade

    2013-01-01

    Full Text Available In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA epoxy resin cured at 150 °C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111].

  7. Comparative proteomics analysis of sheep sperm under two doses of heavy ion to irradiation

    International Nuclear Information System (INIS)

    Li Hongyan; Zhao Xingxu; He Yuxuan; Zhang Yong; Zhang Hong; Wang Yanling; Li Fadi; Ma Youji

    2011-01-01

    The object of this study was to investigate differential proteomic expressions in sheep sperm protein under two doses (0.5 and 0.3 kGy) heavy ion radiation. The current research presented the protein changes using two-dimensional gel electrophoresis (2-DE) after staining with silver nitrate, differential expression proteins were detected by PDQuest 8.0 software and subjected to ion trap mass spectrometer equipped with a Surveyor HPLC system, and differential spots of protein were identified. Results showed that eight common different expressed protein spots in two doses 2D gels were identified to be three up-regulated proteins (glutaredoxin -1, transcription factor AP -2-alpha and enolase). It was concluded that there was significant difference at protein level in sheep sperm after heavy ion radiation and differential proteome expression analysis may be useful to clarify the physiology state of sheep sperm in heavy ion radiation, which laid a foundation for the further studies on heavy ion radiation of sheep sperm proteomics. (authors)

  8. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  9. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  10. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  11. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  12. The production of ultra-thin layers of ion-exchange resin and metallic silver by electrospraying

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1988-10-01

    Highly efficient radioactive sources for use in radioisotope metrology have been prepared on ultra-thin layers of electrosprayed ion-exchange resin. The efficiency of these sources can be reduced for the purpose of radioactivity standardisation by coating them with conducting silver layers which are also produced by electrospraying. A description is given of improvements to the electrospraying methods, together with details of the rotating, oscillating source-mount turntable

  13. Cloud Point Extraction and Determination of Silver Ion in Real Sample using Bis((1H-benzo[d ]imidazol-2ylmethylsulfane

    Directory of Open Access Journals (Sweden)

    Farshid Ahmadi

    2011-01-01

    Full Text Available Bis((1H-benzo[d]imidazol-2ylmethylsulfane (BHIS was used as a complexing agent in cloud point extraction for the first time and applied for selective pre-concentration of trace amounts of silver. The method is based on the extraction of silver at pH 8.0 by using non-ionic surfactant T-X114 and bis((1H-benzo[d]imidazol-2ylmethylsulfane as a chelating agent. The adopted concentrations for BHIS, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were optimized. Detection limits (3SDb/m of 1.7 along with enrichment factor of 39 for silver ion was achieved. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method was successfully applied to the ultra-trace determination of silver in real samples.

  14. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    Science.gov (United States)

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  15. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

    Science.gov (United States)

    Amin Yavari, S; Loozen, L; Paganelli, F L; Bakhshandeh, S; Lietaert, K; Groot, J A; Fluit, A C; Boel, C H E; Alblas, J; Vogely, H C; Weinans, H; Zadpoor, A A

    2016-07-13

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make

  16. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

    Science.gov (United States)

    Yang, Sang Mo; Strelcov, Evgheni; Paranthaman, M Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V

    2015-02-11

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.

  17. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag8+)

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D.K.

    2013-01-01

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10 10 to 10 12 ions cm −2 of 100 MeV silver (Ag 8+ ) ions. The temperature dependence of ac conductivity [σ m (ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag 8+ ) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation

  18. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition

    International Nuclear Information System (INIS)

    Byung-Seon Choi; Geun-Il Park; Jung-Won Lee; Ho-Yeon Yang; Seung-Kon Ryu

    2003-01-01

    Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10∼30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 deg C was in the ranges of 99.9% to 99.99%, except for 300 deg C. The influence of the long-term weathering and the poisoning with NO 2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100). (author)

  19. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  20. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  1. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  2. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef

    2013-08-09

    Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. FATTY-ACID COMPOSITION OF HUMAN-MILK TRIGLYCERIDE SPECIES - POSSIBLE CONSEQUENCES FOR OPTIMAL STRUCTURES OF INFANT FORMULA TRIGLYCERIDES

    NARCIS (Netherlands)

    WINTER, CH; HOVING, EB; MUSKIET, FAJ

    1993-01-01

    Human milk triglycerides (TGs) were separated into 14 fractions by silver ion high-performance liquid chromatography (HPLC) with light-scattering detection (LSD). Subsequent fractionation by reversed-phase HPLC-LSD resulted in 75 subfractions. The major 48 were analysed by gas chromatography for

  4. A concetration-dependent model for silver colloids in nanostructured sol-gel materials

    Science.gov (United States)

    Garcia-Macedo, Jorge A.; Franco, Alfredo; Renteria, Victor; Valverde-Aguilar, Guadalupe

    2005-08-01

    We report on the physical modelling of the photoconductive response of nanostructured sol-gel films in function of the silver nitrate concentration (ions and colloids). This model considers several factors as the silver nitrate concentration and the transport parameters obtained. The model is compared with others commonly used. 2d-hexagonal nanostructured sol-gel thin films were prepared by dip-coating method using a non-ionic diblock copolymer Brij58 (surfactant) to produce channels into the film. Silver colloids (metallic Ag0 nanoparticles ) were obtained by spontaneous reduction process of Ag+ ions to Ag0. These nanoparticles were deposited into the channels formed by the surfactant. The structure was identified by X-ray diffraction and TEM. An absorption band located at 430 nm was detected by optical absorption; it corresponds to the plasmon surface. Fit to this band with modified Gans theory is presented. Photoconductivity studies were performed on films with silver ions and films with silver colloids to characterized their mechanisms of charge transport in the darkness and under illumination at 420, 633 nm wavelengths. Transport parameters were calculated. The films with silver colloids exhibit a photovoltaic effect stronger than the films with silver ions. While, the last ones possesses a photoconductivity behaviour.

  5. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  6. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  7. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Vandenbussche, F.; Van Der Straeten, D.; Petrášek, Jan

    2018-01-01

    Roč. 37, č. 5 (2018), s. 809-818 ISSN 0721-7714 R&D Projects: GA ČR GA16-10948S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : Auxin * Calcium * Ethylene * Silver ions * Tobacco BY-2 cells * Transmembrane transport Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 2.869, year: 2016

  8. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  9. Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling.

    Science.gov (United States)

    Syed, S

    2016-04-01

    The demand of silver is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high grade silver ores are retreating. However, there exist large stashes of low and lean grade silver ores that are yet to be exploited. The main impression of this work was to draw attention to the most advance technologies in silver recovery and recycling from various sources. The state of the art in recovery of silver from different sources by hydrometallurgical and bio-metallurgical processing and varieties of leaching, cementing, reducing agents, peeling, electro-coagulants, adsorbents, electro-dialysis, solvent extraction, ion exchange resins and bio sorbents are highlighted in this article. It is shown that the major economic driver for recycling of depleted sources is for the recovery of silver. In order to develop an nature-friendly technique for the recovery of silver from diverse sources, a critical comparison of existing technologies is analyzed for both economic viability and environmental impact was made in this amendment and silver ion toxicity is highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synergistic effects of iodine and silver ions co-implanted in 6H–SiC

    International Nuclear Information System (INIS)

    Kuhudzai, R.J.; Malherbe, J.B.; Hlatshwayo, T.T.; Berg, N.G. van der; Devaraj, A.; Zhu, Z.; Nandasiri, M.

    2015-01-01

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H–SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H–SiC and their subsequent annealing behaviour has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 °C for 30 h in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H–SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings. - Highlights: • Co-implantation of Ag and I ions in 6H–SiC was performed. • Clear spatial association of Ag and I clusters observed after annealing. • Complete loss of Ag after high temperature annealing of silver only sample. • Iodine was retained in iodine only sample after high temperature annealing. • Iodine was found to play a role in the retention of Ag in the co-implanted samples.

  11. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection

    International Nuclear Information System (INIS)

    Ao Yiwei; Yang Yunxia; Yuan Shuanglong; Ding Lihua; Chen Guorong

    2007-01-01

    Spherical silver particles used in electronic paste for solar cell were prepared using the chemical reduction method with ammonia as a complex agent, hydrazine hydrate as a reducing agent, and gelatin as a protective agent. The gelatin protective mechanism in the preparing process of spherical silver particles was studied. Observations of SEM and results of laser particle size analysis and ultraviolet absorption spectra demonstrate the formation of the coordinative complex of silver ions with gelatin in aqueous solution which accelerated the reduction of silver ions. Moreover, gelatin can promote the nucleation of the metallic silver particles, thus beneficiating availability of the monodisperse spherical silver particles

  12. A general method for synthesis continuous silver nanoshells on dielectric colloids

    International Nuclear Information System (INIS)

    Chen Dong; Liu Huiyu; Liu Jianshu; Ren Xianglin; Meng Xianwei; Wu Wei; Tang Fangqiong

    2008-01-01

    A method for the controlled synthesis of silver nanoshells on various dielectric colloids, such as silica and polystyrene is presented in this study. The complexation of triethanolamine and silver ions is applied here to moderate the availability of the silver ions in the reaction solution, which directly affect the coating process. The morphologies of the particles were studied with transmission electron microscopy and their crystallinity and chemical composition were confirmed by X-ray and electron diffraction. The synthesis conditions were investigated and experimental results show that compact silver shells with easily controlled thickness can be deposited on dielectric cores by this method

  13. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    Science.gov (United States)

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Xin He

    2016-01-01

    Full Text Available We demonstrated a general strategy to fabricate silver-coated copper nanowires by a galvanic replacement, which is guided by the chemical principle that metal ions (silver ions with a relatively high reduction potential can galvanically etch nanostructure made from a less metal (copper. Well-dispersed and high-yielded copper nanowires were initially synthesized and then introduced into silver-ammonia solution for the growth of silver nanocrystals on the nanowire surfaces under vigorous oscillation. The results of X-ray diffraction, scanning electron microscope, and transmission electron microscope revealed that the silver nanocrystals were uniformly distributed on the copper nanowire surfaces to form Cu-Ag heterostructures. The concentration of silver-ammonia solution and the time of replacement reaction determine the size and density of the silver nanocrystals. Our investigation might pave the way to the synthesis of other bimetallic nanostructures via a facile, fast, and economical route.

  15. Grazing incidence small angle X-ray scattering study of silver nanoparticles in ion-exchanged glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong, E-mail: 57399942@qq.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Gu, Xiaohua [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Zhonghua, E-mail: wuzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-15

    The size and distribution of silver nanoparticles in ion-exchanged silicate glass induced by thermal treatments in air at different temperatures were investigated by means of grazing incidence small angle X-ray scattering technique, X-ray diffraction and optical absorption spectra. Silver–sodium ion exchange of soda-lime silicate glasses was done at 350 °C for 240 min, then the samples were treated by thermal annealing in air at different temperatures 400, 500 and 550 °C, respectively, for 1 h. After the annealing treatment above 400 °C for 1 h, smaller Ag nanoparticles occurred, together with bigger ones. Both dissolution of smaller Ag nanoparticles and diffusion of larger ones are discussed in these stages of annealing in this contribution.

  16. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  17. Optical spectroscopy of arsenic- and silver-containing sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.A.; Paje, S.E.; Llopis, J. [Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid (Spain); Villegas, M.A.; Fernandez Navarro, J.M. [Departamento de Vidrios, Instituto de Ceramica y Vidrio, Madrid (Spain)

    1999-05-07

    Sol-gel silica coatings doped with 1 mol% silver and/or 1 mol% arsenic oxide have been investigated by photoluminescence (PL) and optical absorption (OA) spectroscopy. The presence of Ag{sup +} ions in the silica host has been monitored by recording a luminescence peak located between 320 and 330 nm upon excitation with 228 nm light, whereas the formation of small particles of metallic silver has been assessed by recording the absorption band centred at about 405 nm. The luminescence peak has been related to the d{sup 10} 10 {r_reversible} d{sup 9} s parity-forbidden transitions in Ag{sup +}, which are partially allowed by odd-phonon assistance. On the other hand, the absorption peak at about 405 nm arises from the well known surface-plasmon resonance of silver particles. Coating densification under various atmospheres gives rise to significant effects on the PL and OA spectra. Results indicate that, after coating densification in air, most of the silver appears as Ag{sup +} ions, in contrast to coating densification under a 90% N{sub 2}-10% H{sub 2} atmosphere, which favours the formation of small particles of metallic silver. The presence of arsenic oxide in the silver coatings densified in air has been found to improve the stabilization of Ag{sup +} ions, so that partially prevents the formation of colloidal silver under reducing atmospheres. (author)

  18. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  19. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag{sup 8+})

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dhillon, Anju [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Avasthi, D.K. [Inter University Accelerator Center (IUAC), Aruna Asaf Ali Road, New Delhi 110067 (India)

    2013-07-15

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10{sup 10} to 10{sup 12} ions cm{sup −2} of 100 MeV silver (Ag{sup 8+}) ions. The temperature dependence of ac conductivity [σ{sub m}(ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag{sup 8+}) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation.

  20. Ammonium ion interaction with conditioned natural zeolite with silver and its effect on the disinfection of polluted water in front of a consortium of gram (+) and gram (-) microorganisms; Interaccion del ion amonio con zeolita natural acondicionada con plata y su efecto sobre la desinfeccion de agua contaminada frente a un consorcio de microorganismos gram (+) y gram (-)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga G, V. E.

    2013-07-01

    Clinoptilolite zeolite material is a relative abundance in Mexico, which has ion exchange properties, therefore, has the ability to retain metal ions giving it an application in the process of disinfecting of water contaminated with pathogenic microorganisms. In this research, we conducted a study of disinfection of water contaminated with a microbial consortium, from a zeolite rock clinoptilolite from a deposit located in the State of Guerrero. Initially, the zeolite prepared by the grinding and sieving, for conditioning with NaCl and subsequently with AgNO{sub 3}, finally to be characterized using the techniques of scanning electron microscopy and X-ray diffraction. Tests using columns packed with zeolite material, the effect of zeolite bactericidal conditioned with silver (ZGAg) against a microbial consortium consisting of Escherichia coli and Sthapyloccocus aureus in aqueous solution in the presence of ammonium ions used to increase the ion exchange with zeolite fitted with silver. To describe curves disinfecting a continuous flow system is adapted Gu pta model, which describes the kinetics and equilibrium adsorption process, considering the microorganisms as the adsorbate and the sanitizing agent (conditioned with silver zeolite) as the adsorbent. Characterization results show that in the scanning electron microscopy (Sem), no changes were obtained on the morphology of typical clinoptilolite crystals before and after that was modified with sodium and then with silver, it is worth mentioning however that fitted with silver zeolite (ZGAg), small particles are seen on the zeolite material which when analyzed by energy dispersive spectroscopy (EDS), we found a high concentration of Ag +. The disinfection period is increased as the concentration increased ammonium ions, this behavior is attributed to the ion exchange that occurs between the ammonium ions and silver ions. A lower percentage of inactivation is due, therefore, to a lesser amount of money available to

  1. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    Science.gov (United States)

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO₃) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils.

    Science.gov (United States)

    Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A M; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J

    2015-08-01

    This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Investigation on silver complexes of novel 1,2,3-triazole linked ...

    Indian Academy of Sciences (India)

    Abstract. The novel derivatives of 1,2,3-triazole linked crown ethers were investigated towards silver(I) ion coordination. The NMR measurements in deuterated methanol in different ratios of ligand and silver cation were studied. The experiments were performed in order to examine the way of binding Ag(I) ion by the ...

  4. Synthesis and characterization of polyacrylonitrile-silver nanocomposites by γ-irradiation

    International Nuclear Information System (INIS)

    Liu Huarong; Ge Xuewu; Ni Yonghong; Ye Qiang; Zhang Zhicheng

    2001-01-01

    The nanocomposites of stable nanosilver particles embedded in polyacrylonitrile matrix were synthesized by γ-irradiation, in which the monomer acrylonitrile was polymerized and the silver ions were reduced simultaneously by γ-irradiation to form composites in situ. The strong interactions between silver ions with -CN groups of polyacrylonitrile are found, which were confirmed by X-ray powder diffraction, IR spectrum and absorption spectra

  5. The release properties of silver ions from Ag-nHA/TiO{sub 2}/PA66 antimicrobial composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xia; Li Jidong; Wang Li; Huang Di; Zuo Yi; Li Yubao, E-mail: nic7504@scu.edu.c [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2010-08-01

    Implant-associated bacterial infection can jeopardize the clinical success of implants and result in loss of supporting bone. The purpose of this study was to develop a novel porous scaffold with long-term antibacterial activity for bone repair or regeneration. Porous nano-hydroxyapatite/titania/polyamide66 scaffolds containing different amounts of silver ions (Ag-nHA/TiO{sub 2}/PA66) were prepared by a phase inversion technique. The release of silver ions from the porous scaffolds in simulated body fluid (SBF) and in the F12 cell culture medium was evaluated via atomic absorption spectrometry. The results showed that the release of Ag{sup +} was time and concentration dependent, increasing with the immersion time and the silver content in the scaffolds. On the other hand, the release property of Ag{sup +} was also influenced by the immersion medium. The cumulative Ag{sup +} release in the F12 medium with time increase parabolically, different from the linear increase or the zero-order release kinetics in the SBF medium. Compared to the slight fluctuation of the Ag{sup +} release rate in SBF during the whole immersion period, the initial fast release rate and the later sustained release rate of Ag{sup +} in the F12 medium could be more helpful for preventing implant-associated infection. Since the Ag-nHA/TiO{sub 2} particles were embedded in the PA66 matrix, the long-term-sustained release should be related both to the relaxation of PA macromolecular chains due to the penetration of water and to the slow release of the substituted Ag{sup +} ions in the HA lattice. The sustained Ag{sup +} release with time indicates that the composite scaffold is suitable for a long-term antimicrobial application during the scaffold-assisted bone repair or regeneration.

  6. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    Science.gov (United States)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range

  7. The potential/pH diagram of silver in aqueous ammonium salt solution

    NARCIS (Netherlands)

    Sluyters, J.H.; Wijnen, M.D.; Hul, H.J. van den

    1961-01-01

    The potential/pH diagram of silver in aqueous ammonium salt solution at 25°C has been calculated and verified experimentally. Calculations were carried out on the basis of the standard potential of the silver/silver-ion couple, the dissociation constants of the silver mono- and di-ammonia

  8. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  9. Copper-silver ionization at a US hospital: interaction of treated ...

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building’s copper pipes but was typically unable to reach 200 µg/L in first-draw and flushed hot and cold water samples. Unlike copper, silver solubility was not restricted by the incoming water’s high pH of 8.5. Cold water lines had >20 µg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (particularly in the hot water line) prevented reaching 20 µg/L silver in hot water of many taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag+ ions combined with Cl- ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. To inform the

  10. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils

    NARCIS (Netherlands)

    Diez-Ortiz, M.; Lahive, E.; George, S.; Ter Schure, A.; van Gestel, C.A.M.; Jurkschat, K.; Svendsen, C.; Spurgeon, D.J.

    2015-01-01

    This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and

  11. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  12. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  13. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    Science.gov (United States)

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  14. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    International Nuclear Information System (INIS)

    Han, I-H; Lee, I-S; Song, J-H; Lee, M-H; Park, J-C; Lee, G-H; Sun, X-D; Chung, S-M

    2007-01-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO 3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls

  15. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)

    2007-09-15

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  16. Mass spectrometric characterizations of ions generated in RF magnetron discharges during sputtering of silver in Ne, Ar, Kr and Xe gases

    Czech Academy of Sciences Publication Activity Database

    Pokorný, D.; Novotný, Michal; Musil, Jindřich; Fitl, Přemysl; Bulíř, Jiří; Lančok, Ján

    2013-01-01

    Roč. 10, č. 7 (2013), s. 593-602 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GAP108/11/1298; GA ČR(CZ) GAP108/11/1312; GA ČR(CZ) GAP108/11/0958 Grant - others:AVČR(CZ) M100101271 Institutional support: RVO:68378271 Keywords : double charge ions * mass spectrometry * noble gas * RF magnetron discharges * silver * single charge ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.964, year: 2013

  17. Effect of embedded silver nanoparticles on refractive index of soda lime glass

    Science.gov (United States)

    Sonal, Sharma, Annu; Aggarwal, Sanjeev

    2018-05-01

    Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.

  18. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.

    Science.gov (United States)

    Kong, Lushi; Rui, Guanchun; Wang, Guangyu; Huang, Rundong; Li, Ran; Yu, Jiajie; Qi, Shengli; Wu, Dezhen

    2017-11-02

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  19. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    Directory of Open Access Journals (Sweden)

    Lushi Kong

    2017-11-01

    Full Text Available A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  20. ANTIMICROBIAL TEXTILE PREPARED BY SILVER DEPOSITION ON DIELECTRIC BARRIER DISCHARGE TREATED COTTON/POLYESTER FABRIC

    Directory of Open Access Journals (Sweden)

    Mirjana Kostić

    2008-11-01

    Full Text Available The objective of this research was to impart the additional value on cotton//polyester (Co/PES fabrics (i.e. antimicrobial properties to improve the quality of life and thus to tap new markets with the product. In this paper, silver ions were incorporated in Co/PES fabrics by chemisorptions into the fabric previously treated in a dielectric barrier discharge (DBD. A series of the DBD fabric treatments were done in order to determine the most suitable experimental conditions for the DBD activation of the fabric surface, while the optimal conditions for silver ions sorption by Co/PES fabrics were determined by changing sorption conditions. The antimicrobial Co/PES fabrics prepared by dielectric barrier discharge mediated silver deposition show an antimicrobial activity against tested pathogens: S. aureus, E. coli, and C. albicans under in vitro conditions. The obtained results confirm the practicability of the plasma modification process and furthermore show that with some delays in the next step, i.e. silver ion sorption, we can get the increase in the amount of the sorbed silver ions; the maximum sorption capacity of modified Co/PES fabrics was 0.135 mmol of Ag+ ions per gram of a fabric.

  1. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  2. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  3. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  4. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  5. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    International Nuclear Information System (INIS)

    Botasini, Santiago; Méndez, Eduardo

    2013-01-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10–20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV–Vis–NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  6. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Botasini, Santiago; Mendez, Eduardo, E-mail: emendez@fcien.edu.uy [Instituto de Quimica Biologica, Universidad de la Republica, Laboratorio de Biomateriales (Uruguay)

    2013-04-15

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  7. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  8. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    Science.gov (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  9. Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Poirier, Gael Y.; Amjad, Raja J.; de Camargo, Andrea S. S.

    2016-10-01

    We report on the influence of silver nanoparticles (NPs) on the luminescence behavior of trivalent rare earth (RE) ion doped tungsten-phosphate glasses. In order to induce the growth of NPs, the as-prepared glass samples containing silver atoms, are exposed to heat-treatment above the glass transition temperature. The surface plasmon resonance band of the Ag NPs is observed in the visible range around 420 and 537 nm in the glasses with low and high tungsten content, respectively. Such difference in spectral shift of the plasmon band is attributed to the difference in the refractive index of the two studied glass compositions. Heat-treatment results in the general increase in number of NPs, while in the case of glasses with low tungsten content, it also imposes a shift to the Ag plasmon band. The NPs size distribution (4-10 nm) was determined in good agreement with the values obtained by using Mie theory and by transmission electron microscopy. The observed quenching in the visible luminescence of glasses doped with Eu3+, Tb3+ or Er3+is attributed to energy transfer from the RE ions to Ag species, while an enhanced near-infrared emission in Er3+ doped glasses is discussed in terms of the chemical contribution of silver, rather than the most commonly claimed enhancement of localized field or energy transfer from silver species to Er3+. The results are supported by the lifetime measurements. We believe that this study gives further insight and in-depth exploration of the somewhat controversial discussions on the influence of metallic NPs plasmonic effects in RE-doped glasses.

  10. Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS

    Directory of Open Access Journals (Sweden)

    Ondrej Petruš

    2017-01-01

    Full Text Available The article introduces a possible chemical separation of a mixture of two compounds on the metal nanorods surface. A silver nanorods surface has been prepared by controlled electrochemical deposition in anodic alumina oxide (AAO template. Rhodamine 6G and 4-aminothiophenol have been directly applied to the sampling point on a silver nanorods surface in an aliquot mixture. The position of the resolved compounds was analysed by time-of-flight secondary ion mass spectrometry (TOF-SIMS which measured the fragments and the molecular ions of the two compounds separated on the silver nanorods surface. Rhodamine 6G has been preconcentrated as 1.5 mm radial from the sampling point while 4-aminothiophenol formed a continuous self-assembled monolayer on the silver nanorods surface with a maximum molecular ion intensity at a distance of 0.5 mm from the sampling point. The separation of the single chemical components from the two-component mixture over the examined silver nanostructured films could clearly be shown. A fast separation on the mentioned nanotextured films was observed (within 50 s. This procedure can be easily integrated into the micro/nanofluidic systems or chips and different detection systems can be applied.

  11. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  12. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  13. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  14. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Popok, Vladimir N.; Evlyukhin, Andrey B.

    2017-01-01

    Plasmonic sensor configurations utilizing localized plasmon resonances in silver nanostructures typically suffer from the rapid degradation of silver under ambient atmospheric conditions. In this work, we report on the fabrication and detailed characterization of ensembles of monocrystalline silver......-beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic...... properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development...

  15. Energy distributions of plume ions from silver at different angles ablated in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    A typical pulsed laser deposition (PLD) is carried out for a fluence between 0.5 and 2.5 J/cm2. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence and accounts for more 0.5 of the particles at 2.5 J/cm2 [1,2]. Since it may...... be comparatively difficult to measure the energy and angular distribution of neutrals, measurements of the ionic fraction will be valuable for any modeling of PLD. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time......-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra the in all directions can be recorded [1,2]. In contrast to earlier work the beam spot was circular such that any flip-over effect of the plume...

  16. Accumulation of silver from drinking water into cerebellum and musculus soleus in mice

    International Nuclear Information System (INIS)

    Pelkonen, Kai H.O.; Heinonen-Tanski, Helvi; Haenninen, Osmo O.P.

    2003-01-01

    In spite of the general toxicity, ecotoxicity and sparsely known metabolism of silver, WHO allows silver ions (Ag) up to 0.1 mg/l in drinking water disinfection. In order to determine the accumulation and distribution of silver in a mammalian body, mice were given for 1 and 2 weeks drinking water containing a 3-fold lower concentration, namely 0.03 mg/l silver ions as silver nitrate labelled with 110m Ag. The silver concentrations in different tissues were analysed by gamma radioactivity. The saturation of tissues with silver seems to occur quickly, as there were no statistical differences between silver contents of mice tissues in spite of the study design that mice were administered silver for 1 or 2 weeks. The highest concentrations were found in musculus soleus (m. soleus), cerebellum, spleen, duodenum, and myocardial muscle in the rank order. Concentrations of silver in musculus gastrocnemius (m. gastrocnemius) were found to correlate negatively with cerebrum and positively with blood and kidneys. The accumulation of silver into organs and tissues important in motor functions may be of relevance especially in emergency and catastrophe situations in which accurate motor functions may be critical. A re-evaluation of the present recommendations on the use of silver salts for disinfection of drinking water might be necessary

  17. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh Kumar, Ramasamy; Poornima Priyadharsani, Krishnamurthy; Thamaraiselvi, Kaliannan, E-mail: kthamaraiselvi@hotmail.com [Bharathidasan University, Laboratory of Molecular Microbial Bioremediation and Nanobiotechnology, Department of Environmental Biotechnology (India)

    2012-05-15

    In this study, an environmental friendly process for the synthesis of silver nanoparticles (AgNPs) using a fungus Aspergillus tamarii has been investigated. The process of silver ion reduction by the fungal extracellular filtrate was spontaneous which lead to the development of an easy process for synthesis of silver nanoparticles. The AgNPs formed were characterized using UV-Visible spectrum, FTIR, and SEM. The results revealed that silver ions reduction by the fungal extracellular filtrate started at 420 nm after 0.5 h of incubation time. The FTIR peaks were observed at 1393, 1820, 2727, and 3545 cm{sup -1}. The SEM result showed the distribution of spherical AgNPs ranging from 25 to 50 nm.

  18. Effect of silver nanoparticles on human mesenchymal stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Christina Sengstock

    2014-11-01

    Full Text Available Background: Silver nanoparticles (Ag-NP are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan.Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions. Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of

  19. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  20. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  1. Effects of Test Paper Drying and Reaction Periods on Silver Ion-Arsine Complex Colour Development for a Simple and Rapid Arsenic (V) Determination

    International Nuclear Information System (INIS)

    Khim, O.K.; Wan Md Zin Wan Yunus; Abdul Ghapor Hussin; Mansor Ahmad; Ahmad Farid Mohd Azmi

    2015-01-01

    Arsenic is a toxic element that exists in different forms in nature and can be accumulated by various biota and environmental media. Current techniques for the environmental monitoring of arsenic are usually sophisticated, time consuming and inappropriate for on-site analyses. We are developing a simple and rapid colorimetric quantitative method based on a colour complex formed by silver ion impregnated on a filter paper with arsine gas produced from arsenic ion reduction by hydrogen generated from zinc and sulfamic acid reaction in the sample. In this report we describe effects of drying of the silver ion impregnated filter paper and exposing period of this test paper to the arsine gas. The data obtained are digitized and used to develop a model for arsenic (V) ion estimation. The study reveals that when 4.0 g of sulfamic acid and 2.0 g of zinc powder are used to reduce 50 ml of arsenic solution sample, the drying and exposure periods needed are 20 seconds and 10 minutes, respectively. The best fitted model that relates arsenic (V) concentration (Ac) and the red colour intensity value (R) is Ac =120.1 - 1.071R. This model can accurately estimate the arsenic (V) concentration from 0 to 100 μg/l. (author)

  2. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  3. Methods and applications of HPLC-AMS

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Dueker, Stephen R.; Lin, Yumei; Clifford, Andrew J.; Vogel, John S.

    2000-01-01

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a 14 C-labeled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the 14 C content above the control predose tissue and converting to equivalents of the parent compound. High performance liquid chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement. Unknowns are tentatively identified by co-elution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the 14 C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of 14 C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected 14 C activity <0.17 Bq (4.5 pCi) on the HPLC column

  4. Bioaccumulation of silver in Daphnia magna:Waterborne and dietary exposure to nanoparticles and dissolved silver

    NARCIS (Netherlands)

    Ribeiro, Fabianne; van Gestel, C.A.M.; Pavlaki, M.D.; Azevedo, S.; Soares, A.M.V.M.; Loureiro, S.

    2017-01-01

    Silver nanoparticles (Ag-NP) are incorporated into commercial products as antimicrobial agents, which potentiate their emission to the environment. The toxicity of Ag-NP has been associated with the release of Ag ions (Ag

  5. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  6. Multi-functional bio-compatible luminescent apatite with fatty acid passivated nano silver covers and its theranostics potential

    Science.gov (United States)

    Asha, S.; Nimrodh Ananth, A.; Vanitha Kumari, G.; Prakash, B.; Jose, Sujin P.; Jothi Rajan, M. A.

    2017-09-01

    Europium doped hydroxyapatite (EDA) nanorods with linoleic acid passivated silver ions on their surfaces were synthesized using facile, one-step hydrothermal route. Annealing the samples at 250 °C resulted in formation of ultra-small silver (USS) nanoparticles on the surface by nucleation through diffusion process. EDA exhibited luminescence properties due to the presence of europium ions doped on the calcium sites of hydroxyapatite. These EDA nanorods exhibited a different luminescent behavior in the presence of silver ions and USS nanoparticles. This report also demonstrates excellent biocompatibility and cytotoxicity of EDA nanorods with silver ions towards fibroblast cell lines (F929) and breast cancer cells (MCF-7). Visible and near infra-red (NIR) emissions in EDA, induced by silver ions and USS nanoparticles makes it a potential system for deep tissue imaging applications. The arrangement of USS over the EDA was tunable and hence the selectivity and enhancement of the Eu3+ ions emission can also be tuned. The multifunctional properties of this system such as its active luminescence over a wide range, its cell proliferation towards normal cells and cytotoxicity towards cancer cells shows its potential for application in cancer theranostics.

  7. Studies on extracellular biosynthesis of silver nanoparticles by the fungus aspergillus niger

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.

    2011-01-01

    An eco-friendly process for the synthesis of silver nanoparticles has been attempted, using the culture filtrate of various microorganisms, included bacteria, fungi and yeast. Only fungi, especially aspergillus niger, were capable of synthesizing silver nanoparticles. The culture filtrate treated with AgNo 3 (1 mM) turned dark brown after 72 h of incubation, indicating reduction of silver ions into silver nanoparticles. This observation was confirmed with UV-vis spectroscopy analysis;a large broad band with long tail was detected at 430 nm,this band is characteristic of several metal nanoparticles.X ray diffraction revealed the crystalline nature of obtained nanoparticles. The TEM and SEM analysis showed particles spherical in shape. The average particles size determined by DLS analysis was 94.2 nm.EDX analysis indicated the presence of silver element in the nanoparticles. FT-IR analysis confirmed the presence of protein associated with the synthesized silver nanoparticles. The maximum biosynthesis of nanoparticles was achieved when the culture filtrate was treated with 4.0 mM of AgNo 3 , adjusted to ph 8.0, and incubated at 50 degree C for 96 h. Silver nanoparticles showed antibiotic activity exceeding that of silver ions against various microorganisms

  8. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  9. Silver nanoparticle toxicity in sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Šiller, Lidija; Lemloh, Marie-Louise; Piticharoenphun, Sunthon; Mendis, Budhika G.; Horrocks, Benjamin R.; Brümmer, Franz; Medaković, Davorin

    2013-01-01

    Silver nanoparticles (AgNPS) are an important model system for studying potential environmental risks posed by the use of nanomaterials. So far there is no consensus as to whether toxicity is due to AgNPs themselves or Ag + ions leaching from their surfaces. In sea urchin Paracentrotus lividus, AgNPs cause dose dependent developmental defects such as delayed development, bodily asymmetry and shortened or irregular arms, as well as behavioural changes, particularly in swimming patterns, at concentration ∼0.3 mg/L AgNPs. It has been observed that AgNPs are more toxic than their equivalent Ag + ion dose. -- Silver nanoparticles cause dose dependent developmental defects in sea urchin and they are more toxic than their equivalent Ag + ion dose

  10. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Zarchi, A.A.; Faridi Majidi, R. [Tehran University of Medical Sciences, Department of Nanomedicine, School of Advanced Medical Technologies, Tehran (Iran, Islamic Republic of); Mokhtari, N.; Shahverdi, A.R. [Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of); Arfan, M.; Rehman, T.; Ali, M. [University of Peshawar, Institute of Chemical Sciences, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Amini, M. [Tehran University of Medical Sciences, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of)

    2011-05-15

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours. (orig.)

  11. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Saleemi, Farhat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Mahmood, Arshad; Aziz, Uzma [National Institute of Lasers & Optronics (NILOP), P.O. Nilore, Islamabad (Pakistan)

    2016-11-15

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag{sup +}) ion beam to various ion fluences ranging from 5 × 10{sup 13} to 5 × 10{sup 15} ions/cm{sup 2}. The effect of Ag{sup +} ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of −C=C− carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 10{sup 15} ions/cm{sup 2}). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag{sup +} implanted PMMA has increased from 2.14 × 10{sup −10} (pristine) to 9.6 × 10{sup −6} S/cm.

  12. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  13. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  14. 2-Alkylcyclobutanones as markers for irradiated foodstuffs. III. Improvement of the field of application on the EN 1785 method by using silver ion chromatography

    NARCIS (Netherlands)

    Ndiaye, B; Horvatovich, P; Miesch, M; Hasselmann, C; Marchioni, E

    1999-01-01

    The inclusion of a purification step by silver ion chromatography in the EN 1785 analytical protocol for 2-alkylcyclobutanones (validated by the European Committee for Standardization for the detection of ionizing radiation treatment) has considerably improved the quality of the chromatograms

  15. HPLC/MS analysis of glucose and fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Bruder, P.; Macasek, F.; Patakyova, A.; Buriova, E.

    2001-01-01

    Objective of a new method of FDG analysis development is to replace existing tests by a more complex assay. In this work, a liquid chromatography/refractive index detector/ radiometric detector/mass spectrometric detector combination (HPLC/RID/RAD/MSD) was used for development of a complex routine technique. Optimization of HPLC/MS analysis was performed investigating the MSD analytical signal as a function of various eluent composition. Solutions of glucose in methanol/water and acetonitrile/water solutions of various semi-volatile electrolytes (ammonium chloride, formic acid, ammonium formate) were analyzed on the Agilent 1100 HPLC/RID/DAD/MSD system either in the flow injection (FIA) mode of analysis, and after passing the samples through Zorbax C-18 column. The most intensive signals of the ions were obtained in the acetonitrile : 0.25% ammonium formate = 80:20 solutions. This eluent would be also used for the radioactive FDG analysis on the Asahipak NH2P columns. (authors)

  16. HPLC/MS analysis of glucose and fluorodeoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Bruder, P; Macasek, F; Patakyova, A; Buriova, E [Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia)

    2001-05-31

    Objective of a new method of FDG analysis development is to replace existing tests by a more complex assay. In this work, a liquid chromatography/refractive index detector/ radiometric detector/mass spectrometric detector combination (HPLC/RID/RAD/MSD) was used for development of a complex routine technique. Optimization of HPLC/MS analysis was performed investigating the MSD analytical signal as a function of various eluent composition. Solutions of glucose in methanol/water and acetonitrile/water solutions of various semi-volatile electrolytes (ammonium chloride, formic acid, ammonium formate) were analyzed on the Agilent 1100 HPLC/RID/DAD/MSD system either in the flow injection (FIA) mode of analysis, and after passing the samples through Zorbax C-18 column. The most intensive signals of the ions were obtained in the acetonitrile : 0.25% ammonium formate = 80:20 solutions. This eluent would be also used for the radioactive FDG analysis on the Asahipak NH2P columns. (authors)

  17. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; Venkatesh, Amrit; Rossini, Aaron J; Anderson, Jared L

    2017-11-10

    Silver ion or argentation chromatography utilizes stationary phases containing silver ions for the separation of unsaturated compounds. In this study, a mixed-ligand silver-based ionic liquid (IL) was evaluated for the first time as a gas chromatographic (GC) stationary phase for the separation of light olefin/paraffin mixtures. The selectivity of the stationary phase toward olefins can be tuned by adjusting the ratio of silver ion and the mixed ligands. The maximum allowable operating temperature of these stationary phases was determined to be between 125°C and 150°C. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the coordination behavior of the silver-based IL as well as provide an understanding into the retention mechanism of light olefins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  19. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  20. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption

    International Nuclear Information System (INIS)

    Luo Xiaolin; Li Zongxiao; Yuan Chunlan; Chen Yashao

    2011-01-01

    Highlights: → Silver nanoplates have been successfully synthesized by polyol reduction in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . → Due to the discovery of CN - ions in the solution, a mechanism for the anisotropic growth of silver nanoplates is systematically discussed. → TG, FT-IR and SERS were used to provide some direct evidences of rivalrous adsorption between PVP and CN - ions on the surface of the silver crystals. - Abstract: A polyol reducing approach has been applied to synthesize silver nanoplates with an average thickness of 50 nm and edge length of 3 μm in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscropy (TEM), and electron diffraction are used to characterize these silver nanoplates. Findings indicate that the nanoplates are single crystals and with their basal plane as (1 1 1) lattice plane. On the basis of the results from thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, a crystal growth mechanism based on the rivalrous adsorption between PVP and CN - ions on the surface of silver nanoplates is supposed to explain the crystal anisotropic growth.

  1. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova

    2017-11-01

    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  2. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  3. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  4. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles.

    Science.gov (United States)

    Lokina, S; Stephen, A; Kaviyarasan, V; Arulvasu, C; Narayanan, V

    2014-04-09

    Bio-inspired silver nanoparticles are synthesized using Malus domestica (apple) extract. Polyphenols present in the apple extract act as a reducing and capping agent to produce the silver nanoparticles. UV-Visible analysis shows the surface plasmon resonance (SPR) absorption at 420 nm. The FTIR analysis was used to identify the functional groups responsible for the bio-reduction of silver ion. The XRD and HRTEM images confirm the formation of silver nanoparticles. The minimal inhibitory concentration (MIC) of silver nanoparticles was recorded against most of the bacteria and fungus. Further, MCF-7 human breast adenocarcinoma cancer cell line was employed to observe the efficacy of cancer cell killing. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems

    International Nuclear Information System (INIS)

    Selmani, Atiða; Kallay, Nikola; Preočanin, Tajana; Lützenkirchen, Johannes

    2014-01-01

    We have carried out surface and zeta-potential measurements on AgCl and AgBr single crystals. As for particle systems we find that, surprisingly and previously unnoted, the zeta-potential exhibits pH-dependence, while the surface potential does not. A possible interpretation of these observations is the involvement of water ions in the interfacial equilibria and in particular, stronger affinity of the hydroxide ion compared to the proton. The pH-dependence of the zeta-potential can be suppressed at sufficiently high silver concentrations, which agrees with previous measurements in particle systems where no pH-dependence was found at high halide ion concentrations. The results suggest a subtle interplay between the surface potential determining the halide and silver ion concentrations, and the water ions. Whenever the charge due to the halide and silver ions is sufficiently high, the influence of the proton/hydroxide ion on the zeta-potential vanishes. This might be related to the water structuring at the relevant interfaces which should be strongly affected by the surface potential. Another interesting observation is accentuation of the assumed water ion effect on the zeta-potential at the flat single crystal surfaces compared to the corresponding silver halide colloids. Previous generic MD simulations have indeed predicted that hydroxide ion adsorption is accentuated on flat/rigid surfaces. A thermodynamic model for AgI single crystals was developed to describe the combined effects of iodide, silver and water ions, based on two independently previously published models for AgI (that only consider constituent and background electrolyte ions) and inert surfaces (that only consider water and background electrolyte ions). The combined model correctly predicts all the experimentally observed trends. (paper)

  6. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+

    International Nuclear Information System (INIS)

    Lu, H.W.; Liu, S.H.; Wang, X.L.; Qian, X.F.; Yin, J.; Zhu, Z.K.

    2003-01-01

    Silver nanoparticles in hyperbranched polyurethane (HP) matrix were prepared by means of UV irradiation at room temperature. HP was found to play a key role in the photochemical reduction of silver ions and the formation of nanosized particles. Transmission electron microscopic (TEM) analysis showed that silver nanoparticles were homogeneously dispersed in HP matrix. The absorption peaks due to the surface plasmon resonance of the obtained silver nanoparticles were observed at about 430 nm in the ultraviolet-visible (UV-Vis) absorption spectra. X-ray powder diffraction (XRD) was also used to characterize the obtained nanoparticles

  7. Influence of negative charge on the optical properties of a silver sol

    Directory of Open Access Journals (Sweden)

    JOVAN M. NEDELJKOVIC

    2000-03-01

    Full Text Available The effects of negative charge on the optical properties of a silver sol prepared using sodium borohydride as a reductant were studied. The oscillations in the position of the maximum and the intensity of the surface plasmon absorption band were obesrved. The observed effects were explained as a consequence of the fluctuation of the density of free electrons due to the alternate charging and discharging of the silver particles. The charging process involves electron injection from borohydride ions and intermediate species formed during the course of the metal-catalyzed hydrolysis of borohydride ions (BH3OH-, BH2(OH2 and BH(OH3- into the silver particles, while discharge of the silver sol, by reduction of water to hydrogen, limits the attainable negative charge on the particles.

  8. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf

    International Nuclear Information System (INIS)

    Huang Jiale; Li Qingbiao; Sun Daohua; Lu Yinghua; Su Yuanbo; Yang Xin; Wang Huixuan; Wang Yuanpeng; Shao Wenyao; He Ning; Hong Jinqing; Chen Cuixue

    2007-01-01

    The synthesis of nanocrystals is in the limelight in modern nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Not only could silver nanoparticles ranging from 55 to 80 nm in size be fabricated, but also triangular or spherical shaped gold nanoparticles could be easily modulated by reacting the novel sundried biomass of Cinnamomum camphora leaf with aqueous silver or gold precursors at ambient temperature. The marked difference of shape control between gold and silver nanoparticles was attributed to the comparative advantage of protective biomolecules and reductive biomolecules. The polyol components and the water-soluble heterocyclic components were mainly responsible for the reduction of silver ions or chloroaurate ions and the stabilization of the nanoparticles, respectively. The sundried leaf in this work was very suitable for simple synthesis of nanoparticles

  9. Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes

    Czech Academy of Sciences Publication Activity Database

    Škodová, J.; Kopecký, D.; Vrňata, M.; Varga, M.; Prokeš, J.; Cieslar, M.; Bober, Patrycja; Stejskal, Jaroslav

    2013-01-01

    Roč. 4, č. 12 (2013), s. 3610-3616 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polypyrrole * silver * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.368, year: 2013

  10. Study of clean and ion bombardment damaged silver single crystal surfaces by work function measurements

    International Nuclear Information System (INIS)

    Chelvayohan, N.

    1982-06-01

    Work function values of the (110), (100) and (111) faces of silver single crystal were measured by the photoelectric emission method and found to be 4.14 +- 0.04 eV, 4.22 +-0.04 eV and 4.46 +- 0.02 eV respectively. Oxygen adsorption on the faces were studied by surface potential measurement. Strong oxygen adsorption was observed on (110) and (100) faces, whereas the (111) face was found to be inert for oxygen adsorption. Oxygen adsorption on the (111) face damaged by argon ion bombardment was also investigated. The above results were compared with those of early reported work function and oxygen adsorption values. (U.K.)

  11. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    chloride aggregates at sizes of up to 1 µm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects.Keywords: silver textile, silver release, skin

  12. The uptake of silver(I from chloride solutions by amine extractants

    Directory of Open Access Journals (Sweden)

    Wejman Katarzyna

    2017-01-01

    Full Text Available The amine extractants, bis(2-ethylhexylamine, N,N-dimethylethanolamine, and trioctylamine were used to recover silver(I ions from chloride solutions. The effect of the pH, contact time, extractant concentration and reextraction were studied. It was found that extraction of silver(I depended on the pH, extractant concentration and strongly on the contact time. Reextraction of Ag(I ions from the loaded organic phase showed that the metal can be removed in over 50% for the three extractant using sodium hydroxide. The recovery of silver from the chloride leaching solutions were above 85% for bis(2-ethylhexylamine, above 58% for N,N-dimethylethanolamine, and above 70% for trioctylamine.

  13. Silver(I) complexes of N-methylbenzothiazole-2-thione: Synthesis, structures and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Aslanidis, P., E-mail: aslanidi@chem.auth.gr [Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Hatzidimitriou, A.G.; Andreadou, E.G. [Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Pantazaki, A.A., E-mail: natasa@chem.auth.gr [Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Voulgarakis, N. [Department of Logistics, Alexander Technological Educational Institute, GR-60100 Katerini (Greece)

    2015-05-01

    Three silver(I) complexes containing N-methylbenzothiazole-2-thione (mbtt) have been prepared and structurally characterized by X-ray single-crystal analysis. Silver(I) nitrate, and silver(I) triflate react with mbtt to give homoleptic complexes of formula [(mbtt){sub 2}Ag(μ-mbtt){sub 2}Ag(mbtt){sub 2}](NO{sub 3}){sub 2} (1) and [Ag(mbtt){sub 3}](CF{sub 3}SO{sub 3}) (2) respectively, while silver(I) chloride gives the binuclear halide-bridged [(mbtt){sub 2}Ag(μ{sub 2}-Cl){sub 2}Ag(mbtt){sub 2}] (3). In the binuclear complex 1 the two metal ions, separated by 3.73 Å from each other, are doubly bridged by the exocyclic S-atoms of two mbtt ligands, with the tetrahedral environment around each silver ion being completed by the S-atoms of two terminally bonded mbtt units. Compound 2 is mononuclear with the metal ion surrounded by the exocyclic S-atoms of three mbtt ligands in a nearly ideal trigonal planar arrangement. The new complexes showed significant in vitro antibacterial activity against certain Gram-positive and Gram-negative bacterial strains.

  14. Toxicity of Silver Nanoparticles to Green Algae – Towards a Biotic Ligand Understanding

    DEFF Research Database (Denmark)

    Laruelle, Sacha; Sørensen, Sara Nørgaard; Cupi, Denisa

    with the freshwater green algae Pseudokirschneriella subcapitata were carried out to falsify the hypothesis: “The toxicity of silver nanoparticles towards algae is solely caused by the monovalent silver ion”. These experiments were based on PHREEQC modeling of silver ion behavior (added as AgNO3) in 72h OECD algal...

  15. Removal of silver from wastewater using cross flow microfiltration

    Directory of Open Access Journals (Sweden)

    Zanain M.

    2013-04-01

    Full Text Available Removal of silver from wastewater was investigated using continuous cross flow microfiltration (MF technique hollow fiber membranes with a pore size 0.2μm, with sorbent coated material Al2O3/SDSH2Dz particle size (8 μm. The coating investigated was dithizone (Diphenylthiocarbazone in 0.005M ammonia solution. In the filtration of silver ion solutions, the effects of the permeate flow rate and cross flow velocity on the absorption of silver ion solutions, and since the pore size of membrane (=0.2 μm is smaller then that of the (Al2O3, no need to consider the variation of (Al2O3.rejection as it can be considered to be 100%. The amount of silver absorbed into sorbent material Al2O3/SDSH2Dz was (25.35, 39.68 ppm for the cross flown velocity of 5, 2.5 L/hr respectively, and were the results as function of permeate flow was (25.35, 39.68 ppm for the velocity of 5, 2.5 L/hr respectively.

  16. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  17. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  18. Determination of oxidation products in radiolysis of halophenols with pulse radiolysis, hplc, and ion chromatography

    International Nuclear Information System (INIS)

    Ye, M.; Schuler, R.H.

    1990-01-01

    This paper reports on hydroxyl radicals that react with halogen substituted phenols by several different ways. One is addition of OH radicals to the aromatic ring, which is followed by elimination of hydrogen halide, H 2 O or H - . The positions of OH radicals attack are dependent on the nature of the halogen which affects the electronic distribution in the ring. The oxidation of fluorophenols, chlorophenols and bromophenols with hydroxyl radicals in N 2 O saturated solution has been investigated with pulse radiolysis and γ-irradiation experiments. The intermediates of the reactions were studied by pulse radiolysis. The products created in the γ-irradiation of aqueous solutions of halophenols were analyzed by ion chromatography and high performance liquid chromatography (HPLC). With the combination of time-resolved and steady-state experiments a complete and detailed description of radiolytic oxidation of halophenols by hydroxyl radicals was obtained

  19. Use of carbon paste electrodes for the voltammetric detection of silver leached from the oxidative dissolution of silver nanoparticles

    Science.gov (United States)

    Mullaugh, Katherine M.; Pearce, Olivia M.

    2017-04-01

    The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag+ could be achieved. We demonstrate its selectivity for free Ag+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.

  20. HPLC-MS technique for radiopharmaceuticals research and control

    International Nuclear Information System (INIS)

    Macasek, F.; Bruder, P.; Buriova, E.

    2002-01-01

    A liquid chromatography/refractive index detector/radiometric detector/ mass spectrometric detector combination (Agilent 1100 HPLC/RAD/DAD/RID/MSD system) is used as a complex technique for quality assessment of radiopharmaceuticals such as 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG). Optimisation of HPLC/MS analysis was performed investigating the electrospray ionisation (ESI) analytical signal of the mass spectrometer as a function of solvent composition. The anion-exchange eluents applied as specified by the pharmacopoeia are not suitable for ESI detection due to high ion concentrations. Therefore, solutions of glucose in methanol/water and acetonitrile/water solutions of various semi-volatile electrolytes (ammonium chloride, formic acid, ammonium formate) were analysed by flow injection analysis (FIA) and chromatographically. The best analytical response was obtained with acetonitrile : 0.25% ammonium formate = 80:20 solutions. The most intense MSD signals of FDG in ammonium formate were obtained for the following complex ions: (i) positive ions: fdg.NH 4 + , fdg.Na + and (fdg 2 -CH 3 O).Na + (m/z = 200, 205 and 344); (ii) negative ions: fdg.Cl - and fdg.HCOO - (m/z= 217 and 227). The HPLC-MS analysis with Zorbax C-18 and Asahipak-NH2P50 columns gave evidence of admixtures and radiolytic formation of deoxyglucose, deoxychloro-glucose, erythrose, erythritol, gluconic acid, lactose, raffinose, saccharic acid, sorbitol/[ 19 F]FDG, sorbitol/[ 19 F]FDG, xylitol, and other compounds. However, radiometric analysis of expired samples of [ 18 F]FDG gave evidence of a very high radiation stability of its water-ethanol solutions at the point of output of radioactive products. Remarkable is the exceedingly high complexity of the mass spectra of FDG as compared to glucose. Therefore, further research concerns the influence of sodium chloride, linearity of signal response, impurities (mannitol, mannose etc.) interference, and robustness of the MS analysis, with special attention

  1. HPLC-MS technique for radiopharmaceuticals research and control

    Energy Technology Data Exchange (ETDEWEB)

    Macasek, F; Bruder, P [Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Buriova, E [Cyclotron Centre of the Slovak Republic, Slovak Office of Standards, Metrology and Testing, Bratislava (Slovakia)

    2002-03-01

    A liquid chromatography/refractive index detector/radiometric detector/ mass spectrometric detector combination (Agilent 1100 HPLC/RAD/DAD/RID/MSD system) is used as a complex technique for quality assessment of radiopharmaceuticals such as 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG). Optimisation of HPLC/MS analysis was performed investigating the electrospray ionisation (ESI) analytical signal of the mass spectrometer as a function of solvent composition. The anion-exchange eluents applied as specified by the pharmacopoeia are not suitable for ESI detection due to high ion concentrations. Therefore, solutions of glucose in methanol/water and acetonitrile/water solutions of various semi-volatile electrolytes (ammonium chloride, formic acid, ammonium formate) were analysed by flow injection analysis (FIA) and chromatographically. The best analytical response was obtained with acetonitrile : 0.25% ammonium formate = 80:20 solutions. The most intense MSD signals of FDG in ammonium formate were obtained for the following complex ions: (i) positive ions: fdg.NH{sub 4}{sup +}, fdg.Na{sup +} and (fdg{sub 2}-CH{sub 3}O).Na{sup +} (m/z = 200, 205 and 344); (ii) negative ions: fdg.Cl{sup -} and fdg.HCOO{sup -} (m/z= 217 and 227). The HPLC-MS analysis with Zorbax C-18 and Asahipak-NH2P50 columns gave evidence of admixtures and radiolytic formation of deoxyglucose, deoxychloro-glucose, erythrose, erythritol, gluconic acid, lactose, raffinose, saccharic acid, sorbitol/[{sup 19}F]FDG, sorbitol/[{sup 19}F]FDG, xylitol, and other compounds. However, radiometric analysis of expired samples of [{sup 18}F]FDG gave evidence of a very high radiation stability of its water-ethanol solutions at the point of output of radioactive products. Remarkable is the exceedingly high complexity of the mass spectra of FDG as compared to glucose. Therefore, further research concerns the influence of sodium chloride, linearity of signal response, impurities (mannitol, mannose etc.) interference, and

  2. Rapid synthesis of silver nanoparticles from Polylthia longifolia leaves

    Directory of Open Access Journals (Sweden)

    Tollamadugu Nagavenkata

    2012-10-01

    Full Text Available Objective: Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this research article we present a simple and eco-friendly biosynthesis of silver nanoparticles using P. longifolia leaf extract as reducing agent. Methods: Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM was performed. Results: TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions: P. longifolia demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0. Biological methods are a good competent for the chemical procedures, which are enviro- friendly and convenient.

  3. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  4. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  5. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  6. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  7. Synthesis and characterization of silver-polypyrrole film composite

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamad M., E-mail: mayad12000@yahoo.com [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt); Zaki, Eman [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt)

    2009-11-15

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO{sub 3}. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO{sub 3} solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  8. Synthesis and characterization of silver-polypyrrole film composite

    International Nuclear Information System (INIS)

    Ayad, Mohamad M.; Zaki, Eman

    2009-01-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3 . Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  9. Synthesis and characterization of silver-polypyrrole film composite

    Science.gov (United States)

    Ayad, Mohamad. M.; Zaki, Eman

    2009-11-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  10. Solid-state superionic stamping with silver iodide-silver metaphosphate glass

    International Nuclear Information System (INIS)

    Jacobs, K E; Hsu, K H; Han, X; Azeredo, B P; Ferreira, P M; Kumar, A; Fang, N X

    2011-01-01

    This paper demonstrates and analyzes the new use of the glassy solid electrolyte AgI-AgPO 3 for direct nanopatterning of thin silver films with feature resolutions of 30 nm. AgI-AgPO 3 has a high room temperature ionic conductivity with Ag + as the mobile ion, leading to silver etch/patterning rates of up to 20 nm s -1 at an applied bias of 300 mV. The glass can be melt-processed at temperatures below 200 deg. C, providing a facile and economical pathway for creating large area stamps, including the 25 mm 2 stamps shown in this study. Further, the glass is sufficiently transparent to permit integration with existing tools such as aligners and imprint tools, enabling high overlay registration accuracy and facilitating insertion into multi-step fabrication recipes.

  11. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Science.gov (United States)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  12. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  13. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    International Nuclear Information System (INIS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-01-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag"+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag"+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca"2"+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca"2"+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV–Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag"+ adsorption to ultrafiltration membranes.

  14. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feng, E-mail: fengdongub@gmail.com [University of Birmingham, Institute of Microbiology and Infection, School of Biosciences (United Kingdom); Valsami-Jones, Eugenia [University of Birmingham, School of Geography, Earth and Environmental Sciences (United Kingdom); Kreft, Jan-Ulrich [University of Birmingham, Institute of Microbiology and Infection, School of Biosciences (United Kingdom)

    2016-09-15

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag{sup +}) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag{sup +}/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca{sup 2+}, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca{sup 2+}-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV–Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag{sup +} adsorption to ultrafiltration membranes.

  15. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  16. Reduction and aggregation of silver in aqueous gelatin and silica suspensions

    International Nuclear Information System (INIS)

    Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N.

    1994-01-01

    The investigation of silver reduction and aggregation processes are of specific interest to the photographic industry, which relies heavily on photochemical equivalents of these reactions. Mechanistic insights into the formation of small silver clusters in aqueous solution have been obtained from both pulse and γ-radiolytic studies. This paper examines the reduction of silver ions and the subsequent formation of silver clusters in aqueous gelatin solutions and on colloidal silica particles using the pulse radiolysis technique. The aggregation processes are compared with the parallel reactions in aqueous solutions

  17. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  18. Silver Biocide Analysis & Control Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase II program is to...

  19. Use of carbon paste electrodes for the voltammetric detection of silver leached from the oxidative dissolution of silver nanoparticles

    International Nuclear Information System (INIS)

    Mullaugh, Katherine M.; Pearce, Olivia M.

    2017-01-01

    The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag"+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag"+ could be achieved. We demonstrate its selectivity for free Ag"+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.

  20. Use of carbon paste electrodes for the voltammetric detection of silver leached from the oxidative dissolution of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mullaugh, Katherine M., E-mail: mullaughkm@cofc.edu; Pearce, Olivia M. [College of Charleston, Department of Chemistry & Biochemistry (United States)

    2017-04-15

    The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag{sup +} ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag{sup +} could be achieved. We demonstrate its selectivity for free Ag{sup +} ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.

  1. Peculiarities of the diffusion of silver and sodium ions in phosphate glasses with a high content of sodium oxide

    International Nuclear Information System (INIS)

    Syutkin, V.M.; Tolkatchev, V.A.

    1996-01-01

    The phosphate glasses with a high content of alkali metal ions are good ionic conductors. Despite active studies, the mechanism of ion diffusion is not so far clear. The present work discusses the characteristics of ion diffusion in phosphate glasses with a high content of sodium oxide. An effective method to study ion transport is the investigation of relaxation processes the kinetics of which depends on ion diffusion. We use the data for two types of relaxation processes the kinetics of which is determined by ion diffusion. This is the conductivity relaxation due to sodium (host) ions and the decay of radiation-induced centers controlled by silver (guest) ion diffusion. Both of the processes being actually the first-order processes display a nonexponential kinetic behavior. The relaxation law can be interpreted either as the inherently nonexponential function or as the weighted sum of exponential decay functions with a distribution of relaxation times. It has been demonstrated that on the molecular level the relaxation function should be interpreted in the frame of the scheme of parallel first-order processes. This fact allows one to formulate a number of features of ion diffusion: (i) the mean square displacement of ions does not exceed several angstrom when transport becomes non-dispersive; (ii) the diffusion coefficient of ions is the function of coordinates. In this case, a characteristic distance at which D(r) noticeably varies is no less than a hundred of angstrom; (iii) the instantaneous concentration of mobile ions is well below the overall concentration ions

  2. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  3. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Science.gov (United States)

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green a...

  4. Application of IC and HPLC as an analytical tool in solvent extraction studies

    International Nuclear Information System (INIS)

    Das, Debasish; Sureshkumar, M.K.; Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Ion chromatography and HPLC was used for analyzing the concentration of various metal ions present in the aqueous phase after solvent extraction using a number of novel organic extractants such as CMPO, DMDBTDMA and TODGA. Calibration plots were obtained for each of the metal ions studied. Interference of one group of metal ions on the other was investigated. The error in the expected values was within the < 10% even in the presence of interfering elements. (author)

  5. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Identification and quantification of cardiac glycosides in blood and urine samples by HPLC/MS/MS.

    Science.gov (United States)

    Guan, F; Ishii, A; Seno, H; Watanabe-Suzuki, K; Kumazawa, T; Suzuki, O

    1999-09-15

    Cardiac glycosides (CG) are of forensic importance because of their toxicity and the fact that very limited methods are available for identification of CG in biological samples. In this study, we have developed an identification and quantification method for digoxin, digitoxin, deslanoside, digoxigenin, and digitoxigenin by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). CG formed abundant [M + NH4]+ ions and much less abundant [M + H]+ ions as observed with electrospray ionization (ESI) source and ammonium formate buffer. Under mild conditions for collision-induced dissociation (CID), each [M + NH4]+ ion fragmented to produce a dominant daughter ion, which was essential to the sensitive method of selected reaction monitoring (SRM) quantification of CG achieved in this study. SRM was compared with selected ion monitoring (SIM) regarding the effects of sample matrixes on the methodology. SRM produced lower detection limits with biological samples than SIM, while both methods produced equal detection limits with CG standards. On the basis of the HPLC/MS/MS results for CG, we have proposed some generalized points for conducting sensitive SRM measurements, in view of the property of analytes as well as instrumental conditions such as the type of HPLC/MS interface and CID parameters. Analytes of which the molecular ion can produce one abundant daughter ion with high yield under CID conditions may be sensitively measured by SRM. ESI is the most soft ionization source developed so far and can afford formation of the fragile molecular ions that are necessary for sensitive SRM detection. Mild CID conditions such as low collision energy and low pressure of collision gas favor production of an abundant daughter ion that is essential to sensitive SRM detection. This knowledge may provide some guidelines for conducting sensitive SRM measurements of very low concentrations of drugs or toxicants in biological samples.

  7. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  8. Ruby coloured lead glasses by generation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Pocillo, 1, 40100 La Granja de San Ildefonso (Segovia) (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Spanish Council for Scientific Research (CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es

    2004-11-15

    Both yellow and red superficial ruby lead crystal glasses have been obtained by Ag{sup +} ion-exchange. For red ruby colouring lead glass substrates were previously doped with reducing oxides (arsenic, antimony, cerium and tin). The best experimental conditions for silver ion-exchange were determined. The optical absorption behaviour of the samples was studied to point out the influence of the parameters involved in the ion-exchange process. Moreover, other parameters affecting the final colouring of the glasses (kind of dopant, dopant concentration, etc.) were also analysed. The dopant percentage added to the lead crystal glass is the most important factor for developing superficial red ruby colouring. Antimony oxide doped lead glass ion-exchanged with silver showed the most intense red ruby colouring, even for a doping concentration lower than those of arsenic oxide doped samples able to enhance similar colour. Spectral saturation appeared for the highest doping concentration and for the most severe ion-exchange conditions. Chromatic coordinates were calculated from the corresponding transmission visible spectra. The colour purity showed by the samples obtained satisfies the ornamental requirements that motivated this research.

  9. The first use of a HPLC system at a Louisiana Sugarcane Factory: What it can do for you

    Science.gov (United States)

    Alma Plantation sugarcane factory established and operated the first High Performance Liquid Chromatography (HPLC) system in Louisiana in 2015. Although many HPLC systems exist, the factory opted for a ThermoFisherTM ion chromatography (anion exchange) system with integrated pulsed amperometric det...

  10. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    NARCIS (Netherlands)

    Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D.

    2015-01-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to

  11. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  12. Methods and applications of HPLC-AMS (WBio 5)

    International Nuclear Information System (INIS)

    Bucholz, B A; Clifford, A J; Duecker, S R; Lin, Y; Vogel, J S

    1999-01-01

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a(sup 14)C-labelled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the(sup 14)C content above the control predose tissue and converting to equivalents of the parent compound. High Performance Liquid Chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement. Unknowns are identified by coelution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the(sup 14)C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of(sup 14)C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected(sup 14)C activity and lt;0.17 Bq (4.5 pCi) on the HPLC column

  13. From silver nanoparticles to nanostructures through matrix chemistry

    International Nuclear Information System (INIS)

    Ayyad, Omar; Munoz-Rojas, David; Oro-Sole, Judith; Gomez-Romero, Pedro

    2010-01-01

    Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag-Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

  14. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tian, E-mail: phdlitian@163.com; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na{sup +} montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV–vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  15. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  16. Electrochemical Detectors in HPLC and Ion Chromatography.

    Science.gov (United States)

    Horvai, George; Pungor, ErnÕ

    1989-01-01

    Back in 1952, the renowned Polish electrochemist Wiktor Kemula introduced chromato-polarography, 1 i.e., polaro-graphic detection for liquid chromatography. This technique continued to develop slowly until the early 1970s (for a review see Reference 2) when modem high-performance liquid chromatography (HPLC) emerged. This new, highly efficient chromatographc method could only be. used with detectors ensuring low dispersion. It was not easy to modify the dropping mercury electrode cells to satisfy this requirement. However, at the same time, electroanalytical chemists, who already had much experience in using carbon-based electrodes for oxidative detection in flow analysis, put forward the idea of oxidative amperometric detection in liquid chromatography. 3,4 In this technique, solid or quasi-solid (paste) electrodes were used and this made possible the construction of miniaturized cells with just a few microliter volume.

  17. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 54, č. 26 (2009), s. 6264-6268 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : silver ions * silver particles * drop ping mercury electrode * hanging mercury drop electrode Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  18. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Hosny [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt)]. E-mail: dr_hosny@yahoo.com

    2005-07-27

    The utility of carbon paste electrode modified with silver ethylmercurythiosalicylate (silver thimerosal) in both static mode and flow injection analysis (FIA) is demonstrated. The electrode was fully characterized in terms of composition, response time, thermal stability, usable pH and ionic strength ranges. It has been shown that diisononyl phthalate (DINP) acts as more suitable solvent mediator for preparation of the electrode, which exhibits linear response range to Ag(I) extending from 5.0 x 10{sup -7} to 1.0 x 10{sup -3} M with detection limit of 2.5 x 10{sup -7} M and Nernstian slope of 59.3 {+-} 1.0 mV/decade. The proposed chemically modified carbon paste electrode shows a very good selectivity for Ag(I) over a wide variety of metal ions and successfully used for the determination of the silver content of silver sulphadiazine (burning cream) and developed radiological films. The electrode was also used as an indicator electrode in the potentiometric titration of thiopental and thimerosal with AgNO{sub 3}.

  19. Dermal exposure potential from textiles that contain silver nanoparticles.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas

    2014-01-01

    Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); Pmasterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.

  20. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  1. Silver-zinc: status of technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Karpinski, A.P.; Makovetski, B.; Russell, S.J.; Serenyi, J.R.; Williams, D.C. [Yardney Technical Products, Pawcatuck, CT (United States)

    1999-07-01

    Michel Yardney and Professor Henri Andre developed the first practical silver-zinc battery more than 55 years ago. Since then, primary and rechargeable silver-zinc batteries have attracted a variety of applications due to their high specific energy/energy density, proven reliability and safety, and the highest power output per unit weight and volume of all commercially available batteries. Although significant improvements have been achieved on traditional systems such as lead-acid and nickel/cadmium, and in spite of the advent of new electrochemistries such as lithium-ion and nickel/metal hydride, many users still rely on silver-zinc to satisfy their most demanding and critical requirements. Over the past few years, several of the internal components have been subject to many studies which resulted in significant improvements in the battery wet life and cycle life. Specifically, these include new separator materials which offer an alternative to the cellulosic membranes, improvements to the zinc electrode that include additives that help reduce shape-change and dendritic growth, and to a lesser extent, process changes to the silver electrode and additives to the electrolyte. In comparison, the commonly used secondary systems are lead-acid, nickel/cadmium, nickel/metal hydride, and lithium-ion. Each has attributes which make them desirable for certain applications. Where low cost, high voltage, and high rate capability is required, the lead-acid battery is an obvious choice whenever size and weight are not critical. For applications requiring longer wet life, moderate rate capability, and high cycle life, nickel/cadmium or nickel/metal hydride can be used in spite of their poor charge retention and higher costs. Relatively newer systems are also available such as lithium-ion or lithium polymer technology which are preferred for their high voltage and excellent cycle life. Among the disadvantages of these systems are higher costs, limited configurations (usually

  2. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  3. Mass Cytometry for Detection of Silver at the Bacterial Single Cell Level

    Directory of Open Access Journals (Sweden)

    Yuting Guo

    2017-07-01

    Full Text Available Background: Mass cytometry (Cytometry by Time of Flight, CyTOF allows single-cell characterization on the basis of specific metal-based cell markers. In addition, other metals in the mass range such as silver can be detected per cell. Bacteria are known to be sensible to silver and a protocol was developed to measure both the number of affected cells per population and the quantities of silver per cell.Methods: For mass cytometry ruthenium red was used as a marker for all cells of a population while parallel application of cisplatin discriminated live from dead cells. Silver quantities per cell and frequencies of silver containing cells in a population were measured by mass cytometry. In addition, live/dead subpopulations were analyzed by flow cytometry and distinguished by cell sorting based on ruthenium red and propidium iodide double staining. Verification of the cells’ silver load was performed on the bulk level by using ICP-MS in combination with cell sorting. The protocol was developed by conveying both, fast and non-growing Pseudomonas putida cells as test organisms.Results: A workflow for labeling bacteria in order to be analyzed by mass cytometry was developed. Three different parameters were tested: ruthenium red provided counts for all bacterial cells in a population while consecutively applied cisplatin marked the frequency of dead cells. Apparent population heterogeneity was detected by different frequencies of silver containing cells. Silver quantities per cell were also well measurable. Generally, AgNP-10 treatment caused higher frequencies of dead cells, higher frequencies of silver containing cells and higher per-cell silver quantities. Due to an assumed chemical equilibrium of free and bound silver ions live and dead cells were associated with silver in equal quantities and this preferably during exponential growth. With ICP-MS up to 1.5 fg silver per bacterial cell were detected.Conclusion: An effective mass cytometry

  4. Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process

    Energy Technology Data Exchange (ETDEWEB)

    Hongxi, Liu [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qian, Xu, E-mail: vipliuhx@yahoo.com.cn [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Xiaowei, Zhang; Chuanqi, Wang [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Baoyin, Tang [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-10-30

    In order to improve the wear resistance and anti-corrosion behaviors of Ti6Al4V (TC4) alloy, polished samples were implanted with silver (Ag) ions by plasma immersion ion implantation (PIII) technique. The phase composition and element concentration-depth distribution in modified layer were characterized by X-ray diffraction (XRD) and Auger electron spectrum (AES). Corrosion resistance, microhardness, friction and wear behaviors of PIII-TC4 alloy changed with the Ag ion implantation dose. XRD analysis reveals that the surface modified layer consists of Ag and a small amount of TiAg phases. AES results show that Ag atomic peak concentration is 9.88%, about 14.4 nm from the surface. The maximum nanohardness and elastic modulus of PIII-TC4 alloy increases by 62.5% and 54.5%, respectively. The lowest friction coefficient reduces from 0.78 to 0.2. The test result of potentiodynamic polarization in 3.5% NaCl saturated solution indicates that the sample of Ag ion dose at 1.0 Multiplication-Sign 10{sup 17} ions/cm{sup 2} has the best corrosion resistance with the lowest corrosion current density and the least porosity.

  5. Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis.

    Directory of Open Access Journals (Sweden)

    Daniela Beisser

    Full Text Available Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to

  6. Further Aspects of Ochratoxin A-Cation Interactions: Complex Formation with Zinc Ions and a Novel Analytical Application of Ochratoxin A-Magnesium Interaction in the HPLC-FLD System

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2014-04-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II ion forms a two-fold higher stable complex with OTA than magnesium(II ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.

  7. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  8. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  9. Behavior of silver nanoparticles and ions in food simulants and low fat cow milk under migration conditions

    DEFF Research Database (Denmark)

    Jokar, Maryam; Correia, Manuel; Löschner, Katrin

    2018-01-01

    , 50% ethanol preserved the AgNPs, while acetic acid induced dissolution of AgNPs. Dissolution of the PEG-AgNPs obeyed pseudo-first-order reaction kinetics. PEG-AgNPs showed similar behavior in low fat cow milk during storage at 4 °C for 5 days as in the corresponding food simulant, 50% ethanol....... Addition of sodium chloride to ultrapure water led to enhanced dissolution. The potential reduction of silver ions to NPs in food simulants, low fat milk and in alkaline conditions in the presence of reducing agents was studied. Based on the obtained results, it is unlikely that AgNPs are formed from Ag...

  10. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Mario Casolaro

    2018-05-01

    Full Text Available Polyelectrolyte hydrogels bearing l-phenylalanine (PHE, l-valine (AVA, and l-histidine (Hist residues were used as scaffolds for the formation of silver nanoparticles by reduction of Ag+ ions with NaBH4. The interaction with the metal ion allowed a prompt collapse of the swollen hydrogel, due to the neutralization reaction of basic groups present on the polymer. The imidazole nitrogen of the hydrogel with Hist demonstrated greater complexing capacity with the Ag+ ion compared to the hydrogels with carboxyl groups. The subsequent reduction to metallic silver allowed for the restoration of the hydrogel’s degree of swelling to the starting value. Transmission electron microscopy (TEM and spectroscopic analyses showed, respectively, a uniform distribution of the 15 nm spherical silver nanoparticles embedded on the hydrogel and peak optical properties around a wavelength of 400 nm due to the surface plasmonic effect. Unlike native hydrogels, the composite hydrogels containing silver nanoparticles showed good antibacterial activity as gram+/gram− bactericides, and higher antifungal activity against S. cerevisiae.

  11. Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2013-12-01

    Full Text Available Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli and Staphylococcus aureus (S. aureus. Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU and variously characterized by field emission scanning electron microscopy (FESEM, fourier transform infra-red (FTIR spectroscopy, X-ray diffraction (XRD and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w AgNO3, 1% and 10% (w/w Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA indicated greater thermal stability.

  12. Fabrication and Antibacterial Performance of Nano-silver-Doped ...

    African Journals Online (AJOL)

    NICO

    Human beings are often infected by microorganisms like bacteria, moulds, yeast ... However, antibacterial materials such as zeolites covered with silver ions ... copy (TEM) was recorded using LEO-912 AB and scanning tunnelling microscopy ...

  13. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  14. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  15. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template

    Directory of Open Access Journals (Sweden)

    C. Y. Liu

    2018-07-01

    Full Text Available Supramolecular β-cyclodextrin (β-CD was used as a soft template for the fabrication of long silver nanowires. A novel design using self-assembled β-CD for the reduction of silver ions was studied. The concentrations of iron chloride, silver nitrate, and the template were controlling factors for the growth of the silver nanowires. Iron chloride was used to accelerate and facilitate the formation of the silver nanowires and inhibit oxidative etching. However, an excessive concentration of Fe+3 resulted in etching of the silver nanostructures. Furthermore, the silver concentration was another controlling factor. The length of the silver nanowires increased as the concentration of silver cations increased. Nevertheless, an excess concentration of silver cations formed various silver crystalline structures. In this study, the optimal ratio between iron chloride and silver nitrate was determined to be 1:13.3. A maximum length of 20 µm was achieved using a concentration of 0.23 M for the soft template. Moreover, the junction of two growing silver nanowires was observed, forming a long fused nanowire, and some significant boundaries were observed. The observed results were further confirmed using scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses. X-ray diffraction (XRD and energy dispersive spectrometer (EDS analyses were used to indicate the presence of silver and the formation of crystalline materials.

  16. Synergistic effects of iodine and silver ions co-implanted in 6H-SiC

    Science.gov (United States)

    Kuhudzai, R. J.; Malherbe, J. B.; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, A.; Zhu, Z.; Nandasiri, M.

    2015-12-01

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behaviour has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 °C for 30 h in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  17. Silver percutaneous absorption after exposure to silver nanoparticles: a comparison study of three human skin graft samples used for clinical applications.

    Science.gov (United States)

    Bianco, C; Adami, G; Crosera, M; Larese, F; Casarin, S; Castagnoli, C; Stella, M; Maina, G

    2014-11-01

    Silver nanoparticles (AgNPs) are increasingly applied to a wide range of materials for biomedical use. These enable a close contact with human skin, thanks to the large release of silver ions that is responsible for a broad spectrum of antimicrobial activity. Silver can permeate the skin; however, there are no data available on silver permeation through skin grafts commonly used in burns recovery. The aim of our study was to evaluate silver penetration using fresh, cryopreserved, and glycerolized human skin grafts after exposure to a suspension of AgNPs in synthetic sweat using a Franz diffusion cell apparatus for 24 h. Silver permeation profiles revealed a significantly higher permeation through glycerolized skin compared with both fresh and cryopreserved skin: 24-h silver flux penetration was 0.2 ng cm(-2) h(-1) (lag time: 8.2 h) for fresh skin, 0.3 ng cm(-2) h(-1) (lag time: 10.9 h) for cryopreserved skin, and 3.8 ng cm(-2) h(-1) (lag time: 6.3 h) for glycerolized skin. Permeation through glycerolized skin is significantly higher compared to both fresh and cryopreserved skin. This result can generate relevant clinical implications for burns treatment with products containing AgNPs. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis.

    Science.gov (United States)

    Moukette Moukette, Bruno; Constant Anatole, Pieme; Nya Biapa, Cabral Prosper; Njimou, Jacques Romain; Ngogang, Jeanne Yonkeu

    2015-01-01

    Considerations on antioxidants derived from plants have continuously increased during this decade because of their beneficial effects on human health. In the present study we investigated the free radical scavenging properties of extracts from Piper guineense ( P. guineense ) and their inhibitory potentials against oxidative mediated ion toxicity. The free radical quenching properties of the extracts against [1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS•), hydroxyl radical (HO•), nitric oxide (NO•)] radical and their antioxidant potentials by FRAP and phosphomolybdenum were determined as well as their protective properties on liver enzymes. The phenolic profile was also investigated by HPLC. The results obtained, revealed that the extracts significantly inhibited the DPPH, NO, HO and ABTS radicals in a concentration depending manner. They also showed a significant ferrous ion chelating ability through FRAP and phosphomolybdenum antioxidant potential. Their polyphenol contents varied depending on the type of extracts and the solvent used. The hydroethanolic extracts (FFH) and the ethanolic extracts (FFE) of P. guineense leaves showed the higher level of phenolic compounds respectively of 21.62 ± 0.06 mg caffeic acid/g dried extract (CAE/g DE) and 19.01 ± 0.03 CAE/g DE. The HPLC phenolic compounds profile revealed a higher quantity of Eugenol, quercetin, rutin and catechin in the stem than in the leaves. The presence of these molecules could be responsible of the protective potentials of P. guineense extracts against lipid peroxidation and SOD, catalase and peroxidase. In conclusion, P. guineense extracts demonstrated significant antioxidant property and may be used as a prospective protector against metal related toxicity.

  19. Controlled generation of silver nanocolloid in amorphous silica materials

    International Nuclear Information System (INIS)

    Gil, C.; Garcia-Heras, M.; Carmona, N.; Villages, M. A.

    2004-01-01

    Amorphous silica-based materials bulk and superficially doped with silver nano colloids were prepared. Bulk doped glasses were obtained by conventional melting and doped monolithic slabs by sol-gel. Superficially doped glasses were obtained by ion-exchange and doped coatings by sol-gel. The samples were characterised by TEM and UV-VIS spectrometry. Depending on the composition, the silver incorporation process, and the thermal treatments, several colourings were obtained. By controlling these parameters, metallic silver nano colloids can be generated in the matrices studied. Colloids aggregation and growing up depends on the matrix nature and on the experimental process carried out. (Author) 10 refs

  20. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  1. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  2. Retinoid quantification by HPLC/MS(n)

    Science.gov (United States)

    McCaffery, Peter; Evans, James; Koul, Omanand; Volpert, Amy; Reid, Kevin; Ullman, M. David

    2002-01-01

    Retinoic acid (RA) mediates most of the biological effects of vitamin A that are essential for vertebrate survival. It acts through binding to receptors that belong to the nuclear receptor transcription factor superfamily (Mangelsdorf et al. 1994). It is also a highly potent vertebrate teratogen. To determine the function and effects of endogenous and exogenous RA, it is important to have a highly specific, sensitive, accurate, and precise analytical procedure. Current analyses of RA and other retinoids are labor intensive, of poor sensitivity, have limited specificity, or require compatibility with RA reporter cell lines (Chen et al. 1995. BIOCHEM: Pharmacol. 50: 1257-1264; Creech Kraft et al. 1994. BIOCHEM: J. 301: 111-119; Lanvers et al. 1996. J. Chromatogr. B Biomed. Appl. 685: 233-240; Maden et al. 1998. DEVELOPMENT: 125: 4133-4144; Wagner et al. 1992. DEVELOPMENT: 116: 55-66). This paper describes an HPLC/mass spectrometry/mass spectrometry product ion scan (HPLC/MS(n)) procedure for the analysis of retinoids that employs atmospheric pressure chemical ionization MS. The retinoids are separated by normal-phase column chromatography with a linear hexane-isopropanol-dioxane gradient. Each retinoid is detected by a unique series of MS(n) functions set at optimal collision-induced dissociation energy (30% to 32%) for all MS(n) steps. The scan events are divided into three segments, based on HPLC elution order, to maximize the mass spectrometer duty cycle. The all-trans, 9-cis, and 13-cis RA isomers are separated, if desired, by an isocratic hexane-dioxane-isopropanol mobile phase. This paper describes an HPLC/MS(n) procedure possessing high sensitivity and specificity for retinoids.

  3. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    International Nuclear Information System (INIS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-01-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag + and the reaction partners (X) including [Ag n X m − (n + 1)H] − (n = 1–4, m = 1–3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver–GSH interactions, even doubly charged oligomers occur generating [Ag (a+1) GSH a − (a + 3)H] 2− (a = 5–7) and [Ag b GSH b − (b + 2)H] 2− (b = 4–8) ions. 1 H NMR data of free GSH compared to that after treatment with Ag + confirm sulfur–metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver–GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation

  4. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    International Nuclear Information System (INIS)

    Zhang Wanzhong; Qiao Xueliang; Chen Jianguo

    2006-01-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag 4 + intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields

  5. 100 MeV silver ions induced defects and modifications in silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vijay S.; Deore, Avinash V.; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411007 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110067 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-07-15

    Highlights: •Study of silver ion induced defects and modifications in silica glass. •Variation in oxygen deficiency centres (ODA-II) and nonbridging oxygen hole centres (NBOHC). •Study of structural damage in terms of Urbach energy. -- Abstract: A few silica glass samples having 1 cm{sup 2} area and 0.1 cm thickness were irradiated with 100 MeV energy Ag{sup 7+} ions for the fluences ranging from 1 × 10{sup 12} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. The optical properties and the corresponding induced defects were characterised by the techniques such as UV–Visible, Photoluminescence (PL), Fourier transform infrared (FTIR), and Electron spin resonance (ESR) spectroscopy. The UV–Visible absorption spectra show two peaks, one at 5 eV and another weak peak at 5.8 eV. A peak observed at 5.0 eV corresponds to B{sub 2} band (oxygen deficiency in SiO{sub 2} network) and the peak at 5.8 eV is due to the paramagnetic defects like E′ centre. The intensities of these peaks found to be increased with increase in ion fluence. It attributes to the increase in the concentration of E′ centres and B{sub 2} band respectively. In addition, the optical band gap energy, Urbach energy and the defects concentration have been calculated using Urbach plot. The optical band gap found to be decreased from 4.65 eV to 4.39 eV and the Urbach energy found to be increased from 60 meV to 162 meV. The defect concentration of nonbridging oxygen hole centres (NBOHC) and E′ centres are found to be increased to 1.69 × 10{sup 13} cm{sup −3} and 3.134 × 10{sup 14} cm{sup −3} respectively. In PL spectra, the peak appeared at 1.92 eV and 2.7 eV envisage the defects of nonbridging oxygen hole centres and B{sub 2α} oxygen deficient centres respectively. ESR spectra also confirms the existence of E′ and NBOHC centres. FTIR spectra shows scissioning of Si-O-Si bonds and the formation of Si-H and Si-OH bonds, which supports to the co-existence of the defects induced by Ag

  6. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    Science.gov (United States)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  7. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    International Nuclear Information System (INIS)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai; Xie Yong

    2010-01-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  8. Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.

    Science.gov (United States)

    Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok

    2018-01-31

    Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.

  9. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    Science.gov (United States)

    Marambio-Jones, Catalina; Hoek, Eric M. V.

    2010-06-01

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  10. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Marambio-Jones, Catalina; Hoek, Eric M. V., E-mail: emvhoek@ucla.ed [University of California, Los Angeles, Department of Civil and Environmental Engineering, California NanoSystems Institute (United States)

    2010-06-15

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules-all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  11. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    International Nuclear Information System (INIS)

    Marambio-Jones, Catalina; Hoek, Eric M. V.

    2010-01-01

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules-all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  12. Electrochemical deposition of silver nanostructures from aqueous solutions in the presence of sodium polyacrylate

    OpenAIRE

    Topchak, Roman; Okhremchuk, Yevhen; Kuntyi, Orest

    2013-01-01

    The silver nanostructures obtaining was investigated by electrochemical deposition from aqueous solutions ((1?10) mM AgNO3 + 50 m? NaPA) onto graphite substrate. The influence of the concentration of silver ions and cathodic potential values in the range E = -0,2 ... -1,0 V on surface filling degree and geometry of silver particles was (had been) studied. It is shown, the discrete silver particles ranging in size from 50 to 400 nm with a uniform distribution on the surface of the substrate...

  13. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  14. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  15. Isotope dilution surface ionization mass spectrometry of silver in environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Murozumi, M; Nakamura, S; Suga, K [Muroran Inst. of Tech., Hokkaido (Japan)

    1981-03-01

    Surface ionization mass spectrometry has been developed to measure isotopic abundances and concentrations of silver in commercial high-purity metals, environmental materials such as rocks and plants, and /sup 109/Ag and /sup 107/Ag spikes. A minute amount of silver is extracted into a dithizone chloroform solution from a nitric acid solution of above samples. After the silver is back-extracted into 6.0 ml of a 7 mol/l HNO/sub 3/ solution, the solution is evaporated to dryness under the nitrogen atmosphere. Silver nitrate thus formed is dissolved in a mixture of 60 ..mu..l of an 0.003% silica gel suspended water and 5 ..mu..l of a 2% phosphoric acid. An aliquot of this solution is applied to the mass spectrometry using a rhenium single filament as an ion emitter. The proposed method can detect the presence of 10/sup -14/ g of silver on the ion emitter, and measure the /sup 109/Ag//sup 107/Ag isotopic ratio in environmental materials with the accuracy of 0.1 -- 0.2% in the coefficient of variation. Isotope dilution mass spectrometry using a /sup 107/Ag spike has revealed the silver concentration in the environmental standard materials, which were prepared by the National Bureau of Standards, U.S.A. and National Institute of Environmental Studies of Japan, as follows; 27.9 +- 0.2 ppb for the Orchard Leaves and 34.3 +- 0.3 ppb in the Pepper Bush. The determined values of silver in the Granodiorite, JG-1, and Basalt, JB-1 powders made by the Geological Survey of Japan are 25.4 +- 0.4 ppb and 41.3 +- 0.1 ppb respectively. Silver concentration in a coastal sea water sample is found to be at the level of 2.5 +- 0.4 ppt.

  16. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    Science.gov (United States)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  17. Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms

    Energy Technology Data Exchange (ETDEWEB)

    Egorova, E M, E-mail: emenano@mail.ru [Laboratory of Nanopathology, Institute of General Pathology and Patophysiology of RAMS, Baltijskaya st., 8, 125315 Moscow (Russian Federation); Science-technology Company ' Nanomet' , Moscow (Russian Federation)

    2011-04-01

    This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5{+-}3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.

  18. Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms

    International Nuclear Information System (INIS)

    Egorova, E M

    2011-01-01

    This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5±3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.

  19. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  20. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  1. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  2. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    Science.gov (United States)

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  4. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Ian Richard [School of Pharmacy & Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Silvertech Ltd, Via Monteroni, 73100 Lecce (Italy); Paladini, Federica [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy)

    2016-12-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  5. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; ten Have, Bas; Hoekstra, Gerrit I.; Douma, Arjan; de Bruijn, Douwe; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in

  6. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    Science.gov (United States)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-10-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 1010 to 1012 ions/cm2 of 100 MeV silver (Ag8+) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  7. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-01-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 10 10 to 10 12 ions/cm 2 of 100 MeV silver (Ag 8+ ) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  8. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  9. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  10. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  11. Extraction of silver by gels of sodium poly-acrylic-polyacrylate acid. Application: elimination of chloride anions; Extraction de l'argent par des gels d'acide polyacrylique-polyacrylate de sodium. Application a l'elimination des ions chlorures

    Energy Technology Data Exchange (ETDEWEB)

    Rifi, E.H. [Universite Ibn-Tofail, Lab. de Synthese Organique et Pocedes d' Extraction, Faculte des Sciences, Kenitra (Morocco); Lakkis, D.; Leroy, J.F.M. [Universite Louis Pasteur, Lab. de Chimie Analytique et Minerale, Ecole Europeenne de Chimie, Polymeres et Materiaux, 67 - Strasbourg (France)

    2005-05-01

    The extraction of silver from diluted aqueous solutions by gels of sodium poly-acrylic-polyacrylate acid was studied. The study of pH variations shows that the extraction is done by cation-cation exchange process. The highest loading of the gel by silver is obtained at R(moles of Ag{sup +} fixed by the gel/moles of -COO(H, Na))=0.75. The silver gel loaded allows the recovery of ions chlorides from the aqueous solutions. (authors)

  12. Comment on "A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies".

    Science.gov (United States)

    Lantagne, Daniele; Rayner, Justine; Mittelman, Anjuliee; Pennell, Kurt

    2017-11-13

    We wish to thank Fewtrell, Majuru, and Hunter for their article highlighting genotoxic risks associated with the use of particulate silver for primary drinking water treatment. The recent promotion of colloidal silver products for household water treatment in developing countries is problematic due to previously identified concerns regarding manufacturing quality and questionable advertising practices, as well as the low efficiency of silver nanoparticles to treat bacteria, viruses, and protozoa in source waters. However, in the conclusion statement of the manuscript, Fewtrell et al. state, "Before colloidal Ag or AgNP are used in filter matrices for drinking water treatment, consideration needs to be given to how much silver is likely to be released from the matrix during the life of the filter." Unfortunately, it appears Fewtrell et al. were unaware that studies of silver nanoparticle and silver ion elution from ceramic filters manufactured and used in developing countries have already been completed. These existing studies have found that: 1) silver ions, not silver nanoparticles, are eluted from ceramic filters treated with silver nanoparticles or silver nitrate; and, 2) silver ions have not been shown to be genotoxic. Thus, the existing recommendation of applying silver nanoparticles to ceramic filters to prevent biofilm formation within the filter and improve microbiological efficacy should still be adhered to, as there is no identified risk to people who drink water from ceramic filters treated with silver nanoparticles or silver nitrate. We note that efforts should continue to minimize exposure to silver nanoparticles (and silica) to employees in ceramic filter factories in collaboration with the organizations that provide technical assistance to ceramic filter factories.

  13. Optical properties of silver composite metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Orbons, S.M. [School of Physics, University of Melbourne, Victoria 3010 (Australia)]. E-mail: sorbons@ph.unimelb.edu.au; Freeman, D. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Luther-Davies, B. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Gibson, B.C. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Huntington, S.T. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Roberts, A. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2007-05-15

    We present a computational and experimental study investigating the optical properties of nanoscale silver composite metamaterials fabricated by ion beam lithography. Both simulations and experimental results demonstrate high transmission efficiencies in the near infra-red through these devices. Implications for experimentally verifying the calculated near-field distributions of these materials are also discussed.

  14. Microwave-Assisted Synthesis of Chitosan/Polyvinyl Alcohol Silver Nanoparticles Gel for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hiep

    2016-01-01

    Full Text Available The purpose of this study was to fabricate chitosan/poly(vinyl alcohol/Ag nanoparticles (CPA gels with microwave-assistance for skin applications. Microwave irradiation was employed to reduce silver ions to silver nanoparticles and to crosslink chitosan (CS with polyvinyl alcohol (PVA. The presence of silver nanoparticles in CPA gels matrix was examined using UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction. The interaction of CS and PVA was analysed by Fourier transform infrared spectroscopy. The release of silver ions was determined by atomic absorption spectrometry. The antimicrobial properties of CPA gels against P. aeruginosa and S. aureus were investigated using agar diffusion method. Finally, the biocompatibility and wound-healing ability of the gels were studied using fibroblast cells (in vitro and mice models (in vivo. In conclusion, the results showed that CPA gels were successfully fabricated using microwave irradiation method. These gels can be applied to heal an open wound thanks to their antibacterial activity and biocompatibility.

  15. Steroids in porcine follicular fluid: analysis by HPLC, capillary CG and capillary CG/MS after purification on SEP-PAK C18 and ion exchange chromatography.

    Science.gov (United States)

    Khalil, M W; Lawson, V

    1983-04-01

    Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).

  16. Amperometric Sensor for Detection of Chloride Ions.

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-09-15

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.

  17. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  18. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  19. Anomeric 2'-Deoxycytidines and Silver Ions: Hybrid Base Pairs with Greatly Enhanced Stability and Efficient DNA Mismatch Detection with α-dC.

    Science.gov (United States)

    Guo, Xiurong; Seela, Frank

    2017-09-04

    α-d-Nucleosides are rare in nature but can develop fascinating properties when incorporated into DNA. This work reports on the first silver-mediated base pair constructed from two anomeric nucleosides: α-dC and β-dC. The hybrid base pair was integrated into the DNA and DNA/RNA double helix. A 12-mer duplex with α-dC and β-dC pair exhibits a higher thermal stability (T m =43 °C) than that incorporating the β-dC-Ag + -β-dC homo pair (T m =34 °C). Furthermore, α-dC shows excellent mismatch discrimination for DNA single nucleotide polymorphism (SNP). All four SNPs were identified on the basis of large T m value differences measured in the presence of silver ions. High resolution melting was not required. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. HPLC determination of chloride, bromide and iodide ions in drinking water and industrial effluents using trifluoromethylmercuric nitrate as derivatizing reagent

    International Nuclear Information System (INIS)

    Arain, M.A.; Bhanger, M.I.; Khuhawar, M.Y.

    1997-01-01

    A simple procedure for the simultaneous determination of various halides in drinking water and industrial effluents of Hyderabad and Iodized salt is reported. The method utilizes derivatization of halides through trifluoromethylmercuric nitrate in aqueous solution, extraction in petroleum ether followed by reverse phase HPLC separation using c-18 Lichrosorb column, 150 x 4 mm i.d., mobile phase methanol : water (20: 80) and UV detection at 225 nm. Linear calibration ranges for chloride, bromide and iodide (0-10 ug/mL) with correlation coefficient 0.996, 0.998 and 0.989 have been determined with lowest possible detection limit as 1.0, 0.25 and 1.5 Mu g/ml, respectively. The effect of various interfering ions is also discussed. (author)

  1. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  2. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid

    Science.gov (United States)

    Rostami, Simindokht; Mehdinia, Ali; Jabbari, Ali

    2017-06-01

    A simple and sensitive approach was demonstrated for detection of ascorbic acid (AA) based on seed-mediated growth of silver nanoparticles (Ag NPs). According to the seeding strategy, silver ions existing in the growth solution were reduced to silver atoms on the surface of silver seeds via redox reaction between silver ions and AA. This process -led to appear an absorption band in near 420 nm owing to the localized surface plasmon resonance peak of the generated Ag NPs. This change in absorption spectra of Ag NPs caused a change in color of the mixture from colorless to yellow. It was found that the changes in absorption intensity at 420 nm have a good relationship with the concentration of AA. Also, detection of AA was achieved through the established colorimetric sensor in the range of 0.25-25 μM with detection limit of 0.054 μM. Moreover, the selectivity of the method was evaluated with considering potential interferences. The method showed high selectivity toward AA rather than potential interferences and coexisted molecules with AA. It was successfully applied for detection and determination of AA in pharmaceutical tablets and commercial lemonade.

  3. Formation of large clusters during sputtering of silver

    International Nuclear Information System (INIS)

    Staudt, C.; Heinrich, R.; Wucher, A.

    2000-01-01

    We have studied the formation of polyatomic clusters during sputtering of metal surfaces by keV ion bombardment. Both positively charged (secondary cluster ions) and neutral clusters have been detected in a time-of-flight mass spectrometer under otherwise identical experimental conditions, the sputtered neutrals being post-ionized by single photon absorption using a pulsed 157 nm VUV laser beam. Due to the high achievable laser intensity, the photoionization of all clusters could be saturated, thus enabling a quantitative determination of the respective partial sputtering yields. We find that the relative yield distributions of sputtered clusters are strongly correlated with the total sputtering yield in a way that higher yields lead to higher abundances of large clusters. By using heavy projectile ions (Xe + ) in connection with bombarding energies up to 15 keV, we have been able to detect sputtered neutral silver clusters containing up to about 60 atoms. For cluster sizes above 40 atoms, doubly charged species are shown to be produced in the photoionization process with non-negligible efficiency. From a direct comparison of secondary neutral and ion yields, the ionization probability of sputtered clusters is determined as a function of the cluster size. It is demonstrated that even the largest silver clusters are still predominantly sputtered as neutrals

  4. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    Energy Technology Data Exchange (ETDEWEB)

    Kaewvilai, Attaphon [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Wattanathana, Worawat [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Jongrungruangchok, Suchada [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani, 12000 (Thailand); Veranitisagul, Chatchai [Department of Material and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani, 12110 (Thailand); Koonsaeng, Nattamon [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Laobuthee, Apirat, E-mail: fengapl@ku.ac.th [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand)

    2015-11-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO{sub 2}), titanium dioxide (TiO{sub 2}), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  5. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    International Nuclear Information System (INIS)

    Kaewvilai, Attaphon; Wattanathana, Worawat; Jongrungruangchok, Suchada; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laobuthee, Apirat

    2015-01-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO_2), titanium dioxide (TiO_2), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  6. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  7. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach.

    Science.gov (United States)

    Chang, Mincheol; Kim, Taejoon; Park, Hyun-Woo; Kang, Minjeong; Reichmanis, Elsa; Yoon, Hyeonseok

    2012-08-01

    Only limited information is available on the design and synthesis of functional materials for preventing corrosion of metal nanostructures. In the nanometer regime, even noble metals are subject to chemical attack. Here, the corrosion behavior of noble metal nanoparticles coated with a conjugated polymer nanolayer was explored for the first time. Specifically, electrochemical corrosion and sulfur tarnishing behaviors were examined for Ag-polypyrrole (PPy) core-shell nanoparticles using potentiodynamic polarization and spectrophotometric analysis, respectively. First, the Ag-PPy nanoparticles exhibited enhanced resistance to electrochemically induced corrosion compared to their exposed silver counterparts. Briefly, a neutral PPy shell provided the highest protection efficiency (75.5%), followed by sulfate ion- (61.3%) and dodecylbenzenesulfonate ion- (53.6%) doped PPy shells. However, the doping of the PPy shell with chloride ion induced an adverse effect (protection efficiency, -120%). Second, upon exposure to sulfide ions, the Ag-PPy nanoparticles preserved their morphology and colloidal stability while the bare silver analog underwent significant structural deformation. To further understand the function of the PPy shell as a protection layer for the silver core, the catalytic activity of the nanostructures was also evaluated. Using the reduction of 4-nitrophenol as a representative example of a catalytic reaction, the rate constant for that reduction using the PPy encased Ag nanoparticles was found to be 1.1 × 10(-3) s(-1), which is approximately 33% less than that determined for the parent silver. These results demonstrate that PPy can serve as both an electrical and chemical barrier for mitigating undesirable chemical degradation in corrosive environments, as well as provide a simple physical barrier to corrosive substances under appropriate conditions.

  8. Technical feasibility of using silver and copper ions electro generated in the microbiological control of cooling systems; Factibilidad tecnica para emplear iones plata y cobre electrogenerados en el control microbiologico de los sistemas de enfriamiento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Susana M; Martinez Meza, Esteban; Alvarez Gallegos, Alberto [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    The objective of this work is to determine the technical feasibility of replacing the chlorine use by another biocida (ionization of silver or copper) non dangerous in cooling waters. This technique of ionization could be used to treat the water of industrial processes in general. The used water came from the make up water of the cooling system of the Thermoelectric Power Station of Valle de Mexico (CTEVM) and residual water of the treatment plants of the Instituto Mexicano de Tecnologia del Agua (IMTA) (Mexican Institute of WaterTechnology) and the Instituto de Investigaciones Electricas (IIE). The three types of water used have similar physical, chemical and biological characteristics. The used methodology was the jar tests and by continuous system. The bacteriological analysis is indicated reaching the conclusion. The metallic systems studied in the establishment of the microbiological control in the residual water and make up water are silver, silver/copper and copper in the concentration intervals of 200 mg/l to 3000 mg/l of silver and 200 mg/l to 1200 mg/l of copper. The experiments performed in the jar tests (closed system) were carried out at two temperatures (25 {+-} 0.5 and 32 {+-} 0.5 ) without pH control; whereas in the continuous system the pH was maintained in the pH interval of 7 to 8 by means of the sulfuric acid addition and a delta temperature of 10 was maintained (27 {+-} 5 ). The pH, the conductivity and the temperature were continuously measured. Graphs are shown on the effect silver/copper ions on the annihilation of total coliform bacteria and fecal coliforms the effect of the concentration of the silver metallic ion is given as a figure on the annihilation of bacteria related to iron. It is possible to conclude that the plant systems studied of silver/copper and copper turned out to be a good alternative with a minimum environmental impact to replace chlorine in the cooling systems. These systems managed microbiologically to lower the

  9. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property.

    Science.gov (United States)

    Firoz Babu, K; Dhandapani, P; Maruthamuthu, S; Anbu Kulandainathan, M

    2012-11-06

    Polymer-silver nanocomposites modified cotton fabrics were prepared by in situ chemical oxidative polymerization using pyrrole and silver nitrate. In a redox reaction between pyrrole and silver nitrate, silver ions oxidize the pyrrole monomer and get reduced. This reduced silver as nanoparticles deposited on/into the polypyrrole/cotton matrix layer and the interaction between silver and polypyrrole was by adsorption or electrostatic interaction. The structure and composite formation on cotton fiber was investigated using SEM, FT-IR, XPS and XRD. The results showed that a strong interaction existing between silver nanoparticles with polypyrrole/cotton matrix. FT-IR studies clearly indicated that the interaction between polypyrrole (-N-H) and cellulose (>C-OH) was by hydrogen bonding. It is observed that the conductivity of the composite coated fabrics has been increased by the incorporation of silver nanoparticles. In the synthesized composites, silver content plays an important role in the conductivity and antimicrobial activity rate of the fabrics against gram positive Staphylococcus aureus and gram negative Escherichia coli bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  11. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  12. Ion Chromatography-on-a-chip for Water Quality Analysis

    Science.gov (United States)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  13. Solvent extraction of silver(I) from dilute cyanide solutions with 2,4-dihydroxyacetophenone thiosemicarbazone

    International Nuclear Information System (INIS)

    Reddy, A.V.; Reddy, Y.K.; Reddy, G.S.

    1986-01-01

    The solvent extraction of silver(I) was carried out in 0.5M nitric acid in the presence of cyanide by 2,4-dihydroxyacetophenone thiosemicarbazone (DATS). Ethyl acetate was used as a solvent and quantitative recovery was possible with 12.5-fold excess of the reagent in a single extraction. In this medium silver(I) forms a 2:2 complex (metal:ligand) with DATS. The effect of diverse ions on the extraction of silver(I) was investigated. (author)

  14. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    Science.gov (United States)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  15. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  16. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    International Nuclear Information System (INIS)

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-01-01

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: → About 300 bacterial isolates were screened for their ability to produce nanosilvers → Five of them were potential candidates for synthesis of silver nanoparticles → Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. → The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive

  17. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection.

    Science.gov (United States)

    Lengert, Ekaterina; Saveleva, Mariia; Abalymov, Anatolii; Atkin, Vsevolod; Wuytens, Pieter C; Kamyshinsky, Roman; Vasiliev, Alexander L; Gorin, Dmitry A; Sukhorukov, Gleb B; Skirtach, Andre G; Parakhonskiy, Bogdan

    2017-07-05

    We have designed multifunctional silver alginate hydrogel microcontainers referred to as loaded microcapsules with different sizes by assembling them via a template assisted approach using natural, highly porous calcium carbonate cores. Sodium alginate was immobilized into the pores of calcium carbonate particles of different sizes followed by cross-linking via addition of silver ions, which had a dual purpose: on one hand, the were used as a cross-linking agent, albeit in the monovalent form, while on the other hand they have led to formation of silver nanoparticles. Monovalent silver ions, an unusual cross-linking agent, improve the sensitivity to ultrasound, lead to homogeneous distribution of silver nanoparticles. Silver nanoparticles appeared on the shell of the alginate microcapsules in the twin-structure as determined by transmission electron microscopy. Remote release of a payload from alginate containers by ultrasound was found to strongly depend on the particle size. The possibility to use such particles as a platform for label-free molecule detection based on the surface enhanced Raman scattering was demonstrated. Cytotoxicity and cell uptake studies conducted in this work have revealed that microcontainers exhibit nonessential level of toxicity with an efficient uptake of cells. The above-described functionalities constitute building blocks of a theranostic system, where detection and remote release can be achieved with the same carrier.

  19. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  20. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  1. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  2. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.

    Directory of Open Access Journals (Sweden)

    Fatima Abu Bakar

    2011-08-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM, X-ray diffraction (XRD and UV–Visible (UV-Vis spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0.

  3. Antibacterial activity of Nano-Silver capped by β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    R. Sathiya Priya

    2013-03-01

    Full Text Available Silver nanoparticles were prepared by chemical reduction method using sodium citrate as reducing agent, followed by capping with various concentrations of β-Cyclodextrin (β-CD and characterized by various physicchemical characterization techniques. Antibacterial activity of Pseudomonas aeruginosa (Gram-negative and Staphylococcus aureus (Gram-positive was determined by Well-Diffusion method. The nano-silver were spherical under Scanning electron microscopy (SEM and the XRD result shows average diameters of capped particles are smaller than their equivalent uncapped particles. Capped nano silver particles of four different concentrations were demonstrated as superior for photo stability, when exposed to intense ultraviolet (UV-Vis radiation for 4 hours, as well as significantly higher antibacterial activity. The influence of β-CD concentration (5 mM, 10 mM and 15 mM was seems to be delay in bacterial growth, showing that a Trojan horse mechanism may be owing to occur bacterial affinity, thereby improving silver ion absorption.

  4. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    Science.gov (United States)

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  5. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  6. Amperometric Sensor for Detection of Chloride Ions

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-09-01

    Full Text Available Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV we estimated the limit of detection (3 S/N as 500 nM.

  7. Direct Silver Micro Circuit Patterning on Transparent Polyethylene Terephthalate Film Using Laser-Induced Photothermochemical Synthesis

    Directory of Open Access Journals (Sweden)

    Chen-Jui Lan

    2017-02-01

    Full Text Available This study presents a new and improved approach to the rapid and green fabrication of highly conductive microscale silver structures on low-cost transparent polyethylene terephthalate (PET flexible substrate. In this new laser direct synthesis and pattering (LDSP process, silver microstructures are simultaneously synthesized and laid down in a predetermined pattern using a low power continuous wave (CW laser. The silver ion processing solution, which is transparent and reactive, contains a red azo dye as the absorbing material. The silver pattern is formed by photothermochemical reduction of the silver ions induced by the focused CW laser beam. In this improved LDSP process, the non-toxic additive in the transparent ionic solution absorbs energy from a low cost CW visible laser without the need for the introduction of any hazardous chemical process. Tests were carried out to determine the durability of the conductive patterns, and numerical analyses of the thermal and fluid transport were performed to investigate the morphology of the deposited patterns. This technology is an advanced method for preparing micro-scale circuitry on an inexpensive, flexible, and transparent polymer substrate that is fast, environmentally benign, and shows potential for Roll-to-Roll manufacture.

  8. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity

    International Nuclear Information System (INIS)

    Mane Gavade, S J; Nikam, G H; Dhabbe, R S; Sabale, S R; Tamhankar, B V; Mulik, G N

    2015-01-01

    In this study well defined silver nanoparticles were synthesized by using carambola fruit extract. After exposing the silver ions to the fruit extract, the rapid reduction of silver ions led to the formation of stable AgNPs in solution due to the reducing and stabilizing properties of carambola fruit juice. The synthesized NPs were analyzed by ultraviolet-visible spectroscopy and x-ray diffraction pattern. The as-synthesized AgNPs were phase pure and well crystalline with a face-centered cubic structure. The AgNPs were characterized by TEM to determine their size and morphology. The antimicrobial activity of the synthesized AgNPs was investigated against Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. This newly developed method is eco-friendly and could prove a better substitute for the current physical and chemical methods for the synthesis of AgNPs. (paper)

  9. Unexplored vegetal green synthesis of silver nanoparticles: A ...

    African Journals Online (AJOL)

    Antibacterial properties of silver ion are known from ancient times. The plant extract mediated synthesis of nanoparticles is gaining popularity due to green chemistry for the generation of nanosized materials. Corchorus olitorus Linn and Ipomea batatas (L.) Lam are world crops having leaves of high nutritional value.

  10. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  11. Ion-atom collisions for materials study

    International Nuclear Information System (INIS)

    Loaiza S, N.S.

    1976-01-01

    The diffusion process of silver in aluminium was studied in thin films as a function of temperature, the most important characteristics of dispersor atoms that technique permits us to study are the atomic mass and depth into the solid. This is possible because when a sample is bombarded with ions of a given energy, the ions are dispersed with different energies for different masses and depths, hence this technique is a useful instrument for research into the physical processes which ocurr in thin films up to depths of several microns, one of the results obtained after the bombardment of the target with protons having an energy of 650 KeV was that when the target reached a temperature of approximately 40 0 C, 80 0 C, 110 0 C and 160 0 C during 15 minutes and the spectra of heated and unheated targets were compared it was found that the aluminium peak, the valley, the silver peak and the peak over the silver peak change with the increase of temperature and tend to get mixed, that is to say that silver and the aluminium are diffusing themselves. The analysis is essentially qualitative with this technique we ca also measure the thickness of thin films, the silver thickness was measured (3320A). (author)

  12. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  13. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  14. Optical and structural studies of silver nanoparticles

    International Nuclear Information System (INIS)

    Temgire, M.K.; Joshi, S.S.

    2004-01-01

    Gamma radiolysis method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles by optimizing various conditions like metal ion concentration and polymer (PVA) of different molecular weights. The role of different scavengers was also studied. The decrease in particle size was observed with increase in the molecular weight of capping agent. γ-radiolytic method provides silver nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of electronic structure of the metal sol. Transmission Electron Microscopic (TEM) studies reveal the fcc geometry. The TEM show clearly split Debye-Scherrer rings. The d values calculated from the diffraction ring pattern are in perfect agreement with the ASTM data. Ag particles less than 10 nm are spherical in shape, whereas the particles above 30 nm have structure of pentagonal biprisms or decahedra, referred to as multiply twinned particles

  15. The potential use of complex derivatization procedures in comprehensive HPLC-MS/MS detection of anabolic steroids.

    Science.gov (United States)

    Baranov, Pavel A; Appolonova, Svetlana A; Rodchenkov, Grigory M

    2010-10-01

    The use of two separate derivatization procedures with the formation of oxime (hydroxyl ammonium pretreatment) and picolinoyl (mixed anhydride method) derivates of anabolic steroids following HPLC-MS/MS analysis was proposed. The main product ions of obtained derivatives for 21 anabolic steroids were evaluated and fragmentation pathways were compared.The analysis of MS/MS spectra for underivatized steroids versus oxime or picolinoyl derivatives showed that in case of analytes containing conjugated double bonds in sterane core all of the observed MS/MS spectra contained abundant product ions of diagnostic value. The implementation of derivatization procedures to such compounds is useful for upgrading sensitivity or selectivity of the evaluated method. On the other hand, MS/MS spectra of underivatized and oxime analytes without conjugated double bonds in sterane core produce spectra with large amounts of low abundant product ions. Picolinoyl derivatives formation leads to highly specific spectra with product ions of diagnostic value coupled with sensitive and selective analysis at the same time. The intra- and inter-group comparison analysis revealed that fragmentation pathways for underivatized steroids and correspondent oxime derivatives are similar.The obtained oxime and picolinoyl derivatives provided 10-15 times higher ESI response in the HPLC-ESI-MS-selected reaction monitoring (SRM) when compared to those of underivatized molecules in positive HPLC-ESI-MS mode.Due to the laborious sample preparation we suggest to use the performed strategy for confirmation analysis purposes, metabolic studies or while the identification of new steroids or steroid-like substances. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Studies on Bacterial Synthesis of Silver Nanoparticles Using Gamma Radiation and Their Activity against Some Pathogenic Microbes

    International Nuclear Information System (INIS)

    Hallol, M.M.A.M.A.

    2013-01-01

    Synthesis of nanoparticles as an emerging highlight of the intersection of nano technology and biotechnology has received increasing attention due to a growing need to develop environmentally-benign technologies in material synthesis. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratio, which is coming up as the current interest in research due to the growing microbial resistance against metal ions, antibiotics and the development of resistant strains (Fayaz et al., 2010). Silver has long been known to exhibit a strong toxicity to a wide range of 116 micro-organisms (Liau et al., 1997) for these reasons silver-based compounds have been used extensively in many bactericidal applications (Gupta et al., 1998 and Nomiya et al., 2004). Several salts of silver and their derivatives are commercially employed as antimicrobial agents. The bactericidal effect of silver ions on microorganisms is very well known; however, the bactericidal mechanism is only partially understood. It has been proposed that ionic silver strongly interacts with thiol groups of vital enzymes and inactivates them (Gupta et al., 1998). Experimental evidence suggests that DNA loses its replication ability once the bacteria have been treated with silver ions. Other studies have shown evidence of structural changes in the cell membrane as well as the formation of small electron-dense granules formed by silver and sulfur (Singh et al., 2008). Metal particles in the nanometer size range exhibit physical properties that are different from both the ion and the bulk material. This makes them exhibit remarkable properties such as increased catalytic activity due to morphologies with highly active facets (Singh et al., 2008). Microorganisms, such as bacteria and fungi, now play an important role in the remediation of toxic metals through the reduction of the metal ions (Kalishwaralal et al., 2008). Response surface

  17. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    Science.gov (United States)

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  18. Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Carlos, I.A.

    2009-01-01

    This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 x 10 -1 mol L -1 Zn(NO 3 ) 2 + 2.5 x 10 -2 mol L -1 AgNO 3 . This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (E d ), deposition charge density (q d ) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology

  19. Kinetic Adsorption Study of Silver Nanoparticles on Natural Zeolite: Experimental and Theoretical Models

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-12-01

    Full Text Available In this research, the adsorption capacity of Ag nanoparticles on natural zeolite from Oaxaca is presented. In order to describe the adsorption mechanism of silver nanoparticles on zeolite, experimental adsorption models for Ag ions and Ag nanoparticles were carried out. These experimental data obtained by the atomic absorption spectrophotometry technique were compared with theoretical models such as Lagergren first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Correlation factors R2 of the order of 0.99 were observed. Analysis by transmission electron microscopy describes the distribution of the silver nanoparticles on the zeolite outer surface. Additionally, a chemical characterization of the material was carried out through a dilution process with lithium metaborate. An average value of 9.3 in the Si/Al ratio was observed. Factors such as the adsorption behavior of the silver ions and the Si/Al ratio of the zeolite are very important to support the theoretical models and establish the adsorption mechanism of Ag nanoparticles on natural zeolite.

  20. Determination of vitamins D2 and D3 in selected food matrices by online high-performance liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS).

    Science.gov (United States)

    Nestola, Marco; Thellmann, Andrea

    2015-01-01

    An online normal-phase liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) method was developed for the determination of vitamins D2 and D3 in selected food matrices. Transfer of the sample from HPLC to GC was realized by large volume on-column injection; detection was performed with a time-of-flight mass spectrometer (TOF-MS). Typical GC problems in the determination of vitamin D such as sample degradation or sensitivity issues, previously reported in the literature, were not observed. Determination of total vitamin D content was done by quantitation of its pyro isomer based on an isotopically labelled internal standard (ISTD). Extracted ion traces of analyte and ISTD showed cross-contribution, but non-linearity of the calibration curve was not determined inside the chosen calibration range by selection of appropriate quantifier ions. Absolute limits of detection (LOD) and quantitation (LOQ) for vitamins D2 and D3 were calculated as approximately 50 and 150 pg, respectively. Repeatability with internal standard correction was below 2 %. Good agreement between quantitative results of an established high-performance liquid chromatography with UV detection (HPLC-UV) method and HPLC-GC-MS was found. Sterol-enriched margarine was subjected to HPLC-GC-MS and HPLC-MS/MS for comparison, because HPLC-UV showed strong matrix interferences. HPLC-GC-MS produced comparable results with less manual sample cleanup. In summary, online hyphenation of HPLC and GC allowed a minimization in manual sample preparation with an increase of sample throughput.

  1. The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates

    Science.gov (United States)

    Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.

    2018-05-01

    Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.

  2. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  3. Comparison of piracetam measured with HPLC-DAD, HPLC-ESI-MS, DIP-APCI-MS, and a newly developed and optimized DIP-ESI-MS.

    Science.gov (United States)

    Lenzen, Claudia; Winterfeld, Gottfried A; Schmitz, Oliver J

    2016-06-01

    The direct inlet probe-electrospray ionization (DIP-ESI) presented here was based on the direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) developed by our group. It was coupled to an ion trap mass spectrometer (MS) for the detection of more polar compounds such as degradation products from pharmaceuticals. First, the position of the ESI tip, the gas and solvent flow rates, as well as the gas temperature were optimized with the help of the statistic program Minitab® 17 and a caffeine standard. The ability to perform quantitative analyses was also tested by using different concentrations of caffeine and camphor. Calibration curves with a quadratic calibration regression of R (2) = 0.9997 and 0.9998 for caffeine and camphor, respectively, were obtained. The limit of detection of 2.5 and 1.7 ng per injection for caffeine and camphor were determined, respectively. Furthermore, a solution of piracetam was used to compare established analytical methods for this drug and its impurities such as HPLC-diode array detector (DAD) and HPLC-ESI-MS with the DIP-APCI and the developed DIP-ESI. With HPLC-DAD and 10 μg piracetam on column, no impurity could be detected. With HPLC-ESI-MS, two impurities (A and B) were identified with only 4.6 μg piracetam on column, while with DIP-ESI, an amount of 1.6 μg piracetam was sufficient. In the case of the DIP-ESI measurements, all detected impurities could be identified by MS/MS studies. Graphical Abstract Scheme of the DIP-ESI principle.

  4. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  5. Method for extracting copper, silver and related metals

    Science.gov (United States)

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  6. Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants.

    Science.gov (United States)

    Pintér, Enikõ; Patakfalvi, Rita; Fülei, Tamas; Gingl, Zoltan; Dékany, Imre; Visy, Csaba

    2005-09-22

    Conducting polypyrrole (PPy) powder synthesized by using FeCl3 x 6 H2O and/or Fe(NO3)3 oxidants was impregnated in silver salt solutions. The stability and decomposition of the material was followed by thermogravimetric measurements. The total silver content was determined by atom absorption spectroscopy (ICP-AAS). The heat and electric conductivities of the composites were measured and correlated with the silver content. The incorporated silver was speciated and measured by X-ray diffraction (XRD). The spectra proved that the chemical state of the silver incorporated into the composite depends on the anion used in the polymerization process. In the case of the polymerization in a nitrate ion containing solution, the impregnation leads exclusively to the formation of metallic silver. The size distribution of the AgCl and Ag nanoparticles, determined from transmission electron microscopy (TEM) pictures in the different composites, proves the formation of a rather uniform species below 10 and 7 nm, respectively. The observations can be correlated with the different interactions in the PPy-chloride/nitrate-silver systems. The redox type interaction based conclusions can be considered as a guide during the preparation of other metal-conducting polymer composites.

  7. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn-Joo [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ki-Tae [Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Jun. Y. [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yang, Song-Yi; Lee, Byeong-Gweon [Department of Oceanography, Chonnam National University, Gwangju 500-755 (Korea, Republic of); Kim, Sang D., E-mail: sdkim@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-02-01

    Highlights: • The bioconcentration and biodistribution of AgNPs were measured by the silver isotope {sup 110m}Ag. • BCF values were 39.8 ± 7.4, 42.5 ± 5.1 and 116.4 ± 6.1 L kg{sup −1} for AgNPs-CIT, AgNPs-PVP and AgNO{sub 3}, respectively. • The extent of silver ion release from AgNPs affected the uptake kinetic pattern. • AgNPs were mainly concentrated in the liver of Japanese medaka. - Abstract: The study of the bioconcentration of silver nanoparticles (AgNPs) is important to fully understand their hazard potential in the aquatic environment. We synthesized AgNPs radiolabeled with silver isotopes ({sup 110m}Ag) to quantify the bioconcentration of AgNPs coated with citrate (AgNPs-CIT) and polyvinylpyrrolidone (AgNPs-PVP) in Japanese medaka, and to investigate the biodistribution of silver in organs, which were compared with {sup 110m}AgNO{sub 3}. BCF values were determined to be 39.8 ± 7.4, 42.5 ± 5.1 and 116.4 ± 6.1 L kg{sup −1} for AgNPs-CIT, AgNPs-PVP and AgNO{sub 3}, respectively. The release of more silver ions in AgNPs-PVP contributed to a different kinetic uptake pattern with AgNPs-CIT, which was similar to that of AgNO{sub 3}. Bioconcentrated AgNPs in medaka were not observed to be eliminated, independent of surface coating differences, similarly to AgNO{sub 3}. There was no difference in biodistribution in each organ before and after depuration in two types of AgNPs and AgNO{sub 3}, all of which were mainly concentrated in the liver. This study quantified the bioconcentration and distribution of AgNPs and AgNO{sub 3} more precisely by utilizing a silver isotope, which is helpful in monitoring the toxicity of AgNPs to Japanese medaka.

  8. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    International Nuclear Information System (INIS)

    Garza-Navarro, Marco; Torres-Castro, Alejandro; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-01

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  9. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  10. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    Science.gov (United States)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  11. Studies on ternary silver sulfides; Fukugo gin ryukabutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    Some sulfides containing silver show high ion mobility based on movability of silver, whose application is expected. Studies have been carried out centrally on synthesis of new compounds of ternary silver sulfides by elucidating the relationship among their compositions, structures and properties by means of crystal chemical studies mainly on their phase relationship. A few new compounds have been synthesized, such as the ones having the argyrodite family compound structure including transition metals. The synthesizing process takes a kind of turbulent liquid state structure at elevated temperatures because of movability of silver, but silver is fixed at low temperatures in different sites between skeleton structures made by other atoms. These studies on phase transfer, structures, and silver movability have been based on X-ray diffraction, infrared and Raman spectroscopic measurements, NMR, measurements of electric and thermal characteristics. For the studies related to compositions and structures of ternary metal sulfides which take compound crystalline structure, a structure analyzing method based on multi-dimensional hyperspatial groups was used. This paper reports the summary of the studies in seven chapters, and dwells on the remaining problems and future prospects. 158 refs., 114 figs., 65 tabs.

  12. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  13. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  14. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    International Nuclear Information System (INIS)

    Mohapatra, Bandita; Kuriakose, Sini; Mohapatra, Satyabrata

    2015-01-01

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO 3 concentration. • Increase in AgNO 3 concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods

  15. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  16. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    Science.gov (United States)

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties

  17. Green Synthesis of Silver Nanoparticles from several NTFP Plants

    Directory of Open Access Journals (Sweden)

    Somnath BHOWMIK

    2016-03-01

    Full Text Available The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.

  18. Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

    Science.gov (United States)

    Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.

    2018-06-01

    Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.

  19. Uptake of free and complexed silver ions by different strains of Rhodotorula mucilaginosa Acúmulo de íons de prata livres e complexados por diferentes linhagens de Rhodotorula mucilaginosa

    Directory of Open Access Journals (Sweden)

    Newton C.M. Gomes

    2002-01-01

    Full Text Available Five strains of Rhodotorula mucilaginosa were tested for the ability to accumulate free and complexed silver ions by metabolism-dependent and -independent processes. The ability to take up Ag+ was observed in both live and dead biomass, whereas silver dicyanide [Ag (CN2-] uptake was strictly glucose dependent. In contrast to Ag (CN2-, glucose addition inhibited by 16 to 25% the Ag+ uptake rate of living UFMG - Y02, Y27, and Y35 cells, while strains CBS 316 and UFMG-Y01 showed an improved uptake rate of about 115% and 13%, respectively. The Langmuir sorption model was used to evaluate the silver sorption capability of the R. mucilaginosa strains. The calculated q max value suggested that R. mucilaginosa strains UFMG-Y27 had the highest loading capacity. The type strain CBS 316 had the lowest q max but showed the highest affinity for silver ions. The results provided by the Fourier Transform Infra Red analysis (FTIR suggest that C=O groups represent the main reactive site for silver uptake by the strain UFMG-Y27.Quatro linhagens de Rhodotorula mucilaginosa e uma linhagem padrão dessa mesma espécie foram investigadas quanto a habilidade de acumular íons de prata livres (Ag+ e complexados [Ag (CN2-], através de processos dependentes e independentes do metabolismo. A habilidade de acumular Ag+ foi observada em ambas as células, vivas e mortas. Contudo, o acúmulo de Ag (CN2- foi um processo estritamente dependente de energia. Durante os estudos que avaliaram a dependência de uma fonte energética para o acumulo de íons de prata livres (Ag+ foi observado que a adição de glicose resultou na diminuição do acúmulo de Ag+ por três linhagens (UFMG -- Y02, 27 and 35. Ao passo que as linhagens CBS 316 e UFMG -- Y01 apresentaram aumento do acúmulo desse metal. A analise dos resultados de biossorção através do modelo de Langmuir, sugerem que a linhagem UFMG -- Y27 possui a maior capacidade de acúmulo de prata (carga. Enquanto que a linhagem

  20. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts.

    Science.gov (United States)

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-06-28

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.

  1. Effect of non-stationary current regimes on the morphology of silver electrodeposits

    OpenAIRE

    Dimitrov, Aleksandar; Paunovic, Perica; Popovski, Orce

    2009-01-01

    Abstract: This work is concerned with the use of reverse current regimes in order to form small-grained and compact silver deposits during the electrorefining process. Several parameters were varied, i.e., i) anodic overpotential,ii) cathodic vs. anodic time ratio and iii) duration of the anodic pulse. After optimization of these parameters, phosphate ions were added and the electrolyte was stirred. The effects of a rise of the anodic overpotential on the grain sizes of the silver depos...

  2. RESEARCH REGARDING DIFFERENT APPLICATIONS OF SILVER IN TEXTILE

    Directory of Open Access Journals (Sweden)

    PRALEA Jeni

    2014-05-01

    Full Text Available Experimental research presented in this paper are based on septic properties of silver. The experiment creates premises for developing of project concepts, products and inscriptions (applications of graphic signs, ionization treatments with silver ions, which ensures the quality of the septic product in an ecological way (no preservatives and no toxic chemicals, characterized by a modern design. Thus developing concepts of textile products, the development of accessories needed for manufacturing textile products that ensure the property of being septic, development of eco-friendly products without thermochemical treatments, are applications that the designer can achieve based on the properties of silver. The paper presents both technological capabilities and properties of silver to be able to be used in the field of textiles, as well as the creativity of designers to generate ideas for new applications of this material in the field of industrial products in the textile, garments. The importance of the designer's involvement in creating septic and ecological products, which respects the environment represent the focus of this work. The deformability properties of silver are the inspiration for designer even when it shows major deformities, caused as a result of tests of endurance. Surface modifications of this material can cause identification of applications of this precious metal, turning in esthetic product, scrap, samples, test specimens subjected to various tests

  3. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  4. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    Science.gov (United States)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  5. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    Science.gov (United States)

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  6. Stability Studies of Certain Chemotherapeutic Agents Following Gamma Irradiation and Silver Nanoparticles Conjugation

    International Nuclear Information System (INIS)

    El-Sayyad, Gh.E.S.M.

    2014-01-01

    The Chemical stability of drug is of great importance since it becomes less effective as it undergoes degradation in case of applied of gamma irradiation process. The application of gamma irradiation for different chemotherapeutic agents Such as (ofloxacin, sodium ampicillin, sodium cefotaxime, gentamycin and amoxicillin) and studying the effect of applied doses on chemical structure and biological activity of the irradiated antibiotics compared to unirradiated ones was studied by ultraviolet-Visible spectrophotometer (UV-Visible), Fourier transform infrared spectroscopy measurements (FTIR spectra) and high performance liquid chromatography (HPLC) in addition to microbiological assay were run before and after irradiation to probe any change after irradiation. The results showed that all of the irradiated compounds remain stable and radio resistant; retaining their structure and activity unchanged up to 25 KGy. The radiation-induced AgNPs synthesis is a simple, clean which involves radiolysis of aqueous solution that provides an efficient method to reduce metal ions. Also, in this study, Bacillus megaterium was found to be an effective biological tool for the extracellular biosynthesis of stable AgNPs which are highly stable and this method has advantages over other methods as the organism used here is safe. This study would therefore lead to an easy procedure for producing silver nanoparticles with the added advantage of bio safety. The Synthesized AgNPs exhibit remarkable antimicrobial activity against both Gram-positive and Gram negative bacterial strains regardless of their drug-resistant mechanisms. The bactericidal activity have proved that AgNPs kill bacteria at such low concentrations (units of ppm), which Stability Studies of Certain Chemotherapeutic Agents Following Gamma Irradiation and Silver Nanoparticles Conjugation. do not reveal acute toxic effects on human cell, in addition to overcoming resistance, and lowering cost when compared to conventional

  7. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    Science.gov (United States)

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV–vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli. Keywords: Green synthesis, Nanoparticles, Antibacterial effect

  9. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana

    International Nuclear Information System (INIS)

    Yilmaz, M.; Turkdemir, H.; Kilic, M. Akif; Bayram, E.; Cicek, A.; Mete, A.; Ulug, B.

    2011-01-01

    Highlights: → Green synthesis of silver nanoparticles using leaves of Stevia Rebaudiana. → Spherical and polydispersed nanoparticles with diameters below 50 nm. → Interplay of nanoparticle formation and aggregation over time. → Capping reagents similar to those in gold synthesis via the same biomass. → Ketones to play active roles in the reduction of silver ions. - Abstract: The synthesis of silver nanoparticles employing a shadow-dried Stevia rebaudiana leaf extract in AgNO 3 solution is reported. Transmission electron microscopy and X-ray diffraction inspections indicate that nanoparticles are spherical and polydispersed with diameters ranging between 2 and 50 nm with a maximum at 15 nm. Ultraviolet-visible spectra recorded against the reaction time confirms the reduction of silver nanoparticles indicating that the formation and the aggregation of nanoparticles take place shortly after the mixing, as they persist concurrently with characteristic times of 48.5 min and 454.5 min, respectively. Aggregation is found to be the dominant mechanism after the first 73 min. Proton nuclear magnetic resonance spectrum of the silver nanoparticles reveals the existence of aliphatic, alcoholic and olefinic CH 2 and CH 3 groups, as well as some aromatic compounds but no sign of aldehydes or carboxylic acids. Infrared absorption of the silver nanoparticles suggests that the capping reagents of silver and gold nanoparticles reduced in plant extracts/broths are of the same chemical composition of different ratios. Ketones are shown to play a somehow active role for the formation of nanoparticles in plant extracts/broths.

  10. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, M. [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Bartin University, Bartin (Turkey); Turkdemir, H. [Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Goeruekle, Bursa (Turkey); Kilic, M. Akif [Department of Biology, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Bayram, E. [Department of Chemistry, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Cicek, A. [Department of Physics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, 15100 Burdur (Turkey); Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Mete, A. [Department of Chemistry, Faculty of Arts and Sciences, Inonu University, Malatya (Turkey); Ulug, B., E-mail: bulug@akdeniz.edu.tr [Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey)

    2011-11-01

    Highlights: {yields} Green synthesis of silver nanoparticles using leaves of Stevia Rebaudiana. {yields} Spherical and polydispersed nanoparticles with diameters below 50 nm. {yields} Interplay of nanoparticle formation and aggregation over time. {yields} Capping reagents similar to those in gold synthesis via the same biomass. {yields} Ketones to play active roles in the reduction of silver ions. - Abstract: The synthesis of silver nanoparticles employing a shadow-dried Stevia rebaudiana leaf extract in AgNO{sub 3} solution is reported. Transmission electron microscopy and X-ray diffraction inspections indicate that nanoparticles are spherical and polydispersed with diameters ranging between 2 and 50 nm with a maximum at 15 nm. Ultraviolet-visible spectra recorded against the reaction time confirms the reduction of silver nanoparticles indicating that the formation and the aggregation of nanoparticles take place shortly after the mixing, as they persist concurrently with characteristic times of 48.5 min and 454.5 min, respectively. Aggregation is found to be the dominant mechanism after the first 73 min. Proton nuclear magnetic resonance spectrum of the silver nanoparticles reveals the existence of aliphatic, alcoholic and olefinic CH{sub 2} and CH{sub 3} groups, as well as some aromatic compounds but no sign of aldehydes or carboxylic acids. Infrared absorption of the silver nanoparticles suggests that the capping reagents of silver and gold nanoparticles reduced in plant extracts/broths are of the same chemical composition of different ratios. Ketones are shown to play a somehow active role for the formation of nanoparticles in plant extracts/broths.

  11. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions

    Science.gov (United States)

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-01

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R = 0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method.

  12. Immobilization of metallothionein to carbon paste electrode surface via anti-MT antibodies and its use for biosensing of silver.

    Science.gov (United States)

    Trnkova, Libuse; Krizkova, Sona; Adam, Vojtech; Hubalek, Jaromir; Kizek, Rene

    2011-01-15

    In this paper, heavy metal biosensor based on immobilization of metallothionein (MT) to the surface of carbon paste electrode (CPE) via anti-MT-antibodies is reported. First, the evaluation of MT electroactivity was done. The attention was focused on the capturing of MT to the CPE surface. Antibodies incorporated and mixed into carbon paste were stable; even after two weeks the observed changes in signal height were lower than 5%. Further, the interaction of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by square-wave voltammetry. In the voltammogram, two signals--labelled as cys(MT) and W(a)--were observed. The cys(MT) corresponded to -SH moieties of MT and W(a) corresponded to tryptophan residues of chicken antibodies. Time of interaction (300 s) and MT concentration (125 μg/ml) were optimized to suggest a silver(I) ions biosensor. Biosensor (CPE modified with anti-MT antibody) prepared under the optimized conditions was then used for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions was estimated as 0.5 nM. The proposed biosensor was tested by detection spiking of silver(I) ions in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104%. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  14. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  15. Silver nanoparticles enhanced luminescence properties of Er³⁺ doped tellurite glasses: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fares, Hssen; Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Department of Physics, Sciences Faculty of Tunis, University Tunis ElManar 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2014-09-28

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimes were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I13/2 → ⁴I15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I13/2 → ⁴I15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.

  16. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    International Nuclear Information System (INIS)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-01-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  17. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  18. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Science.gov (United States)

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494

  19. Toxicity of silver nanoparticles in zebrafish models

    Energy Technology Data Exchange (ETDEWEB)

    Asharani, P V; Valiyaveettil, Suresh [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu Yilian; Gong Zhiyuan [Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 (Singapore)], E-mail: chmsv@nus.edu.sg

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag{sup +} ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  20. Toxicity of silver nanoparticles in zebrafish models

    International Nuclear Information System (INIS)

    Asharani, P V; Valiyaveettil, Suresh; Wu Yilian; Gong Zhiyuan

    2008-01-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag + ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development

  1. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    Science.gov (United States)

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    Science.gov (United States)

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  3. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available The superior antimicrobial properties of silver nanoparticles (Ag NPs are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES and extended X-ray absorption fine structure (EXAFS analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.

  4. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  5. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  6. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  7. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    Science.gov (United States)

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  8. Effect of non-stationary current regimes on the morphology of silver electrodeposits

    OpenAIRE

    ALEKSANDAR T. DIMITROV; PERICA PAUNOVIĆ; ORCE POPOVSKI; DRAGAN SLAVKOV; ŽELJKO KAMBEROVIĆ; SVETOMIR HADŽI JORDANOV

    2009-01-01

    This work is concerned with the use of reverse current regimes in order to form small-grained and compact silver deposits during the electro-refining process. Several parameters were varied, i.e., i) anodic overpotential, ii) cathodic vs. anodic time ratio and iii) duration of the anodic pulse. After optimization of these parameters, phosphate ions were added and the electrolyte was stirred. The effects of a rise of the anodic overpotential on the grain sizes of the silver deposit and compact...

  9. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    International Nuclear Information System (INIS)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-01-01

    In the current study, a facile green synthesis of silver-gelatin core–shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1–6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV–Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms (Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  10. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    Science.gov (United States)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-10-01

    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  11. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    Science.gov (United States)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  12. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    Science.gov (United States)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  13. Antimicrobial activity of latex silver nanoparticles using Calotropis procera

    Directory of Open Access Journals (Sweden)

    Nadia Hussein Mohamed

    2014-11-01

    Conclusions: It can be concluded that serum latex of Calotropis procera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions (Ag+ to Ag0. The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.

  14. Ion beam analysis and AMS dating of the silver coin hoard of Preuschdorf (Alsace, France)

    Science.gov (United States)

    Beck, Lucile; Alloin, Elise; Vigneron, Anaïs; Caffy, Ingrid; Klein, Ulrich

    2017-09-01

    The hoard of Preuschdorf is a monetary deposit discovered in Alsace (France) in 2005. This find was composed of 7327 silver-copper coins. They seem to have been struck over more than one century, between the end of the 15th and the beginning of the 17th century. This hoard is an exceptional find composed of a large quantity of coins from various periods, areas and contexts. It is also remarkable by the presence of counterfeit coins. IBA was used to analyze the silver content of the official coins by combining PIXE and RBS. The fineness was found to be between 20 and 42% according to the mint place and an unexpected subdivision of the values has been revealed. For the counterfeit coins, the analyses were able to bring to light different elaboration processes: amalgam silvering with two various contents of mercury and application of a thin layer of pure silver. Finally, linen fibers attached to the coins have been dated by AMS radiocarbon dating. The radiocarbon calibrated dates perfectly match with the chronological range given by the coins.

  15. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun; Choi, Jinhee

    2013-01-01

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO 3 in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO 3 did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO 3 . These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO 3 . • HIF-1 and PMK-1 were needed for AgNPs- and AgNO 3 -induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO 3 did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained

  16. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  17. In vitro human digestion test to monitor the dissolution of silver nanoparticles

    International Nuclear Information System (INIS)

    Bove, P; Sabella, S; Malvindi, M A

    2017-01-01

    Nanotechnology is a scientific revolution that the food industry has experienced over the last years. Widely employed as food additives and/or food contact materials in consumer products, silver nanoparticles are an example of this innovation. However, their increasing use makes also likely the human ingestion, thus requiring a proper risk analysis. In this framework, a comprehensive characterization of biotransformation of silver nanoparticles in biological fluids is fundamental for the regulatory needs. Herein, we aimed at studying the dissolution behaviour of silver nanoparticles using an in vitro test, which simulates the human oral ingestion of NPs during their passage through the gastrointestinal tract. The nanoparticle suspensions were characterized in the different digestion phases using several techniques to follow the changes of key physical properties ( e.g. , size, surface charge and plasmon peak) and to quantify the biotransformed products arisen by the process, as for example free silver ions. (paper)

  18. Silver atom solvation and desolvation in ice matrices: study of solvation shell geometry by electron spin resonance and electron spin echo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, L; Narayana, P A

    1978-01-01

    Results of studies of the solvation shell structure of silver atoms in ice matrix at 4/sup 0/K by electron spin resonance (ESR) and electron spin echo spectrometry are reported. Drastic change in the hyperfine coupling constant of the silver atom was noted when the silver atom initially produced at 4/sup 0/K was warmed to 77/sup 0/K and reexamined by ESR at 4/sup 0/K. This suggested a very drastic rearrangement of the water molecules surrounding the silver atom. The geometric arrangement of water molecules around the silver atom produced at 4/sup 0/K was what would be expected for a solvated silver ion, indicating that no rearrangement had occurred after the silver atom formed. The addition of a little thermal excitation (heating to 77/sup 0/K) results in the geometry changes than can be explained by assuming either that a water molecule rotates around one of its OH bands or by the development of a hydrogen bond between the silver atom and one of the first solvation shell water molecules. Optical excitation in the absorption band of the silver atom in the ice matrix at 400nm resulted in desolvation of the silver ion or a reversion to the structure originally obtained by reaction of solver salts in ic matrix with radiation produced electrons. This was best explained by a charge transfer mechanism. (BLM)

  19. Irradiation with visible light enhances the antibacterial toxicity of silver nanoparticles produced by laser ablation

    Science.gov (United States)

    Ratti, Matthew; Naddeo, J. J.; Tan, Yuying; Griepenburg, Julianne C.; Tomko, John; Trout, Cory; O'Malley, Sean M.; Bubb, Daniel M.; Klein, Eric A.

    2016-04-01

    The rise of antibiotic-resistant bacteria is a rapidly growing global health concern. According to the Center for Disease Control, approximately 2 million illnesses and 23,000 deaths per year occur in the USA due to antibiotic resistance. In recent years, there has been a surge in the use of metal nanoparticles as coatings for orthopedic implants, wound dressings, and food packaging, due to their antimicrobial properties. In this report, we demonstrate that the antibacterial efficacy of silver nanoparticles (AgNPs) is enhanced with exposure to light from the visible spectrum. We find that the increased toxicity is due to augmented silver ion release and bacterial uptake. Interestingly, silver ion toxicity does not appear to depend on the formation of reactive oxygen species. Our findings provide a novel paradigm for using light to regulate the toxicity of AgNPs which may have a significant impact in the development of new antimicrobial therapeutics.

  20. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor.

    Science.gov (United States)

    Pulit, Jolanta; Banach, Marcin; Szczygłowska, Renata; Bryk, Mirosław

    2013-01-01

    The work presents a method of obtaining an aqueous raspberry extract as well as its physicochemical and analytical characteristics. The paper also contains a description of the method of preparation of nanosilver suspensions based on this extract. The raspberry extract served as a source of phenolic compounds which acted as both reducing and stabilizing agents. Suspensions of silver nanoparticles were obtained with the use of chemical reduction method. The silver ions concentration, pH value and temperature of samples incubation were independent variables. The next step of the research was to measure the antifungal activity of the received silver nanoparticles as well as to perform a mycological efficacy resistance analysis of the tested preparations in relation to different concentrations of nanostructured silver. Tests were conducted in compliance with the Eucast guidelines. The results of microbiological study of (the samples') biocidal effect against Cladosporium cladosporoides and Aspergillus niger are described. It was found that using nanosilver suspension at the concentration of 50 ppm inhibited the growth of Cladosporium cladosporoides and Aspergillus niger by 90% and 70%, respectively.

  1. Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite

    Science.gov (United States)

    Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.

    2018-02-01

    The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.

  2. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  3. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    International Nuclear Information System (INIS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-01-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV–vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV–vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4–30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  4. Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties.

    Science.gov (United States)

    Coutiño-Gonzalez, Eduardo; Baekelant, Wouter; Steele, Julian A; Kim, Cheol Woong; Roeffaers, Maarten B J; Hofkens, Johan

    2017-09-19

    Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Ag n , n counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

  5. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    International Nuclear Information System (INIS)

    Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio

    2013-01-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials. (paper)

  6. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties.

    Science.gov (United States)

    Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I

    2016-05-04

    Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.

  7. Silver-compensated germanium center in α-quartz

    International Nuclear Information System (INIS)

    Laman, F.C.; Weil, J.A.

    1977-01-01

    A synthetic germanium-doped crystal of α-quartz was subjected to an electro-diffusion process (ca. 600 V/cm, 625 0 K), in which Ag + ions were introduced along the crystal's optic axis (c). A 9800 MHz electron paramagnetic resonance spectrum at room temperature, taken after room temperature X-irradiation, revealed the presence of a silver-compensated germanium center Asub(Ge-Ag) with large, almost isotropic 107 Ag and 109 Ag hyperfine splittings. Measurement of the spin-Hamiltonian discloses that a suitable model for the observed center utilizes germanium, substituted for silicon, with the accompanying silver interstitial in a nearby c-axis channel, and with electronic structure in which an appreciable admixture Ge 4+ - Ag 0 to Ge 3+ - Ag + exists. Estimates of the unpaired electron orbital are presented. (author)

  8. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    Full Text Available ABSTRACT Nanobiotechnology is one of the most promising areas in modern nanoscience and technology. Metallic nanoparticles have found uses in many applications in different fields, such as catalysis, photonics, electronics, medicine and agriculture. Synthesized nanoparticles through chemical and physical methods are expensive and have low biocompatibility. In the present study, silver nanoparticles have been synthesized from Megaphrynium macrostachyum (Benth. & Hook. f. Milne-Redh., Marantaceae, leaf extract. Megaphrynium macrostachyum is a plant with large leaves found in the rainforest of West and Central Africa. Synthetic optimizations following factors such as incubation time, temperature, pH, extract and silver ion concentration during silver formation are discussed. UV–visible spectra gave surface plasmon resonance for synthesized silver nanoparticles based Megaphrynium macrostachyum peaks at 400–450 nm. X-ray diffraction revealed the average size of pure crystallites composed from Ag and AgCl.

  9. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  10. Photoluminescence study of Sm{sup 3+}–Yb{sup 3+}co-doped tellurite glass embedding silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reza Dousti, M., E-mail: mrdousti@ifsc.usp.br [Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Fisica de São Carlos, Universidade de São Paulo, Av. Trabalhador So-carlense 400, São Carlos, SP 13566-590 (Brazil); Department of Physics, Tehran-North Branch, Islamic Azad University Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Amjad, R.J. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Hosseinian S, R.; Salehi, M.; Sahar, M.R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)

    2015-03-15

    We report on the upconversion emission of Sm{sup 3+} ions doped tellurite glass in the presence of Yb{sup 3+} ions and silver nanoparticles. The enhancement of infrared-to-visible upconversion emissions is achieved under 980 nm excitation wavelength and attributed to the high absorption cross section of Yb{sup 3+} ions and an efficient energy transfer to Sm{sup 3+} ions. Further enhancements are attributed to the plasmonic effect via metallic nanoparticles resulting in the large localized field around rare earth ions. However, under excitation at 406 nm, the addition of Yb{sup 3+} content and heat-treated silver nanoparticles quench the luminescence of Sm{sup 3+} ions likely due to quantum cutting and plasmonic diluent effects, respectively. - Highlights: • Sm{sup 3+} tellurite glasses co-doped with Yb{sup 3+} ions and tri-doped with Yb{sup 3+}:Ag NPs were prepared. • In first step, Yb{sup 3+} ions enhanced the upconversion emissions of Sm{sup 3+} doped samples. • In second step, Ag NPs further enhanced the upconversion emissions in tri-doped glasses. • Finally, the quench in luminescence under 406 nm excitation is observed and discussed.

  11. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    International Nuclear Information System (INIS)

    Elzey, Sherrie; Grassian, Vicki H.

    2010-01-01

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  13. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Elzey, Sherrie; Grassian, Vicki H., E-mail: vicki-grassian@uiowa.ed [University of Iowa, Department of Chemical and Biochemical Engineering (United States)

    2010-06-15

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 {+-} 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  14. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions.

    Science.gov (United States)

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-15

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R=0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  16. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  17. Copper-silver ionization at a US hospital: interaction of treated drinking water with plumbing materials, aesthetics and other considerations

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into...

  18. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.

    Science.gov (United States)

    Sachsenmaier, Saskia; Peschel, Andreas; Ipach, Ingmar; Kluba, Torsten

    2013-10-01

    V.A.C.(®) GranuFoam™ therapy is regularly used in the surgical therapy of infected wounds and soft tissue injuries. Silver nanoparticles can destroy bacterial cell walls and inhibit enzymes for cell replication. Silver dressings are therefore successfully used for many indications in wound therapy. In this study, we investigated the antimicrobial potency of ionic silver released from the silver-coated V.A.C.(®) GranuFoam™ during vacuum therapy. Silver dressing was exposed to agar plates populated with bacteria to measure silver release. A total of 15 agar plates colonised with either Staphylococcus aureus populations or with Staphylococcus epidermidis, were loaded with V.A.C. GranuFoam Silver(®) Dressing polyurethane foam (KCI, San Antonio, Texas). Each of 13 pieces of silver-coated foam was applied to an agar plate. Two plates were loaded with conventional black foam without any coating. After connecting to a vacuum pump, the vacuum therapy of the 15 plates lasted 5 days. The zone of inhibition of bacterial growth around the foam was measured daily. Silver release was also determined as a function of time. At each time point, there was evidence of silver in the agar independent of bacterial colonisation. The S. aureus agar showed a consecutive increase in silver concentration from baseline upon 48 h after exposure to the negative pressure of V.A.C. therapy. An increasing mean silver level after 48, 72 and 96 h was measured under V.A.C. therapy with a peak value after 120 h. In contrast, the results from the S. epidermidis plates did not follow a linear pattern. At the beginning of vacuum therapy, we documented a rise in silver concentration. After 48-96h, the silver levels fluctuated. A maximum zone of inhibition in both bacterial colonised plates (S. aureus and S. epidermidis) was found 39 h after the start of the V.A.C. GranuFoam Silver(®) therapy. From our results, we confirmed the antimicrobial effect of the silver ions against S. aureus and S

  19. Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates

    International Nuclear Information System (INIS)

    Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.

    1990-01-01

    The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)

  20. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.