WorldWideScience

Sample records for silk gland fibroin

  1. Preparation of Porous Scaffolds from Silk Fibroin Extracted from the Silk Gland of Bombyx mori (B. mori

    Directory of Open Access Journals (Sweden)

    Liangjun Zhu

    2012-06-01

    Full Text Available In order to use a simple and ecofriendly method to prepare porous silk scaffolds, aqueous silk fibroin solution (ASF was extracted from silk gland of 7-day-old fifth instar larvae of Bombyx mori (B. mori. SDS-page analysis indicated that the obtained fibroin had a molecular weight higher than 200 kDa. The fabrication of porous scaffolds from ASF was achieved by using the freeze-drying method. The pore of porous scaffolds is homogenous and tends to become smaller with an increase in the concentration of ASF. Conversely, the porosity is decreased. The porous scaffolds show impressive compressive strength which can be as high as 6.9 ± 0.4 MPa. Furthermore, ASF has high cell adhesion and growth activity. It also exhibits high ALP activity. This implies that porous scaffolds prepared from ASF have biocompatibility. Therefore, the porous scaffolds prepared in this study have potential application in tissue engineering due to the impressive compressive strength and biocompatibility.

  2. Silk Fibroin under Osmotic Stress

    Science.gov (United States)

    Sohn, Sungkyun; Strey, Helmut H.; Gido, Samuel P.

    2003-03-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. Controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules get pressurized to align together to form a water-soluble crystalline mesophase (Silk-I), and then gradually become anti-parallel b-sheet structure (Silk-II) at higher osmotic pressure. This behavior becomes more sensitive as the salt concentration decreases. A partial ternary phase diagram of Water-Silk fibroin-LiBr was constructed based on the results. This phase diagram can be utilized to help design a new route for wet spinning of re-generated silk fibroin. Precise control of compositions and corresponding crystalline structure of a silk fibroin solution may enable us to simulate the natural Bombyx mori silkworm spinning process.

  3. YAC-base transfer of fibroin gene from Anthemea yamamal to domestic silkworm Bombyx mod (I)——Identification of fibroin clones from a YAC library of Antheraeu yamamai constructed from its posterior silk gland

    Institute of Scientific and Technical Information of China (English)

    唐恒立; 柴建华; 李振刚

    1995-01-01

    Antheraea yamamai (Japanese oak silkworm) is a kind of silkworm of great economic value. and the process of the expression of its silkprotem genes is a perfect model for the study of molecular regulation during the development and differentiation. So studying its fibroin and allied genes is of both theoretic and practical magnitude A YAC library with an average size of 570kb is constructed from the posterior silk gland, using pYAC4 as a vector. The library was screened by means of polymerase chain reaction, and clones representing fibroin gene were isolated and characterized.

  4. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori.

    Science.gov (United States)

    Kimoto, Mai; Tsubota, Takuya; Uchino, Keiro; Sezutsu, Hideki; Takiya, Shigeharu

    2015-01-01

    In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.

  5. Phase behavior and hydration of silk fibroin.

    Science.gov (United States)

    Sohn, Sungkyun; Strey, Helmut H; Gido, Samuel P

    2004-01-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.

  6. Effects of silk fibroin in murine dry eye

    Science.gov (United States)

    Kim, Chae Eun; Lee, Ji Hyun; Yeon, Yeung Kyu; Park, Chan Hum; Yang, Jaewook

    2017-03-01

    The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30–40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.

  7. Control of the gelation process of silk fibroin solution

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2014-01-01

    Full Text Available In the present study, silk fibroin solution was controlled through a simple shearing to accomplish the steady and rapid gelation process and the conformational transition. Antheraea yamamai silk fibroin was formed into hydrogels quicker than Bombyx mori silk fibroin on the same condition. Comparing with Bombyx mori silk fibroin, the rapid gelation of Antheraea yamamai silk fibroin was concerned with its alternate polyalanine-containing units which are tended to form the α-helix structures spontaneously. The entropic cost during the conformational transition to β-sheet is less than that from random coil to β-sheet.

  8. Surface immobilization of antibody on silk fibroin through conformational transition.

    Science.gov (United States)

    Lu, Qiang; Wang, Xiaoqin; Zhu, Hesun; Kaplan, David L

    2011-07-01

    In recent studies silk fibroin has been explored as a new material platform for biosensors. Based on these developments, a procedure for the immobilization of antibodies on silk fibroin substrates was developed as a route to functionalizing these biosensor systems. By controlling the conformational transition of the silk fibroin, a primary antibody was immobilized and enriched at the surface of silk fibroin substrates under mild reaction conditions to maintain antibody function. Compared to chemical crosslinking, the immobilization efficiency in the present approach was increased significantly. This method, achieving high loading of antibody while retaining function, improves the feasibility of silk fibroin as a platform material for biosensor applications.

  9. Silver nanoparticle containing silk fibroin bionanotextiles

    Energy Technology Data Exchange (ETDEWEB)

    Calamak, Semih; Aksoy, Eda Ayse [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey); Erdogdu, Ceren; Sagıroglu, Meral [Hacettepe University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey)

    2015-02-15

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.

  10. Silver nanoparticle containing silk fibroin bionanotextiles

    Science.gov (United States)

    Calamak, Semih; Aksoy, Eda Ayse; Erdogdu, Ceren; Sagıroglu, Meral; Ulubayram, Kezban

    2015-02-01

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.

  11. The mechanical design of spider silks: from fibroin sequence to mechanical function.

    Science.gov (United States)

    Gosline, J M; Guerette, P A; Ortlepp, C S; Savage, K N

    1999-12-01

    Spiders produce a variety of silks, and the cloning of genes for silk fibroins reveals a clear link between protein sequence and structure-property relationships. The fibroins produced in the spider's major ampullate (MA) gland, which forms the dragline and web frame, contain multiple repeats of motifs that include an 8-10 residue long poly-alanine block and a 24-35 residue long glycine-rich block. When fibroins are spun into fibres, the poly-alanine blocks form (&bgr;)-sheet crystals that crosslink the fibroins into a polymer network with great stiffness, strength and toughness. As illustrated by a comparison of MA silks from Araneus diadematus and Nephila clavipes, variation in fibroin sequence and properties between spider species provides the opportunity to investigate the design of these remarkable biomaterials.

  12. The effect of sterilization on silk fibroin biomaterial properties.

    Science.gov (United States)

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding.

  13. Silk fibroin microtubes for blood vessel engineering.

    Science.gov (United States)

    Lovett, Michael; Cannizzaro, Christopher; Daheron, Laurence; Messmer, Brady; Vunjak-Novakovic, Gordana; Kaplan, David L

    2007-12-01

    Currently available synthetic grafts demonstrate moderate success at the macrovascular level, but fail at the microvascular scale (steel wire into aqueous silk fibroin, where the addition of poly(ethylene oxide) (PEO) enabled control of microtube porosity. The microtube properties were characterized in terms of pore size, burst strength, protein permeability, enzymatic degradation, and cell migration. Low porosity microtubes demonstrated superior mechanical properties in terms of higher burst pressures, but displayed poor protein permeability; whereas higher porosity tubes had lower burst strengths but increased permeability and enhanced protein transport. The microtubes also exhibited cellular barrier functions as low porosity tubes prevented outward migration of GFP-transduced HUVECs, while the high porosity microtubes allowed a few cells per tube to migrate outward during perfusion. When combined with the biocompatible and suturability features of silk fibroin, these results suggest that silk microtubes, either implanted directly or preseeded with cells, are an attractive biomaterial for microvascular grafts.

  14. Silk fibroin membrane used for guided bone tissue regeneration.

    Science.gov (United States)

    Cai, Yurong; Guo, Junmao; Chen, Cen; Yao, Chenxue; Chung, Sung-Min; Yao, Juming; Lee, In-Seop; Kong, Xiangdong

    2017-01-01

    With the aim to develop a novel membrane with an appropriate mechanical property and degradation rate for guided bone tissue regeneration, lyophilized and densified silk fibroin membrane was fabricated and its mechanical behavior as well as biodegradation property were investigated. The osteoconductive potency of the silk fibroin membranes were evaluated in a defect rabbit calvarial model. Silk fibroin membrane showed the modulated biodegradable and mechanical properties via ethanol treatment with different concentration. The membrane could prevent soft tissue invasion from normal tissue healing, and the amounts of new bone and defect closure with silk fibroin membrane were similar to those of commercially available collagen membrane.

  15. Ras1CA overexpression in the posterior silk gland improves silk yield

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

    2011-01-01

    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  16. Gelation behavior of Antheraea pernyi silk fibroin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the gelation time,and the structural changes of Ap-SF in sol-gel transformation were studied.The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature.The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions.The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+.Upon gelation,the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.

  17. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  18. Structural study of Bombyx mori silk fibroin during processing for regeneration

    Science.gov (United States)

    Ha, Sung-Won

    means the proceeding backbone direction is changed 180° by this sequence. This may facilitate the beta-sheet formation of the crystal forming building blocks, GAGAGS/GY˜GY sequences, in fibroin heavy chain. It may also facilitate the solubilization of the fibroin heavy chain within the silk gland.

  19. Silk Fibroin for Flexible Electronic Devices.

    Science.gov (United States)

    Zhu, Bowen; Wang, Hong; Leow, Wan Ru; Cai, Yurong; Loh, Xian Jun; Han, Ming-Yong; Chen, Xiaodong

    2016-06-01

    Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces.

  20. Nanofeatured silk fibroin membranes for dermal wound healing applications.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Ercan, Batur; Denkbaş, Emir B; Webster, Thomas J

    2015-01-01

    As an effort to create the next generation of improved skin graft materials, in this study, we modified the surfaces of a previously investigated material, silk fibroin, using a NaOH alkaline treatment to obtain a biologically inspired nanofeatured surface morphology. Such surfaces were characterized for roughness, energy, and chemistry. In addition, keratinocyte (skin-forming cells) adhesion and proliferation on such nanofeatured silk fibroin wound dressings were studied in an initial attempt to determine the promotion of an epidermal cover on the wound bed to form a new epidermal barrier. Dermal fibroblast adhesion and proliferation were also studied to assess the ability of nanostructured silk fibroin to replace damaged dermal tissue in chronic wounds (i.e., for diabetic foot ulcers). Results demonstrated for the first time that keratinocyte and fibroblast cell density was greater on nanofeatured silk fibroin membranes compared with non-treated silk fibroin surfaces. The enhancement in cellular functions was correlated with an increase in silk surface nanotopography, wettability and change in chemistry after NaOH treatment. Due to the present promising results, the newly developed nanofeatured silk fibroin membranes are exciting alternative skin graft materials which should be further studied for various skin patch and wound dressing applications.

  1. Calcium Phosphate Coating over Silk Fibroin Film by Biomimetic Methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the biomineralization behavior of silk fibroin and to valuate the biodegradation and biocompatibility of the hybrid biomaterial, the calcium phosphate deposits were identified with SEM, EDX,XRD and FTIR. The results reveal that supersaturated calcification solution is an effective method for the mineralization of fibroin film. Enzymatic degradation experiment demonstrates the biodegradability of the composites. Osteoblasts incubation shows an excellent cytocompatibility on the mineralized fibroin films.

  2. Silk Fibroin as Edible Coating for Perishable Food Preservation

    Science.gov (United States)

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  3. Study on Electrospinning Silk Fibroin Solution

    Institute of Scientific and Technical Information of China (English)

    LI Ni; QIN Xiao-hong; WANG Shan-yuan

    2007-01-01

    A new method of preparing silk fibroin (SF) solution used in the electerospinning was introduced in this paper. According to the method, SF was dissolved in the LiBr/CH2O2 solution directly at room temperature. The method was compared with the traditional method---SF was dissolved in CaCl2 ternary solution. The structure of SF films and the morphology of SF nanofibers were examined by attenuated total reflectance fourier transform intrared (ATR- FrlR) spectroscopy, Scanning electron microscope (SEM) and optical polarizing microscope. The result of this study shows that the new method is a faster, more convenient and high efficient way to get the SF solution and the characteristics of SF fibet made by the new method is much betty.

  4. Amorphous Silk Fibroin Membranes for Separation of CO2

    Science.gov (United States)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  5. High-Q silk fibroin whispering gallery microresonator

    Science.gov (United States)

    Xu, Linhua; Jiang, Xuefeng; Zhao, Guangming; Ma, Ding; Tao, Hu; Liu, Zhiwen; Omenetto, Fiorenzo G.; Yang, Lan

    2016-09-01

    We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are up to 10^5. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with sensitivity of 1.17 nm/K, 8 times higher than previous WGM resonator based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications.

  6. Nanorheology of regenerated silk fibroin solution

    Indian Academy of Sciences (India)

    A Raghu; Sharath Ananthamurthy

    2008-06-01

    We have investigated the rheological properties of regenerated silk fibroin (RSF), a viscoelastic material at micro and nano length scales, by video microscopy. We describe here the principles and technique of video microscopy as a tool in such investigations. In this work, polystyrene beads were dispersed in the matrix of RSF polymer and the positions of the embedded beads diffusing were tracked using video microscopy. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. The position information of the beads was used to obtain the time dependant mean squared displacement (MSD) of the beads in the medium and hence to calculate the dynamic moduli of the medium. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera at full resolution. The technique is complementary to other microrheological techniques to characterize the material, but additionally enables one to characterize local inhomogeneities in the medium, features that get averaged out in bulk characterization procedures.

  7. Hemocompatibility and cytocompatibility of the hirudin-modified silk fibroin.

    Science.gov (United States)

    Sun, Dan; Hao, Yunxia; Yang, Gaoqiang; Wang, Jiannan

    2015-04-01

    Hirudin (Hir), a thrombin direct inhibitor, was used to modify a polyethylene glycol diglycidyl ether (PEG-DE) crosslinked regenerated silk fibroin (SF) material to improve hemocompatibility. Hemolysis characteristics, platelet adhesion, platelet activity, and plasma recalcification time were investigated using absorption spectrometry, scanning electron microscopy, MTT analysis, and the time counting method. Hirudin could be grafted evenly to the silk fibroin, and the modified material was resistant to hemolysis at ratios of less than 0.5%. Scanning electron microscopy and MTT results showed that platelet adhesion and aggregation activity decreased after modificaton with trace amounts of hirudin, compared with PEG-DE crosslinked and ethanol-treated silk fibroin film. Plasma recalcification of PEG-DE crosslinked silk fibroin film was slower than with ethanol-treated material, and this increased slightly after hirudin modification. Furthermore, L929, HAVSMC, and HUVEC cells adhered to the modified material, grew well, and possessed high proliferation activity on SF/Hir blend films. This study suggests that hirudin could improve the anticoagulation properties of regenerated silk fibroin materials.

  8. Structure and Property of Silk Fibroin / Cellulose Blend Film

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-qiang; XING Tie-ling

    2004-01-01

    Silk fibroin/cellulose blend films were prepared using N-methylmorpholine -N-oxide (NMMO) as solvent. The effects of different proportions and solid contents on properties of blend films were discussed. The mechanical properties showed that the blend films had preferable moisture permeability and a high strength. The structures of the blend films were investigated by infrared spectrum and X-ray diffraction. The results indicated the occurrence of hydrogen bonds between hydroxyl groups of cellulose and amido groups of fibroin.

  9. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications.

    Science.gov (United States)

    Kundu, Joydip; Mohapatra, Riti; Kundu, S C

    2011-01-01

    The potential of silk protein is increased because of its importance as natural biopolymer for biotechnological and biomedical applications. The main disadvantage of silk fibroin films is their high brittleness. Thus, we studied blends of fibroin with other polymers to improve the film properties. Considering the possible applications of films in biomedical applications, we used a natural and biodegradable polymer as the second component. This study reports the fabrication and characterization of mulberry silk protein fibroin and sodium carboxymethylcellulose (NaCMC) blended films as potential substrates for in vitro cell culture. The blended films are investigated of their chemical interactions, morphologies, thermal, mechanical properties in addition to its swelling properties and biocompatibility. The addition of NaCMC improves the elasticity of fibroin films and its thermal properties. The change of morphology, swelling behavior and increase of surface roughness of the films were also observed in the blended films. The films become insoluble on alcohol treatment and are stable for longer duration in hydrolytic medium. The blended films are cytocompatible and supported adhesion and growth of mouse fibroblast cells. The results suggest that NaCMC blended silk fibroin films are found to be potential substratum for supporting cell adhesion and proliferation.

  10. Sonication-induced gelation of silk fibroin for cell encapsulation.

    Science.gov (United States)

    Wang, Xiaoqin; Kluge, Jonathan A; Leisk, Gary G; Kaplan, David L

    2008-03-01

    Purified native silk fibroin forms beta-sheet-rich, physically cross-linked, hydrogels from aqueous solution, in a process influenced by environmental parameters. Previously we reported gelation times of days to weeks for aqueous native silk protein solutions, with high ionic strength and temperature and low pH responsible for increasing gelation kinetics. Here we report a novel method to accelerate the process and control silk fibroin gelation through ultrasonication. Depending on the sonication parameters, including power output and time, along with silk fibroin concentration, gelation could be controlled from minutes to hours, allowing the post-sonication addition of cells prior to final gel setting. Mechanistically, ultrasonication initiated the formation of beta-sheets by alteration in hydrophobic hydration, thus accelerating the formation of physical cross-links responsible for gel stabilization. K(+) at physiological concentrations and low pH promoted gelation, which was not observed in the presence of Ca(2+). The hydrogels were assessed for mechanical properties and proteolytic degradation; reported values matched or exceeded other cell-encapsulating gel material systems. Human bone marrow derived mesenchymal stem cells (hMSCs) were successfully incorporated into these silk fibroin hydrogels after sonication, followed by rapid gelation and sustained cell function. Sonicated silk fibroin solutions at 4%, 8%, and 12% (w/v), followed by mixing in hMSCs, gelled within 0.5-2 h. The cells grew and proliferated in the 4% gels over 21 days, while survival was lower in the gels with higher protein content. Thus, sonication provides a useful new tool with which to initiate rapid sol-gel transitions, such as for cell encapsulation.

  11. Mechanisms of silk fibroin sol-gel transitions.

    Science.gov (United States)

    Matsumoto, Akira; Chen, Jingsong; Collette, Adam L; Kim, Ung-Jin; Altman, Gregory H; Cebe, Peggy; Kaplan, David L

    2006-11-01

    Silk fibroin sol-gel transitions were studied by monitoring the process under various physicochemical conditions with optical spectroscopy at 550 nm. The secondary structural change of the fibroin from a disordered state in solution to a beta-sheet-rich conformation in the gel state was assessed by FTIR and CD over a range of fibroin concentrations, temperatures, and pH values. The structural changes were correlated to the degree of gelation based on changes in optical density at 550 nm. No detectable changes in the protein secondary structure (FTIR, CD) were found up to about 15% gelation (at 550 nm), indicating that these early stages of gelation are not accompanied by the formation of beta-sheets. Above 15%, the fraction of beta-sheet linearly increased with the degree of gelation. A pH dependency of gelation time was found with correlation to the predominant acidic side chains in the silk. Electrostatic interactions were related to the rate of gelation above neutral pH. The overall independencies of processing parameters including concentration, temperature, and pH on gel formation and protein structure can be related to primary sequence-specific features in the molecular organization of the fibroin protein. These findings clarify aspects of the self-assembly of this unique family of proteins as a route to gain control of material properties, as well as for new insight into the design of synthetic silk-biomimetic polymers with predictable solution and assembly properties.

  12. Preparation and cytocompatibility of silk fibroin /chitosan scaffolds

    Institute of Scientific and Technical Information of China (English)

    Zhen-ding SHE; Wei-qiang LIU; Qing-ling FENG

    2009-01-01

    One challenge in soft tissue engineering is to find an applicable scaffold, not only having suitable mechanical properties, porous structures, and biodegradable properties, but also being abundant in active groups and having good biocompatibility. In this study, a threedimensional silk fibroin/chitosan (SFCS) scaffold was successfully prepared with interconnected porous structure, excellent hydrophilicity, and proper mechanical properties. Compared with polylactic glycolic acid (PLGA) scaffold, the SFCS scaffold further facilitated the growth of HepG2 cells (human hepatoma cell line). Keeping the good cytocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold should be a prominent candidate for soft tissue engineering, for example, liver.

  13. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  14. Preparation and characterization of silk fibroin/HPMC blend film

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College Hiriadka, Udupi - 576113 (India); Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India)

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  15. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori.

    Science.gov (United States)

    Xin, Hu-hu; Zhang, Deng-pan; Chen, Rui-ting; Cai, Zi-zheng; Lu, Yan; Liang, Shuang; Miao, Yun-gen

    2015-10-01

    Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland.

  16. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2012-06-01

    Full Text Available Abstract Background Degummed silk fibroin from Bombyx mori (silkworm has potential carrier capabilities for drug delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the differential effects on the silk protein properties, including crystalline structure and activity. Methods In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated fibroins and degummed silk fibroin. Results Gel electrophoresis analysis revealed that Ca(NO32-methanol, Ca(NO32-ethanol, or CaCl2-methanol treatments produced more lower molecular weights of silk fibroin than CaCl2-ethanol. X-ray diffraction and Fourier-transform infrared spectroscopy showed that CaCl2-ethanol produced a crystalline structure with more silk I (α-form, type II β-turn, while the other treatments produced more silk II (β-form, anti-parallel β-pleated sheet. Solid-State 13C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested that regenerated fibroins from CaCl2-ethanol were nearly identical to degummed silk fibroin, while the other treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that silk fibroins from CaCl2-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase, than the fibroins from other treatments. Conclusions Collectively, these results suggest that the CaCl2-ethanol processing method produces silk fibroin with biomaterial properties that are appropriate for drug delivery.

  17. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  18. Silk fibroin and sodium alginate blend: Miscibility and physical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Agostini de Moraes, Mariana; Silva, Mariana Ferreira; Weska, Raquel Farias; Beppu, Marisa Masumi, E-mail: beppu@feq.unicamp.br

    2014-07-01

    Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing. - Highlights: • Blend films of fibroin and alginate were prepared with microscopic phase separation; • Self-assembled globular microdomains were mainly composed by fibroin; • It was possible to obtain a film with better mechanical and physical properties; • Blend films of fibroin and alginate represent a novel material in biomaterials field.

  19. 金属离子导致的丝素蛋白的构象转变%The Effect of Metal Ions on the Conformation Transition of Silk Fibroin

    Institute of Scientific and Technical Information of China (English)

    李贵阳; 孙尧俊; 等

    2001-01-01

    How the silkworm spins out such an excellent silk fiber has been a hot topic. The issue here is to know how the coil chains in the gland of silkworm transform to β-sheet in silk fiber. We used the regenerated silk fibroin to imitate the silk fibroin of the gland to investigate the effect of metal ion(Ca2+. Cu2+) on the silk spinning process of Bombyx mori silkworm. The solutions or gel obtained from hte mixture of regenerated silk fibroin and metal ions were dried for mimicking the gradual loss of water in the spinning process. The 13C NMR spectrum simulation for Cβ nucleus of alanine quantitatively demonstrated that the conformation of the regenerated silk fibroin is dominantly of silk Ⅰ, whereas the fibroin with metal ions has more silk Ⅱ conformation. Raman spectroscopies show the consistent results with that of NMR. The binding of metal ion with carbonyl and amide in protein backbone allows the protein chain to array regularly, therefore leading to the β-sheet formation.

  20. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model.

    Science.gov (United States)

    Ju, Hyung Woo; Lee, Ok Joo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Park, Ye Ri; Lee, Min Chae; Kim, Soo Hyeon; Chao, Janet Ren; Ki, Chang Seok; Park, Chan Hum

    2016-04-01

    Silk fibroin has recently become an important biomaterial for tissue engineering application. In this study, silk fibroin nanomatrix was fabricated by electrospinning and evaluated as wound dressing material in a burn rat model. The wound size reduction, histological examination, and the quantification of transforming growth factor TGF-β1 and interleukin IL-1α, 6, and 10 were measured to evaluate the healing effects. The silk fibroin nanomatrix treatment exhibited effective performance in decreasing the wound size and epithelialization. Histological finding also revealed that the deposition of collagen in the dermis was organized by covering the wound area in the silk fibroin nanomatrix treated group. The expression level of pro-inflammatory cytokine (IL-1α) was significantly reduced in the injured skin following the silk fibroin nanomatrix treatment compared to the medical gauze (control) at 7 days after burn. Also, the expression level of TGF-β1 in the wound treated with silk fibroin nanomatrix peaked 21-days post-treatment whereas expression level of TGF-β1 was highest at day 7 in the gauze treated group. In conclusion, this data demonstrates that silk fibroin nanomatrix enhances the burn wound healing, suggesting it is a good candidate for burn wound treatment.

  1. Silk fibroin/pullulan blend films: Preparation and characterization

    Science.gov (United States)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Sarojini, B. K.; Somashekhar, R.; Asha, S.; Sangappa, Y.

    2016-05-01

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  2. Enhanced Elastic Modulus of Regenerated Silk Fibroin by Geometric Confinement in Anodized Aluminum Oxide Templates

    Science.gov (United States)

    Li, Jiankang; Li, Liang

    2017-02-01

    Geometric confinement is a promising method for the reconstruction of silk fibroin to form diversified structures with excellent mechanical properties. To accomplish geometric confinement, a water vapor assistant embossing process is used with porous anodic aluminum oxide templates, yielding silk fibroin nanopillars with diameters ranging from 40 nm to 130 nm. The elastic modulus of the regenerated silk fibroin nanopillars is investigated with atomic force microscopy nanoindentation analysis. Compared to films with the same treatment conditions, geometric confinement provided a twofold increase in elastic modulus in embossed silk fibroin nanopillars, indicating that β-sheet crystal ordering occurred during the water vapor assistant embossing process. These results demonstrate the feasibility and mechanical property enhancement of the embossing method to fabricate silk nanostructures, and will be useful in designing miniaturized devices.

  3. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenghua [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Department of Application Engineering, ZheJiang Vocational College of Economic and Trade, HangZhou, ZheJiang 310018 (China); Imada, Takuzo [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Asakura, Tetsuo, E-mail: asakura@cc.tuat.ac.jp [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-10-15

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 {mu}m which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pK{sub a} value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both {sup 13}C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with {beta}-sheet structure.

  4. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  5. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems.

    Science.gov (United States)

    Werner, Vera; Meinel, Lorenz

    2015-11-01

    The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin (SF) to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load.

  6. Silk Fibroin-Sophorolipid Gelation: Deciphering the Underlying Mechanism.

    Science.gov (United States)

    Dubey, Parul; Kumar, Sugam; Aswal, Vinod K; Ravindranathan, Sapna; Rajamohanan, Pattuparambil R; Prabhune, Asmita; Nisal, Anuya

    2016-10-10

    Silk fibroin (SF) protein, produced by silkworm Bombyx mori, is a promising biomaterial, while sophorolipid (SL) is an amphiphilic functional biosurfactant synthesized by nonpathogenic yeast Candida bombicola. SL is a mixture of two forms, acidic (ASL) and lactonic (LSL), which when added to SF results in accelerated gelation of silk fibroin. LSL is known to have multiple biological functionalities and hence hydrogels of these green molecules have promising applications in the biomedical sector. In this work, SANS, NMR, and rheology are employed to examine the assembling properties of individual and mixed SLs and their interactions with SF to understand the mechanism that leads to rapid gelation. SANS and NMR studies show that ASL assembles to form charged micelles, while LSL forms micellar assemblies and aggregates of a mass fractal nature. ASL and LSL together form larger mixed micelles, all of which interact differently with SF. It is shown that preferential binding of LSL to SF causes rapid unfolding of the SF chain leading to the formation of intermolecular beta sheets, which trigger fast gelation. Based on the observations, a mechanism for gelation of SF in the presence of different sophorolipids is proposed.

  7. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  8. Cu(II)effect on the conformation of regenerated silk fibroin in dilute aqueous solution

    Institute of Scientific and Technical Information of China (English)

    ZONG Xiaohong; ZHOU Ping; SHAO Zhengzhong; WANG Honghai; CHUNYU Lijuan

    2005-01-01

    Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. In this work, we studied the effect of Cu(II) ions on the secondary structure of Bombyx mori regenerated silk fibroin (SF) in dilute solution by circular dichroism (CD). The results indicate that a given amount of Cu(II) induces the SF conformational transition from random coil to β-sheet, however, further addition of Cu(II) is unfavorable for this conversion. Meanwhile, the conformational changes induced by Cu(II) follow a nucleation-dependent aggregation mechanism, which is similar to that found in Prion protein (PrP) denaturation and Aβ-pep- tide aggregations, leading to the neurodegenerative disease. This work would help one understand further the natural spinning process of silkworm. Additionally, it would be significant for the study of the nervous system diseases, because silk fibroin, extracted in large amounts from Bombyx mori silkworm gland, could be a proper model to study PrP denaturation and Aβ-peptide aggregations.

  9. Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wenxing(陈文兴); WU; Wen(吴雯); CHEN; Haixiang(陈海相); SHEN; Zhiquan(沈之荃)

    2003-01-01

    Noble metal nanocolloids are prepared from their precursors by in situ reduction of a silk fibroin solution at room temperature without any reducing agent. The mechanism, the effects of pH and the molar ratio of the reactants on the reduction reaction are studied by UV-Vis spectroscopy. The structure of the colloids is characterized by FT-IR, TEM and AFM. According to the TEM images, the gold-silk fibroin colloid is a nanostructured bioconjugate with novel core-shell, while the silver-silk fibroin colloid tends to be congregated as clusters having more than ten nanoparticles of silver-silk fibroin. The gold colloid is highly dispersed and stable while the silver colloid is less dispersed and stable than the gold colloid.

  10. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    Science.gov (United States)

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force.

  11. The chemical structure and the crystalline structures of Bombyx mori silk fibroin.

    Science.gov (United States)

    Lotz, B; Colonna Cesari, F

    1979-01-01

    Some recent data (i.e. published in the last ten years) on the chemical and crystalline structures of B. mori silk are reviewed. The main emphasis is put on the crystallizable portion of silk fibroin, including its chemical constitution and its molecular conformation (at the crystallographic unit-cell level) in the two crystalline modifications : the beta pleated sheet and the silk I structures. The structural aspects are based on a discussion of X-ray and electron diffraction data, and on conformational energy analyses of a model (Ala-Gly)n polypeptide of silk fibroin.

  12. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.

    Science.gov (United States)

    Wang, Ping; Qi, Chenglong; Yu, Yuanyuan; Yuan, Jiugang; Cui, Li; Tang, Gengtie; Wang, Qiang; Fan, Xuerong

    2015-09-01

    Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned.

  13. The Relationship between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds

    Directory of Open Access Journals (Sweden)

    Yongpei Hu

    2012-01-01

    Full Text Available Silk fibroin has a unique and useful combination of properties, including good biocompatibility and excellent mechanical performance. These features provided early clues to the utility of regenerated silk fibroin as a scaffold/matrix for tissue engineering. The silk fibroin scaffolds used for tissue engineering should degrade at a rate that matches the tissue growth rate. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds was investigated in this study. Scaffolds with different secondary structure were prepared by controlling the freezing temperature and by treatment with carbodiimide or ethanol. The quantitative proportions of each secondary structure were obtained by Fourier transform infrared spectroscopy (FTIR, and each sample was then degraded in vitro with collagenase IA for 18 days. The results show that a high content of β-sheet structure leads to a low degradation rate. The random coil region in the silk fibroin material is degraded, whereas the crystal region remains stable and the amount of β-sheet structure increases during incubation. The results demonstrate that it is possible to control the degradation rate of a silk fibroin scaffold by controlling the content of β-sheet structure.

  14. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    Science.gov (United States)

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering.

  15. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration.

  16. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  17. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori.

    Science.gov (United States)

    Zhao, Xiao-Ming; Liu, Chun; Jiang, Li-Jun; Li, Qiong-Yan; Zhou, Meng-Ting; Cheng, Ting-Cai; Mita, Kazuei; Xia, Qing-You

    2015-01-09

    The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.

  18. Silk Fibroin-Based Nanoparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Zheng Zhao

    2015-03-01

    Full Text Available Silk fibroin (SF is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs, protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed.

  19. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  20. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    She Zhending; Feng Qingling [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu Weiqiang, E-mail: biomater@mail.tsinghua.edu.c [Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2009-08-15

    Silk fibroin is an attractive natural fibrous protein for biomedical application due to its good biocompatibility and high tensile strength. Silk fibroin is apt to form a sheet-like structure during the freeze-drying process, which is not suitable for the scaffold of tissue engineering. In our former study, the adding of chitosan promoted the self-assembly of silk fibroin/chitosan (SFCS) into a three-dimensional (3D) homogeneous porous structure. In this study, a model of the self-assembly is proposed; furthermore, hepatocytes attachment and inflammatory response for the SFCS scaffold were examined. The rigid chain of chitosan may be used as a template for beta-sheet formation of silk fibroin, and this may break the sheet structure of the silk fibroin scaffold and promote the formation of a 3D porous structure of the SFCS scaffold. Compared with the polylactic glycolic acid scaffold, the SFCS scaffold further facilitates the attachment of hepatocytes. To investigate the inflammatory response, SFCS scaffolds were implanted into the greater omentum of rats. From the results of implantation, we could demonstrate in vivo that the implantation of SFCS scaffolds resulted in only slight inflammation. Keeping the good histocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold could be a prominent candidate for soft tissue engineering, for example, in the liver.

  1. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane.

    Science.gov (United States)

    Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun

    2017-04-01

    Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in

  2. High-Q silk fibroin whispering gallery microresonator on a flexible chip

    CERN Document Server

    Xu, Linhua; Zhao, Guangming; Liu, Zhiwen; Yang, Lan

    2016-01-01

    We have experimentally demonstrated on-chip all silk fibroin whispering gallery mode microresonator by using the molding and solution casting technique. The quality factors of the fabricated silk protein microresonators are up to 0.9*10^5. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with the sensitivity of 1.17 nm/K, 8 times higher than previous WGM resonantor based thermal sensors. This opens the way to fabricate the biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications in vivo.

  3. Innovative multifunctional silk fibroin and hydrotalcite nanocomposites: a synergic effect of the components.

    Science.gov (United States)

    Posati, Tamara; Benfenati, Valentina; Sagnella, Anna; Pistone, Assunta; Nocchetti, Morena; Donnadio, Anna; Ruani, Giampiero; Zamboni, Roberto; Muccini, Michele

    2014-01-13

    Novel hybrid functional materials are formed by combining hydrotalcite-like compounds and silk fibroin (SF-HTlc) via an environmental friendly aqueous process. The nanocomposites can be prepared with different weight ratio of the constituting components and preserve the conformational properties of the silk protein and the lamellar structure of hydrotalcites. Optical microscopy, scanning electron microscopy, and atomic force microscopy analyses show a good dispersion degree of the inorganic nanoparticles into the organic silk matrix. A mutual benefit on the stability of both organic and inorganic components was observed in the nanocomposites. SF-HTlc displayed limited dissolution of hydrotalcite in acidic medium, enhanced mechanical properties, and higher protease resistance of silk protein. The transparency, flexibility, and acidic environment resistance of silk fibroin combined to the protective and reinforcing properties of hydrotalcites generate a hybrid material, which is very attractive for applications in recently reported silk based opto-electronic and photonics technologies.

  4. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin.

    Science.gov (United States)

    Wu, Xilong; Hou, Jing; Li, Mingzhong; Wang, Jiangnan; Kaplan, David L; Lu, Shenzhou

    2012-07-01

    The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of β-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering.

  5. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H, E-mail: dosgohj@nus.edu.s, E-mail: dostkh@nus.edu.s, E-mail: bietohsl@nus.edu.s [Division of Bioengineering, National University of Singapore (Singapore)

    2010-06-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 {sup 0}C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 {sup 0}C.

  6. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  7. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    Science.gov (United States)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration.

  8. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings.

    Science.gov (United States)

    Zhou, Yingshan; Yang, Hongjun; Liu, Xin; Mao, Jun; Gu, Shaojin; Xu, Weilin

    2013-02-01

    Composite nanofibrous membranes of water-soluble N-carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles were successfully fabricated by electrospinning. The composite nanofibers were subjected to detailed analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). SEM results investigated that the morphology and diameter of the nanofibers were affected by silk fibroin nanoparticles content. XRD and DSC demonstrated that there was intermolecular hydrogen bonding among the molecules of carboxyethyl chitosan, silk fibroin and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The indirect cytotoxicity assessments of the nanofibers were studied. The result showed the nanofibers had good biocompatibility. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.

  9. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  10. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    Science.gov (United States)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  11. Fabrication of silk fibroin nanoparticles for controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zheng; Chen Aizheng; Li Yi, E-mail: tcliyi@polyu.edu.hk; Hu Junyan; Liu Xuan; Li Jiashen; Zhang Yu; Li Gang; Zheng Zijian [Hong Kong Polytechnic University, Institute of Textiles and Clothing (Hong Kong)

    2012-03-15

    A novel solution-enhanced dispersion by supercritical CO{sub 2} (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to {beta}-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC-SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC-SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

  12. Fabrication of silk fibroin nanoparticles for controlled drug delivery

    Science.gov (United States)

    Zhao, Zheng; Chen, Aizheng; Li, Yi; Hu, Junyan; Liu, Xuan; Li, Jiashen; Zhang, Yu; Li, Gang; Zheng, Zijian

    2012-03-01

    A novel solution-enhanced dispersion by supercritical CO2 (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to β-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC-SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23% . In vitro IDMC release from the IDMC-SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

  13. Improvements of anticoagulant activities of silk fibroin films with fucoidan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fucoidan (FC),an effective anticoagulant constituent extracted from brown algae,was introduced into silk fibroin (SF) for improving its blood compatibility.The SF and SF/FC blend films were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM) and dynamic contact angle determinator (CA).The in vitro anticoagulant activities of the films were evaluated by activated partial thromboplastin time (APTT),thrombin time (TT) and prothrombin time (PT) measurements.The endothelial cell attachment and proliferation viability on the film were assessed by micropipette aspiration technique and MTT assay,respectively.The testing results indicated that the introduction of FC increased the roughness,hydrophilicity and sulfate component of the film surface without impeding the formation of β-sheet conformation in SF.More important,FC brought excellent anticoagulant activity and better endothelial cell affinity to SF.The SF/FC blend film was hopeful to be used as blood-contacting biomaterials.

  14. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  15. Sonication induced silk fibroin cryogels for tissue engineering applications

    Science.gov (United States)

    Kadakia, P. U.; Jain, E.; Hixon, K. R.; Eberlin, C. T.; Sell, S. A.

    2016-05-01

    In this study, we report a method to form macroporous silk fibroin (SF) scaffolds through a combination of ultrasonication followed by cryogelation at subzero temperatures. The resultant sonication induced SF cryogels encompassed larger pore sizes (151 ± 56 μm) and higher mechanical stability (127.15 ± 24.71 kPa) than their hydrogel counterparts made at room temperature. Furthermore, the addition of dopants like Manuka honey and bone char in SF cryogels did not affect cryogel synthesis but decreased the pore size in a concentration dependent manner. With no crack propagation at 50% strain and promising stability under cyclic loads, mineralization and cellular infiltration potential were analyzed for bone tissue engineering purposes. Although the scaffolds showed limited mineralization, encouraging cellular infiltration results yield promise for other tissue engineering applications. The use of mild processing conditions, a simplistic procedure, and the lack of organic solvents or chemical cross-linkers renders the combination of sonication and cryogelation as an attractive fabrication technique for 3D SF macroporous scaffolds.

  16. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Ding, Bin; Chen, Li; Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering.

  17. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Eun S. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Frankowski, David J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hudson, Samuel M. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Spontak, Richard J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States) and Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)]. E-mail: Rich_Spontak@ncsu.edu

    2007-04-15

    Protein membranes have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to induce SF crystallization. Amorphous blends of these polymers appear quasi-homogeneous, as discerned from visual observation, electron microscopy and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random-coil to {beta}-sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, as discerned from FTIR spectroscopy and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been measured as functions of blend and solvent composition. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels or generate SF membranes for biomaterial, pharmaceutical and gas-separation purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally-responsive G/SF bioconjugates.

  18. A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects

    OpenAIRE

    Lu, Shijun; Wang, Peng; Zhang, Feng; Zhou, Xichao; Zuo, Baoqi; You, Xinran; Gao, Yang; Liu, Hongchen; Tang, Hailiang

    2015-01-01

    A novel membrane for guided bone regeneration (GBR), constituting silk fibroin (SF) nanofiber from native silk nanofibril solution, was prepared by electrospinning process. Another barrier membrane, a collagen-type membrane (Bio-Gide®), was used as a comparative sample. Twelve healthy male Sprague-Dawley rats were used in this study. Bilateral round defects were created in the calvarial bone. The bone regenerative efficacy was evaluated in rat calvarial defects. Animals were killed at 4 and 1...

  19. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  20. Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane

    Directory of Open Access Journals (Sweden)

    Yongzhen Tao

    2016-03-01

    Full Text Available Waterborne polyurethane (WPU is a versatile and environment-friendly material with growing applications in both industry and academia. Silk fibroin (SF is an attractive material known for its structural, biological and hemocompatible properties. The SF reinforced waterborne polyurethane (WPU is a promising scaffold material for tissue engineering applications. In this work, we report synthesis and characterization of a novel nanocomposite using SF reinforced WPU. The rheological behaviors of WPU and WPU-SF dispersions with different solid contents were investigated with steady shear and dynamic oscillatory tests to evaluate the formation of the cross-linked gel structure. The average particle size and the zeta potential of WPU-SF dispersions with different SF content were examined at 25 °C to investigate the interaction between SF and WPU. FTIR, SEM, TEM and tensile testing were performed to study the effects of SF content on the structural morphology and mechanical properties of the resultant composite films. Experimental results revealed formation of gel network in the WPU dispersions at solid contents more than 17 wt %. The conjugate reaction between the WPU and SF as well as the hydrogen bond between them helped in dispersing the SF powder into the WPU matrix as small aggregates. Addition of SF to the WPU also improved the Young’s modulus from 0.30 to 3.91 MPa, tensile strength from 0.56 to 8.94 MPa, and elongation at break from 1067% to 2480%, as SF was increased up to 5 wt %. Thus, significant strengthening and toughening can be achieved by introducing SF powder into the WPU formulations.

  1. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

    OpenAIRE

    2010-01-01

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (S...

  2. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuqing, E-mail: yqzhang@public1.sz.js.cn; Shen Weide; Xiang Ruli [Soochow University, Silk Biotechnol. Lab., School of Life Science (China); Zhuge Lanjian; Gao Weijian; Wang Wenbao [Soochow University, Analytical Center (China)

    2007-10-15

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl{sub 2}, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the {epsilon}-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and {alpha}-helix form (Silk I) into anti-parallel {beta}-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, {sup 13}C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with {beta}-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular

  3. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  4. Silk Gland Gene Expression during Larval-Pupal Transition in the Cotton Leaf Roller Sylepta derogata (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong

    2015-01-01

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture.

  5. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.

    Science.gov (United States)

    Chaw, Ro Crystal; Correa-Garhwal, Sandra M; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2015-10-02

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.

  6. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.

    Science.gov (United States)

    Correa-Garhwal, Sandra M; Garb, Jessica E

    2014-12-08

    Spider silks have outstanding mechanical properties. Most research has focused on dragline silk proteins (major ampullate spidroins, MaSps) from orb-weaving spiders. Using silk gland expression libraries from the haplogyne spider Scytodes thoracica, we discovered two novel spidroins (S. thoracica fibroin 1 and 2). The amino acid composition of S. thoracica silk glands and dragline fibers suggest that fibroin 1 is the major component of S. thoracica dragline silk. Fibroin 1 is dominated by glycine-alanine motifs, and lacks sequence motifs associated with orb-weaver MaSps. We hypothesize fibroin 2 is a piriform or aciniform silk protein, based on amino acid composition, spigot morphology, and phylogenetic analyses. S. thoracica's dragline silk is less tough than previously reported, but is still comparable to other dragline silks. Our analyses suggest that dragline silk proteins evolved multiple times. This demonstrates that spider dragline silk is more diverse than previously understood, providing alternative high performance silk designs.

  7. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  8. Influence of Layer-by-Layer Polyelectrolyte Deposition and EDC/NHS Activated Heparin Immobilization onto Silk Fibroin Fabric

    OpenAIRE

    M. Fazley Elahi; Guoping Guan; Lu Wang; Martin W. King

    2014-01-01

    To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl...

  9. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); He, Jianxin, E-mail: hejianxin771117@163.com [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450007 (China); Ding, Bin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li, E-mail: chenli@tjpu.edu.cn [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China)

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. - Highlights: • A designing scaffold strategy to imitate the mineralized collagen bundles in natural bone was presented. • Aligned nanostructured composite fibers were fabricated by coaxial electrospinning using green water solvent. • Mechanical properties of aligned TSF nanofiber had been significantly improved by embedding with composite nanoparticles. • Composite scaffolds effectively supported proliferation of MG-63 cells and promoted biomineralization.

  10. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Regenerated Bombyx mori silk fibers were spun from hexafluoro-iso- propanol solution of silk fibroin sponge in methanol used as a coagulant solvent and then elongated in water. The stress-strain curves of the regenerated fibers changed dramatically depending on the draw ratio and the structure was studied by 13C CP/MAS NMR and X-ray diffraction methods. The patterns of 13C CP/MAS NMR spectra of two regenerated fibers with different draw ratios (1× and 3× and native silk fiber are all β-sheet structure although the fraction of random coil/distorted β-turn decreases in the order of 1×, 3× and native fiber gradually. On the other hand, azimuthal scans of their X-ray fiber patterns changed remarkably with increasing the draw ratio. This indicates that long-range orientation of the fibroin chain changes remarkably during the drawing process, but the short-range local structure does not change significantly. Regenerated silk fiber with a draw ratio of 3× is a fiber with high strength which is comparable with that of natural silk fiber. The regenerated fiber is also more degradable than natural silk fiber in enzyme solution in vitro.

  11. Effect of Pore Size on the Biodegradation Rate of Silk Fibroin Scaffolds

    Directory of Open Access Journals (Sweden)

    Zuwei Luo

    2015-01-01

    Full Text Available Controlling the degradation rate of silk fibroin-based biomaterial is an important capability for the fabrication of silk-based tissue engineering scaffolds. In this study, scaffolds with different pore sizes were prepared by controlling the freezing temperature and the silk fibroin concentration. In vitro degradation results showed that the internal pore walls of the scaffolds with a larger pore size collapsed upon exposure to collagenase IA for times ranging from 6 to 12 days, and the silk scaffolds exhibited a faster rate of weight loss. The morphological and structural features of the silk scaffolds with a smaller pore size maintained structural integrity after incubation in the protease solution for 18 days, and the rate of weight loss was relatively slow. Scaffolds with a smaller pore size or a higher pore density degraded more slowly than scaffolds with a larger pore size or lower pore density. These results demonstrate that the pore size of silk biomaterials is crucial in controlling the degradation rate of tissue engineering scaffolds.

  12. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons.

    Science.gov (United States)

    Zhang, Qiang; Zhao, Yahong; Yan, Shuqin; Yang, Yumin; Zhao, Huijing; Li, Mingzhong; Lu, Shenzhou; Kaplan, David L

    2012-07-01

    Physical guidance cues have been exploited to stimulate neuron adhesion and neurite outgrowth. In the present study, three-dimensional (3-D) silk fibroin scaffolds with uniaxial multichannels (42-142 μm in diameter) were prepared by a directional temperature field freezing technique, followed by lyophilization. By varying the initial silk fibroin concentration, the chemical potential and quantity of free water around cylindrical ice crystals could be controlled to control the cross-section morphology of the scaffold channels. Aligned ridges also formed on the inner surface of the multichannels in parallel to the direction of the channels. In vitro, primary hippocampal neurons were seeded in these 3-D silk fibroin scaffolds with uniaxial multichannels of ∼120 μm in diameter. The morphology of the neurons was multipolar and alignment along the scaffold channels was observed. Cell-cell networks and cell-matrix interactions established by newly formed axons were observed after 7 days in culture. These neurons expressed β-III-tubulin, nerve filament and microtubule-associated protein, while glial fibrillary acidic protein immunofluorescence was barely above background. The ridges on the inner surface of the channels played a critical role in the adhesion and extension of neurons by providing continuous contact guidance. These new 3-D silk scaffolds with uniaxial multichannels provided a favorable microenvironment for the development of hippocampal neurons by guiding axonal elongation and cell migration.

  13. The Properties of Native Silk Fibroin (SF) Solution/Gel from Bombyx mori Silkworms during the Full Fifth Instar Larval Stage

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; MAO Ningtao; HU Xuechao; SHAO Huili; JIN Xiangyu

    2011-01-01

    The properties of native silk fibroin (SF) solution in the gland of silkworms during the full fifth instar larval stage were examined in an attempt to elucidate the mechanism of natural silk spinning in the silkworm. The flow and gelation behavior, birefiingence phenomenon, rheological properties, specific viscosity and conformation of SF solutions from the gland of silkworms were measured by polarized light microscope, HAKKE rheometer, Ubbelohde viscometer and Solid-state 13C NMR, respectively. After comparing their properties with regenerated SF solutions from natural silk fibers, it is believed that there exists a progressive maturation process favorable to spin silk fibers with excellent properties from native SF solution and a weak bonded and highly oriented SF gel network with SF molecules partly extended in α-helix conformation is formed in the middle section of the gland of silkworms. This suggests that a biomimetic maturation process for making spinnable solution might be necessary for artificial silk fiber spinning in order to obtain improved fiber properties.

  14. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sangkert, Supaporn [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Meesane, Jirut, E-mail: jirutmeesane999@yahoo.co.uk [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Kamonmattayakul, Suttatip [Faculty of Dentistry, Department of Preventive Dentistry, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Chai, Wen Lin [Faculty of Dentistry, Department of General Dental Practice and Oral and Maxillofacial Imaging, University of Malaya, Kuala Lumpur (Malaysia)

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  15. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    George, Karina A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Shadforth, Audra M.A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Chirila, Traian V., E-mail: traian.chirila@qei.org.au [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Laurent, Matthieu J. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Ecole Superieure d' Ingenieurs de Luminy (ESIL), Universite de la Mediterranee Aix-Marseille II, Luminy case 925 13288, Marseille, Cedex 09 (France); Stephenson, Sally-Anne [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Edwards, Grant A. [Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Madden, Peter W. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); and others

    2013-03-01

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method. - Highlights: Black-Right-Pointing-Pointer The effects of four methods of sterilization on the properties of silk fibroin films were investigated. Black-Right-Pointing-Pointer Steam treatment leads to stiffer films but to lower transparency and variable surface topography. Black-Right-Pointing-Pointer Degradation of fibroin is enhanced in the films that were gamma-irradiated. Black-Right-Pointing-Pointer The effects on mechanical properties are explained through changes in both primary and secondary structure of fibroin. Black-Right-Pointing-Pointer Gamma-irradiation and immersion in aqueous ethanol are suggested as preferred methods of sterilization.

  16. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Directory of Open Access Journals (Sweden)

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  17. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Sarojini, B. K. [Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Somashekar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore - 570006 (India)

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  18. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    Science.gov (United States)

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.

  19. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    Science.gov (United States)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Byrappa, K.; Sangappa, Y.

    2016-05-01

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  20. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    Energy Technology Data Exchange (ETDEWEB)

    Suesat, Jantip; Rujiravanit, Ratana [Chulalongkorn University, The Petroleum and Petrochemical College, Bangkok (Thailand); Jamieson, Alexander M. [Case Western Reserve Univ., Department of Macromolecular Science, Cleveland (United States); Tokura, Seiichi [Kansai Univ., Faculty of Engineering, Osaka (Japan)

    2001-03-01

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl{sub 2}, AlCl{sub 3}, and FeCl{sub 3}. The films immersed in AlCl{sub 3} and FeCl{sub 3} aqueous solutions gave the maximum degree of swelling. The effects of AlCl{sub 3} and FeCl{sub 3} concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10{sup -2} M of AlCl{sub 3} and FeCl{sub 3} aqueous solutions. (author)

  1. Electrospinning of silk fibroin from all aqueous solution at low concentration.

    Science.gov (United States)

    Kishimoto, Yuki; Morikawa, Hideaki; Yamanaka, Shigeru; Tamada, Yasushi

    2017-04-01

    Non-woven mats of Bombyx mori silk fibroin were fabricated using electrospinning with an all aqueous solution at electrospinning at low concentrations of 5wt%. Evaluation of structural and mechanical properties of the non-woven mat fabricated with water solvent revealed that it is safe for use in the human body. It is anticipated for wider use in medical materials such as cellular scaffolds for tissue engineering.

  2. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhengbing; Wen, Jianchuan [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Yao, Jinrong, E-mail: yaoyaojr@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Chen, Xin [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Ni, Yusu [Otology and Skull Base Surgery Department, Eye and ENT Hospital of Fudan University, Shanghai 200031 (China); Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2013-08-01

    In the present work, we report a new facile method to fabricate porous three-dimensional regenerated silk fibroin (RSF) scaffolds through n-butanol- and freezing-induced conformation transition and phase separation. The effects of RSF concentration, freezing temperature and n-butanol addition on the microstructure, the secondary structures of silk fibroin and apparent mechanical properties of the RSF scaffolds were investigated by SEM, {sup 13}C CP-MAS NMR spectra and mechanical testing, respectively. By adjusting the RSF concentration and n-butanol addition, the pore size of the scaffold could be controlled in the range from of 10 μm to 350 μm with 84%–98% of porosity. The tensile strength of the wet scaffold reached the maximum of 755.2 ± 33.6 kPa when the concentration of RSF solution was increased to 15% w/w. Moreover, post-treatment with ethanol further induced conformation transition of RSF from random coil or helix to β-sheet. The porous scaffolds prepared by this facile and energy-saving method with good biocompatibility will have great potential for application in tissue engineering. Highlights: • A new facile and energy-saving method to fabricate porous silk fibroin scaffolds; • Freeze-drying step (a typical high energy consuming process) is unnecessary; • Morphology and mechanical properties of scaffolds were easily controlled; • Ethanol post-treatment can be used to tune the degradation behavior.

  3. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

    Directory of Open Access Journals (Sweden)

    Hong-sheng Wang

    2010-09-01

    Full Text Available Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS and silk fibroin (SF were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative and Staphylococcus aureus (Gram positive were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF composite nanofibrous membranes could be a promising candidate for wound healing applications.

  4. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications.

    Science.gov (United States)

    Cai, Zeng-Xiao; Mo, Xiu-Mei; Zhang, Kui-Hua; Fan, Lin-Peng; Yin, An-Lin; He, Chuang-Long; Wang, Hong-Sheng

    2010-09-21

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.

  5. Coimmobilization of Naringinases on Silk Fibroin Nanoparticles and Its Application in Food Packaging

    Directory of Open Access Journals (Sweden)

    Min-Hui Wu

    2013-01-01

    Full Text Available Bombyx mori silk fibroin is a macromolecular biopolymer with remarkable biocompatibility. It was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs, which were conjugated covalently with naringinase using glutaraldehyde as the cross-linking reagent. The SFN naringinases are easily recovered by centrifugation and can be used repeatedly. Naringinase is a bienzyme consisting of α-L-rhamnosidase and flavonoid-β-glucosidase. The enzyme activity and its kinetics were similar to those of the native form, and the optimum reactive temperature for both is 55°C. In our study, centrifugation allowed the separation of enzyme and substrate; after eight cycles the SFN naringinases retained >70% residual activity. The highly efficient processing technology and the use of SFN as a novel vector for a bienzyme have great potential for research and the development of food processing such as the debittering of naringin-containing juices.

  6. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration.

  7. Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics.

    Science.gov (United States)

    Tabatabai, A Pasha; Kaplan, David L; Blair, Daniel L

    2015-01-28

    In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly versatile and can be produced using electrolysis with small DC electric fields. We characterize the linear and nonlinear rheological behavior of e-gels to provide fundamental insights into these distinct protein-based materials. We observe that e-gels form robust biopolymer networks that exhibit distinctive strain hardening and are recoverable from strains as large as γ=27, i.e. 2700%. We propose a simple microscopic model that is consistent with local restructuring of single proteins within the e-gel network.

  8. Tubuliform silk protein: A protein with unique molecular characteristics and mechanical properties in the spider silk fibroin family

    Science.gov (United States)

    Tian, M.; Lewis, R. V.

    2006-02-01

    Orb-web weavers can produce up to six different types of silk and a glue for various functions. Tubuliform silk is unique among them due to its distinct amino acid composition, specific time of production, and atypical mechanical properties. To study the protein composing this silk, tubuliform gland cDNA libraries were constructed from three orb-weaving spiders Argiope aurantia, Araneus gemmoides, and Nephila clavipes. Amino acid composition comparison between the predicted tubuliform silk protein sequence (TuSp1) and the corresponding gland protein confirms that TuSp1 is the major component in tubuliform gland in three spiders. Sequence analysis suggests that TuSp1 shares no significant similarity with its paralogues, while it has conserved sequence motifs with the most primitive spider, Euagrus chisoseus silk protein. The presence of large side-chain amino acids in TuSp1 sequence is consistent with the frustrated β-sheet crystalline structure of tubuliform silk observed in transmission electron microscopy. Repeat unit comparison within species as well as among three spiders exhibits high sequence conservation. Parsimony analysis based on carboxy terminal sequence shows that Argiope and Araneus are more closely related than either is to Nephila which is consistent with phylogenetic analysis based on morphological evidence.

  9. Investigation of rat submandibular gland cells and antheraea pernyi silk fibroin films co-culture in vitro%大鼠下颌下腺细胞与柞蚕丝素蛋白膜体外复合培养的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘焱; 谭学新; 李波; 易新; 刘丽萍

    2012-01-01

    PURPOSE: In this study, the morphology, attachment, growth and secretion of ral submandibular gland cells (RSMGs) cultured on the antheraea pernyi silk fibroin (ApSF) films were observed in vitro. METHODS: RSMGs were seeded on ApSF scaffolds and bombyx mori silk fibroin (BmSF) scaffolds respectively. RSMGs which were seeded on tissue culture plastic were treated as a negative control group. With the method of immunocytochemistry (CKS and amylase), the phenotype of cells were identified. The co-cultivation of RSMGs and two kinds of scaffolds were observed by using SEM and fluorescence microscopy. The adherence rate of cells attaching to each experimental material was estimated. MTT assay was performed to determine the proliferation of RSMGs cultured on different scaffolds. The secretion function of cultured cells was evaluated by assay of amylase activity. All the data was analyzed by SPSS13.0 software package. RESULTS: The immunohistoehemical staining showed that the cultured epithelial cells of RSMGs were positive for the specific antibody of CK8,and the acinar cells were positive for the specific antibody of amylase. SEM showed that the cultured cells with microvillus anchored well to ApSF films and extended pseudopods to the scaffolds. Fluorescence microscopy showed that with the extension of incubation time, the amount of cells thai attached to scaffolds increased. The attachment of RSMGs on ApSF films was almost the same as that on BmSF films after 1 h culture (P>0.05). The adherence rate of RSMGs on ApSF fdms was higher than thai on BmSF films (post-seeding 4,8,12 h, P0.05). Proliferation of RSMGs cultured on ApSF films for 3 to 5 days was remarkable and that of RSMGs cultured on ApSF films for 7 days reached peak. The proliferation rate of RSMGs cultured on ApSF scaffolds was higher than that on BmSF scaffolds (post-seeding 3,5,7 d, P< 0.05), ApSF group and BmSF group were higher than the negative control group (P<0.05). Amylase content of RSMGs cultured on

  10. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications.

    Science.gov (United States)

    Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar

    2017-02-27

    Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required.

  11. Conformational Transformation Exhibited by the Peptide Extracted from Crystalline Region of Bombyx mori Silk Fibroin in Solid and Solution States

    Institute of Scientific and Technical Information of China (English)

    YAO Ju-Ming; ZHANG Guo-Qing; LEI Cai-Hong

    2006-01-01

    The conformational transformation of a 30-residue peptide H(Ala-Gly-Ser-Gly-Ala-Gly)5OH, i.e., (AGSGAG)5,extracted from highly crystalline region of Bombyx mori (B. mori) silk fibroin was described by using the high resolution solid state 13C NMR, and CD spectroscopies. Based on the conformation-dependent 13C NMR chemical shifts of the Ala, Gly and Ser residues and the line-shape analysis of the conformation sensitive Ala Cβ resonance,the peptide revealed a strong preference for silk Ⅱ structural form, i.e., an antiparallel β-sheet structure (φ=-140±20° and ψ= 135±20°) in solid state. On the contrary, the CD spectra of this peptide in the two non-native hexafluorinated fibre spinning solvents, hexafluoroisopropanol (HFIP) and hexafluoroacetone (HFA), exhibited the existence of an unusual tightly-folded conformation resembling 310-helix (φ=-60±20° and ψ=- 30 ± 20°), as judged from the R ratio of [θ]222/[θ]203 in HFIP solution, whereas a dynamically averaged unordered structure in HFA. Taken together, the information inclined to hypothesis that the primary structure of the highly crystalline regions of B. mori silk fibroin may be easily accessible to the large conformational changes, which in turn may be critical for facilitating the structural transformation from unprocessed silk fibroin (silk Ⅰ form) to processed silk fiber (silk Ⅱ form).

  12. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  13. Synthesis of Silver Nanoparticles Using Bombyxmori Silk Fibroin and Their Antibacterial Activity

    Science.gov (United States)

    Shivananda, C. S.; Lakshmeesha Rao, B.; Pasha, Azmath; Sangappa, Y.

    2016-09-01

    Present work describes the synthesis of colloidal silver nanoparticles using Bombyx mori silk fibroin under white light environment at room temperature. The bio reduction of silver ions showed the unique surface plasmon resonance (SPR) band at 420 nm which was confirmed by UV-visible spectroscopy. Transmission electron microscopy (TEM) showed the synthesized AgNPs are spherical in shape with the average particle size of 35-40 nm. X-ray diffraction (XRD) pattren evidenced the crystalline nature of the AgNPs with FCC structure. The biosynthesized AgNPs showed effective antibacterial activity against bacterial stains Bacillus subtilis, and Salmonella typhi.

  14. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India)

    2015-06-24

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  15. Density of capillaries and the oxygen diffusion model in the porous silk fibroin film

    Institute of Scientific and Technical Information of China (English)

    BAI Lun; XU Jianmei; SUN Qilong; DI Chuanxia; ZUO Baoqi; GUAN Guoping; WU Zhenyu

    2007-01-01

    In order to obtain porous silk fibroin films(PSFFs)fit for the repair of different tissues and organs and design the configuration of the PSFFs more rationally,a model of the oxygen diffusing system of the capillary was built,and also the equations of the model were solved.Moreover,the relationships between the distribution of the oxygen concentration and each affecting factors were discussed,a method was developed to estimate the density of the capillaries in the tissue,and hereby discussed the characteristics of the oxygen diffusion in the tissues around the open capillaries.

  16. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.

    Science.gov (United States)

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-09-07

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples' characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  17. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    Directory of Open Access Journals (Sweden)

    Trang Vu

    2016-09-01

    Full Text Available This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt % for the first group (ultrasonication, and 10 wt % for the second group (natural gel. Differential scanning calorimetry (DSC and temperature modulated DSC (TMDSC were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications

  18. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    Science.gov (United States)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  19. Mechanical Properties of Robust Ultrathin Silk Fibroin Films

    Science.gov (United States)

    2007-01-01

    were fabricated from silk aque - ous solution by SA-LbL assembly. Unlike for tradi- tional polyelectrolyte LbL multilayers, where there are strong charge...Appl. Polym. Sci. 1997 , 63, 401. [26] X. Wang, Y.-G. Kim, C. Drew, B.-C. Ku, J. Kumar, L. A. Samuelson, Nano Lett. 2004, 4, 331. [27] D. M. Lynn...Sperling), Wiley-VCH, Weinheim, Germany 1997 . [42] Polymer Handbook, 4th ed. (Eds: J. Brandrup, E. H. Immergut, E. A. Grulke), John Wiley & Sons, Inc

  20. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.

    Science.gov (United States)

    Singh, B N; Panda, N N; Mund, R; Pramanik, K

    2016-10-20

    Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (≤100nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and type1 collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application.

  1. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Li H

    2016-09-01

    Full Text Available Hui Li,1,* Jian Tian,1,2,* Anqing Wu,2 Jiamin Wang,1 Cuicui Ge,2 Ziling Sun1–3 1School of Biological and Basic Medical Science, 2School of Radiological & Interdisciplinary Sciences, Soochow University, 3Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Self-assembled nanoparticles of the natural polymer, silk fibroin (SF, are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin–eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. Keywords: silk fibroin nanoparticles, 5-flurouracil, curcumin, reactive oxygen species

  2. Novel eatable silk fibroin gels containing salbutamol sulphate for dysphagic and geriatric patients

    Directory of Open Access Journals (Sweden)

    Dixit Anil Satyanarayana

    2012-01-01

    Full Text Available The purpose of this research work is to prepare novel eatable gel formulations with suitable rheological characteristics, which provide a means of administering salbutamol sulphate to dysphagic and geriatric patients. Gels prepared using a natural polymer silk fibroin of different concentrations was subjected for in vitro characterization. The effect of concentration of the solution on gelation time, viscosity, and drug release was studied. FTIR and DSC spectra reveal that the drug was found compatible with silk fibroin. TGA curves showed weight loss as the temperature increased. Formulations F3, F4, F6, and F9 had thin, nectar like, honey like, and spoon thick viscosity range respectively, which is considered suitable for dysphagia patients as given by National Dysphagia Diet Task Force. Formulations showed shear thinning pseudoplastic behavior. Based on the concentration and viscosity of the polymer, formulation F9 was found to sustain the release of drug up to 90 min (99.4 ± 0.5%, whereas F3 showed release within 5 min (99.2 ± 2.0%. Mechanism of drug release was found to be anomalous transport. All formulations were found stable after 6 months when kept at refrigerated temperature (4°C - 8°C and room temperature. It can be concluded that the salbutamol sulphate gels prepared are suitable as vehicles for dysphagic patients.

  3. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Li Chunzhong [East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)], E-mail: czli@ecust.edu.cn; Senna, Mamoru [Keio University, Department of Applied Chemistry, Faculty of Science and Technology (Japan)

    2007-10-15

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling.

  4. Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei Wei; Zhang Yaopeng, E-mail: zyp@dhu.edu.cn; Zhao Yingmei; Luo Jie; Shao Huili; Hu Xuechao

    2011-10-10

    To biomimic the spinning process of silkworm or spider, a capillary spinning equipment was applied to spin regenerated silk fibroin (RSF) fibers from RSF aqueous solutions in air. This equipment exhibits a wide processing window for various RSF aqueous solutions. The effects of pH, metal ions, RSF concentration and spinning parameters on the spinnability of the spinning dope and the mechanical properties of the obtained fibers were investigated. As a result, spinning dopes with a pH from 5.2 to 6.9 have good spinnability, especially for the dope with a pH of 6.0 and a Ca{sup 2+} concentration of 0.3 M. The RSF concentration of this dope ranges from 44% to 48%. Under optimized conditions of our dry spinning experiments (L/D, 133; take-up speed, 30 mm/s), the obtained as-spun fiber has a breaking strength of 46 MPa, which can be improved up to 359 MPa after a preliminary post-drawing in 80 vol.% ethanol aqueous solution. Highlights: {yields} Regenerated silk fibroin fibers were prepared by using a dry spinning method. {yields} Dope compositions affect dope spinnability. {yields} Spinning parameters affect dope spinnability and fiber properties. {yields} The breaking stress of the post-treated fiber was up to 359 MPa.

  5. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films.

    Science.gov (United States)

    George, Karina A; Shadforth, Audra M A; Chirila, Traian V; Laurent, Matthieu J; Stephenson, Sally-Anne; Edwards, Grant A; Madden, Peter W; Hutmacher, Dietmar W; Harkin, Damien G

    2013-03-01

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method.

  6. Silk Fibroin-modified Poly (butadiene) urethane Films and Their Effects on Fibroblast Viability

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-hao; WU Zheng-yu; LI Ming-zhong; BAI Lun; SHENG Wei-hua

    2008-01-01

    Surface-modified poly ( butadiene) urethane (PBTU) films with silk fibroin (SF) were prepared by simple chemical method under the normal temperature.The physical properties and biological behaviour of the SF-modified PBTU film were evaluated.The results showed that the SF-modified PBTU films kept the tenacity and pliability very well, and could overcome rigid and brittle weaks of silk fibroin films.The morphology of SF in the PBTU film was dendritic aggregations, and the water-contact angle measurement indicated that the surface hydrophilicity of modified films was apparently enhanced.The biocompatibility of PBTU films was improved due to the change of surface components.The degree of platelet adhesion and the cell viability of rat embryo dermal fibrobiasts seeded on PBTU films, SF films, and SF-modified PBTU films were measured by counting platelets before and after they contacted the films and Mil assay, respectively.The results indicated that platelet adhesion resistance and cell viability on the modified film were greatly superior to those on the PBTU film and the compound interface had good stability in the air.

  7. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  8. Gelation Behaviors and Mechanism of Silk Fibroin According to the Addition of Nitrate Salts.

    Science.gov (United States)

    Im, Dong Su; Kim, Min Hee; Yoon, Young Il; Park, Won Ho

    2016-10-10

    Silk fibroin (SF) is a typical fibrous protein that is secreted by silkworms and spiders. It has been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation, the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time. The solubility of regenerated SF is sound in formic acid (FA), which is a carboxylic acid of the simplest structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF solution according to different SF and salt concentrations, the gelation mechanism was investigated.

  9. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com [Microtron Center, Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Sangappa [Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Naik, Prashantha; Chandra, K. Sharat [Department of Biosciences, Mangalore University, Mangalagangotri - 574199 (India)

    2014-04-24

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  10. On the growth morphous of capillaries and tissue in porous silk fibroin films

    Institute of Scientific and Technical Information of China (English)

    Lun BAI; Bao-qi ZUO; Guo-ping GUAN; Li-xing DAI; Yong-zhen CHEN; Zheng-yu ZHOU; Jian-mei XU; Zhen-yu WU

    2008-01-01

    In this study, the porous silk fibroin film (PSFF) is implanted into the body of a rat. Ten days later, the growing state of the capillaries in the material was observed, and the growing law of the capillaries in porous material is discussed to better understand the growing state of the peripheral tissue and cells around the material. The fact that the PSFF creates a beneficial environment for the growth of the capillaries in the tissue is confirmed, and the good growing states of the new skeleton muscle and the hypodermal tissue are also observed. This pro-vides basic experimental results for the design of the PSFFs, which is a new medical biomaterial.

  11. Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2016-01-01

    Full Text Available The goal of this study was to fabricate Antheraea pernyi silk fibroin (ASF microparticles using electrospinning under mild processing conditions. To improve processability of the ASF solution, poly(ethylene oxide (PEO was used to regulate viscosity of ASF solution for electrospinning. It was found that the blend of ASF with PEO could form a bead-on-string structure with well spherical particles. Furthermore, aqueous ethanol and ultrasonic treatments could disrupt the nanofibrillar string structure between particles and ultimately produced water-insoluble ASF particles with submicron scale. Cell viability studies indicated that the ASF microparticles were nontoxic to EA926 cells. Moreover, fluorescent images based on FITC labeling showed that the ASF microparticles were easily uptaken by the cells. Aqueous-based electrospinning provides a potentially useful option for the fabrication of ASF microparticles based on this unique fibrous protein.

  12. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.

    Science.gov (United States)

    Oliveira Barud, H G; Barud, Hernane da S; Cavicchioli, Maurício; do Amaral, Thais Silva; de Oliveira Junior, Osmir Batista; Santos, Diego M; Petersen, Antonio Luis de Oliveira Almeida; Celes, Fabiana; Borges, Valéria Matos; de Oliveira, Camila I; de Oliveira, Pollyanna Francielli; Furtado, Ricardo Andrade; Tavares, Denise Crispim; Ribeiro, Sidney J L

    2015-09-05

    Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.

  13. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2009-05-01

    Full Text Available Vishal Gupta1, Abraham Aseh1,3, Carmen N Ríos1, Bharat B Aggarwal2, Anshu B Mathur11Department of Plastic Surgery; 2Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; 3School of Pharmacy, Texas Southern University, Houston, TX, USAAbstract: Biologically derived nanoparticles (<100 nm were fabricated for local and sustained therapeutic curcumin delivery to cancer cells. Silk fibroin (SF and chitosan (CS polymers were blended noncovalently to encapsulate curcumin in various proportions of SF and CS (75:25, 50:50, and 25:75 SF:CS or pure SF at two concentrations (0.1% w/v and 10% w/v using the devised capillary-microdot technique. Curcumin-polymer conjugates were frozen, lyophilized, crystallized, suspended in phosphate-buffered saline for characterization, and tested for efficacy against breast cancer cells. All nanoparticle formulations except 0.1% w/v 50:50 SFCS were less than 100 nm in size as determined with the transmission electron microscopy. The entrapment and release of curcumin over eight days was highest for SF-derived nanoparticles as compared to all SFCS blends. The uptake and efficacy of SF-coated curcumin was significantly higher (p < 0.001 than SFCS-coated curcumin in both low and high Her2/neu expressing breast cancer cells. Interestingly, the uptake of curcumin was highest for the high Her2/neu expressing breast cancer cells when delivered with a 10% w/v SF coating as compared to other formulations. In conclusion, SF-derived curcumin nanoparticles show higher efficacy against breast cancer cells and have the potential to treat in vivo breast tumors by local, sustained, and long-term therapeutic delivery as a biodegradable system.Keywords: biodegradable, nanoparticles, curcumin, silk fibroin, breast cancer cells

  14. Shear-induced rigidity in spider silk glands

    Science.gov (United States)

    Koski, Kristie J.; McKiernan, Keri; Akhenblit, Paul; Yarger, Jeffery L.

    2012-09-01

    We measure the elastic stiffnesses of the concentrated viscous protein solution of the dehydrated Nephila clavipes major ampullate gland with Brillouin light scattering. The glandular material shows no rigidity but possesses a tensile stiffness similar to that of spider silk. We show, however, that with application of a simple static shear, the mechanical properties of the spider gland protein mixture can be altered irreversibly, lowering symmetry and enabling shear waves to be supported, thus, giving rise to rigidity and yielding elastic properties similar to those of the naturally spun (i.e., dynamically sheared) silk.

  15. 蚕丝磷酸钙涂层支架的制备和性能%The preparation and properties of silk fibroin /CaP scaffold

    Institute of Scientific and Technical Information of China (English)

    张珂; 张欣; 王淑敏; 俞立英

    2012-01-01

    Objective: To improve bone formation by mineralizing silk fibroin scaffold with calcium phosphate. Methods: Silk fibroin was immerged into calcium phosphate solution, and then mineralized on its surface using hydrothermal method. The characteristics of silk fibroin surface-modified were measured by scanning electron microscopy ( SEM ) , energy dispersive X-ray microanalysis, X-ray diffraction and Fourier transform infrared spectroscopy. Results: SEM indicated that the surface of silk fibroin was mostly coated by calcium phosphate. The patterns of silk fibroin surface-modified were not changed after immerging in solution, and carbonate apatite distributed on its surface. Conclusions: As a natural material, the silk fibroin possesses good biocompatibility. Silk fibroin/ CaP composite as scaffold material is a promising biomaterial.%目的:通过对蚕丝表面进行磷酸钙涂层,从而增加其成骨效果.方法:将脱胶后的蚕丝放入磷酸钙溶液中,用水热法对蚕丝表面进行矿化,运用扫描电镜、能谱分析仪、X线衍射仪、傅立叶红外对表面改良的蚕丝进行理化性能检测.结果:磷酸钙表面改良处理后磷酸钙均匀涂布于蚕丝表面,矿化蚕丝初始形态并未发生明显改变,表面存在磷酸灰石成分.结论:蚕丝作为一种天然生物纤维,具有良好的生物相容性.经磷酸钙涂层的蚕丝,作为组织工程支架材料具有广阔的发展前景.

  16. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts.

    Science.gov (United States)

    Orlova, A A; Kotlyarova, M S; Lavrenov, V S; Volkova, S V; Arkhipova, A Yu

    2014-11-01

    Porous scaffolds of silk fibroin and composite porous scaffolds with 10, 20, 30, 40, and 50% gelatin were made by the freezing-thawing method. The relationship between adhesion and proliferation rate mouse embryo fibroblast and the scaffold composition was studied by laser confocal scanning microscopy. Addition of gelatin to the scaffold structure stimulated adhesion and proliferation of mouse embryo fibroblasts; the optimal content of gelatin was 30%.

  17. Square Wave Voltammetric Label-free Determination of the Natural Protein Material Silk Fibroin

    Institute of Scientific and Technical Information of China (English)

    MA Ming-Ming; SONG Jun-Feng

    2008-01-01

    The electrochemical behavior of silk fibroin(SF)was investigated by cyclic voltammetry and square wave voltammetry in 0.01 mol/L HCI for the first time.Within the potential scan range of 0.0 to1.2 V(vs.SCE),two oxi-dative peaks at 0.91 V(Pa,1)and 0.43 V(Pa,2)as well as one reductive peak at 0.24 V(Pc)were observed on cyclic voltammogram at scan rate of 0.2 V/s.The peak current of the peak Pa,1 was linear with SF concentration in the range of 5.8×10-8 to 1.1×10-6 mol/L,with the limit of detection 3.0×10-8 mol/L(SIN=3).The proposed method was of high selectivity without the interferences from the coexisting substances such as another natural protein material sericin and other small molecular substances.It was applied to the determination of SF in raw silk liquid samples without any pre-separation and pre-purification.

  18. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering

    Science.gov (United States)

    Wang, Yiyu; Wang, Xinyu; Shi, Jian; Zhu, Rong; Zhang, Junhua; Zhang, Zongrui; Ma, Daiwei; Hou, Yuanjing; Lin, Fei; Yang, Jing; Mizuno, Mamoru

    2016-01-01

    A cytocompatible porous scaffold mimicking the properties of extracellular matrices (ECMs) has great potential in promoting cellular attachment and proliferation for tissue regeneration. A biomimetic scaffold was prepared using silk fibroin (SF)/sodium alginate (SA) in which regular and uniform pore morphology can be formed through a facile freeze-dried method. The scanning electron microscopy (SEM) studies showed the presence of interconnected pores, mostly spread over the entire scaffold with pore diameter around 54~532 μm and porosity 66~94%. With significantly better water stability and high swelling ratios, the blend scaffolds crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) provided sufficient time for the formation of neo-tissue and ECMs during tissue regeneration. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) results confirmed random coil structure and silk I conformation were maintained in the blend scaffolds. What’s more, FI-TR spectra demonstrated crosslinking reactions occurred actually among EDC, SF and SA macromolecules, which kept integrity of the scaffolds under physiological environment. The suitable pore structure and improved equilibrium swelling capacity of this scaffold could imitate biochemical cues of natural skin ECMs for guiding spatial organization and proliferation of cells in vitro, indicating its potential candidate material for soft tissue engineering. PMID:27996001

  19. Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets.

    Science.gov (United States)

    Su, Dihan; Jiang, Libo; Chen, Xin; Dong, Jian; Shao, Zhengzhong

    2016-04-20

    Regenerated silk fibroin (RSF) of Bombyx mori silk fiber is a promising natural material for bone defect repair. However, a lack of specific integrin and growth factor for osteoinduction significantly hinders its application in this area. In this study, the role of Laponite nanoplatelet (LAP), a bioactive clay that can promote osteoblast growth, in the formation of RSF hydrogel, as well as the various properties of RSF/LAP hybrid hydrogel, was closely investigated. The results indicate that LAP could serve as a medium to accelerate hydrophobic interaction among the RSF molecules and a disruptor to limit the growth of β-sheet domain during the gelation of RSF. Rheological measurement suggests that the RSF/LAP hydrogel is injectable as it displays thixotropy in the room temperature. Proliferation and differentiation results of the primary osteoblasts encapsulated in hydrogel show that RSF/LAP hydrogel can promote the cell proliferation and enhance the osteogenic differentiation. The transcript levels for alkaline phosphatase, osteocalcin, osteopontin, and collagen type I osteogenic markers obviously improve with RSF/LAP hydrogel compared to the controls at 14 days, especially with the higher contents of LAP. Overall, the results suggest that the RSF/LAP hydrogel have great potential to be utilized as an injectable biomaterial for irregular bone defect repair.

  20. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin.

    Science.gov (United States)

    Liu, Yuqiang; Qi, Ning; Song, Tao; Jia, Mingliang; Xia, Zhouhui; Yuan, Zhongcheng; Yuan, Wei; Zhang, Ke-Qin; Sun, Baoquan

    2014-12-10

    Organic electronics have gained widespread attention due to their flexibility, lightness, and low-cost potential. It is attractive due to the possibility of large-scale roll-to-roll processing. However, organic electronics require additional development before they can be made commercially available and fully integrated into everyday life. To achieve feasibility for commercial use, these devices must be biocompatible and flexible while maintaining high performance. In this study, biocompatible silk fibroin (SF) was integrated with a mesh of silver nanowires (AgNWs) to build up flexible organic solar cells with maximum power conversion efficiency of up to 6.62%. The AgNW/SF substrate exhibits a conductivity of ∼11.0 Ω/sq and transmittance of ∼80% in the visible light range. These substrates retained their conductivity, even after being bent and unbent 200 times; this surprising ability was attributed to its embedded structure and the properties of the specific SF materials used. To contrast, indium tin oxide on synthetic plastic substrate lost its conductivity after the much less rigid bending. These lightweight and silk-based organic solar cells pave the way for future biocompatible interfaces between wearable electronics and human skin.

  1. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  2. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  3. Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier

    Directory of Open Access Journals (Sweden)

    Yu Y

    2016-03-01

    Full Text Available Yanni Yu,1 Yongpei Hu,1 Xiufang Li,1 Yu Liu,1 Mingzhong Li,1 Jicheng Yang,2 Weihua Sheng2 1National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 2Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, People’s Republic of China Abstract: The development of a novel cationized polymer used as a gene delivery carrier that can conveniently and effectively transfect cells resulting in a stably expressed target gene remains a challenge. Antheraea pernyi silk fibroin (ASF is a cytocompatible and biodegradable natural polymer, and it possesses Arg–Gly–Asp sequences but a negative charge. In order to render ASF amenable to packaging plasmid DNA (pDNA, spermine was used to modify ASF to synthesize cationized ASF (CASF, which was used as a gene delivery carrier. CASF was characterized using trinitrobenzene sulfonic acid assay, the zeta potential determination, and a Fourier transform infrared analysis, and the results of these characterizations indicated that the –NH2 in spermine effectively reacts with the –COOH in the side chains of ASF. Spermine grafted to the side chains of ASF resulted in the conversion of the negative charge of ASF to a positive charge. CASF packaged pDNA and formed CASF/pDNA complexes, which exhibited spherical morphology with average particle sizes of 215–281 nm and zeta potential of approximately +3.0 mV to +3.2 mV. The results of the MTT assay, confocal laser scanning microscopy, and flow cytometry analysis in a human endothelial cell line revealed that CASF/pDNA complexes exhibited lower cytotoxicity and higher transfection efficiency compared to the pDNA complexes of polyethyleneimine. These results indicate that our synthesized CASF, a cationized polymer, is a potential gene delivery carrier with the advantages of biodegradability and low cytotoxicity. Keywords: silk fibroin, spermine, cationized polymer, gene delivery

  4. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Lozano-Pérez, A Abel; Meseguer-Olmo, Luis; Otero, Toribio F; Cenis, Jose L

    2016-04-01

    Silk fibroin and graphene are both promising biomaterials described in the bibliography. Hybrid scaffolds combining their properties could be attractive for tissue engineering applications. In this work, a new methodology to produce electrospun fibroin scaffolds coated with graphene materials is provided. The mechanical, electrical and electrochemical properties of the materials attained were characterised. The fibre diameters were measured (from 3.9 to 5.2 μm). The samples coated with reduced grapheme were electronic conductors and electroactive in liquid electrolytes, showing maximum oxidation and reduction (around−0.4 V peak). The chronoamperometric responses showed a reduction shoulder, pointing to the entrance of balancing cations from the solution by nucleation–relaxation: the reaction induced structural changes in the graphene. In order to check the biocompatibility of the materials, they were seeded with L929 fibroblasts. The excellent biocompatibility of silk fibroin meshes was maintained after coating with graphene, being the proliferation results equal in all the treatments 7 days after the seeding (Tukey, p N 0.05).The conductive and electroactive properties of meshes coated with reduced graphene allow the potential application of local electric fields or local ionic currents to cell cultures, biological interfaces or animal models without host response.

  5. Preparation and characterization of blends containing silk fibroin and chitosan;Obtencao e caracterizacao de blendas de fibroina de seda e quitosana

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Mariana A. de; Nogueira, Grinia M.; Weska, Raquel F.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The aim of this study was to prepare and characterize blend membranes of silk fibroin and chitosan. Moreover, a conformation of fibroin to a more stable form induced by the addition of chitosan was verified. Blend membranes of fibroin/chitosan were prepared in different proportions and had their crystallinity, structural conformation and thermal stability characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of chitosan. FTIR showed that, mainly in a content of chitosan of only 25%, fibroin is present in a more stable form. Thermal analyzes indicate that fibroin is thermally stable and that when its proportion in the blend increases, the temperature in which the degradation is initiated also does so. (author)

  6. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.

    Science.gov (United States)

    Savage, Ken N; Gosline, John M

    2008-06-01

    The silk that orb-weaving spiders produce for use as dragline and for the frame of the web is spun from the major ampullate (MA) glands, and it is renowned for its exceptional toughness. The fibroins that make up MA silk have previously been organized into two major groupings, spidroin-1 and spidroin-2, based largely on differences in amino acid sequence. The most apparent difference between spidroin-1 and spidroin-2 fibroins is the lack of proline in spidroin-1. The MA silk of Araneus diadematus comprises two spidroin-2 fibroins, and is therefore proline-rich, whereas spidroin-1 is preferentially expressed in Nephila clavipes MA silk, and so this silk is proline deficient. Together, these two silks provide a system for testing the consequences of proline-rich and proline-deficient fibroin networks. This study measures the mechanical and optical properties of dry and hydrated Araneus and Nephila MA silks. Since proline acts to disrupt secondary structure, it is hypothesized that the fibroin network of Araneus MA silk will contain less secondary structure than the network of Nephila MA silk. Mechanical and optical studies clearly support this hypothesis. Although the dry properties of these two silks are indistinguishable, there are large differences between the hydrated silks. Nephila silk does not swell upon hydration to the same degree as Araneus silk. In addition, upon hydration, Nephila MA silk retains more of its initial dry stiffness, and retains more molecular order, as indicated by birefringence measurements.

  7. Mechanism of Conformational Transition of Silk Fibroin in Alcohol-water Mixtures

    Institute of Scientific and Technical Information of China (English)

    Ma Lin; He Weiren; Huang Aimin; Li Lishuo; Wei Qiaona; Huang Zilun

    2011-01-01

    Circular dichroism, intrinsic fluorescence of protein and exogenous fluorescence probe of 8-anilino-l-naphtha-lenesulfonic acid hemimagnesium salt (ANS) was used to investigate the mechanism of conformational change of silk fibroin (SF) in aqueous alcohol including methanol and ethanol. The conformational transition of SF from ran-dom coil to β-sheet was found to be of a close relationship with the microstructure of the solvent. The alcohol-water mixture at low concentration had little effect on the solvation of the peptide unit, as the inherent water structure was conserved. At high alcohol concentration, the transition from the tetrahedral-like water structure to the chain-like alcohol structure in the mixtures induced a β-sheet conformation of SF, as a result of the formation of intramolecu-lar hydrogen bond between the peptide units in order to eliminate the thermodynamic unfavorite from the contact to the solvent molecules. Meanwhile, the aggregating of hydrophobic side chains was decreased by the alcohol via the destruction of hydrogen bond network of water by alcohol and the binding of alcohol to hydrophobic group.

  8. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials.

    Science.gov (United States)

    Dal Pra, Ilaria; Freddi, Giuliano; Minic, Jasminka; Chiarini, Anna; Armato, Ubaldo

    2005-05-01

    Biologically tolerated biomaterials are the focus of intense research. In this work, we examined the biocompatibility of three-dimensional (3D) nonwovens of sericin-deprived, Bombyx mori silk fibroin (SF) in beta-sheet form implanted into the subcutaneous tissue of C57BL6 mice, using sham-operated mice as controls. Both groups of mice similarly healed with no residual problem. Macroarray analysis showed that an early (day 3) transient expression of macrophage migration inhibitory factor (MIF) mRNA, but not of the mRNAs encoding for 22 additional proinflammatory cytokines, occurred solely at SF-grafted places, where no remarkable infiltration of macrophages or lymphocytes subsequently happened. Even an enduring moderate increase in total cytokeratins without epidermal hyperkeratosis and a transient (days 10-15) upsurge of vimentin occurred exclusively at SF-grafted sites, whose content of collagen type-I, after a delayed (day 15) rise, ultimately fell considerably under that proper of sham-operated places. By day 180, the interstices amid and surfaces of the SF chords, which had not been appreciably biodegraded, were crammed with a newly produced tissue histologically akin to a vascularized reticular connective tissue, while some macrophages but no lymphocytic infiltrates or fibrous capsules occurred in the adjoining tissues. Therefore, SF nonwovens may be excellent candidates for clinical applications since they both enjoy a long-lasting biocompatibility, inducing a quite mild foreign body response, but no fibrosis, and efficiently guide reticular connective tissue engineering.

  9. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.

    Science.gov (United States)

    Lim, Jun Sik; Ki, Chang Seok; Kim, Jong Wook; Lee, Kwang Gil; Kang, Seok Woo; Kweon, Hae Yong; Park, Young Hwan

    2012-05-01

    In this study we investigated the blend electrospinning of poly(ϵ-caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL-based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three-dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds.

  10. Study of synthesis of nano-hydroxyapatite using a silk fibroin template

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing; Yu Feng; Qu Lijie; Meng Xiangcai [Provincial Key Laboratory of Biomaterials, Jiamusi University, Jiamusi 154007 (China); Wen, G [School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang Province 150001 (China)

    2010-08-01

    Nano-hydroxyapatite (HA) was directly synthesized on a silk fibroin (SF) template using the property of SF being soluable in a concentrated CaCl{sub 2} solution as a HA source of calcium at pH 7.4 and room temperature. The microstructure and bonding state were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TG) and transmission electron microscopy (TEM). The results indicated that the HA crystals were poorly crystallized with a rod-like shape of 20-60 nm length and 10-20 nm diameter. Strong molecular interactions and chemical bonds might be present between SF and HA. There were other nucleation sites such as carbonyl (-C-O) and amine (-N-H-) groups on SF molecules besides the carboxyl (-COOH) and hydroxyl (-OH) groups previously reported. During the formation of HA, the coordination action between specific functional groups on SF and calcium ions (Ca{sup 2+}) played an important role. The crystallinity of HA was improved and had an orientation growth along (0 0 2) at the presence of SF, resulting in a structure similar to natural bone. It was concluded that SF could regulate the structure and morphology of HA effectively. (communication)

  11. Effect of polyaspartic acid on hydroxyapatite deposition in silk fibroin blend films

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Polyaspartic acid/silk fibroin/hydroxyapatite (PASP/SF-HA composites have been synthesized by biomimetic processing. SF solution was mixed with different contents of PASP to prepare the PASP/SF blend membranes. After ethanol treatment and premineralization process, the blend membranes were immersed into 1.5 simulated body fluid (1.5 SBF for 24 h to induce apatite deposition at 37±0.5°C. Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD results revealed that a conformation transition of SF occurred after the addition of PASP and ethanol treatment. The FTIR and XRD results also confirmed that the main component of apatite deposition was HA. Scanning electron microscopy (SEM showed that the content of HA increased with increasing PASP concentration .Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP results revealed that the Ca/P molar ratio could reach 1.45, which was close to the Ca/P ratio of apatite. It was appropriate to conclude that the increasing content of PASP had a distinct effect on HA deposition in the blend films.

  12. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  13. Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Meechaisue, Chidchanok [Department of Materials Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 (Thailand); Wutticharoenmongkol, Patcharaporn [Technological Center for Electrospun Fibers and The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand); Waraput, Rujira [Department of Materials Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 (Thailand); Huangjing, Thanapol [Department of Materials Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 (Thailand); Ketbumrung, Nantana [Department of Materials Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 (Thailand); Pavasant, Prasit [Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 (Thailand); Supaphol, Pitt [Technological Center for Electrospun Fibers and The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-09-15

    In the present contribution, electrospinning (e-spinning) was used to fabricate ultra-fine fibers of silk fibroin (SF) from cocoons of indigenous Thai silkworms (Nang-Lai) and Chinese/Japanese hybrid silkworms (DOAE-7). The effects of solution concentration (i.e., 10-40% (w/v) in 85% (v/v) formic acid) and applied electrostatic field strength (EFS; 10, 15 and 20 kV/10 cm) on morphology and size of the electrospun (e-spun) SF products were investigated by scanning electron microscopy. The average diameter of the resulting e-spun SF fibers was found to increase with an increase in both the solution concentration and the EFS value. Specifically, the average diameter of the e-spun SF fibers from Nang-Lai SF solutions ranged between 217 and 610 nm, while that of the fibers from DOAE-7 SF solutions ranged between 183 and 810 nm. The potential for use of the e-spun SF fiber mats as bone scaffolds was assessed with mouse osteoblast-like cells (MC3T3-E1) in which the cells appeared to adhere and proliferate well on their surface.

  14. Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Silk fibroin (SF) has been used extensively in the biomedical field including tissue engineering for the generation of artificial bones, skins or ligaments. We have previously reported on good in vitro biocompatibility of SF fibers with peripheral nerve tissues and cells. In the present study, we developed a novel design of the SF-based artificial nerve graft (SF graft) which was composed of a SF-nerve guidance conduit (NGC) inserted with SF fibers. MTT assay was performed to determine the cytotoxicity of the SF-NGC extract fluid on the cultured L929 cells derived from an immortalized mouse fibroblast cell line. In addition, this SF graft was implanted into adult rats for bridging a 10-mm long sciatic nerve defect. The following-up experiments at initial stage (1-4 week) of nerve regeneration including routine blood tests and histochemical investigation were conducted to evaluate the in vivo biocompatibility of the SF graft with peripheral nerves. The results demonstrated that the SF-NGC graft was biocompatible with the surrounding tissues and cells due to its low inflammatory potential with a grade O under the U. S. Pharmacopeia guidelines and it was generally suitable to a certain degree for bridging peripheral nerve defects in virtue of supporting Schwann cell adherence, expansion and migration. Therefore the SF graft is a promising alternative to classical autografts for peripheral nerve repair.

  15. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    Science.gov (United States)

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores.

  16. Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Mo

    2011-03-01

    Full Text Available The native extracellular matrix (ECM is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF and hydroxybutyl chitosan (HBC blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP and trifluoroacetic acid (TFA as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR and 13C nuclear magnetic resonance (NMR showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.

  17. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs

    Science.gov (United States)

    Zhou, Mei; Wang, Wei-Ci; Liao, Yong-Gui; Liu, Wen-Qi; Yu, Miao; Ouyang, Chen-Xi

    2014-03-01

    In order to investigate the in vitro biocompatibility of a novel polyurethane (PU) membrane modified by incorporation of superfine silk-fibroin powder (SFP), which was prepared for small-diameter vascular grafts, with the cultivation of human umbilical vein endothelial cells (HUVECs), PU and SFP were mixed with the ratios of 9:1, 7:3, 5:5, 3:7 (PU:SFP) to make four composite materials. Unmodified PU and polytetrafluoroethylene (PTFE) were added as control groups. CCK-8 assay was used to evaluate the cytotoxicity of these biomaterials. Data were processed using SPSS, and P HUVECs on the surface of specimens was observed using direct contact cultivation. The toxicity ratings of the novel composites were grade 0-1, which is in the acceptable range. In all the experimental groups except control, SFP/PU with ratio of 1:9 had the least cytotoxicity property, and more content of SFP in the composite showed no improvement of the biocompatibility. HUVECs strongly attached to and grew on the surface of the biomaterials, and proliferated rapidly. The proliferation ability increased with increased proportion of SFP; however the cell quantity on the surface of the materials decreased when the proportion of SFP was equal to or larger than that of PU in the composite. It is concluded that this novel material has excellent cellular affinity with no cytotoxicity to HUVECs. Adding SFP gives PU better biocompatibility, while further research on optimum blend ratios is still needed.

  18. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.

    Directory of Open Access Journals (Sweden)

    Shuguang Zeng

    Full Text Available Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF and chitosan (CS are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering.

  19. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery.

    Science.gov (United States)

    Zhou, Juan; Zhang, Bin; Shi, Lijun; Zhong, Jian; Zhu, Jun; Yan, Juan; Wang, Ping; Cao, Chuanbao; He, Dannong

    2014-12-24

    The ability of drug release from SF materials was governed largely by their secondary structure. It is known that the breakage degree of the peptide chain during the silk fibroin (SF) dissolution can affect the structure, property, and applications of SF materials. To deeply understand this effect, we designed a reaction system based on CaCl2/H2O/C2H5OH ternary solvent with different ethanol content to obtain the regenerated SF films with different morphologies and secondary structures. The results showed that the globule-like nanostructure was observed in all regenerated SF films, and their size decreased significantly with reducing the ethanol content in the solvent. Correspondingly, the β-sheet structure content of the SF films increased. In addition, the contact angle and the elongation ratio increased, and water absorption decreased significantly with decreasing the ethanol content in the solvent. The accumulated release percents of doxorubicin from these SF films were significantly different with increasing the time. With smaller nanostructure size and more β-sheet content, the SF films had a slower drug release at the beginning. This study indicated the importance of the ethanol content in the solvent in controlling the structure and properties of the regenerated SF films, which would improve the application of SF in drug delivery.

  20. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds.

    Science.gov (United States)

    Vetsch, Jolanda R; Paulsen, Samantha J; Müller, Ralph; Hofmann, Sandra

    2015-02-01

    Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.

  1. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Science.gov (United States)

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  2. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  3. Study of magnetic silk fibroin nanoparticles for massage-like transdermal drug delivery

    Science.gov (United States)

    Chen, Ai-Zheng; Chen, Lin-Qing; Wang, Shi-Bin; Wang, Ya-Qiong; Zha, Jun-Zhe

    2015-01-01

    A synergistic approach by the combination of magnetic nanoparticles with an alternating magnetic field for transdermal drug delivery was investigated. Methotrexate-loaded silk fibroin magnetic nanoparticles were prepared using suspension-enhanced dispersion by supercritical CO2. The physiochemical properties of the magnetic nanoparticles were characterized. In vitro studies on drug permeation across skin were performed under different magnetic fields in comparison with passive diffusion. The permeation flux enhancement factor was found to increase under a stationary magnetic field, while an alternating magnetic field enhanced drug permeation more effectively; the combination of stationary and alternating magnetic fields, which has a massage-like effect on the skin, achieved the best result. The mechanistic studies using attenuated total reflection Fourier-transform infrared spectroscopy demonstrate that an alternating magnetic field can change the ordered structure of the stratum corneum lipid bilayers from the gel to the lipid-crystalline state, which can increase the fluidity of the stratum corneum lipids, thus enhancing skin penetration. Compared with the other groups, the fluorescence signal with a bigger area detected in deeper regions of the skin also reveals that the simulated massage could enhance the drug permeation across the skin by increasing the follicular transport. The combination of magnetic nanoparticles with stationary/alternating magnetic fields has potential for effective massage-like transdermal drug delivery. PMID:26229467

  4. Synthesis and characterization of dense membranes of silk fibroin with glycerin;Sintese e caracterizacao de membranas densas de fibroina de seda com glicerina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  5. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Cao

    Full Text Available Strongly alkaline electrolyzed water (SAEW was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.

  6. Characterization of silk gland ribosomes from a bivoltine caddisfly, Stenopsyche marmorata: translational suppression of a silk protein in cold conditions.

    Science.gov (United States)

    Nomura, Takaomi; Ito, Miho; Kanamori, Mai; Shigeno, Yuta; Uchiumi, Toshio; Arai, Ryoichi; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku

    2016-01-08

    Larval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S. marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter. We recently reported constant transcript abundance of S. marmorata silk protein 1 (Smsp-1), a core S. marmorata silk fiber component, in all seasons, implying translational suppression in the silk gland during winter. Herein, we prepared and characterized silk gland ribosomes from seasonally collected S. marmorata larvae. Ribosomes from silk glands immediately frozen in liquid nitrogen (LN2) after dissection exhibited comparable translation elongation activity in spring, summer, and autumn. Conversely, silk glands obtained in winter did not contain active ribosomes and Smsp-1. Ribosomes from silk glands immersed in ice-cold physiological saline solution for approximately 4 h were translationally inactive, despite summer collection and Smsp-1 expression. The ribosomal inactivation occurs because of defects in the formation of 80S ribosomes, presumably due to splitting of 60S subunits containing 28S rRNA with central hidden break, in response to cold stress. These results suggest a novel-type ribosome-regulated translation control mechanism.

  7. Thin films of silk fibroin and its blend with chitosan strongly promote biofilm growth of Synechococcus sp. BDU 140432.

    Science.gov (United States)

    Kaushik, Sharbani; Sarma, Mrinal K; Thungon, Phurpa Dema; Santhosh, Mallesh; Goswami, Pranab

    2016-10-01

    The activating role of different polymer thin films coated over polystyrene support on the Synechococcus sp. biofilm growth was examined concurrently by measuring biofilm florescence using a dye and by measuring cell density in the isolated biofilm. Compared to blank (no coating), the increase in biofilm formation (%) on silk, chitosan, silk-chitosan (3:2) blend, polyaniline, osmium, and Nafion films were 27.73 (31.16), 21.55 (23.74), 37.21 (38.34), 5.35 (8.96), 6.70 (6.55) and (nil), respectively with corresponding cell density (%) shown in the parentheses. This trend of biofilm formation on the films did not significantly vary for Escherichia coli and Lactobacillus plantarum strains. The films of 20 residues long each of glycine-alanine repeat peptide, which mimics a silk fibroin motif, and a hydrophobic glycine-valine repeat peptide, increased the biofilm growth by 13.53 % and 26.08 %, respectively. Silk and blend films showed highest adhesion unit (0.48-0.49), adhesion rate ((4.2-4.8)×10(-6), m/s) and Gibbs energy of adhesion (-8.5 to -8.6kT) with Synechococcus sp. The results confirmed interplay of electrostatic and hydrophobic interaction between cell-surface and polymer films for promoting rapid biofilm growth. This study established that the thin films of silk and the blend (3:2) promote rapid biofilm growth for all the tested microorganisms.

  8. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  9. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

    OpenAIRE

    Kim, Jwa-Young; Yang, Byoung-Eun; Ahn, Jin-Hee; Park, Sang O; Shim, Hye-Won

    2014-01-01

    PURPOSE Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-Gide®) using a rat calvarial defect model. MATERIALS AND METHODS Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups...

  10. Tunable Structures and Properties of Electrospun Regenerated Silk Fibroin Mats Annealed in Water Vapor at Different Times and Temperatures

    Directory of Open Access Journals (Sweden)

    Xiangyu Huang

    2014-01-01

    Full Text Available Regenerated silk fibroin (SF mats were fabricated using electrospinning technique, followed by mild water vapor annealing to effectively tune the structures and improve the mechanical properties of the mats at different annealing times and temperatures. The breaking strength and the breaking energy of the mats treated with water vapor at 65°C for 12 h reached 6.0 MPa and 171.7 J/kg, respectively. The conformational transition of the SF mats was significantly influenced by the treating temperature, while the influence of time was comparatively limited. The influence is consistent with the time-temperature equivalent principle and would be helpful for the preparation of water-vapor-annealed silk-based biomaterials for various applications.

  11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone nanofibrous scaffolds for bone regeneration

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-04-01

    Full Text Available Zi Wang,1,* Ming Lin,1,* Qing Xie,1 Hao Sun,1 Yazhuo Huang,1 DanDan Zhang,1 Zhang Yu,1 Xiaoping Bi,1 Junzhao Chen,1 Jing Wang,2 Wodong Shi,1 Ping Gu,1 Xianqun Fan1 1Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 2Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM. Poly(lactide-co-ε-caprolactone (PLCL has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration.Methods: Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated.Results: The SF/PLCL (50/50 scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50 scaffold promoted the osteogenic differentiation of hADSCs by elevating the

  12. Expression of the Japanese oak silkworm Antheraea yamamai fibroin gene in the domesticated silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Isao Kobayashi; Katsura Kojima; Hideki Sezutsu; Keiro Uchino; Toshiki Tamura

    2009-01-01

    To understand the evolutionary conservation of the gene expression mechanism and secretion machinery between Antheraea and Bombyx fibroins, we introduced the genomic A. yamamai fibroin gene into the domesticated silkworm, B. mori. The spliced A. yamamai fibroin mRNA appeared only in the posterior region of the silk gland of the transgenic silkworm, suggesting that the functions of the fibroin promoter region and the splicing machinery are conserved between these two species. The A. yamamai fibroin protein was detected in the lumen of the silk gland of the transgenic silkworm, albeit at lower levels compared with the B. mori-type fibroin. We found a strong degeneration of the posterior region of the silk gland of the transgenic silkworm. As a result, the cocoon shell weight was much lower in the transgenic silkworm than in the non-transgenic line. These results indicate that the promoter function and splicing machinery are well conserved between A. yamamai and B. mori but that the secretion mechanism of fibroin is diversified between the two.

  13. Analysis of Two-Dimensional Gel Electrophoresis Images of Protein from Posterior Silk Gland of Silkworm (Bombyx mori) on Day 1 and Day 4 in the 5th Instar Stage

    Institute of Scientific and Technical Information of China (English)

    WU Wei-cheng; ZHONG Bo-xiong; GAO Qi-kang; CHEN Jin-e; YE Jian; QIAN Yang-wen; LI Jian-ying; LU Hua-yun; MENG Zhi-qi; NI Chun-xiao

    2007-01-01

    The posterior silk gland (PSG) of silkworm is an important organ where fibroin is synthesized and secreted exclusively.Because fibroin constitutes 75-80% of the silk filament, the mechanism governing fibroin secretion, quality and yield of cocoon can be elucidated by the study on the PSG. Using two-dimensional gel electrophoresis (2-DE) and image analysis system, the changes in the protein composition in the PSG cell were investigated on the day 1 (D1) and day 4 (D4) in the 5th instar stage from five different strains of silkworm (Bombyx mori). While differences at protein level between days and strains were far less than those observed at the gene level using EST analysis. The change trends in protein composition from D1 to D4 were diverse among the different strains. The results suggest that the secretion of fibroin is regulated by multiple proteins. The site of regulation and the proteins responsible for the regulation vary with the strain, which leads to differences between strains in the capacity of fibroin secretion in the PSG cell.

  14. Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier

    Science.gov (United States)

    Yu, Yanni; Hu, Yongpei; Li, Xiufang; Liu, Yu; Li, Mingzhong; Yang, Jicheng; Sheng, Weihua

    2016-01-01

    The development of a novel cationized polymer used as a gene delivery carrier that can conveniently and effectively transfect cells resulting in a stably expressed target gene remains a challenge. Antheraea pernyi silk fibroin (ASF) is a cytocompatible and biodegradable natural polymer, and it possesses Arg–Gly–Asp sequences but a negative charge. In order to render ASF amenable to packaging plasmid DNA (pDNA), spermine was used to modify ASF to synthesize cationized ASF (CASF), which was used as a gene delivery carrier. CASF was characterized using trinitrobenzene sulfonic acid assay, the zeta potential determination, and a Fourier transform infrared analysis, and the results of these characterizations indicated that the –NH2 in spermine effectively reacts with the –COOH in the side chains of ASF. Spermine grafted to the side chains of ASF resulted in the conversion of the negative charge of ASF to a positive charge. CASF packaged pDNA and formed CASF/pDNA complexes, which exhibited spherical morphology with average particle sizes of 215–281 nm and zeta potential of approximately +3.0 mV to +3.2 mV. The results of the MTT assay, confocal laser scanning microscopy, and flow cytometry analysis in a human endothelial cell line revealed that CASF/pDNA complexes exhibited lower cytotoxicity and higher transfection efficiency compared to the pDNA complexes of polyethyleneimine. These results indicate that our synthesized CASF, a cationized polymer, is a potential gene delivery carrier with the advantages of biodegradability and low cytotoxicity. PMID:27042056

  15. Rheology and electrospinning of regenerated bombyx mori silk fibroin aqueous solutions.

    Science.gov (United States)

    Hodgkinson, Tom; Chen, Ying; Bayat, Ardeshir; Yuan, Xue-Feng

    2014-04-14

    Bombyx mori silk fibroin (BMSF) has received considerable research interest as a potential biomaterial owing to its excellent mechanical properties and benign, versatile material fabrication options, including electrospinning. Despite this, characterizations of regenerated BMSF aqueous solutions and electrospun materials resulting from them are still very limited in the literature. This report details the rheological characterization of regenerated aqueous BMSF solutions under shear and elongational deformation. Well-characterized regenerated BMSF solutions were then systematically electrospun over a range of concentrations and process parameters to determine their effects on electrospinning processing windows and fiber morphology. BMSF solutions could not be electrospun successfully if BMSF concentration was below 20 wt % or the relaxation time measured using the CaBER rheometer was below 0.001 s. Electrospun BMSF fiber diameter was found to increase with solution concentration when stable electrospinning was achieved. An upper threshold of 30 wt % BMSF solution was identified for the formation of fibers with a circular cross section. Adding small amount of high molecular weight poly(ethylene oxide) was an effective rheological modifier that greatly improved the electrospinnability of BMSF solutions. Electrospinning BMSF-PEO solutions over a range of parameters significantly altered the fiber products. Increasing voltage from 0.5 to 1 kV/cm was found to decrease fiber diameter by approximately 50% (p < 0.001). Flow rate was found to have a significant effect on fiber diameter, which decreased with spinneret height. The results presented here provide valuable guidance in the production of BMSF electrospun materials with specific properties for tissue engineering and regenerative medicine.

  16. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers.

    Science.gov (United States)

    Singh, B N; Panda, N N; Pramanik, K

    2016-06-01

    The present paper describes a rapid method of producing concentrated aqueous regenerated Bombyx mori silk fibroin (RSF) solution by applying mild shearing under forced dehumidified air and generation of electrospun SF nanofibers from concentrated solution with high mechanical strength using free liquid surface electrospinning machine. The shear induced concentrating mechanism favoured the electrospinning process by enhancing the viscosity (>2.43Pas as onset for electrospinning) and decreasing the surface tension of the solution (40.1-37.7mN/m). Shearing reduced the β-turns and random coil molecular conformation and thereby, intensified the β-sheet content from 16.9% to 34% which is the minimum content needed to commence RSF nanofibers formation. Subsequently, electrospun nanofibrous mats were produced from different batches of concentrated SF solutions (15-21wt%). Among the concentrated RSF, 17wt% RSF solution was the most favourable concentration producing electrospun nanofibrous mat having lowest average fiber diameters of 183±55nm and good tensile strength. The mechanical strength of the nanofibrous sheet was further improved by cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EDC+NHS) which might be due to enhancement of β-sheet content. These nanofibers exhibited 17.57±1.13MPa ultimate tensile strength, 12.48±1.46% tensile strain at break and 37.7% increase in root mean square surface roughness which is favourable feature for cell adhesion and neo-tissue formation.

  17. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency.

    Science.gov (United States)

    Shi, Li Bing; Cai, Hong Xia; Chen, Long Kun; Wu, Yan; Zhu, Shou An; Gong, Xiao Nan; Xia, Ya Xian; Ouyang, Hong Wei; Zou, Xiao Hui

    2014-02-01

    In this study we developed a tissue engineered bulking agent that consisted of adipose-derived stem cells (ADSCs) and silk fibroin microspheres to treat stress urinary incontinence caused by severe intrinsic sphincter deficiency (ISD). ISD models were established by completely transection of the bilateral pudendal nerve (PNT) and confirmed by the decreased leak-point pressure (LPP) and increased lumen area of urethra. Injection of silk fibroin microspheres could recover LPP and lumen area at 4 weeks but its efficacy disappears at 8, 12 weeks. Moreover, it was exciting to find that tissue engineered bulking agent brought long-term efficacy (at 4, 8, 12 weeks post-injection) on the recovery of LPP and lumen area. Concomitantly with the function, tissue engineered bulking agent treated group also improved the urethral sphincter structure as exhibited by better tissue regeneration. The findings showed that silk fibroin microspheres alone could work effectively in short-term, while tissue engineered bulking agent that combined silk fibroin microspheres with ADSCs exhibited promising long-term efficacy. This study developed a new strategy of tissue engineered bulking agent for future ISD therapy.

  18. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    Science.gov (United States)

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development.

  19. THE PREPARATION AND STUDY ON THE NANO-TiO2/SILK FIBROIN COMPOSITE FILMS BY THE SOL-GEL METHOD

    Institute of Scientific and Technical Information of China (English)

    FENG Xinxing; CHEN Jianyong; YU Chunhua

    2006-01-01

    Based on the sol-gel technique using butyl titanate as oxide precursor, the regenerated SF (silk fibroin)/nano-TiO2 composite films were synthesized. Different amounts of butyl titanate to SF were used to verify this effect on the characteristics of the formed materials. Samples were characterized by thermogravimetric analysis, X-ray diffractometry, UV, AFM and FT-IR spectroscopy.The experimental results reveal that, compared to the pure silk fibroin films, the mechanical strength of these regenerated SF/nano-TiO2 composite films were increased and the dissolubility in water of SF/nano-TiO2 composite films in aqueous solution were decreased. The diameter of nano-TiO2 particle films was about 80nm through UV and AFM. The nano-TiO2 particles were well dispersed in the regenerated silk fibroin. It was found that the crystal structures of the composite films were transited from typical Silk Ⅰ to typical Silk Ⅱ by the XRD and FTIR. Furthermore, the crystallinity of the composite films was obviously improved. Through the TGA, it was demonstrated that the heat transition temperature of composite films was also enhanced.

  20. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber.

    Science.gov (United States)

    Hinman, M B; Lewis, R V

    1992-09-25

    Spider dragline silk is a unique protein fiber possessing both high tensile strength and high elasticity. A partial cDNA clone for one dragline silk protein (Spidroin 1) was previously isolated. However, the predicted amino acid sequence could not account for the amino acid composition of dragline silk. We have isolated a partial cDNA clone for another dragline silk protein (Spidroin 2), demonstrating that dragline silk is composed of multiple proteins. The amino acid sequence exhibits an entirely different repetitive motif than Spidroin 1. Spidroin 2 is predicted to consist of linked beta-turns in proline-rich regions which alternate with beta-sheet regions composed of polyalanine segments. This structure for Spidroin 2 provides a model for dragline silk structure and function.

  1. 用丝素蛋白作壁材制备丝素蛋白-维生素E微胶囊的试验%An Experiment on the Preparation of Fibroin-vitamin-E Microcapsule with Silk Fibroin

    Institute of Scientific and Technical Information of China (English)

    朱正华; 陆旋

    2012-01-01

    Silk fibroin solution has good emulsification, stability and colloidal behavior. Fibroin-vitamin-E microcapsules were prepared using silk fibroin as wall material which was mixed with vitamin E by means of high temperature spray-drying. The proportion of vitamin E and silk fibroin solution was optimized to improve capsule property. When the mass ratio of vitamin E to 1 % silk fibroin solution was 0. 5:1, the microcapsules had good performance with an encapsulating rate o-ver90%. The difference of size between prepared microcapsules was very little, with diameter and thickness ranging from 3 to 5 μm and 500 nm to 1 μm respectively. It is suggested that the crystalline domain of silk fibroin was changed after high temperature spray-drying treatment, being favorable to the slow-release of encapsulated drug.%以具有良好乳化性、稳定性及胶体特性的丝素蛋白溶液作为壁材,与维生素E共混后进行高温喷雾干燥,制备丝素蛋白-维生素E微胶囊.通过优化维生素E与丝素蛋白溶液的配比,提高微胶囊的成囊性能.当维生素E与1%丝素蛋白溶液的质量比为0.5∶1时,制备的微胶囊成囊性能较好,包埋率在90%以上,胶囊颗粒间大小相差不大,囊径在3~5 μm之间,囊壁厚度在500nm~1 μm之间.推测丝素蛋白囊壁在高温喷雾干燥过程中其蛋白质结晶区结构发生变化,从而有利于提高对药物的缓释性能.

  2. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres.

    Science.gov (United States)

    Zeng, Shuguang; Ye, Manwen; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfen

    2015-01-01

    We report the effects of distinct concentrations of genipin and silk fibroin (SF):chitosan (CS) ratios on the formation of SF-CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA), and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 μm to 147 μm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR) results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA) results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the entrapped BSA on the 1st day and cumulatively released 75.20%±2.52%, 79.16%±4.31%, and 89.04%±4.68% in 21 days, respectively. The pure CS microspheres prepared in the presence of 10 mg of BSA burst release 39.53%±1.76% of BSA on the 1st day and cumulatively released 83.57%±2.33% of the total encapsulated BSA in 21 days. The SF-CS composite microspheres exhibited higher sustained release than did the pure CS microspheres, and thus these composite

  3. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis.

    Science.gov (United States)

    Huang, Fuhua; Sun, Lizhong; Zheng, Jun

    2008-12-01

    Silk fibroin (SF) is well known to be biocompatible, degradable, and nontoxic. In this study, SF was impregnated into a porous polyester graft (InterVascular external velour, InterVascular, Inc., La Ciotat, France), 8 mm in diameter. The SF-impregnated graft was investigated in vitro and in vivo to evaluate its potential for use as a new vascular graft impervious to blood, while retaining high porosity for tissue ingrowth and biological healing. For in vitro investigation, the water permeability, coating weight, morphology, and mechanical properties of the SF-impregnated grafts were compared with collagen-coated grafts (InterGard grafts, InterVascular, Inc.). The water permeability of the controls (1388 +/- 30.5 mL/cm(2)/min at 120 mm Hg) was reduced >99% by SF impregnation, rendering the graft impervious to blood. The coating weight of the collagen was 117 +/- 22 mg/g of graft, producing a slightly lower value than the InterGard prosthesis (302 +/- 23 mg/g). For the in vivo experiment, six SF-sealed vascular grafts were implanted in the abdominal aorta of dogs for scheduled periods ranging from 4 h to 6 months. Commercial collagen-impregnated grafts (InterGard) and untreated external velour grafts (InterVascular) were also implanted for scheduled periods ranging from 1 to 6 months for comparison. Gross observation of the explanted grafts and histological examination of the representative sections were conducted for two types of grafts using a light microscope after hematoxylin-eosin staining. These SF-impregnated grafts showed less foreign body and inflammation reactions, and the SF layer was almost completely absorbed. The average of the values in each period for the SF grafts was 48% neointima at 1 month, 85% at 3 months, and 97% at 6 months, whereas those of the InterGard prostheses was 34, 46, and 90%, respectively. This study demonstrated that the use of a biodegradable SF as biological sealant can be a feasible approach to prepare impervious textile arterial

  4. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2017-03-01

    Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.

  5. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.

    Science.gov (United States)

    Kweon, Haeyong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  6. Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug

    Directory of Open Access Journals (Sweden)

    Tatyana Dyakonov

    2012-01-01

    Full Text Available The objective of this proof-of-concept study was to develop a platform for controlled drug delivery based on silk fibroin (SF and to explore the feasibility of using SF in oral drug delivery. The SF-containing matrixes were prepared via spray-drying and film casting, and the release profile of the model drug naproxen sodium was evaluated. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR has been used to observe conformational changes in SF- and drug-containing compositions. SF-based films, spray-dried microparticles, and matrixes loaded with naproxen were prepared. Both FTIR spectra and in vitro dissolution data demonstrated that SF β-sheet conformation regulates the release profile of naproxen. The controlled release characteristics of the SF-containing compositions were evaluated as a function of SF concentration, temperature, and exposure to dehydrating solvents. The results suggest that SF may be an attractive polymer for use in controlled drug delivery systems.

  7. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill [Applied Sericulture and Apiculture Division, National Institute of Agricultural Science and Technology, Suwon 441100 (Korea, Republic of); Lee, Hyun Chul; Na, Hee Sam [Department of Microbiology and Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju (Korea, Republic of); Won, Young Ho [Department of Dermatology, Chonnam National University Medical School, Kwangju (Korea, Republic of); Cho, Chong Su [School of Agricultural Biotechnology, Seoul National University, Seoul 151742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  8. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing.

    Science.gov (United States)

    Moisenovich, M M; Arkhipova, A Yu; Orlova, A A; Drutskaya, M S; Volkova, S V; Zacharov, S E; Agapov, I I; Kirpichnikov, M P

    2014-01-01

    Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems.

  9. Surface Modification of Anionic Polyurethane with Silk Fibroin Peptide and Its Effects on the Culture of Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-hao; WU Zheng-yu; LI Ming-zhong; BAI Lun; SHENG Wei-hua

    2007-01-01

    The surface modification of the anionicpolyurethane(APU) film was carried out by immersing it insilk fibroin peptide(SFP) solution for 12 h and then treatingwith low temperature plasma glow discharge. The physicalproperties and moisture permeability of modified films wereexamined. The results showed that SFP-modified APU filmshad better moisture permeability than oleophilicpolyurethane, as well as modified APU films kept goodflexibility. Modified APU films could overcome rigid andbrittle weaks of silk fibroin films. The morphology of SFPon the APU film was corpuscular aggregations. The water-contact angle measurement indicated that the change ofhydrophilicity and the element chemical analysis suggestedthat the SFP-modified film surface was enriched withnitrogen atoms. The biocompatibility of APU films may beimproved due to the change of surface compooents. Cellviability and proliferation of rat embryo dermal fibroblastsseeded on control films, APU films and SFP-modified APUfilms were evaluated by MTT assay and viable cell counts,respectively. The results indicated that the APU filmmodified by SFP protein showed the proliferation offibroblasts on the film, and that the compound interface hadgood stability in the air. Results also showed thatpresoaking treatment for APU films was effective toaccomplish the goal of surface modification.

  10. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  11. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Farokhi, Mehdi, E-mail: mehdi13294@yahoo.com [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mottaghitalab, Fatemeh, E-mail: fatemeh.motaghi@gmail.com [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hadjati, Jamshid; Azami, Mahmoud [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-02-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit.

  12. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  13. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

  14. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.

    Science.gov (United States)

    Huang, W; Lin, Z; Sin, Y M; Li, D; Gong, Z; Yang, D

    2006-07-01

    Spider silks are renowned for their excellent mechanical properties. Although several spider fibroin genes, mainly from dragline and capture silks, have been identified, there are still many members in the spider fibroin gene family remain uncharacterized. In this study, a novel silk cDNA clone from the golden web spider Nephila antipodiana was isolated. It is serine rich and contains two almost identical fragments with one varied gap region and one conserved spider fibroin-like C-terminal domain. Both in situ hybridization and immunoblot analyses have shown that it is specifically expressed in the tubuliform gland. Thus, it likely encodes the silk fibroin from the tubuliform gland, which supplies the main component of the inner egg case. Unlike other silk proteins, the protein encoded by the novel cDNA in water solution exhibits the characteristic of an alpha-helical protein, which implies the distinct property of the egg case silk, though the fiber of tubuliform silk is mainly composed of beta-sheet structure. Its sequence information facilitates elucidation of the evolutionary history of the araneoid fibroin genes.

  15. Biodegradation of Silk Biomaterials

    OpenAIRE

    Bochu Wang; Yang Cao

    2009-01-01

    Silk fibroin from the silkworm, Bombyx mori, has excellent properties such as biocompatibility, biodegradation, non-toxicity, adsorption properties, etc. As a kind of ideal biomaterial, silk fibroin has been widely used since it was first utilized for sutures a long time ago. The degradation behavior of silk biomaterials is obviously important for medical applications. This article will focus on silk-based biomaterials and review the degradation behaviors of silk materials.

  16. Antimicrobial and antioxidant surface modification toward a new silk-fibroin (SF)-L-Cysteine material for skin disease management

    Science.gov (United States)

    Nogueira, Frederico; Granadeiro, Luíza; Mouro, Claudia; Gouveia, Isabel C.

    2016-02-01

    A novel dressing material - silk fibroin fabric (SF)-L-Cysteine (L-Cys) - is here developed to be used as standard treatment for atopic dermatitis (AD), which combines comfort, thermic, and tensile strength properties of silk materials with antioxidant and antimicrobial effects of L-Cys. A careful understanding about the linking strategies is needed in order not to compromise the bioavailability of L-Cys and deplenish its bioactivity. Durability was also addressed through washing cycles and compared with hospital requirements, according to international Standard EN ISO 105-C06:2010. The present research also analyze the interactions between Staphylococcus aureus and SF-L-Cys under simulating conditions of AD and demonstrated the effectiveness of a double covalent grafting, with the importance of SF tyrosine (Tyr) covalent linkage with L-Cys (SF-g-L-Cys/Tyr-g-L-Cys) even after several washing cycles, twenty five, whereas for a disposable application a single covalent mechanism of grafting L-Cys proved to be sufficient (SF-g-L-Cys). Results showed effective antimicrobial activities exhibiting higher inhibition ratios of 98.65% for SF-g-L-Cys after 5 washing cycles, whereas 97.55% for SF-g-L-Cys/Tyr-g-L-Cys after 25 washing cycles, both at pH 9.5 grafting strategy. Furthermore, it is also reported a non-protumoral effect of L-Cys. A new advance is herein achieved at the world of medical antimicrobial textiles tailored to address wound moisture environment and exudate self-cleaning, which may open novel applications as complementary therapy for AD disease.

  17. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    Science.gov (United States)

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae).

  18. Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae)

    Indian Academy of Sciences (India)

    Elaine C M Silva-Zacarin; Regina L M Silva De Moraes; S R Taboga

    2003-12-01

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

  19. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  20. New insight into the mechanism underlying fibroin secretion in silkworm, Bombyx mori.

    Science.gov (United States)

    Long, Dingpei; Lu, Weijian; Zhang, Yang; Guo, Qing; Xiang, Zhonghuai; Zhao, Aichun

    2015-01-01

    In order to investigate the role of different parts of the fibroin heavy chain (H-chain) in the secretion of fibroin in the silk gland of the silkworm (Bombyx mori) in vivo, two enhanced green fluorescent protein (EGFP)/H-chain fusion genes with deduced protein sequences containing an identical N-terminal region and different C-terminal regions of the H-chain were introduced into the B. mori genome using a piggyBac-mediated germline transformation. EGFP fluorescence and molecular analysis showed the products of two different EGFP/H-chain fusion proteins were secreted into the posterior silk gland lumen and aggregated in the middle silk gland and spun into cocoons. The results revealed that only the non-repetitive N terminus of the H-chain is essential for secretion of the H-chain into the posterior silk gland lumen. In addition, our results also indicated that the most likely post-translational modification of the H-chain is at the C-terminal domain. Here, our results not only provide a theoretical basis for the genetic modification of silk fiber as a functional biomaterial but also are of great significance to establishing a new silk gland bioreactor to mass-produce exogenous proteins in an active form.

  1. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Science.gov (United States)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  2. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds.

    Science.gov (United States)

    Kim, Beom Su; Park, Ko Eun; Kim, Min Hee; You, Hyung Keun; Lee, Jun; Park, Won Ho

    2015-01-01

    The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution electrospinning with melt electrospinning, while varying the content of the nanofiber. The morphology of the silk fibroin (SF)/poly(ε-caprolactone) (PCL) nano/microfibrous composite scaffolds was investigated with field-emission scanning electron microscopy, while the mechanical and pore properties were assessed by measurement of tensile strength and mercury porosimetry. To assay cell proliferation, cell viability, and infiltration ability, human mesenchymal stem cells were seeded on the SF/PCL nano/microfibrous composite scaffolds. From in vivo tests, it was found that the bone-regenerating ability of SF/PCL nano/microfibrous composite scaffolds was closely associated with the nanofiber content in the composite scaffolds. In conclusion, this approach of controlling the nanofiber content in SF/PCL nano/microfibrous composite scaffolds could be useful in the design of novel scaffolds for tissue engineering.

  3. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.

    Science.gov (United States)

    Teimouri, Abbas; Ebrahimi, Raheleh; Emadi, Rahmatollah; Beni, Batool Hashemi; Chermahini, Alireza Najafi

    2015-05-01

    A scaffold possessing certain desired features such as biodegradation, biocompatibility, and porous structure could serve as a template for tissue engineering. In the present study, silk fibroin (SF), chitosan (CS) and zirconia (Nano ZrO2) were all combined using the freeze drying technique to fabricate a bio-composite scaffold. The composite scaffold (SF/CS/Nano ZrO2) was characterized by SEM, XRD, TGA, BET and FT-IR studies. The scaffold was found to possess a porous nature with pore dimensions suitable for cell infiltration and colonization. The presence of zirconia in the SF/CS/Nano ZrO2 scaffold led to an increase in compressive strength and water uptake capacity while at the same time decreasing the porosity. Cytocompatibility of the SF/CS/Nano ZrO2 scaffold, assessed by MTT assay, revealed non-toxicity to the Human Gingival Fibroblast (HGF, NCBI: C-131). Thus, we suggest that SF/CS/Nano ZrO2 composite scaffold is a potential candidate to be used for tissue engineering.

  4. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Song; Gao Zhen; Chen Xiaomeng; Lian Xiaojie; Zhu Hesun [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng Jun; Sun Lizhong [Department of Cardiac Surgery, Cardiovascular Institute and Fu Wai Hospital, CAMS and PUMC, Beijing 100037 (China)], E-mail: wangsongbit@hotmail.com

    2008-12-15

    The hemocompatibility of silk fibroin (SF) was improved with ferulic acid (FA) by graft polymerization. Ferulic acid is an active ingredient of many Chinese herbal medicines, such as Chuanxiong (Rhizoma ligustici wallichii), Danggui (Angelica sinensis) and Awei (Asafoetida giantfennel), which have been used to treat cardiovascular diseases by Chinese physicians for thousands of years. The inhibitory functions of FA on blood coagulation and erythrocyte agglutination were first characterized by a Lee-White test tube method and a micropipette technique, respectively. Then, FA was immobilized on SF by graft polymerization and the surface composition of modified SF was characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and optical microscopy. The anticoagulant activity of modified SF was assessed, respectively, by in vitro clotting time measurements on a photo-optical clot detection instrument and with the Lee-White test tube method. The test results indicated that in comparison to untreated SF, the anticoagulant activity of modified SF has been improved significantly. Moreover, the SF surface composition is altered by FA but its {beta}-sheet conformation is not disturbed.

  5. Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Manchineella, Shivaprasad; Thrivikraman, Greeshma; Basu, Bikramjit; Govindaraju, T

    2016-09-07

    Surface interactions at the biomaterial-cellular interface determine the proliferation and differentiation of stem cells. Manipulating such interactions through the surface chemistry of scaffolds renders control over directed stem cell differentiation into the cell lineage of interest. This approach is of central importance for stem cell-based tissue engineering and regenerative therapy applications. In the present study, silk fibroin films (SFFs) decorated with integrin-binding laminin peptide motifs (YIGSR and GYIGSR) were prepared and employed for in vitro adult stem cell-based neural tissue engineering applications. Functionalization of SFFs with short peptides showcased the peptide sequence and nature of functionalization-dependent differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Intriguingly, covalently functionalized SFFs with GYIGSR hexapeptide (CL2-SFF) supported hMSC proliferation and maintenance in an undifferentiated pluripotent state and directed the differentiation of hMSCs into neuron-like cells in the presence of a biochemical cue, on-demand. The observed morphological changes were further corroborated by the up-regulation of neuronal-specific marker gene expression (MAP2, TUBB3, NEFL), confirmed through semiquantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis. The enhanced proliferation and on-demand directed differentiation of adult stem cells (hMSCs) by the use of an economically viable short recognition peptide (GYIGSR), as opposed to the integrin recognition protein laminin, establishes the potential of SFFs for neural tissue engineering and regenerative therapy applications.

  6. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  7. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation

    Science.gov (United States)

    Chen, Biao-Qi; Kankala, Ranjith Kumar; Chen, Ai-Zheng; Yang, Ding-Zhu; Cheng, Xiao-Xia; Jiang, Ni-Na; Zhu, Kai; Wang, Shi-Bin

    2017-01-01

    Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF) nanoparticles were incorporated into poly(l-lactic acid) (PLLA) to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2). The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1) and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8) significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP), osteocalcin (OC) and collagen 1 (COL-1). These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering. PMID:28331312

  8. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  9. Biomineralization regulation by nano-sized features in silk fibroin proteins: synthesis of water-dispersible nano-hydroxyapatite.

    Science.gov (United States)

    Huang, Xiaowei; Liu, Xi; Liu, Shanshan; Zhang, Aili; Lu, Qiang; Kaplan, David L; Zhu, Hesun

    2014-11-01

    In the present study, silk fibroin (SF) was used as a template to prepare nano-hydroxyapatite (nano-HA) via a biomineralization process. We observed that the content of SF affected both the morphology and water dispersibility of nano-HA particles. Scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), zetasizer, and Fourier transform infrared spectroscopy (FTIR) were used to examine nano-HA particle features including the surface morphology, aggregation performance, and crystallization. Rod-like nano-HA particles with desired water dispersibility were achieved when the ratio of SF/HA (calculated) was above 7:3. SEM, TEM, and zeta potential results revealed that nano-HA particles were enclosed by the SF which formed a negative charge layer preventing the aggregation of HA nanoparticles in aqueous solution. Moreover, the nano-HA particles were able to re-disperse in water without precipitation for two weeks at room temperature, 60°C, and 90°C. Our work suggested a facile and effective approach of designing water-dispersible nano-HA particles which may have wide potential application in tissue engineering especially bone regeneration.

  10. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.

    Science.gov (United States)

    Li, Zhengqiang; Liu, Peng; Yang, Ting; Sun, Ying; You, Qi; Li, Jiale; Wang, Zilin; Han, Bing

    2016-05-01

    Nanofibrous materials produced by electrospinning have attracted considerable attention from researchers in regenerative medicine. A combination of nanofibrous scaffold and chondrocytes is considered promising for repair of cartilage defect or damage. In the present study, we fabricated a poly(l-lactic-acid) (PLLA)/silk fibroin (SF) nanofibrous scaffold by electrospinning and evaluated its chondrogenic potential. The PLLA/SF nanofibers were characterized for diameter, surface wettability, swelling ratio, and tensile strength. Throughin vitroexperiments, PLLA/SF scaffold-chondrocyte interactions were investigated relative to the unmodified PLLA scaffold with regard to cellular adhesion, spreading, and proliferation by scanning electron microscopy and confocal laser scanning microscopy, and through analyses of DNA, sulfated glycosaminoglycan, and collagen. In addition, hematoxylin-eosin and Alcian blue-nuclear fast red staining were used to observe growth of chondrocytes, and secretion and distribution of cartilage-specific extracellular matrices in the scaffolds. Expressions of cartilage-related genes (collagen II, aggrecan, sox9, collagen I, and collagen X) were detected by real-time quantitative PCR. The PLLA/SF scaffold had better hydrophilicity, and could support chondrocytes adhesion and spreading more effectively than the unmodified PLLA scaffold. Chondrocytes secreted more cartilage-specific extracellular matrices and maintained their phenotype on the PLLA/SF scaffold. So it is concluded that the PLLA/SF scaffold is more conducive toin vitroformation of cartilage-like new tissues than the unmodified PLLA scaffold, and may be a promising material in cartilage tissue engineering.

  11. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    Science.gov (United States)

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  12. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

    Science.gov (United States)

    Lin, Si; Chen, Mengxia; Jiang, Huayue; Fan, Linpeng; Sun, Binbin; Yu, Fan; Yang, Xingxing; Lou, Xiangxin; He, Chuanglong; Wang, Hongsheng

    2016-03-01

    Silk fibroin (SF) from Bombyx mori has an excellent biocompatibility and thus be widely applied in the biomedical field. Recently, various SF-based composite nanofibers have been developed for more demanding applications. Additionally, grape seed extract (GSE) has been demonstrated to be powerful on antioxidation. In the present study, we dedicate to fabricate a GSE-loaded SF/polyethylene oxide (PEO) composite nanofiber by green electrospinning. Our results indicated the successful loading of GSE into the SF/PEO composite nanofibers. The introduction of GSE did not affect the morphology of the SF/PEO nanofibers and GSE can be released from the nanofibers with a sustained manner. Furthermore, comparing with the raw SF/PEO nanofibrous mats, the GSE-loaded SF/PEO nanofibrous mats significantly enhanced the proliferation of the skin fibroblasts and also protected them against the damage from tert-butyl hydroperoxide-induced oxidative stress. All these findings suggest a promising potential of this novel GSE-loaded SF/PEO composite nanofibrous mats applied in skin care, tissue regeneration and wound healing.

  13. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning.

    Science.gov (United States)

    Chang, Huaipu; Cheng, Tingcai; Wu, Yuqian; Hu, Wenbo; Long, Renwen; Liu, Chun; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.

  14. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori - Insight into the Mechanism of Silk Formation and Spinning.

    Directory of Open Access Journals (Sweden)

    Huaipu Chang

    Full Text Available Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.

  15. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Liu, Haifeng; Li, Xiaoming; Niu, Xufeng; Zhou, Gang; Li, Ping; Fan, Yubo

    2011-08-08

    Endothelialization of vascular grafts prior to implantation has been investigated widely to enhance biocompatibility and antithrombogenicity. Thrombosis of artificial vessels is typically caused by platelet adhesion and agglomeration following endothelial cells detachment when exposed to the shear stress of blood circulation. The present study thus aimed at preventing platelet adhesion and aggregation onto biomaterials before the endothelial confluence is fully achieved. We report this modification of poly(lactic-co-glycolic acid) (PLGA) scaffolds, both to impart hemocompatibility to prevent platelet adhesion and aggregation before the endothelial confluence is fully achieved and to support EC growth to accelerate endothelialization. The modification was achieved by covalent immobilization of sulfated silk fibroin on PLGA scaffolds using γ irradiation. Using phosphate-buffered saline (PBS) as an aging medium, it was demonstrated that the scaffolds prepared by γ irradiation had a good retention of sulfated silk fibroin. The systematic in vitro hemocompatibility evaluation revealed that sulfated silk fibroin covalently immobilized PLGA (S-PLGA) scaffolds-reduced platelet adhesion and activation, prolonged whole blood clotting time, activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). To evaluate further in vitro cytocompatibility of the scaffolds, we seeded vascular ECs on the scaffolds and cultured them for 2 weeks. The ECs were seen to attach and proliferate well on S-PLGA scaffolds, forming cell aggregates that gradually increased in size and fused with adjacent cell aggregates to form a monolayer covering the scaffold surface. Moreover, it was demonstrated through the gene transcript levels and the protein expressions of EC-specific markers that the cell functions of ECs on S-PLGA scaffolds were better preserved than those on PLGA scaffolds. Therefore, this study has described the generation of a vascular graft that

  16. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    Science.gov (United States)

    Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena

    2016-01-01

    Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats

  17. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    Directory of Open Access Journals (Sweden)

    Liguo Sun

    2014-01-01

    Full Text Available The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3 gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.

  18. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    Directory of Open Access Journals (Sweden)

    Rodriguez-Nogales A

    2016-11-01

    Full Text Available Alba Rodriguez-Nogales,1 Francesca Algieri,1 Laura De Matteis,2 A. Abel Lozano-Perez,3 Jose Garrido-Mesa,1 Teresa Vezza,1 J M. de la Fuente,2 Jose Luis Cenis,3 Julio Gálvez,1,* Maria Elena Rodriguez-Cabezas1,* 1CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of Granada, Granada, 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, 3Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain *These authors contributed equally to this work Background: Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose: This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs in the trinitrobenzenesulfonic acid (TNBS model of rat colitis. Materials and methods: SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat and RGD-SFNs (1 mg/rat were administered intrarectally to TNBS-induced colitic rats for 7 days. Results: The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the

  19. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts.

    Science.gov (United States)

    Xu, Shengjie; Yong, Liu; Wu, Peiyi

    2013-02-01

    Flowerlike gold nanoparticles (Au NPs)/reduced graphene oxide (RGO) composites were fabricated by a facile, one-pot, environmentally friendly method in the presence of regenerated silk fibroin (RSF). The influences of reaction time, temperature, and HAuCl(4): RGO ratio on the morphology of Au NPs loaded on RGO sheets were discussed and a tentative mechanism for the formation of flowerlike Au NPs/RGO composite was proposed. In addition, the flowerlike Au NPs/RGO composite showed superior catalytic performance for oxygen reduction reaction (ORR) to Au/RGO composites with other morphologies. Our work provides an alternative facile and green approach to synthesize functional metal/RGO composites.

  20. ToF-SIMS characterization of silk fibroin and polypyrrole composite actuators

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying; Fengel, Carly V.; Larson, Jesse D.; Zhu, Zihua; Murphy, Amanda R.; Leger., Janelle M.

    2015-11-01

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  1. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound.

    Science.gov (United States)

    Shan, Ying-Hui; Peng, Li-Hua; Liu, Xin; Chen, Xi; Xiong, Jie; Gao, Jian-Qing

    2015-02-20

    Functional wound dressing has provided new challenges for researchers who focus on burn to improve skin graft quality, reduce scarring, and develop a pluristratified dermal or epidermal construct of a burn wound. This study aimed to investigate the effect of a silk fibroin/gelatin (SF/GT) electrospun nanofibrous dressing loaded with astragaloside IV (AS) on deep partial-thickness burn wound. AS-loaded SF/GT-blended nanofibrous dressing was prepared by electrospinning nanotechnology. The optimal ratio (25:75) of silk fibroin to gelatin was further optimized by evaluating ATR-FTIR characteristics, mechanical properties, porosity, swelling rate, degradation, and release profile of the AS-loaded SF/GT nanofibrous dressing. In contrast to the blank control, the AS-loaded SF/GT nanofibrous dressing promoted cell adhesion and proliferation with good biocompatibility in vitro (pscar formation in vivo by stimulating wound closure (ptypes of collagen, and improving collagen organization. These results showed that SF/GT nanofibrous dressing is a promising topical drug delivery system. Furthermore, AS-functionalized SF/GT nanofibrous dressing is an excellent topical therapeutic that could be applied to promote healing and elicit anti-scar effects on partial-thickness burn wound.

  2. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65MPa and tensile strength 180.36MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility.

  3. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiping, E-mail: zhp9810_a@163.com; Liu, Xiaotian, E-mail: xtianliu@126.com; Yang, Mingying, E-mail: yangm@zju.edu.cn; Zhu, Liangjun, E-mail: ljzhu@zju.edu.cn

    2015-10-01

    To mimic the natural fibrous structure of the tissue extracellular matrix, a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold was fabricated by a thermally-induced phase-separation method. The effects of SF/SA ratio on the structure and the porosity of the composite scaffolds were examined. Scanning electron microscopy and porosity results showed that the 5SF/1SA and 3SF/1SA scaffolds possessed an excellent nano-fibrous structure and a porosity of more than 90%. Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry results indicated the physical interaction between SF and SA molecules and their good compatibility in the 5SF/1SA and 3SF/1SA scaffolds, whereas they showed less compatibility in the 1SF/1SA scaffold. Cell culture results showed that MG-63 cells can attach and grow well on the surface of the SF/SA scaffolds. The nano-fibrous SF/SA scaffold can be potentially used in tissue engineering. - Highlights: • We fabricate a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold. • The scaffold was prepared through a thermally induced phase separation method. • SF molecules are physically interacted with SA molecules. • Good molecular compatibility can be found in 5SF/1SA and 3SF/1SA scaffolds. • The nano-fibrous SF/SA scaffold is biocompatible.

  4. Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells.

    Science.gov (United States)

    Chang, Shu-Quan; Dai, Yao-Dong; Kang, Bin; Han, Wei; Chen, Da

    2009-10-01

    Silk fibroin coated CdSe quantum dots (SF-CdSe QDs) were successfully synthesized via a one-step gamma-radiation route in an aqueous system at room temperature. The as prepared products were characterized by transmission electron microscope (TEM), energy dispersion spectrum (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and photoluminescence spectrum (PL). The SF-CdSe QDs were about 5 nm in diameter and exhibited excellent water-solubility and photoluminescence properties. The cellular distribution, photostability and cytotoxicity of SF-CdSe QDs with different amount of SF coatings were also investigated by laser scanning confocal microscope (LSCM) and MTT assays in human pancreatic carcinoma (PANC-1) cells. All the results reveal that these QDs could be easily internalized by cells and localized in cytoplasm around nuclei. Moreover, SF-CdSe QDs were proved to be low cytotoxicity (the concentration of QDs CdSe QDs might have many potential applications in tumor imaging and therapy. And the synthesis strategy could be easily extended to fabrication of other nanoparticles coated with silk fibroin.

  5. 不同钙-醇溶解体系丝素蛋白的制备及表征研究%Preparation and Characterization of Silk Fibroin Treated with Different Calcium-alcohol Solution

    Institute of Scientific and Technical Information of China (English)

    李玲玲; 周伟; 代方银; 梅枭雄; 范承启; 杨霞; 吴玉章

    2012-01-01

    The regenerated silk fibroin were obtained by separately prepared from the calcium nitrate tetrahydrate-methanol solution [ molar ratio of Ca( NO3) 2 4H2O: methanol =1:2], calcium nitrate tetrahydrate-ethanol solution (molar ratio of Ca( NO3) 2 4H2O: ethanol =1:2) , calcium chloride-rnelhanol system( molar ratio of CaCl2: methanol: H2O = 1: 2- 8) , and calcium chloride-ethanol system(molar ratio of CaCl2: ethanol: H2O = 1 : 2: 8). Then these regenerated silk fibroins were dialyzed against distilled water for 2 days. The regenerated silk fibroin was used as substrate to prepare silk fibroin powder by using freeze-drying method. The molecular mass of liquefied silk fibroin was measured by SDS-PAGE. Regenerated fibroin fibers were examined by the scanning electron microscope (SEM). To obtain fine images, the lyophilized samples were coated with gold. Their surface and fracture images were captured. The molecular conformation of regenerated silk fibroin was investigated by FTIR. SDS-PAGE results showed that regenerated silk fibroin treated with Ca(NO3)2 4H20-methanol and Ca (NO3)2 4H,O-ethanol had lower molecular weight than CaCl2-ethanol-H20 and CaCl2-methanol-H20. SEM images revealed that the Ca(NO3)2 4H20-methanol and CaCl2-ethanol solvent system disolved the silk fibroin completely. FTIR results showed that ihe molecular conformation of regenerated silk fibroin was between with p-sheet and random coil. These provided a ground work in research of silk fibron which was suitable to serve as drug delivery material.%采用4种中性盐溶液Ca(NO3)24H2O-甲醇、Ca(NO3)24H2O-乙醇、CaCl2-甲醇-水和CaCl2-乙醇-水(摩尔比分别为1∶2、1∶2、1∶2∶8、1∶2∶8)处理蚕丝纤维,透析后经冷冻干燥制成固体,利用SDS-PAGE、电镜扫描和红外光谱对制得的固体进行表征.SDS-PAGE结果表明:Ca( NO3)24H2O-醇体系降解丝素蛋白较CaCl2-醇-水体系降解程度高;电镜扫描的结果表明Ca(NO3)24H2O-甲醇和CaCl2-乙醇-水

  6. 甘油对丝素蛋白膜水溶性和结构的影响%Relationship Between Structure and Solubility of Silk Fibroin and Glycerol in Blend Film

    Institute of Scientific and Technical Information of China (English)

    罗敏清; 卢神州

    2011-01-01

    The change of crystal structure and crystallinity of silk fibroin (SF) in the process of becoming insoluble by adding glycerol was studied. The blend silk fibroin films were casted by silk fibroin solutions mixing with glycerol at a series of ratios at room temperature. The water-content, solubility, structure, and mechanical properties of the blend films were measured. The results show that with the content of glycerol increasing, the solubility decreases. The blend films became insoluble when the mass ratios of glycerol/SF are more than 10%. When the content of glycerol is low, there is a little of Silk Ⅱ structure and almost no Silk Ⅰ structure in blend film. With glycerol increasing, the crystallinity of Silk Ⅰ increases while that of Silk Ⅱ decrease in blend film. When the content of glycerol exceeding 10% , in which content that silk fibroin become insoluble, the crystalline structure of SF is mostly changed into Silk Ⅰ and there is almost no Silk Ⅱ structure. Mechanical properties indicated that glycerol could significantly improved the flexibility of silk films. In summary, the crystal structure is changed to Silk Ⅰ and the crystallinity of silk fibroin is increased so that the solubility of silk fibroin is significantly reduced by adding glycerol when casting film.%探讨了甘油的加入对丝素蛋白溶解过程的结晶结构及结晶度的影响.以甘油为添加剂用流延法于室温制备一系列丝素共混膜,测试了其含水率、溶失率及结构和机械性能.结果表明,随着甘油加入量的增加,丝素蛋白的溶失率逐渐降低;当甘油/丝素质量分数超过10%时,共混膜呈现水不溶性.当甘油加入量较少时,丝素蛋白呈现少量的SilkⅡ结晶,而Silk Ⅰ结构不明显.随着甘油含量的不断增加,Silk Ⅰ结晶逐渐增加而SilkⅡ结晶逐渐减少.当甘油加入量达到不溶点(10%)时,丝素蛋白主要转变为Silk Ⅰ结晶,而几乎没有SilkⅡ结晶.甘油的加入

  7. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Eui-Baek [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate school of Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Sung, Nak-Yun [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kwon, Sun-Kyu [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Jochiwon 339-800 (Korea, Republic of); Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Han-Joon [Graduate school of Food and Biotechnology, Korea University, Jochiwon 339-800 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  8. Investigation of silk fibroin nanoparticle-decorated poly(L-lactic acid composite scaffolds for osteoblast growth and differentiation

    Directory of Open Access Journals (Sweden)

    Chen BQ

    2017-03-01

    Full Text Available Biao-Qi Chen,1 Ranjith Kumar Kankala,1,2 Ai-Zheng Chen,1,2 Ding-Zhu Yang,1 Xiao-Xia Cheng,1 Ni-Na Jiang,1,2 Kai Zhu,3,4 Shi-Bin Wang1,2 1Institute of Biomaterials and Tissue Engineering, 2Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 3Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 4Shanghai Institute of Cardiovascular Disease, Shanghai, People’s Republic of China Abstract: Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF nanoparticles were incorporated into poly(L-lactic acid (PLLA to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2. The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1 and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8 significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP, osteocalcin (OC and collagen 1 (COL-1. These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering. Keywords: super critical fluids, surface topography, bone

  9. Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty.

    Science.gov (United States)

    Algarrahi, Khalid; Franck, Debra; Ghezzi, Chiara E; Cristofaro, Vivian; Yang, Xuehui; Sullivan, Maryrose P; Chung, Yeun Goo; Affas, Saif; Jennings, Russell; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2015-06-01

    Surgical management of long-gap esophageal defects with autologous gastrointestinal tissues is frequently associated with adverse complications including organ dysmotility, dysphagia, and donor site morbidity. In order to develop alternative graft options, bi-layer silk fibroin (SF) scaffolds were investigated for their potential to support functional tissue regeneration in a rodent model of esophageal repair. Onlay esophagoplasty was performed with SF matrices (N = 40) in adult rats for up to 2 m of implantation. Parallel groups consisted of animals implanted with small intestinal submucosa (SIS) scaffolds (N = 22) or sham controls receiving esophagotomy alone (N = 20). Sham controls exhibited a 100% survival rate while rats implanted with SF and SIS scaffolds displayed respective survival rates of 93% and 91% prior to scheduled euthanasia. Animals in each experimental group were capable of solid food consumption following a 3 d post-op liquid diet and demonstrated similar degrees of weight gain throughout the study period. End-point μ-computed tomography at 2 m post-op revealed no evidence of contrast extravasation, fistulas, strictures, or diverticula in any of the implant groups. Ex vivo tissue bath studies demonstrated that reconstructed esophageal conduits supported by both SF and SIS scaffolds displayed contractile responses to carbachol, KCl and electrical field stimulation while isoproterenol produced tissue relaxation. Histological (Masson's trichrome and hematoxylin and eosin) and immunohistochemical (IHC) evaluations demonstrated both implant groups produced de novo formation of skeletal and smooth muscle bundles positive for contractile protein expression [fast myosin heavy chain (MY32) and α-smooth muscle actin (α-SMA)] within the graft site. However, SF matrices promoted a significant 4-fold increase in MY32+ skeletal muscle and a 2-fold gain in α-SMA+ smooth muscle in comparison to the SIS cohort as determined by histomorphometric

  10. New application of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  11. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.

    Science.gov (United States)

    Zhang, Feng; Lu, Qiang; Yue, Xiaoxiao; Zuo, Baoqi; Qin, Mingde; Li, Fang; Kaplan, David L; Zhang, Xueguang

    2015-01-01

    Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials.

  12. GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm, Bombyx mori.

    Science.gov (United States)

    Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou

    2015-02-01

    Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.

  13. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration.

    Science.gov (United States)

    Unalan, Irem; Colpankan, Oylum; Albayrak, Aylin Ziylan; Gorgun, Cansu; Urkmez, Aylin Sendemir

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O2 or N2 gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N2 plasma (PS/N2) promoted higher osteoblastic (SaOs-2) cell viability. Although, O2 plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N2 nanofiber mats would be a potential candidate for bone tissue engineering applications.

  14. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior.

    Science.gov (United States)

    Zhao, Bing; Qi, Ning; Zhang, Ke-Qin; Gong, Xiao

    2016-06-01

    Solar cells containing upconversion nanoparticles (UCNPs) used as a power source in biomedical nanosystems have attracted great interest. However, such solar cells further need to be developed because their substrate materials should be biocompatible, flexible and highly luminescent. Here, we report that freestanding silk fibroin (SF) films containing a mesh of silver nanowires (AgNWs) and β-NaYF4:Yb,Er nanocrystals with metal-enhanced fluorescence behavior can be fabricated. The freestanding composite films exhibit properties such as good optical transparency, conductivity and flexibility. Furthermore, they show significantly enhanced upconversion fluorescence due to surface plasmon polaritons (SPPs) of AgNWs compared to the SF-UCNP films without AgNWs. The freestanding composite films with metal-enhanced fluorescence behavior show great promise for future applications in self-powered nanodevices such as cardiac pacemakers, biosensors and nanorobots.

  15. Biocompatible/Degradable Silk Fibroin:Poly(Vinyl Alcohol)-Blended Dielectric Layer Towards High-Performance Organic Field-Effect Transistor

    Science.gov (United States)

    Zhuang, Xinming; Huang, Wei; Yang, Xin; Han, Shijiao; Li, Lu; Yu, Junsheng

    2016-10-01

    Biocompatible silk fibroin (SF):poly(vinyl alcohol) (PVA) blends were prepared as the dielectric layers of organic field-effect transistors (OFETs). Compared with those with pure SF dielectric layer, an optimal threshold voltage of ~0 V, high on/off ratio of ~104, and enhanced field-effect mobility of 0.22 cm2/Vs of OFETs were obtained by carefully controlling the weight ratio of SF:PVA blends to 7:5. Through the morphology characterization of dielectrics and organic semiconductors by utilizing atom force microscopy and electrical characterization of the devices, the performance improvement of OFETs with SF:PVA hybrid gate dielectric layers were attributed to the smooth and homogeneous morphology of blend dielectrics. Furthermore, due to lower charge carrier trap density, the OFETs based on SF:PVA-blended dielectric exhibited a higher bias stability than those based on pure SF dielectric.

  16. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Han, Qiming [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); and others

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  17. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weitao, E-mail: weitao_zhou@yahoo.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Huang, Haitao [School of Textile, Henan Institute of Engineering, Zhengzhou 451191 (China); Du, Shan [Australian Future Fibers Research and Innovation Centre for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Huo, Yingdong; He, Jianxin [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Cui, Shizhong, E-mail: snowballer@163.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Polyethylenimine coated silk fibroin nanofibrous nonwovens were fabricated. • The characteristics such as the fiber shape and porous structure were well maintained. • The structure and adsorption properties were studied. The adsorption property for copper ions is good. - Abstract: In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu{sup 2+} adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  18. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells.

    Science.gov (United States)

    Yudintceva, Natalia M; Nashchekina, Yulia A; Blinova, Miralda I; Orlova, Nadezhda V; Muraviov, Alexandr N; Vinogradova, Tatiana I; Sheykhov, Magomed G; Shapkova, Elena Y; Emeljannikov, Dmitriy V; Yablonskii, Petr K; Samusenko, Igor A; Mikhrina, Anastasiya L; Pakhomov, Artem V; Shevtsov, Maxim A

    In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in

  19. The cylindrical or tubiliform glands of Nephila clavipes.

    Science.gov (United States)

    Candelas, G C; Ortiz, A; Molina, C

    1986-02-01

    The cylindrical or tubiliform glands of the spider Nephila clavipes have been studied and compared to the large ampullates on which we have previously reported. The three pairs of cylindrical or tubiliform glands secrete the fibroin for the organism's egg case. Their solubilized luminar contents migrate as a homogeneous band in Sodium dodecyl sulfate polyacrylamide gel electrophoresis and turn out to be a larger protein than that produced by the large ampullates. The excised cylindrical glands remain metabolically active for several hours in a simple culture medium, where fibroin synthesis can be monitored through the incorporation of 14C alanine. The glands' response to a fibroin production stimulus does not reach the magnitude displayed by the large ampullates, but this is to be expected since their products supply different functions in this organism. This fibroin also seems to be elongated discontinuously. Translational pauses have been detected in the secretory epithelium of cylindrical and large ampullate glands of Nephila as well as in the silk glands of Bombyx mori. Since these glands produce the fibroin for the females egg case, they should prove to be an interesting model system.

  20. Progress of electrospun silk fibroin based scaffolds for tissue engineering%静电纺丝素蛋白及其应用于组织工程的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄继伟; 张锋; 左保齐

    2011-01-01

    The researches related to electrospinning of silk, including electrospim solvents, blends, and electrospin device are reviewed, and the application of electrospun silk fibroin based scaffolds in tissue engineering is introduced.%从丝素蛋白静电纺丝的溶剂开发、共混纺丝及纺丝装置3个方面回顾了丝素蛋白静电纺丝的研究进展,重点介绍了静电纺丝素蛋白微纳米纤维支架材料在组织工程领域的应用研究.

  1. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes;Estudo dos efeitos de diferentes metodos de esterilizacao nas propriedades de membranas densas de fibroina de seda

    Energy Technology Data Exchange (ETDEWEB)

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M., E-mail: raquelweska@terra.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of beta-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  2. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Jiang J

    2014-09-01

    Full Text Available Jia Jiang,1,2 Fang Wan,1 Jianjun Yang,1 Wei Hao,3 Yaxian Wang,3 Jinrong Yao,3 Zhengzhong Shao,3 Peng Zhang,1 Jun Chen,1 Liang Zhou,4 Shiyi Chen11Fudan University Sports Medicine Center and Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, 2State Key Laboratory of Molecular Engineering of Polymers, 3Laboratory of Advanced Materials, National Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People’s Republic of China; 4Department of Forest Products, Anhui Agricultural University, Hefei Anhui Province, People’s Republic of ChinaBackground: Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP coating on the polyethylene terephthalate (PET surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo.Methods: HAP crystals were grown under the guide of silk fibroin (SF PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group, PET+SF group (SF-coating group, and PET+SF+HAP group (combined HAP- and SF-coating group, were analyzed by CCK-8 assays and alkaline phosphatase (ALP detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and

  3. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.

    Science.gov (United States)

    Lefèvre, Thierry; Boudreault, Simon; Cloutier, Conrad; Pézolet, Michel

    2008-09-01

    The orientational and conformational transformation of the native liquid silk into a solid fiber in the major ampullate gland of the spider Nephila clavipes has been studied by Raman spectromicroscopy. The spectra show that the conformation of silk proteins in the glandular sac contains several secondary structure elements, which is consistent with intrinsically unfolded proteins. A few alpha-helices are also present and involve some alanine residues located in the polyalanine segments of the spidroin sequence. The conversion of the silk solution in the major ampullate gland appears to be a two-state process without intermediate states. In the first and second limbs of the duct, silk is isotropic and spidroins are generally native-like. beta-Sheets start to develop between the second and the third limb of the duct, suggesting that early beta-sheets are generated by shear forces. However, most of the beta-sheets are formed between the draw down taper and the valve. The early beta-sheets formed upward of the draw down taper might play the role of nucleation sites for the subsequent beta-sheet aggregation. The alignment of the polypeptides chains occurs near the valve, revealing that orientational and conformational changes do not occur simultaneously. Extensional flow seems to be the driving force to produce the orientational order, which in turn is associated with the formation of the major part of the beta-sheets. The slow evolution of the spidroin conformation up to the draw down taper followed by the rapid transformation between the drawn down taper and the valve may be important to achieve the optimal structure of the final fiber.

  4. Recognition of signal peptide by protein translocation machinery in middle silk gland of silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Xiuyang Guo; Yi Zhang; Xue Zhang; Shengpeng Wang; Changde Lu

    2008-01-01

    To investigate the functions of signal peptide in protein secretion in the middle silk gland of silkworm Bombyx mori,a series of recombinant Autographa californica multiple nucleopolyhedroviruses containing enhanced green fluorescent protein (egfp) gene,led by sericin-1 promoter and mutated signal peptide coding sequences,were constructed by region-deletions or single amino acid residue deletions.The recombinant Autographa californica multiple nucleopolyhedroviruses were injected into the hemocoele of newly ecdysed fifth-instar silkworm larvae.The expression and secretion of EGFP in the middle silk gland were examined by fluorescence microscopy and Western blot analysis.Results showed that even with a large part (up to 14 amino acid residues) of the ser-1 signal peptide deleted,the expressed EGFP could still be secreted into the cavity of the silk gland.Western blot analysis showed that shortening of the signal peptide from the C-terminal suppressed the maturation of pro-EGFP to EGFP.When 8 amino acid residues were deleted from the C-terminal of the signal peptide (mutant 13 aa),the secretion of EGFP was incomplete,implicating the importance of proper coupling of the h-region and c-region.The deletion of amino acid residue(s) in the h-region did not affect the secretion of EGFP,indicating that the recognition of signal peptide by translocation machinery was mainly by a structural domain,but not by special amino acid residue(s).Furthermore,the deletion of Arg2 or replacement with Asp in the n-region of the signal peptide did not influence secretion of EGFP,suggesting that a positive charge is not crucial.

  5. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Science.gov (United States)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  6. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Science.gov (United States)

    Zhou, Weitao; Huang, Haitao; Du, Shan; Huo, Yingdong; He, Jianxin; Cui, Shizhong

    2015-08-01

    In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  7. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.

    Science.gov (United States)

    Ran, Jiabing; Hu, Jingxiao; Sun, Guanglin; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua

    2016-12-01

    Currently, great efforts have been made to enhance the mechanical strength of bone tissue engineering (BTE) scaffolds, which are composed of biopolymeric matrices and inorganic nano-fillers. But the tunability of mechanical strength in a wide range for BTE scaffolds has seldom been investigated in spite of the great importance of this performance. In this work, a chitosan-tussah silk fibroin/hydroxyapatite (CS-TSF/HAp) hydrogel was synthesized by using a novel in situ precipitation method. Through in situ inducing the conformation transition of TSF in the CS-TSF/HAp hydrogel, which could be monitored by XRD, FT-IR, TGA, and DTA, the elastic modulus and fracture strength of the final CS-TSF/HAp composite could be tailored in a wide range without changing its composition, morphology, roughness, and crystal structures. The elastic modulus of the CS-TSF/HAp composite ranged from ∼250 to ∼400MPa while its fracture strength ranged from ∼45 to ∼100MPa. In order to clarify the rationale behind this process, a speculative explanation was provided. In vitro cell culture indicated that MC3T3-E1 cells cultured on the CS-TSF/HAp composite had positive adhesion, proliferation, and differentiation potential. We believed that the CS-TSF/HAp composite could be used as an ideal scaffold platform for cell culture and implantation of bone reconstruction.

  8. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.

    Science.gov (United States)

    Zhang, Haiping; Liu, Xiaotian; Yang, Mingying; Zhu, Liangjun

    2015-10-01

    To mimic the natural fibrous structure of the tissue extracellular matrix, a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold was fabricated by a thermally-induced phase-separation method. The effects of SF/SA ratio on the structure and the porosity of the composite scaffolds were examined. Scanning electron microscopy and porosity results showed that the 5SF/1SA and 3SF/1SA scaffolds possessed an excellent nano-fibrous structure and a porosity of more than 90%. Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry results indicated the physical interaction between SF and SA molecules and their good compatibility in the 5SF/1SA and 3SF/1SA scaffolds, whereas they showed less compatibility in the 1SF/1SA scaffold. Cell culture results showed that MG-63 cells can attach and grow well on the surface of the SF/SA scaffolds. The nano-fibrous SF/SA scaffold can be potentially used in tissue engineering.

  9. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion.

    Science.gov (United States)

    Gu, Yong; Chen, Liang; Yang, Hui-Lin; Luo, Zong-Ping; Tang, Tian-Si

    2011-05-01

    The objective of this study was to investigate the efficacy of an injectable calcium phosphate cement/silk fibroin/human recombinant bone morphogenetic protein-2 composite (CPC/SF/rhBMP-2) in an ovine interbody fusion model. Twenty-four mature sheep underwent anterior lumbar interbody fusion at the levels of L1/2, L3/4, and L5/6 with random implantation of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2, or autogenous iliac bone. After the sheep were sacrificed, the fusion segments were evaluated by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. The fusion rates of CPC/SF/rhBMP-2 were 55.56% and 77.78% at 6 and 12 months, respectively. The fusion was superior to all the biomaterial grafts in stiffness, and reached the same stiffness as the autograft at 12 months. The new bone formation was less than autograft at 6 months, but similar with that at 12 months. However, the ceramic residue volume of CPC/SF/rhBMP-2 was significantly decreased compared with CPC/SF and CPC/rhBMP-2 at both times. The results indicated that CPC/SF/rhBMP-2 composite had excellent osteoconduction and osteoinduction, and balanced degradation and osteogenesis.

  10. 丝素蛋白/壳聚糖复合凝胶材料的制备%Preparation of Gel Material with Silk Fibroin and Chitosan

    Institute of Scientific and Technical Information of China (English)

    马育栋; 卢志华

    2013-01-01

    In recent years, the preparation and the performance optimization of composite scaffolds have become a research focus in scaffolds for tissue engineering field.. In this paper, Silk fibroin (SF) and chitosan(CS) were prepared Composite material by blending method. SF/CS composite membrane has good Bacteriostatic hemostatic function.%近年来,人体组织修复材料由最初单纯取代的单一材料向具有诱导骨组织再生功能的生物活性材料发展,其中复合材料能够最大程度实现物质间的优势互补和相互优化而备受关注。采用共混法制备的丝素蛋白(SF)/壳聚糖(CS)复合凝胶材料,对皮肤的修复具有重要意义。

  11. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture.

    Science.gov (United States)

    Liang, Meini; Yao, Jinrong; Chen, Xin; Huang, Lei; Shao, Zhengzhong

    2013-04-01

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm(-1), 1623 cm(-1) and 1520 cm(-1) suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface.

  12. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model.

    Science.gov (United States)

    Zhao, Yang; He, Yi; Zhou, Zhe; Guo, Jian-hua; Wu, Jia-sheng; Zhang, Ming; Li, Wei; Zhou, Juan; Xiao, Dong-dong; Wang, Zhong; Sun, Kang; Zhu, Ying-jian; Lu, Mu-jun

    2015-09-01

    With advances in tissue engineering, various synthetic and natural biomaterials have been widely used in tissue regeneration of the urinary bladder in rat models. However, reconstructive procedures remain insufficient due to the lack of appropriate scaffolding, which should provide a waterproof barrier function and support the needs of various cell types. To address these problems, we have developed a bilayer scaffold comprising a porous network (silk fibroin [SF]) and an underlying natural acellular matrix (bladder acellular matrix graft [BAMG]) and evaluated its feasibility and potential for bladder regeneration in a rat bladder augmentation model. Histological (hematoxylin and eosin and Masson's trichrome staining) and immunohistochemical analyses demonstrated that the bilayer BAMG-SF scaffold promoted smooth muscle, blood vessel, and nerve regeneration in a time-dependent manner. At 12weeks after implantation, bladders reconstructed with the BAMG-SF matrix displayed superior structural and functional properties without significant local tissue responses or systemic toxicity. These results demonstrated that the bilayer BAMG-SF scaffold may be a promising scaffold with good biocompatibility for bladder regeneration in the rat bladder augmentation model.

  13. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.

    Science.gov (United States)

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-11-14

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g(-1) at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g(-1), which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  14. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    Directory of Open Access Journals (Sweden)

    Yunqiang Xu

    Full Text Available As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs and adipose-derived stem cells (ADSCs as seed cells and introduced them into a silk fibroin (SF/collagen scaffold to construct a tissue-engineered nerve conduit (TENC. Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.

  15. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    Science.gov (United States)

    Xu, Yunqiang; Zhang, Zhenhui; Chen, Xuyi; Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.

  16. DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yaofeng Li

    2015-03-01

    Full Text Available Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K/Akt, the target of rapamycin (TOR and the extracellular signal-regulated kinase (ERK pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  17. Shotgun proteomic analysis of the Bombyx mori anterior silk gland: An insight into the biosynthetic fiber spinning process.

    Science.gov (United States)

    Yi, Qiying; Zhao, Ping; Wang, Xin; Zou, Yong; Zhong, Xiaowu; Wang, Chen; Xiang, Zhonghuai; Xia, Qing-You

    2013-09-01

    The Bombyx mori anterior silk gland (ASG) is a natural fiber manipulator for the material provided by the middle and posterior silk glands. In view of the significant role of the ASG in the liquid-crystal spinning process, a shotgun proteomics approach was taken to study the relationship between the function of proteins in the silkworm ASG and the spinning mechanism. A total of 1132 proteins with 7647 unique peptides were identified in the ASG dataset including some involved in the cuticle, ion transportation, energy metabolism, and apoptosis. Two putative cuticle-specific proteins were highly and specifically expressed in the ASG; therefore, the ASG dataset could provide clues for comprehensive understanding of the natural silk spinning mechanism in the silkworm. All MS data have been deposited in the ProteomeXchange with identifier PXD000090.

  18. Preparation of Transparent Water-Insoluble Silk Fibroin Films%水不溶性透明丝素蛋白膜的制备及性能

    Institute of Scientific and Technical Information of China (English)

    罗敏清; 张岑岑; 毛丽; 吴锡龙; 卢神州

    2011-01-01

    为了得到用于角膜修复的材料,将再生丝素蛋白与D-山梨醇或肌醇共混,用流延法制备共混膜。用X射线衍射、红外光谱法对共混膜的结构进行分析,结果显示,共混膜主要以丝素I型结晶结构为主;SEM测试显示,共混膜表面在湿态下形成了纳米孔洞。考察了共混膜的热水溶失率,力学性能及透光率,发现丝素蛋白的热水溶失率均小于2%。D-山梨醇丝素共混膜表现出很好的韧性,而肌醇丝素共混膜表现出一定的脆性。六元醇含量小于40%的共混膜,力学性能均达到了人角膜的性能;透光性良好,与人的角膜相似,有望应用于角膜修复材料。%The transparent water-insoluble Silk fibroin(SF) films were casted from the mixture solution of Silk fibroin and D-sorbitol or inositol.The structure,surfaces,solubility,mechanical properties and light transmittance of the blend films were measured.Fourier transform infrared spectrum(FT-IR),X-ray diffraction indicate that the films are mainly composed of the crystalline structure of Silk Ⅰ.scanning electron microscope(SEM) shows D-sorbitol/SF blend films are miscible,whereas inositol and SF are phase separated;in the wet state,there are lots of nanoporous in the blend films.The D-sorbitol/SF films which are insoluble have excellent mechanical properties while the inositol/SF films are brittle.the mechanical property of hexitols/SF blend films is consistent with the human cornea in wet state.When the m(D-sorbitol)/m(SF) is from 1/10 to 2/10,the blends films have high light transmittance which are similar to human cornea.In summary,both of the above-mentioned D-sorbitol/SF films provide a great potential to act as repairing materials for cornea.

  19. Small ampullate glands of Nephila clavipes.

    Science.gov (United States)

    Ortíz, R; Céspedes, W; Nieves, L; Robles, I V; Plazaola, A; File, S; Candelas, G C

    2000-02-01

    The small ampullate glands of the orb-web spider, Nephila clavipes, have been studied and compared to other of the silk producing glands from this organism. They exhibit the same gross morphological features of the other glands. Electrophoretic analyses show that the gland's luminal contents migrate as a single band, while the contents of the secretory epithelium reveal a step-ladder array of peptides in addition to the full size product. Previous studies from our laboratory identified these peptides as products generated by translational pauses. This alternate mode of translation is typical of fibroin synthesis in all the spider glands thus far studied as well as in those of the silkworm. The correlation of the peptides to the process of fibroin synthesis is shown through experimental evidence in this paper. The gradual ultrastructural changes in Golgi vesicles elicited by the fibroin synthesis stimulus can be seen in this paper. The response to stimulation is of a higher magnitude in these glands than in any of those previously analyzed. These studies show the small ampullate glands are a promising and certainly exploitable model system for studies on the synthesis of tissue-specific protein product and its control. J. Exp. Zool. 286:114-119, 2000.

  20. In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds.

    Science.gov (United States)

    Yan, L-P; Oliveira, J M; Oliveira, A L; Reis, R L

    2015-05-01

    This study evaluates the biological performance of salt-leached macro/microporous silk scaffolds (S16) and silk-nano calcium phosphate scaffolds (SC16), both deriving from a 16 wt % aqueous SF solution. Enzymatic degradation results showed that the silk-based scaffolds presented desirable biostability, and the incorporation of calcium phosphate further improved the scaffolds' biostability. Human adipose tissue derived stromal cells (hASCs) were cultured onto the scaffolds in vitro. The Alamar blue assay and DNA content revealed that both scaffolds were non-cytotoxic and can support the viability and proliferation of the hASCs. Scanning electron microscopy observation demonstrated that the microporous structure was beneficial for the cell adhesion while the macroporous structure favored the cell migration and proliferation. The histological analysis displayed abundant extracellular matrix formed inside the scaffolds, leading to the significant increase of scaffolds' modulus. These results revealed that S16 and SC16 could be promising alternatives for cartilage and bone tissue engineering scaffolding applications, respectively.

  1. Change in silk protein by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1,000 kGy was pulverized by using a ball mill. As irradiation dose increased, the conversion efficiency from fiber to powder increased, which reached 94% at 1,000 kGy. Silk fibroin powder obtained by this method dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin obtains solubility without chemical treatment. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk powder was performed. The more irradiation dose up, the more recovery fraction of glycine or alanine decreased, which is, however, reached the minimum about 50%. To consider this result with crystal structure of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve for silk fibroin powder. Molecular weight of soluble part was also measured, but it had no serious concern with irradiation dose. Particle size distribution of silk fibroin powder was measured in order to study reduction of irradiation dose needed for pulverization. This measurement exhibited the possibility that lengthening of pulverization time reduces of irradiation dose. In addition, structure of particle was inferred from result of this measurement. (author)

  2. 丝素蛋白支架在骨组织工程中的应用进展%Synthesis and application progression of silk fibroin scaffold in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    陈亮; 刘勇

    2016-01-01

    The essential factors of bone tissue engineering include seed cell,growth factor and scaffold material.The biological structure,biological function and preparation method of scaffold material,which is the key component in bone tissue engineering,have attracted our attention.An ideal scaffold material needs to have adequate mechanical strength,appropriate degradation speed,good biocompatibility,satisfactory availability,low price,et al.Common scaffold materials in bone tissue engineering mainly consist of inorganic matter,organic matter and natural derivatives.Silk fibroin which is extracted from silkworm protein fiber contains 18 kinds of amino acids.The glycine,alanine,serine are the main types in silk fibroin and its structure consisted of hydrogen bonding,hydrophobic bonding and crystalline region.Those special structures make it has good flexibility and tensile strength.Silk fibroin has other advantages incluing air permeability,moisture permeability and biodegradation.Besides silk fibroin with curing crystallization of diversification that easy to maintain biological affinity and form a special porous structure.Silk fibroin has good film and gel forming ability.Silk fibroin can bond with some other materials to further improve its physical and chemical properties.Silk fibroin can be formed into porous shape,membranous,gel and composite materials scaffold.The materials scaffold which based on silk fibroin has excellent mechanical performance,adjustable degradation speed,high biocompatibility and good osteogenesis performance,besides capability of loading cells,bioactive factors and drugs.In addition,silk fibroin which can be made into gel scaffold,porous scaffold,electrospinning fiber,and compound scaffold et al has three-dimensional porous and biological function for bone tissue engineering as a new choice and application prospect.%支架材料作为骨组织工程的核心部分,其生物结构、功能和制备方法引起众多关注.理想的支架材料

  3. Preparation of silk fibroin-sodium alginate-glycerol blend films and its properties%丝素-海藻酸钠-甘油共混膜的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    陈佳林; 黄晨; 许云辉

    2013-01-01

    In this experiment, the blend films were mainly prepared from silk fibroin, and the sodium alginate and glycerol were also added in as additive. Concentration of silk fibroin solution, concentration of sodium alginate solution and glycerin amount were studied which have some effects on the properties of the blend films, including thickness, elongation at break and vapor transfer velocity. The optimal formula for the silk fibroin - sodium alginate-glycerol blend films was determined by orthogonal experiment. The results showed that the best concentration of silk fibroin, concentration of sodium alginate and glycerol amount were 3%, 12.5mg/ml and 0.5 ml, respectively. In this condition, the thickness, elongation at break and vapor transfer velocity of the blend films could reach 0.075 mm, 45.53% and 13.76 g·m-2·h-1, respectively.%以丝素蛋白为原料,海藻酸钠和甘油作为添加剂,考察丝素蛋白溶液、海藻酸钠溶液的浓度和甘油的加入量对膜的厚度、断裂伸长率以及水蒸气迁移速率的影响,并通过正交试验来确定丝素-海藻酸钠-甘油共混膜的最佳配比.试验结果表明,最佳配方为丝素溶液浓度3%,海藻酸钠溶液浓度12.5 mg.mL-1,甘油加入量0.5 mL.在此条件下,膜的厚度、断裂伸长率及水蒸气迁移速率分别为0.075 mm、45.53%和13.76 g·m-2.h-1.

  4. Study on anti-wrinkle finishing of cotton fabric with silk fibroin%丝素整理剂用于棉织物防皱整理的研究

    Institute of Scientific and Technical Information of China (English)

    张晓丽; 韩晓建; 王健; 许云辉; 张昆鹏

    2011-01-01

    We discussed the wrinkle recovery angle, whiteness, breaking strength of cotton fabric after having been finished by fibroin, citric acid, fibroin/ ciiric acid. We finished the cotton fabric with fibroin/citric acid complex, and found that the silk/cotton, citric acid compound treatment showed good synergistic coordination,which not only overcame the shortcoming of tuming-yellow with citric acid treatment, but also improved the anti-wrinkle properties of cotton fabric. Four factors such as fibroin concentration, fibroin hydrolysis time, citric acid dosage, pH value, were chosen to design L,6 (44) orthogonal experiment. The results suggest that treated with fibroin 6%, citric acid 30 g·L-1, fibroin hydrolysis for 2 h, pH 6, cotton fabric could get best finishing effect.%分别研究丝素、柠檬酸、丝素/柠檬酸复配整理棉织物后,对棉织物的折皱回复角、白度、断裂强力的影响.采用丝素与柠檬酸复配,对棉织物进行防皱整理,结果表明,丝素/柠檬酸复合整理棉织物,具有良好的协同增效作用,既克服了柠檬酸整理的泛黄现象,又可以大大提高棉织物的防皱性能.分别选用丝素浓度、丝素水解时间、柠檬酸用量、pH值设计L16(44)正交试验,结果显示,丝素浓度6%,柠檬酸用量30 g·L-1,丝素水解时间2 h,pH值6时对棉织物的整理效果最好.

  5. MicroRNA of the fifth-instar posterior silk gland of silkworm identified by Solexa sequencing

    Directory of Open Access Journals (Sweden)

    Jisheng Li

    2014-12-01

    Full Text Available No special studies have been focused on the microRNA (miRNA in the fifth-instar posterior silk gland of Bombyx mori. Here, using next-generation sequencing, we acquired 93.2 million processed reads from 10 small RNA libraries. In this paper, we tried to thoroughly describe how our dataset generated from deep sequencing which was recently published in BMC genomics. Results showed that our findings are largely enriched silkworm miRNA depository and may benefit us to reveal the miRNA functions in the process of silk production.

  6. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Science.gov (United States)

    Woloszyk, Anna; Holsten Dircksen, Sabrina; Bostanci, Nagihan; Müller, Ralph; Hofmann, Sandra; Mitsiadis, Thimios A

    2014-01-01

    Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone

  7. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Directory of Open Access Journals (Sweden)

    Anna Woloszyk

    Full Text Available Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%, while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV% significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL. Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x and Collagen type I (1.7x was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and

  8. Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model.

    Science.gov (United States)

    Chen, Liang; Liu, Hai-Long; Gu, Yong; Feng, Yu; Yang, Hui-Lin

    2015-03-01

    Biphasic calcium phosphate (BCP) has been investigated extensively as a bone substitute nowadays. However, the bone formation capacity of BCP is limited owing to lack of osteoinduction. Silk fibroin (SF) has a structure similar to type I collagen, and could be developed to a microsphere for the sustained-release of rhBMP-2. In our previous report, bioactivity of BCP could be enhanced by rhBMP-2/SF microsphere (containing 0.5 µg rhBMP-2) in vitro. However, the bone regeneration performance of the composite in vivo was not investigated. Thus, the purpose of this study was to evaluate the efficacy of BCP/rhBMP-2/SF in a sheep lumbar fusion model. A BCP and rhBMP-2/SF microsphere was developed, and then was integrated into a BCP/rhBMP-2/SF composite. BCP, BCP/rhBMP-2 and BCP/rhBMP-2/SF were implanted randomly into the disc spaces of 30 sheep at the levels of L1/2, L3/4 and L5/6. After sacrificed, the fusion segments were evaluated by manual palpation, CT scan, biomechanical testing and histology at 3 and 6 months, respectively. The composite demonstrated a burst-release of rhBMP-2 (39.1 ± 2.8 %) on the initial 4 days and a sustained-release (accumulative 81.3 ± 4.9 %) for more than 28 days. The fusion rates, semi-quantitative CT scores, fusion stiffness in bending in all directions and histologic scores of BCP/rhBMP-2/SF were significantly greater than BCP and BCP/rhBMP-2 at each time point, respectively (P sheep using BCP constructs.

  9. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair.

    Science.gov (United States)

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Jiang, Pei; Shen, Xin-Yu; Tong, Hua

    2016-07-11

    By in situ combining the dual cross-linking matrices of the carboxylated agarose (CA) and the silk fibroin (SF) with the hydroxyapatite (HA) crystals, the CA-SF/HA composites with optimal physicochemical and biological properties were obtained, which were designed to meet the clinical needs of load-bearing bone repair. With the synergistic modulation of the dual organic matrices, the HA nanoparticles presented sheet and rod morphologies due to the preferred orientation, which successfully simulated the biomineralization in nature. The chemical reactivity of the native agarose (NA) was significantly enhanced via carboxylation, and the CA exhibited higher thermal stability than the NA. In the presence of SF, the composites showed optimal mechanical properties that could meet the standard of bone repair. The degradation of the composites in the presence of CA and SF was significantly delayed such that the degradation rate of the implant could satisfy the growth rate of the newly formed bone tissue. The in vitro tests confirmed that the CA-SF/HA composite scaffolds enabled the MG63 cells to proliferate and differentiate well, and the CA/HA composite presented greater capability of promoting the cell behaviors than the NA/HA composite. After 24 days of implantation, newly formed bone was observed at the tibia defect site and around the implant. Extensive osteogenesis was presented in the rats treated with the CA-SF/HA composites. In general, the CA-SF/HA composites prepared in this work had the great potential to be applied for repairing large bone defects.

  10. Evaluating degradation of silk's fibroin by attenuated total reflectance infrared spectroscopy: case study of ancient banners from Polish collections.

    Science.gov (United States)

    Koperska, M A; Łojewski, T; Łojewska, J

    2015-01-25

    In this study a part of research where artificially aged model samples were used as a guideline to the mechanism of degradation is presented. In previous work Bombyx Mori silk samples were exposed to various environments such as different oxygen, water vapour and volatile organic products content, all at the temperature of 150 °C [11]. Based on those results gathered with by Attenuated Total Reflectance/Fourier Transform Infrared Spectroscopy (ATR-FTIR) the degradation estimators were proposed and classified as follows: (1) Primary functional groups estimators EAmideI/II - intensity ratios of Amide I C=O stretching vibration to Amide II N-H in-plane bending and C-N stretching vibrations A1620/A1514. ECOOH - band 1318 cm(-1) integral to band integral of CH3 bending vibration band located at 1442 cm(-1)P1318/P1442. (2) Secondary conformational estimators EcC=O2 - intensity ratios within Amide I C=O stretching vibration of parallel β-sheet to antiparallel β-sheet A1620/A1699. In this work estimators were verified against estimators calculated from spectra of silk samples from 8 museum objects: 3 from 19th, 2 from 18th, 1 from 17th and 2 from 16th century including 3 banners from the storage resources of the Wawel Royal Castle in Cracow, Poland.

  11. A Silk Fibroin Potentiometric Immunosensor Immobilizing CA15- 3 Antibody%糖蛋白抗原抗体蚕丝丝素膜免疫传感器

    Institute of Scientific and Technical Information of China (English)

    彭图治; 祝方猛

    2001-01-01

    A silk fibroin membrane consists of polyamino acid with amphoteric ion _ exchange groups.The preparation of silk fibroin and different ways of immobilizing antibody on the fibroin membrane were investigated for preparing an electrochemical immunosensor to determine the cancer marker CA15- 3.Adsorption,direct cross _ linking,hydroxylamine activation,hydrochloric acid activation,diazonium and azidonium method were tested to immobilize the antibody.When the silk fibroin was activated with hydrochloric acid,the membrane showed the best potential response.A potentiometric immunosensor was made of an immobilizing antibody membrane and an inner Ag/AgCl reference electrode.There was a linear response of potential over the range of 15~ 240 ku/L for CA15- 3 with a correlation coefficient of 0.999 6.The mechanism of potential response has been discussed.%蚕丝丝素膜由具有两性离子交换基的聚氨基酸构成,是一种具有广泛应用前景的天然生物材料。该文研究了蚕丝丝素膜的制备、蚕丝丝素膜固定乳腺癌抗原 CA15- 3抗体的各种方法及原理,以及用于 CA15- 3非标记免疫传感器的结果及比较。在各种固定方法中,以盐酸活化法、叠氮法、重氮法的效果较好。作者用盐酸活化法制作抗体膜并组装免疫电极,制作了测定 CA15- 3的标准曲线,讨论了重复性、干扰情况以及传感器的响应机理。

  12. 气流辅助高压静电纺丝法制备蚕丝蛋白纳米纤维的研究%The Preparation of Silk-fibroin Nano-fibers with Air-assisted Electrospinning

    Institute of Scientific and Technical Information of China (English)

    李罡; 李艳红; 刘娟; 杜江; 姚勇毅

    2011-01-01

    目的 研究蚕丝丝素蛋白亚微米和纳米纤维二者在超细纤维加工方面的特点.方法 通过高压静电纺丝和气流辅助高压静电纺丝工艺制备蚕丝蛋白亚微米、纳米纤维.结果 当气体流量达到4L/min时,气流辅助高压静电纺丝可以制的更细的纳米纤维,结论 气流辅助高压静电纺丝工艺有助于获得更细的纳米纤维.%Objective To compare the difference between electrospinning and air-assisted electrospinning in preparation of sub-micron and Nano silk-fibroin fibers. Method The silk-fibroin fibers were prepared with electrospinning and air-assisted electrospinning. Result The thinner fibers could be obtained by air-assisted electrnapinning, when air flow rate was increased to 4 L/min. Conclusion With the air-assisted electrospinning, the thinner fibers can be prepared, compared with electrospinning.

  13. 医用组织工程多孔丝素支架制备方法的进展%Advances in preparation of porous silk fibroin scaffolds for medical tissue engineering

    Institute of Scientific and Technical Information of China (English)

    廖银琳; 王卉; 张克勤

    2012-01-01

    Silk fibroin has been adopted as scaffolds materials for tissue engineering applications, due to its remarkable biocom-patibility, biodegradability and unique mechanical property. Various preparation methods of porous silk fibroin scaffolds are introduced, such as pore-forming agent method, freeze drying method, foaming method, electro-spinning method, nonwoven method and compression molding method and 3-D printing method, as well as their advantages and disadvantages.%丝素蛋白具有一定的生物降解性、良好的生物相容性及独特的机械性能等,适用于开发优良的医用组织工程支架材料.文中介绍了制备多孔丝素支架的各种方法:制孔剂法、冷冻干燥法、气体发泡法、静电纺丝法、无纺法、模压法和三维打印法等,并对其优缺点进行了分析.

  14. Flagelliform or coronata glands of Nephila clavipes.

    Science.gov (United States)

    Rodríguez, R; Candelas, G C

    1995-07-01

    The flagelliform or coronata glands of the orb-web spider, Nephila clavipes, have been studied and compared to other silk-producing glands from the organism. The glands, which produce silk for the double filament of the core thread in the sticky spiral, exhibit three distinct morphological areas: tail, sac, and duct. Electrophoretic separation of the solubilized contents of the glands yields an uppermost diffuse band of high molecular size, preceded by a stepladder of well-defined peptides, which have been shown to be products of discontinuous translation in three other sets of glands. The luminal contents do not migrate as a discrete and well-defined band as those of the other glands, but rather as a diffuse area, typical of glycosylated proteins. Fibroin synthesis is stimulated by the mechanical depletion of the organism's stored silks, as in other Nephila glands, judged by the increased intensity of the bands and also by the structural alterations seen in cross sections of the glands' tails.

  15. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties.

    Science.gov (United States)

    Wang, Xin; Li, Yi; Xie, Kang; Yi, Qiying; Chen, Quanmei; Wang, Xiaohuan; Shen, Hong; Xia, Qingyou; Zhao, Ping

    2015-02-01

    Calcium ions (Ca(2+)) are crucial for the conformational transition of silk fibroin in vitro, and silk fibroin conformations correlate with the mechanical properties of silk fibers. To investigate the relationship between Ca(2+) and mechanical properties of silk fibers, CaCl2 was injected into silkworms (Bombyx mori). Fourier-transform infrared spectroscopy (FTIR) analysis and mechanical testing revealed that injection of CaCl2 solution (7.5mg/g body weight) significantly increased the levels of α-helix and random coil structures of silk proteins. In addition, extension of silk fibers increased after CaCl2 injection. In mammals, sarcoplasmic reticulum Ca(2+)-ATPase in muscle and endoplasmic reticulum Ca(2+)-ATPase in other tissues (together denoted by SERCA) are responsible for calcium balance. Therefore, we analyzed the expression pattern of silkworm SERCA (BmSERCA) in silk glands and found that BmSERCA was abundant in the anterior silk gland (ASG). After injection of thapsigargin (TG) to block SERCA activity, silkworms showed a silk-spinning deficiency and their cocoons had higher calcium content compared to that of controls. Moreover, FTIR analysis revealed that the levels of α-helix and β-sheet structures increased in silk fibers from TG-injected silkworms compared to controls. The results provide evidence that BmSERCA has a key function in calcium transportation in ASG that is related to maintaining a suitable ionic environment. This ionic environment with a proper Ca(2+) concentration is crucial for the formation of silk fibers with favorable mechanical performances.

  16. An Australian webspinner species makes the finest known insect silk fibers

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Shoko; Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Haritos, Victoria S.; Sutherland, Tara D. (CSIRO/MSE); (CSIRO)

    2009-01-15

    Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet protein structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.

  17. Molecular mechanisms of phoxim-induced silk gland damage and TiO2 nanoparticle-attenuated damage in Bombyx mori.

    Science.gov (United States)

    Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sun, Qingqing; Sang, Xuezi; Sheng, Lei; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Wang, Ling; Shen, Weide; Hong, Fashui

    2014-06-01

    Phoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland damage due to OP exposure and repair of gland damage by TiO2 NP pretreatment. In the present study, exposure to phoxim resulted in a significant reduction in cocooning rate in addition to silk gland damage, whereas TiO2 NP attenuated phoxim-induced gland damage, increased the antioxidant capacity of the gland, and increased cocooning rate in B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant alterations in the expression of 833 genes. In particular, phoxim exposure caused significant down-regulation of Fib-L, Ser2, Ser3, and P25 genes involved in silk protein synthesis, and up-regulation of SFGH, UCH3, and Salhh genes involved in silk protein hydrolysis. A combination of both phoxim and TiO2 NP treatment resulted in marked changes in the expression of 754 genes, while treatment with TiO2 NPs led to significant alterations in the expression of 308 genes. Importantly, pretreatment with TiO2 NPs increased Fib-L, Ser2, Ser3, and P25 expression, and decreased SFGH, UCH3, and Salhh expression in silk protein in the silk gland under phoxim stress. Therefore, Fib-L, Ser2, Ser3, P25, SFGH, UCH3, and Salhh may be potential biomarkers of silk gland toxicity in B. mori caused by phoxim exposure.

  18. Variation and Characterization Analysis of Partial Fragment of Fibroin Gene From Silkworm, Antheraea pernyi

    Institute of Scientific and Technical Information of China (English)

    Li Wenli(李文利); Jin Liji; An Lijia

    2003-01-01

    A 1.4Kb DNA fragment containing 3' flanking sequence of fibroin gene of silkworm, Antheraea pernyi, was obtained from the silk gland's mRNA of 5th larva. Analysis of this sequence with another A.pernyi fibroin protein (accession No. D83241) revealed that it consists of a completely open reading frame (ORF), which includes 14 polyalanine-containing units (motifs) and 100bp 3'-UTR. The sequence of the predicted amino acid reveals the highest level of overall identity (90%) with D83241. It was found that it loses a repeat region at the upstream of TAA codon and some mutations. A putative polyadenylation signal AATAAA tail was found in position 1300, which follows the termination codon.

  19. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Science.gov (United States)

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  20. Characterization of the protein components of Nephila clavipes dragline silk.

    Science.gov (United States)

    Sponner, Alexander; Schlott, Bernhard; Vollrath, Fritz; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2005-03-29

    Spider silk is predominantly composed of structural proteins called spider fibroins or spidroins. The major ampullate silk that forms the dragline and the cobweb's frame threads of Nephila clavipes is believed to be a composite of two spidroins, designated as Masp 1 and 2. Specific antibodies indeed revealed the presence of Masp 1 and 2 specific epitopes in the spinning dope and solubilized threads. In contrast, sequencing of specific peptides obtained from solubilized threads or gland urea extracts were exclusively homologous to segments of Masp 1, suggesting that this protein is more abundantly expressed in silk than Masp 2. The strength of immunoreactivities corroborated this finding. Polypeptides reactive against both Masp 1 and 2 specific antibodies were found to be expressed in the epithelia of the tail and different gland zones and accumulated in the gland secreted material. Both extracts of gland secretion and solubilized threads showed a ladder of polypeptides in the size range of 260-320 kDa in gel electrophoresis under reducing conditions, whereas gel filtration chromatography yielded molecular masses of the proteins of approximately 300-350 kDa. In the absence of a reducing agent, dimeric forms of the spidroins were observed with estimated molecular masses of 420-480 kDa according to gel electrophoresis and 550-650 kDa as determined by gel filtration chromatography. Depending on the preparation, some silk material readily underwent degradation, and polypeptides down to 20 kDa in size and less were detectable.

  1. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori.

    Science.gov (United States)

    Zhao, Xiao-Ming; Liu, Chun; Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.

  2. 丝胶蛋白对仿生丝素蛋白神经导管的改性研究%The modification research of bionic silk fibroin nerve guidance conduits by silk sericin

    Institute of Scientific and Technical Information of China (English)

    饶建伟; 叶舟; 占蓓蕾; 全大萍; 许扬滨

    2016-01-01

    目的 探索丝胶(SS)蛋白对仿生多通道丝素(SF)蛋白神经导管(NCs)的改性作用. 方法 在丝素蛋白水溶液中按比例加入丝胶蛋白,通过循序冷冻工艺制备丝胶/丝素共混神经导管(SS/SF-NCs),扫描电镜(SEM)观测其通道结构,X线衍射及红外光谱检测其内部分子结构,测量其孔隙率及机械性能,MTT实验量化分析PC12细胞与SS/SF-NCs共培养后的细胞活性,PC12细胞被用于检测从SS/SF-NCs中释放的NGF的细胞活性. 结果 SEM结果显示与SF-NCs相比,SS/SF-NCs具有周围神经束仿生结构的线性化导向的多通道,通道分布均匀呈片状纵向均匀排列,且通道微观结构上发生很大变化,机械性能得到很大提升,通道的壁间距、孔隙率、机械强度随着循序冷冻温度、丝胶比例的不同而变化.MTT试验结果显示SS/SF-NCs的PC12细胞的活性明显好于对照组(P<0.05),从新型SS/SF-NCs中释放NGF释放时间长达4周并保持生物活性.结论通过丝胶蛋白的改性作用,新型SS/SF-NCs具有周围神经束的高度仿生结构,且具有更加优良的机械性能,可以作为人工神经导管的另一选择.%Objective To explore the modification of bionic silk fibroin nerve conduits (SF-NCs) by silk sencin.Methods The innovative SS/SF blended-NCs was fabricated by a vertical sequential cooling thermal induced phase separation (TIPS) processing with SF solution added sericin in proportion,its morphology was observed by Scanning electron microscopy (SEM),X-ray diffraction (XRD) and infrared spectroscopy (FTIR) were used to detect its internal molecular structure.MTT assay was used to quantitatively analyzed the PC12 cells viability co-cultured with the innovative SS/SF-NCs,SEM was used to observe the adhesion and morphology of PC12 cells seeded into the innovative SS/SF,PC12 cells were used to assess the NGF bioactivity released from the SS/SF.Results The SEM results showed that the new fabricated SS/SF-NCs had linearly

  3. Biocompatibility of physico-crosslinked regenerated silk fibroin film as tissue engineered cornea%物理交联再生丝素膜组织工程角膜的生物相容性研究

    Institute of Scientific and Technical Information of China (English)

    张晓峰; 刘铁连; 杨吉成; 夏蔚; 钟蕾; 孙正大; 王英明; 夏静

    2011-01-01

    差异无统计学意义(P>0.05)。术后1个月与术后2个月比较,角膜中CD34阳性率的差异无统计学意义(P>0.05)。 结论物理交联再生丝素膜构建组织工程角膜可行,再生丝素膜与角膜组织生物相容性良好,再生丝素膜植入兔角膜基质后无明显的炎症反应和新生血管。%Background Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterial had been characterized to meet these functional requirements. Objective This study was to investigate the feasibility of physico-crosslink regenerated silk fibroin film as tissue engineered corneal scaffold. Methods Human corneal epithelial cells(CECs) links were cultured by regular method and CECs in logarithmic phase were than incubated on physico-crosslink regenerated silk fibroin film membrane. The shape of cultured human CECs was observed after 24,48 and 72 hours under the inverted microscope and scanning electron microscope( SEM ) ,and the CECs were cultured on culture plates as controls. The growth state of CECs on regenerated silk fibroin film was observed daily for 7 days by MTT, and cell cycle analysis and the presence of apoptosis of human CECs were examined by flow cytometry after incubation on regenerated silk fibroin film. Regenerated silk fibroin filmCECs (4 mm×3 mm) were implanted into the corneal stroma of the right eyes of New Zealand white rabbits. At the end of 4 and 8 weeks after implantation, the appearance of the ocular surface was examined using slit lamp and corneal neovascular area was measured. Corneal histopathological examination was carried out to assess the degradation of graft materials and immunohistochemistry was performed to detect the expression of CD34 in the corneal tissue after operation. Results The morphology and structure of CECs were identical using the two cultured Methods when

  4. Tissue Regeneration: A Silk Road

    OpenAIRE

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. T...

  5. Piriform spider silk sequences reveal unique repetitive elements.

    Science.gov (United States)

    Perry, David J; Bittencourt, Daniela; Siltberg-Liberles, Jessica; Rech, Elibio L; Lewis, Randolph V

    2010-11-08

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata , N. clavipes , and N. cruentata . The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group.

  6. Effects of Pectin, Xanthan Gum, Sodium Alginate and Acid-resistant CMC on Lactobacillus Contents of Silk Fibroin Yoghurt%果胶、黄原胶、海藻酸钠、耐酸性CMC对丝素酸奶乳酸菌数的影响

    Institute of Scientific and Technical Information of China (English)

    刘冠卉; 屠洁; 燕薇

    2012-01-01

    采用两因素三水平析因试验设计,考察了4种常用的酸奶稳定剂(果胶、黄原胶、海藻酸钠、耐酸性CMC)对搅拌型丝素酸奶乳酸菌数的影响.结果显示:果胶、黄原胶、海藻酸钠、耐酸性CMC对丝素酸奶的乳酸菌数均有极显著的影响(P<0.01),其中黄原胶、海藻酸钠和丝素对乳酸菌数有极显著的交互作用(P<0.01),果胶和丝素对乳酸菌含量有显著的交互作用(P<0.05),耐酸性CMC和丝素对酸奶的乳酸菌数无显著的交互作用(P>0.05).4种稳定剂中,黄原胶和海藻酸钠可提高搅拌型丝素酸奶的乳酸菌数,其中添加1%丝素和0.03%海藻酸钠的酸奶的乳酸菌数最高,达到1.20×1011 mL-1;其次为添加1%丝素和0.05%黄原胶的酸奶,乳酸菌数为1.07×1011mL-1.%Two factors and three levels factorial experiment design was used to study the effects of pectin, xanthan gum, sodium alginate, acidresistant carboxymethyl-cellulose on the lactobacillus contents of silk fibroin stirred yoghurt. Results showed pectin, xanthate gum, sodium alginate and acid-resistant carboxymethyl-cellulose had significant effects on lactobacillus contents of silk fibroin yogurt (P0.05). About three four stabilizers, xanthan gum and sodium alginate raised lactobacillus contents of silk fibroin stirred yoghurt, and the lactobacillus contents of stirred yoghurt including l%silk fibroin and 0.03% sodium alginate were highest(1.20×l011 mL-1), then that of the samples(l% silk fibroin and 0.05% xanthate gum) were 1.07× 1011 mL-1.

  7. From EST sequence to spider silk spinning: identification and molecular characterisation of Nephila senegalensis major ampullate gland peroxidase NsPox.

    Science.gov (United States)

    Pouchkina, N N; Stanchev, B S; McQueen-Mason, S J

    2003-02-01

    Spider dragline silk is renowned as one of the toughest materials of its kind. In nature, spider silks are spun out of aqueous solutions under environmental conditions. This is in contrast to production of most synthetic fibres, where hazardous solvents, high temperatures and pressure are used. In order to identify some of the chemical processes involved in spider silk spinning, we have produced a collection of cDNA sequences from specific regions of Nephila senegalensis major ampullate gland. We examined in detail the sequence and expression of a putative Nephila senegalensis peroxidase gene (NsPox) from our EST collection. NsPox encodes a protein with similarity to Drosophila melanogaster and Aedes aegypti peroxidases. Northern analysis and in situ localisation experiments revealed that NsPox is expressed in major and minor ampullate glands of the spider where the main components of the dragline silk are produced. We suggest that NsPox plays a role in dragline silk fibre formation and/or processing.

  8. Controlled Drug Release from Silk Fibroin Films Treated with Methanol-water Mixtures%甲醇-水混合溶剂后处理制备丝素蛋白膜及其药物释放研究

    Institute of Scientific and Technical Information of China (English)

    韦俏娜; 马林; 黄爱民; 杨华; 龚珠萍; 强盼盼; 张丽

    2012-01-01

    采用溶液浇注法制备丝素蛋白薄膜,应用傅里叶红外光谱(FTIR)和X射线衍射(XRD)研究了浓度不同的甲醇一水混合溶剂处理后丝素蛋白薄膜的结构变化,并以罗丹明B为模型药物与丝素蛋白构建药物缓释体系,考察了丝素蛋白膜的结晶结构对药物释放动力学的影响.结果显示,在甲醇体积比浓度MeOH=50%-90%的范围内,丝素蛋白材料中以肛折叠为主的silkⅡ结晶含量随着混合溶剂中甲醇浓度的增加而先增加后下降,在MeOH=80%附近出现最大值.罗丹明B从丝素蛋白膜的释放属于Fickian扩散机理,其扩散指数n随着丝素蛋白膜中肛折叠含量的增加而增加,silk Ⅱ结晶是丝素蛋白材料药物释放的天然调节器.%Silk fibroin (SF) films were prepared using a casting method and the structural change owing to treatment with methanolwater mixtures of different concentrations was investigated by Fourier transform infrared spectroscopy (FTIR) and Xray diffraction (XRD). The results were used to reveal the influence of structure on the release dynamics of Rhodamine B, a model compound loaded in the SF matrix. In methanol concentration ranging from 50% to 90%, the content of silk Ⅱ crystalline structure, constituted by flsheet, first increased and then decreased with increasing methanol concentration in the mixtures, reaching a maxi mum around 80%. It was found that Rhodamine B released from the SF film via Fickian mechanism, of which the diffusional exponent increased with increasing flsheet content in the matrix, suggesting that the silk II crystal could be used as natural regulator for drug release from SF material.

  9. Influences of Poloxamer on Structure and Morphology of Regenerated Silk Fibroin Gelation%泊洛沙姆对再生丝素蛋白凝胶化结构及形态的影响

    Institute of Scientific and Technical Information of China (English)

    邓春闽; 钟天翼; 许亚娟; 岳晓晓; 明津法; 左保齐

    2013-01-01

    This paper studies the influences of Poloxamer on the structure and morphology of silk fibroin gelation and characterizes the effect of Poloxamer on RSF gelation through scanning electron microscope ( SEM) , infrared spectrum (FTIR) , X-ray diffraction (XRD) and thermoanalysis (TG-DTA). FTIR, XRD and TG-DTA researches show that Poloxamer significantly accelerates RSF gelation transformation after blending with RSF; meanwhile, the smaller the relative molecular mass of Poloxamer in blended solution is, the larger its blending ratio will be and the shorter its gelation time will be, but it has very small influences on the structure and morphology of hydrogel formed. SEM research shows that RSF-Poloxamer gel has a lamellar structure. The reason is that a lot of silk fibroin molecules change from random coil to β-folded structure in its process of gelation. With the increase of Poloxamer content, the lamellar structure of RSF-Poloxamer becomes more and more regular.%研究了泊洛沙姆(Poloxamer)对再生丝素蛋白(RSF)凝胶化结构及形态的影响,利用扫描电镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)和热分析(TG-DTA)表征了Poloxamer对RSF凝胶化的影响作用.FTIR、XRD和TG-DTA研究表明Poloxamer与RSF共混后极大的加速了RSF的凝胶化转变,并且随着共混溶液中Poloxamer的相对分子质量越小,所占的共混比例越大,其凝胶化时间越短,但对所形成的水凝胶的结构和形态影响很小.SEM研究表明RSF-Poloxamer凝胶为片层状结构,这是由于其凝胶化过程中大量丝素分子由无规卷曲转变为β-折叠结构所致,随着Poloxamer含量的增加,RSF-Poloxamer凝胶的片层结构变得越来越规整.

  10. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  11. Silk structure and degradation.

    Science.gov (United States)

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk.

  12. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity.

    Science.gov (United States)

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping

    2015-01-30

    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  13. Expression of hIGF-I in the silk glands of transgenic silkworms and in transformed silkworm cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To express human insulin-like growth factor-I (hIGF-I) in transformed Bombyx mori cultured cells and silk glands, the transgenic vector pigA3GFP-hIGF-ie-neo was constructed with a neomycin resistance gene driven by the baculovirus ie-1 promoter, and with the hIGF-I gene under the control of the silkworm sericin promoter Ser-1. The stably transformed BmN cells expressing hIGF-I were selected by using the antibiotic G418 at a final concentration of 700-800 μg/mL after the BmN cells were transfected with the piggyBac vector and the helper plasmid. The specific band of hIGF-I was detected in the transformed cells by Western blot. The expression level of hIGF-I, determined by ELISA, was about 7800 pg in 5×105 cells. Analysis of the chromosomal insertion sites by inverse PCR showed that exogenous DNA could be inserted into the cell genome randomly or at TTAA target sequence specifically for piggyBac element transposition. The transgenic vector pigA3GFP-hIGF-ie-neo was transferred into the eggs using sperm-mediated gene transfer. Finally, two transgenic silkworms were obtained after screening for the neo and gfp genes and verified by PCR and dot hybridization. The expression level of hIGF-I determined by ELISA was about 2440 pg/g of silk gland of the transgenic silkworms of the G1 generation.

  14. Silk scaffolds with tunable mechanical capability for cell differentiation.

    Science.gov (United States)

    Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L; Zhu, Hesun; Lu, Qiang

    2015-07-01

    Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells toward myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features.

  15. 4种常用稳定剂和丝素蛋白对搅拌型酸奶黏度和保水性的影响%Effects of Four Common Stabilizers Combined with Silk Fibroin on Viscosity and Water-Holding Capacity of Stirred Yogurt

    Institute of Scientific and Technical Information of China (English)

    屠洁; 刘冠卉; 燕薇

    2012-01-01

    为改善丝素酸奶的品质,采用二因素三水平析因试验设计,考察4种常用稳定剂(果胶、黄原胶、海藻酸钠、耐酸性羧甲基纤维素钠(CMC))与丝素蛋白对搅拌型酸奶黏度、保水性的影响。结果显示:果胶、黄原胶、海藻酸钠和丝素蛋白对搅拌型酸奶的黏度均有极显著的影响(P〈0.01),上述3种稳定剂和丝素蛋白对酸奶的黏度均有极显著的交互作用(P〈0.01);果胶、黄原胶、耐酸性CMC和丝素蛋白对酸奶的保水性均有极显著的影响(P〈0.01),其中黄原胶和丝素蛋白对酸奶的保水性有极显著的交互作用(P〈0.01)。获得4个优化组合,分别为0.5%丝素蛋白和0.01%果胶,酸奶的黏度和保水性分别为903.8mPa.s、65.5%;1%丝素蛋白和0.03%黄原胶,酸奶的黏度和保水性分别为1196.2mPa.s、68.0%;1%丝素蛋白和0.03%海藻酸钠,酸奶的黏度和保水性分别为1320.6mPa.s、68.3%;0.5%丝素蛋白和0.05%酸性CMC,酸奶的黏度和保水性分别为962.1mPa.s、65.0%。%In order to improve the quality of silk fibroin yogurt, a two-variable, three-level factorial experimental design was used to explore the effects of silk fibroin in combination with one of four common stabilizers including pectin, xanthan gum, sodium alginate, acid-resistant carboxymethyl-cellulose (CMC) on the viscosity and water-holding capacity of stirred yogurt. The results showed that combined with pectin, xanthan gum or sodium alginate, silk fibroin had a highly significant on the viscosity of stirred yogurt (P〈0.01). Moreover, there was a highly significant interaction of silk fibroin with each of the three stabilizers (P〈0.01). All the combinations of silk fibroin with pectin, xanthan gum or acid-resistant CMC had a highly significant effect on water- holding capacity of stirred yogurt (P〈0.01), and a highly significant interaction between silk fibroin and xanthan gum was found (P〈 0.01). Four optimized

  16. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Pewlong, W.; Sudatis, B. [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  17. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Wachiraporn Pewlong; Boonya Sudatis [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-09-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated in the dose range up to 2500 kGy using an electron beam accelerator to apply the radiation degradation technique as a means to solubilize fibroin. The tensile strength of irradiated fibroin fiber decreased with increasing dose and the presence of oxygen in the irradiation atmosphere enhanced the degradation. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: calcium chloride solution (CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O = 1 : 2 : 8 in mole ratio), hydrochloric acid (0.5N) and distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water-soluble protein was extracted by distilled water. (author)

  18. Physicochemical properties of chitosan microspheres/silk fibroin/calcium sulfate bone cement%壳聚糖微球复合丝素基硫酸钙骨水泥的理化特性

    Institute of Scientific and Technical Information of China (English)

    王鹏; 皮斌; 王金宁; 朱雪松; 杨惠林

    2014-01-01

    背景:脊柱成形和脊柱后凸成形治疗中采用的硫酸钙骨水泥理化性质好,对人体无毒性作用,同时具有降解性能,但单独使用降解较快。  目的:研制具有载药缓释功能的壳聚糖微球丝素基硫酸钙骨水泥。  方法:采用三聚磷酸钠乳化交联法制备壳聚糖微球。采用浓度分别为3%,6%,9%的丝素溶液与CaSO4•0.5H 2 O混合,通过万能力学试验机确定骨水泥力学性能最佳时的丝素浓度,在此浓度下,按壳聚糖微球占CaSO 4•0.5H 2 O的质量比分别为0.5%,1%,5%的比例制备壳聚糖微球丝素基硫酸钙骨水泥,测定其抗压强度,并通过X射线多晶衍射仪及傅里叶红外光谱明确达到最佳抗压强度组的骨水泥成分,电镜观察复合骨水泥中壳聚糖微球的形态。  结果与结论:当丝素溶液浓度为6%,壳聚糖微球含量为0.5%时,复合骨水泥的抗压强度最大,为(39.17±1.96) MPa,此时复合骨水泥的初凝时间为(12.99±1.63) min,终凝时间为(21.55±0.54) min;骨水泥中主要晶相组成为硫酸钙,傅里叶红外光谱结果证实复合骨水泥中含有丝素及壳聚糖;复合骨水泥中的微球表面稍有皱缩,但球形仍然完整,未见明显破坏,可见在制备复合骨水泥的过程中微球能保持稳定而不被破坏。%BACKGROUND:Calcium sulfate used in kyphoplasty and vertebrolplasty has good physical and chemical properties, exerts no toxic effects on human body and has the degradation performance. But its main drawback is rapid degradation. OBJECTIVE:To develop a chitosan microsphere with silk fibroin/calcium sulfate cement to prepare drug carrier system. METHODS:Chitosan microspheres were prepared by the emulsion method. Scanning electron microscopy, particle size analysis and swel ing rate were used to study the properties of the microspheres. Different silk concentrations (3%, 6%and 9%) and weight rates (0

  19. Preparation and characterization of collagen/silk fibroin composite scaffold incorporating TGF-β1 nanoparticles%载TGF-β1纳米粒的胶原/丝素蛋白复合支架的制备与表征

    Institute of Scientific and Technical Information of China (English)

    方哲翔; 王建华; 程娘梅; 张其清

    2016-01-01

    目的 构建一种载转化生长因子β1(TGF-β1)纳米粒的双层胶原/丝素蛋白复合支架.方法 制备载TGF-β1的壳聚糖-肝素(Ch-Hep)纳米粒,检测其形态、粒径、Zeta电位和包封率.制备不同胶原和丝素蛋白质量比(2∶8、3∶7、7∶3、8∶2、10∶0)的5种胶原/丝素蛋白复合材料,分别检测其吸水率、孔隙率、热水溶失率和生物相容性;选择其中2种综合性能良好的复合材料分别作为复合支架的疏松层和致密层,构建载TGF-β1纳米粒的双层胶原/丝素蛋白复合支架,观察其形态并进行体外释放动力学研究.结果 Ch-Hep纳米粒的平均粒径为(718.2±73.6) nm,Zeta电位为(25.5±0.8) mV,对TGF-β1的包封率为(84.82±1.57)%.随着胶原/丝素蛋白复合材料中胶原含量的增加,材料的吸水率、孔隙率逐渐增加,热水溶失率逐渐降低;5种材料对骨髓间充质干细胞(BMSCs)均有促生长和增殖的作用.综合考虑后选用质量比为3∶7和7∶3的胶原/丝素蛋白复合材料分别作为复合支架的致密层和疏松层,构建的胶原/丝素蛋白复合支架为双层结构,一侧结构致密,另一侧疏松多孔.体外释放动力学研究表明,复合支架对TGF-β1具有定向时空控制性释放作用.结论 载TGF-β1纳米粒的双层胶原/丝素蛋白复合支架对TGF-β1具有良好的时空控制释放作用,有望作为生长因子的控缓释支架材料应用于软骨组织工程.%Objective To construct a double layered collagen/silk fibroin composite scaffold incorporating transforming growth factor-β1 (TGF-β1) nanoparticles.Methods The chitosan-heparin (Ch-Hep) nanoparticles incorporating TGF-β1 were prepared and the morphology,particle size,Zeta potential and encapsulation efficiency of the nanoparticles were observed and detected.Five kinds of collagen/silk fibroin composites that had different mass ratio of collagen to silk fibroin (2∶8,3∶7,7∶3,8∶2,10∶0) were prepared,and water

  20. Insoluble and flexible silk films containing glycerol.

    Science.gov (United States)

    Lu, Shenzhou; Wang, Xiaoqin; Lu, Qiang; Zhang, Xiaohui; Kluge, Jonathan A; Uppal, Neha; Omenetto, Fiorenzo; Kaplan, David L

    2010-01-11

    We directly prepared insoluble silk films by blending with glycerol and avoiding the use of organic solvents. The ability to blend a plasticizer like glycerol with a hydrophobic protein like silk and achieve stable material systems above a critical threshold of glycerol is an important new finding with importance for green chemistry approaches to new and more flexible silk-based biomaterials. The aqueous solubility, biocompatibility, and well-documented use of glycerol as a plasticizer with other biopolymers prompted its inclusion in silk fibroin solutions to assess impact on silk film behavior. Processing was performed in water rather than organic solvents to enhance the potential biocompatibility of these biomaterials. The films exhibited modified morphologies that could be controlled on the basis of the blend composition and also exhibited altered mechanical properties, such as improved elongation at break, when compared with pure silk fibroin films. Mechanistically, glycerol appears to replace water in silk fibroin chain hydration, resulting in the initial stabilization of helical structures in the films, as opposed to random coil or beta-sheet structures. The use of glycerol in combination with silk fibroin in materials processing expands the functional features attainable with this fibrous protein, and in particular, in the formation of more flexible films with potential utility in a range of biomaterial and device applications.

  1. Changes in growth and lipid profiles of silk gland, mid-gut biochemical composition of silkworm, Bombyx mori L. on exposure to prostaglandin F2alpha.

    Science.gov (United States)

    Miao, Yun-gen; Jiang, Li-jun

    2003-01-01

    The growth of the silkworm is influenced by the outside and inside environment. Among them, the category of various endocrine hormone of inside is the main factors that adjust the characters such as growth and propagate. In this experiment, we applied different dosage of prostaglandin to the fourth and fifth instar silkworm to observe the effects of prostaglandin F2alpha (PGF2alpha) on silk gland growth, mid-gut biochemical constituents and the lipid profiles of silkworm larva, Bombyx mori L. The weight of the posterior silk gland increased significantly (P lipid profiles except lipase activity suggests that the silk gland had more synthetic activity that might reflect in active spinning of silkworm larva. The changes of total proteins, free amino acids and alkaline phosphatase in mid-gut of control and PGF2alpha treated silkworm, B. mori L. indicate that PGF2alpha favored stimulatory effect on physiology of digestion, absorption and transportation of nutrients which might influence on the growth and development of larva.

  2. Effect of silk protein surfactant on silk degumming and its properties.

    Science.gov (United States)

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts.

  3. COMPARATIVE ANALYSIS OF THREE-DIMENSIONAL NANOSTRUCTURE OF POROUS BIOCOMPATIBLE SCAFFOLDS MADE OF RECOMBINANT SPIDROIN AND SILK FIBROIN FOR REGENERATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    O. I. Agapova

    2015-01-01

    Full Text Available Aim. To perform a comparison of three-dimensional nanostructure of porous biocompatible scaffolds made of fibroin Bombix mori and recombinant spidroin rS1/9. Materials and methods. Three-dimensional porous scaffolds were produced by salt leaching technique. The comparison of biological characteristics of the scaffolds shows that adhesion and proliferation of mouse fibroblasts in vitro on these two types of scaffolds do not differ significantly. Comparative experiments in vivo show that regeneration of bone tissue of rats is faster with implantation of recombinant spidroin scaffolds. Three-dimensional nanostructure of scaffolds and interconnectivity of nanopores were studied with scanning probe nanotomography (SPNT to explain higher regenerative activity of spidroin-based scaffolds. Results. Significant differences were detected in the integral density and volume of pores: the integral density of nanopores detected on 2D AFM images is 46 μm–2    and calculated volume porosity is 24% in rS1/9-based scaffolds; in fibroin-based three-dimensional structures density of nanopores and calculated volume porosity were 2.4 μm–2  and 0.5%, respectively. Three-dimensional reconstruction system of nanopores and clusters of interconnected nanopores in rS1/9-based scaffolds showed that volume fraction of pores interconnected in percolation clusters is 35.3% of the total pore volume or 8.4% of the total scaffold volume. Conclusion. Scanning probe nanotomography method allows obtaining unique information about topology of micro – and nanopore systems of artificial biostructures. High regenerative activity of rS1/9-based scaffolds can be explained by higher nanoporosity of the scaffolds.

  4. Effect of silk fibroin/hydroxyapatite scaffold on the viability and osteogenic properties of adipose-derived stem cells under osteogenic induction%丝素蛋白/羟基磷灰石支架对成骨诱导脂肪干细胞活性及成骨性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘浩; 褚亚伟; 丁涛; 程力; 朱浩明

    2015-01-01

    BACKGROUND:Adipose-derived stem cels under osteogenic induction can be combined with biodegradable silk fibroin/hydroxyapatite scaffold, which is expected to develop a new biocompatible and osteogenic bone fusion material. OBJECTIVE:To study the effect of silk fibroin/hydroxyapatite composite on the viability and osteogenic properties of adipose-derived stem cels after osteogenic induction. METHODS:Adipose-derived stem cels were obtained from rat’s fat tissue, then adherently cultured, proliferated and passaged in vitro. Passage 3 cels were cultured in conditioned medium for osteogenic induction, and then seeded onto silk fibroin/hydroxyapatite scaffold as experimental group. Adipose-derived stem cels cultured on the cover glasses at the same condition acted as control group. The celular morphology, proliferation and differentiation were assessed respectively by means of phase contrast microscope, MTT assay and alkaline phosphatase activity measurement. RESULTS AND CONCLUSION:After osteogenic induction, adipose-derived stem cels could adhere to the scaffold material and proliferate on the surface of silk fibroin/hydroxyapatite scaffold normaly. No significant difference was found in cel proliferation and alkaline phosphatase activity between the experimental and control groups (P > 0.05), suggesting the celular activity and function were not affected by the material. These findings indicate that silk fibroin/hydroxyapatite composite material has good cytocompatibility. Subject headings: Silk; Hydroxyapatites; Stem Cels; Adipose Tissue; Biocompatible Materials; Tissue Engineering.%背景:成骨诱导后的脂肪干细胞与可降解丝素蛋白/羟基磷灰石支架复合,可望研制出一种具有良好生物相容性及成骨性能的新型骨融合材料。目的:探讨丝素蛋白/羟基磷灰石支架对成骨诱导脂肪干细胞增殖活性及成骨性能的影响。方法:获取大鼠脂肪干细胞后体外贴壁培养、扩增,将第3代细

  5. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    Science.gov (United States)

    2016-01-06

    performance textiles and vehicle tires to biological scaffolding and biomedical materials. However, because of the inability to domesticate spiders and the...From Protein-rich Gland Fluids to Diverse Biopolymer Fibers” Functional Polymeric Materials Conference, Cancun, Mexico (2014). 10) Addison, J.B

  6. Characterization of a family of cysteine rich proteins and development of a MaSp1 derived miniature fibroin

    Science.gov (United States)

    Chuang, Tyler Casey

    Spider silk displays a unique balance of high tensile strength and extensibility, making it one of the toughest materials on the planet. Dragline silk, also known as the lifeline of the spider, represents one of the best studied fiber types and many labs are attempting to produce synthetic dragline silk fibers for commercial applications. In these studies, we develop a minifibroin for expression studies in bacteria. Using recombinant DNA methodology and protein expression studies, we develop a natural minifibroin that contains the highly conserved N- and C-terminal domains, along with several internal block repeats of MaSp1. We also characterize a family of small cysteine-rich proteins (CRPs) and demonstrate that these factors are present within the spinning dope of the major ampullate gland using MS analysis. Biochemical studies and characterization of one of the family members, CRP1, demonstrate that this factor can self-polymerize into higher molecular weight complexes under oxidizing conditions, but can be converted into a monomeric species under reducing conditions. Self-polymerization of CRP1 is also shown to be independent of pH and salt concentration, two important chemical cues that help fibroin aggregation. Overall, our data demonstrate that the polymerization state of CRP1 is dependent upon redox state, suggesting that the redox environment during fiber extrusion may help regulate the oligomerization of CRP molecules during dragline silk production.

  7. Silk gland gene expression during larval-pupal transitionin the cotton leaf roller Sylepta derogate (Lepidoptera: pyralidae)

    Science.gov (United States)

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used t...

  8. Preparation of insoluble fibroin films and its tensile property

    Institute of Scientific and Technical Information of China (English)

    Lü Qiang; CAO Chuanbao; ZHAI Huazhang; ZHU Hesun

    2004-01-01

    Silk fibroin is becoming a promising biomaterial because of its excellent biocompatibility. However, the regenerated fibroin is usually soluble in water and its mechanical properties should be improved. Although many methods, such as adding other polymers or treating with methanol, can ameliorate the mechanical properties and insolubility, the biocompatibility of fibroin is usually damaged in these processes. In this article, it is first reported that the insoluble fibroin films are directly prepared without methanol treatment. According to the results of Fourier transform infrared spectroscope (FTIR) and the X-ray diffraction (XRD), the amount of β-sheet conformation increased with the increasing of concentration. When fibroin films are dried from 15 wt% at 60℃, the films become insoluble in water. More importantly, The tensile strength and elongation of the insoluble fibroin films dried from 15% solution at 60℃ reached 15.9 MPa and 49.4% respectively in the wet state, which is distinctly superior to the fibroin films treated with methanol.

  9. Production of fine powder from silk by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Ishida, Kazushige; Kamiishi, Youichi [Textile Research Inst. of Gunma, Kiryu, Gunma (Japan)

    2000-09-01

    To produce silk fine powder, silk fibroin fibers were irradiated with an accelerated electron beam. Though unirradiated silk fibers were not pulverized at all, irradiated silk fibers were able to be crushed only by physical means using a ball mill. In the dose range of 250- 1000 kGy, as the dose to silk fibroin increased, the conversion rate from fiber to powder was increased. The electron microscope observation showed that the particle size of silk powder was less than 10 micrometers, and that those particles composed aggregate. Although silk fibroin fiber was not soluble in water, silk powders from fiber irradiated 500 kGy dissolved more than 50 weight %. Amino acid analysis of soluble fraction in silk powder showed that Gly content is lower than in normal silk and other amino acids contents except for Ala are 1.5 times as large as in normal silk. From these results, it is reasonable to suppose that irradiation and pulverization decomposed Gly and Ala. (author)

  10. Study on biocompatibility of silk fibroin with placenta mesenchymal stem cells%丝素蛋白与胎盘间充质干细胞生物相容性的实验研究

    Institute of Scientific and Technical Information of China (English)

    苗宗宁; 李芳; 吕国忠; 张学光

    2010-01-01

    目的 探讨丝素蛋白(SF)材料与胎盘间充质干细胞(PMSCs)的生物相容性.方法 运用SF溶液包被的培养瓶培养PMSCs,流式细胞术分析其表型并对其定向分化潜能进行探讨;PMSCs置于SF膜材料培养后通过扫描电镜观察细胞形态变化.结果 用SF溶液包被的培养瓶培养的PMSCs,其生长特性、表面标志、多向分化潜能无明显变化;PMSCs在SF膜材料上生长良好,培养8 d时材料上细胞伸展增殖,分泌大量颗粒状、网状基质物质,材料间隙被基质填满.结论 SF材料不影响PMSCs的生长特性、表面标志和多向分化潜能,具有良好的生物相容性.%Objective To study the biocompatibility of silk fibroin (SF) with placenta mesenchymal stem cells (PMSCs).Methods PMSCs were cultured in the SF coating flasksand and its phenotype was analyzed by flow cytometry,while its adipogenic,chondrogenic,and osteogenic differentiation potential were determined by staining.The growth condition was then observered under the electric microscope.Results After being cultured in the SF film,the growth characteristics,surface markers,multi-differentiation capacity of PMSCs did not change.The electric microscope observation results showed that PMSCs well proliferated in the SF film after been co-cultured for 8 days,and large amounts of granular was secreted,and mesh matrix substances well filled in the material clearance.Conclusion SF has good biocompatibility by showing no effects on the PMSCs growth characteristics,surface markers and multi-differentiation capacity.

  11. Sequential steps of macroautophagy and chaperone-mediated autophagy are involved in the irreversible process of posterior silk gland histolysis during metamorphosis of Bombyx mori.

    Science.gov (United States)

    Shiba, Hajime; Yabu, Takeshi; Sudayama, Makoto; Mano, Nobuhiro; Arai, Naoto; Nakanishi, Teruyuki; Hosono, Kuniaki

    2016-04-15

    To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis.

  12. Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues.

    Science.gov (United States)

    Chen, Quanmei; Ma, Zhengang; Wang, Xin; Li, Zhiqing; Zhang, Yan; Ma, Sanyuan; Zhao, Ping; Xia, Qingyou

    2015-09-01

    Cross-talk between tissues plays key roles in development of organisms; however, there are few researches on cross-talk between tissues in insects. Our previous studies showed that the pupal body weight was elevated after knocking out the fibroin heavy chain gene (BmFib-H), whereas the gene specifically expressed in silk glands of silkworm. Hence, the mutant is a good material for studying the cross-talk between tissues. It is considered that the fat body of silkworm during larval stage is used to store nutrients for pupal development. Herein, comparative proteomic of fat body on the 5th day of fifth instar was performed between BmFib-H gene knock-out Bombyx mori line (FGKO) and its wide-type Dazao. These results revealed that a single gene knock-out in silk gland triggered large-scale metabolic pathways changes in fat body. The levels of proteins involved in glycolysis/gluconeogenesis, pentose phosphate pathway, and glycine-serine biosynthetic pathway were down-regulated in the FGKO fat body. In contrast, the abundances of many proteins participating in protein synthesis, including ribosomal proteins, eukaryotic translation initiation factor, and elongation factor, were up-regulated. Moreover, the concentrations of glycogen and proteins in the FGKO fat body were greatly increased. These findings provided a novel insight into the cross-talk between silk gland and fat body in silkworm, and the presence of cross-talk between silk gland and fat body could regulate the redistribution of nutrients in the FGKO fat body leading to the increase of the pupal weight.

  13. A novel marine silk.

    Science.gov (United States)

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.

  14. Using FTIR spectroscopy to detect sericin on historic silk

    Institute of Scientific and Technical Information of China (English)

    WYETH; Paul

    2010-01-01

    Silks represent some of the most precious ancient and historic textile artefacts in collections worldwide.Their optimum preservation demands an appreciation of their characteristics.One important concern,especially with regard to ancient Chinese silks,is whether the fabrics have been degummed.Silks with remnant sericin gum coating the fibroin fibres would require different conservation protocol.In previous research on aged silks,the presence of sericin has been inferred from amino acid analysis of hydrolysates.In the study reported here,the potential of FTIR spectroscopy to provide a simpler and rapid method of detecting sericin on silk has been investigated.Both fibroin and sericin exhibit singular IR absorptions.Attenuated total reflectance spectroscopy was found to highlight the sericin coating more effectively than transmission and reflectance spectroscopy.Three particular peak intensity ratios were identified which might provide a quantitative estimate of the sericin content of new silk,to a sensitivity of 1%-2%.These were also shown to be valid indicators for the presence of sericin on artificially aged and archaeological silks,although quantitation was now not possible.Besides the peak intensity ratios,two signature peaks were also seen to be useful markers for silk fibroin,and their presence in a spectrum could be used to infer a degummed silk.

  15. 丝素蛋白-聚氨酯复合水凝胶的制备及性能研究%PREPRATION AND CHARACTERIZATION OF SILK FIBROIN- POLYURETHANE COMPOSITE HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    张宝萍; 许戈文; 黄毅萍

    2012-01-01

    以聚乙二醇(PEG)、聚氧化丙烯二醇(PPG)、异弗尔酮二异氰酸酯(IPDI)为主要原料制备聚氨酯预聚体(PU),与丝素蛋白水溶液(SF)交联制得丝素蛋白-聚氨酯( SF-PU)复合水凝胶.分别利用ATR、SEM对水凝胶组成、结构及微观形貌进行表征;DSC、吸水溶胀测试探讨了丝素蛋白与聚氨酯的质量比(SF/PU)以及聚氨酯中不同软段质量比(PEG/PPG)对SF-PU水凝胶热性能、溶胀性能的影响.结果表明,SF-PU水凝胶具有多孔结构;样品中不同的SF/PU、PEG/PPG均对材料的玻璃化转变温度、结晶度及溶胀性能产生影响,且当水凝胶组分为SF/PU=1/25、PEG/PPG=2/1时,平衡溶胀比(ESR)可达到440%;水凝胶在溶胀初始阶段符合菲克扩散模型,整个溶胀过程遵循溶胀动力学2级方程.%SF-PU composite hydrogel was prepared successfully by incorporating silk fibroin aqueous solution into polyurethane prepolymer ( PU ) which was synthesized using poly ( ethylene glycol) ( PEG ) , poly-(polyethylene glycol) (PPG) and isophorone diisocyanate (IPDI) as the main materials. The structure and component of hydrogels as well as their interior morphology were characterized with the methods of ATR and SEM. Influences of hydrogels of different SF/PU and PEG/PPG proportions on their thermal properties and swelling behaviors were further investigated by means of DSC measurements and swelling tests, respectively. Results showed that the prepared composite SF-PU hydrogels have a kind of three-dimensional porous network structure. DSC curves of the hydrogels exhibited unique thermal properties, that the glass transition temperatures ( Tg) and the crystallization changed lightly corresponding to the changed hydrogel compositions. What' s more, different composition hydrogels indicated similar excellent swelling dynamics and varied swelling ratios; the equilibrium swelling ratio (ESR) increased with the decrease of the SF content which could be seen as the

  16. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    Science.gov (United States)

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.

  17. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus dragline silk protein.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Kuwana

    Full Text Available Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol% native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.

  18. Production of fine powder from silk by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Ishida, Kazunari; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Silk fine power was prepared directly from silk fiber irradiated with an accelerated electron beam(EB). Irradiated silk fiber was well pulverized only by physical crushing using ball mill without any chemical pretreatment. Raw and degummed silk fibers were irradiated at ambient temperature in the dose range of 250-1000 kGy. Although unirradiated silk fibers were not pulverized at all, irradiated fibers were easily pulverized and showed higher conversion from fiber to powder for higher doses. The presence of oxygen in the irradiation atmosphere enhanced pulverization of silk fiber. Raw silk fibers were less pulverized compared to degummed ones. The electron microscope observation showed that the minimum particle size of silk powder obtained from fiber irradiated by 1000 kGy in oxygen was less than 10 microns. It was found that fibroin powder obtained in this work dissolved remarkably into cold water, thought unirradiated fibroin fiber had little solubility even in hot water. A typical soluble fraction was about 60% for fibroin powder obtained from fiber irradiated by 1000 kGy in oxygen. (author)

  19. Toward spinning artificial spider silk.

    Science.gov (United States)

    Rising, Anna; Johansson, Jan

    2015-05-01

    Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk.

  20. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).

    Science.gov (United States)

    Pouchkina-Stantcheva, Natalia N; McQueen-Mason, Simon J

    2004-08-01

    Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp. is stiffer then comparable silk of Nephila edulis, Araneus diadematus and Latrodectus mactans. Our studies of Euprosthenops dragline silk at the molecular level have revealed that nursery web spider fibroin has the highest polyalanine content among previously characterised silks and this is likely to contribute to the superior qualities of pisaurid dragline.

  1. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material.

  2. Solubilization of silk protein by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sudatis, Boonya; Pongpat, Suchada [Office of Atomic Energy of Peace, Bangkok (Thailand)

    2002-03-01

    Gamma irradiated silk fibroin at doses of 0, 5, 10, 20, 40, 60, 80, 100, 125, 250, 500, 750 and 1000 kGy were soaked in water for 1 hr. Silk fibroin solubilized percentage was investigated from lost weight of sample (dried at 105{sup 0}C), they were 0, 0, 0.7, 0, 0.11, 0.11, 0, 0.73, 0.77, 4.38, 8.32, 10.22 and 18.52 respectively. It showed that at the higher dose up to 250 kGy had direct effect to solubility, and increased with increasing dose. In addition, silk sericin dissolved 77.76, 82.22, 83.55, 84.31, 86.04, 86.67 and 87.37% after gamma irradiation at the doses of 0, 50, 100, 200, 500, 750 and 1000 kGy respectively. It presents that radiation can cause silk protein, fibroin and sericin dissolve because of their degradation. (author)

  3. Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han Jie; Su Huilan, E-mail: hlsu@sjtu.edu.cn; Xu Jia; Song Weiqiang; Gu Yu; Chen Ying [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Moon, Won-Jin [Gwangju Center, Korea Basic Science Institute (Korea, Republic of); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China)

    2012-02-15

    In this article, a bio-inspired silk-mediated method was established to produce natural material-modified photoluminescent zinc oxide nanoparticles (nano-ZnO). Silk fibroin fibers were employed as the reactive substrates to synthesize nano-ZnO, and silk fibroins (SF) were taken as the biocompatible stabilizers to modify dispersed nano-ZnO. As-prepared nano-ZnO were mainly hexagonal phase particles with diameter around 13 nm. The resulting nano-ZnO/SF hybrids displayed orange emission and good biocompatibility in aqueous system.

  4. Self-assembly in the major ampullate gland of Nephila clavipes

    CERN Document Server

    Braun, F N

    2002-01-01

    We present a tentative interpretation of the origin of nematic liquid crystalline order exhibited by dragline silk fibroin solutions collected from the spider Nephila clavipes. Liquid crystallinity is thought to confer certain rheological properties on the fibroin solution which are exploited during the dragline spinning process. We show that the feasibility of liquid crystallinity under physiological conditions depends critically on parameters characterising the amino-acid sequence of the fibroin molecules.

  5. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  6. Constructing tissue-engineered adipose with the combination of gene-transfected human umbilical cord mesenchymal stem cells and silk fibroin scaffold%基因转染脐带间充质干细胞与丝素蛋白构建组织工程脂肪***☆

    Institute of Scientific and Technical Information of China (English)

    刘毅; 唐军; 李世龙

    2013-01-01

    transferred with recombinant insulin gene lentiviral vector combined with silk fibroin scaffold in the construction of tissue engineering adipose in Wistar rats. METHODS: Human umbilical cord mesenchymal stem cel s were separated and cultured, and then transfected with recombinant insulin gene lentiviral vector (transfected group) by the best multiplicity of infection =10. The nontransfected human umbilical cord mesenchymal stem cel s were regarded as control group. The human umbilical cord mesenchymal stem cel s in the transfected group and the control group were seeded onto the silk fibroin scaffold and implanted into the subcutaneous layer of Wistar rats. At 12 weeks after implantation, the transplants were taken, and then identified with fluorescence in situ hybridization and observed with histomorphology and scanning electron microscopy. RESULTS AND CONCLUSION: Oil red O staining showed the transplants in two groups were positive, suggesting that the transplants were synthesized in adipose tissue, and the number of fat-like cel s in the transfected group was significantly higher than that in the control group (P < 0.01). Hematoxylin-eosin staining showed significant angiogenesis appeared in or around the new formed tissue, the structure of which was similar to natural adipose tissue. Silk fibroin scaffold in the transfected group was degraded significantly, the number of new vessels in the transfected group was more than that in the control group, and inflammatory cel infiltration in the transfected group was significantly less than that in the control group. Scanning electron microscopy results showed that fat-like cel s in the trasnfected group congregated and the structure was similar to that of the normal adipose tissue; the fat-like cel s in the control group scattered in the pore of the scaffold. Insulin gene could obviously promote human umbilical cord mesenchymal stem cel s to differentiate into adipose; human umbilical cord mesenchymal stem cel s transferred

  7. Functional silk: colored and luminescent.

    Science.gov (United States)

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others.

  8. Physical characterization of functionalized spider silk: electronic and sensing properties

    OpenAIRE

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this invest...

  9. 基于石墨烯-纳米金-丝素水凝胶的高灵敏有机相酶电极检测呋喃丹%Determination of carbofuran using a highly sensitive enzyme inhibition tyrosinase OPEE based on graphene-gold nanoparticles-silk fibroin hydrogel

    Institute of Scientific and Technical Information of China (English)

    许绍鹏; 董静; 艾仕云

    2013-01-01

    采用改进的Hummers法制备了氧化石墨烯(GO),用微波辅助丝素还原法制备了丝素还原石墨烯(SF-GR),并用红外(FT-IR)、紫外(UV-vis)和透射电镜(TEM)对SF-GR进行了表征。然后以丝素同时原位还原的石墨烯-纳米金复合水凝胶包埋酪氨酸酶(Tyr)制备了新型的有机相酶电极(SF-GR-NanoAu-Tyr/GCE),在纯氯仿中对呋喃丹进行了检测。结果表明,在有机相中,丝素水凝胶能较好的保持酪氨酸酶的生物活性,GR和NanoAu促进了电子在电极界面上以及水凝胶内部的电子传递,提高了酶电极的灵敏性。在没有另外添加水或者缓冲液的情况下,酪氨酸酶的抑制率与浓度范围为1.0×10-8~1.0×10-12 mol/L的呋喃丹呈线性关系,检测限为8.0×10-13 mol/L。该有机相酶电极制备简单,检测快速,灵敏度高,适合于有机溶剂中微量农药的定量检测。%Graphene oxide was prepared by the method of modified Hummers. Silk-reduced-graphene (SF-GR) was prepared using microwave-assisted silk fibroin reduction synthesis method. TEM, FT-IR and UV-vis were uti-lized to characterize SF-GR. Then, a novel highly sensitive enzymatic inhibition organic phase enzyme electrode (OPEE) was fabricated by enwrapping tyrosinase in graphene-gold nanoparticles-silk fibroin hydrogel. The SF hy-drogel provided a necessary amount of water and a biocompatible microenvironment around the enzyme molecule to stabilize its biological activity and effectively prevented its inactivation by inhibitors such as pesticides. Under op-timized conditions, the inhibition percentage of carbofuran was proportional to its concentration in the range of 1.0 × 10-8 to 1.0 × 10-12 mol/L with a detection limit of 8.0 × 10-13 mol/L. Thus, the highly sensitive OPEE is a promis-ing new tool for pesticide analysis in organic solvents.

  10. A New Catalyst in the Crease Recovery Finishing of Silk Fabrics with Epoxide

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-ming; SHEN Gan-qing

    2004-01-01

    The paper here intends to discuss silk crease recovery finishing behavior with ED GE (ethylene diglycidal ether) in the presence of a new catalyst WSH. The results show that ED GE reacts with silk fibroin and forms cross linkages through ether bond. The formation of cross linking was examined by FITR spectroscopy, soluble time in acid solution and changes of amino acids. Handle of treated silk with catalyst WSH is better than that of silk treated with the traditional catalysts such as thiosulfates and thiocyanates. Finishing technique, physical properties of the finished silk fabrics and evaluation of cross linkages are discussed.

  11. Biomolecular Evidence of Silk from 8,500 Years Ago.

    Science.gov (United States)

    Gong, Yuxuan; Li, Li; Gong, Decai; Yin, Hao; Zhang, Juzhong

    2016-01-01

    Pottery, bone implements, and stone tools are routinely found at Neolithic sites. However, the integrity of textiles or silk is susceptible to degradation, and it is therefore very difficult for such materials to be preserved for 8,000 years. Although previous studies have provided important evidence of the emergence of weaving skills and tools, such as figuline spinning wheels and osseous lamellas with traces of filament winding, there is a lack of direct evidence proving the existence of silk. In this paper, we explored evidence of prehistoric silk fibroin through the analysis of soil samples collected from three tombs at the Neolithic site of Jiahu. Mass spectrometry was employed and integrated with proteomics to characterize the key peptides of silk fibroin. The direct biomolecular evidence reported here showed the existence of prehistoric silk fibroin, which was found in 8,500-year-old tombs. Rough weaving tools and bone needles were also excavated, indicating the possibility that the Jiahu residents may possess the basic weaving and sewing skills in making textile. This finding may advance the study of the history of silk, and the civilization of the Neolithic Age.

  12. Inkjet printing of silk nest arrays for cell hosting.

    Science.gov (United States)

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation.

  13. Impact of silk biomaterial structure on proteolysis.

    Science.gov (United States)

    Brown, Joseph; Lu, Chia-Li; Coburn, Jeannine; Kaplan, David L

    2015-01-01

    The goal of this study was to determine the impact of silk biomaterial structure (e.g. solution, hydrogel, film) on proteolytic susceptibility. In vitro enzymatic degradation of silk fibroin hydrogels and films was studied using a variety of proteases, including proteinase K, protease XIV, α-chymotrypsin, collagenase, matrix metalloproteinase-1 (MMP-1) and MMP-2. Hydrogels were used to assess bulk degradation while films were used to assess surface degradation. Weight loss, secondary structure determined by Fourier transform infrared spectroscopy and degradation products analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to evaluate degradation over 5 days. Silk films were significantly degraded by proteinase K, while silk hydrogels were degraded more extensively by protease XIV and proteinase K. Collagenase preferentially degraded the β-sheet content in hydrogels while protease XIV and α-chymotrypsin degraded the amorphous structures. MMP-1 and MMP-2 degraded silk fibroin in solution, resulting in a decrease in peptide fragment sizes over time. The link between primary sequence mapping with protease susceptibility provides insight into the role of secondary structure in impacting proteolytic access by comparing solution vs. solid state proteolytic susceptibility.

  14. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    Science.gov (United States)

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  15. Preparation of 3-D porous fibroin scaffolds by freeze drying with treatment of methanol solutions

    Institute of Scientific and Technical Information of China (English)

    ZHAN JingLin; SUN XiaoDan; CUI FuZhai; KONG XiangDong

    2007-01-01

    In this study,silk scaffolds with appropriate porous structures were prepared by adjusting solution concentrations and providing treatment with methanol solutions in the way of freeze drying. The effects of the preparation conditions on the microstructures and properties of the scaffolds were discussed. Fibroin solutions with different concentrations of 4,6,8,10 wt% were used respectively to prepare the scaffolds. The effects of the addition of 20 vol% methanol before or after freeze drying to the 4 wt% fibroin solution were investigated. As demonstrated by Scanning Electron Microscope (SEM),the fibroin scaffolds prepared without methanol had porous microstructures composed of thin sheets,and the sizes of the pores decreased with the increase of the fibroin solution concentrations,while the scaffolds prepared in the presence of methanol showed porous microstructures formed by fine-particle aggregates. The porosities and mechanical properties of the prepared fibroin scaffolds under different conditions were tested. The crystalline structures and conformations of the fibroin scaffolds were detected by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD).

  16. Role of humidity on the structures and properties of regenerated silk fibers

    Directory of Open Access Journals (Sweden)

    Qingfa Peng

    2015-10-01

    Full Text Available Silk fiber was processed from highly concentrated spinning dope to solid fibers along with water removal. To understand the mechanism of water removal during silk fiber spinning process, a microfluidic chip was designed and applied to investigate the structures and mechanical properties of two kinds of regenerated silk fibroin fibers dry-spun at different relative humidity. The experimental results showed that the diameters of the fibers spun at 40% RH are always larger than the fibers spun at 50% RH due to different removal rates of water. The fibers spun at low humidity contain more β-sheet structure and lower degree of chain orientation and crystalline orientation. These results indicate that the fast phase transition of silk fibroin from sol–gel to silk fiber undergoes with rapid water removal and higher fiber orientation relates to more residue water and drawing force.

  17. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  18. 再生丝素蛋白载银抗菌纳米纤维水凝胶的制备及抗菌性能研究%Study on Preparation and Antibacterial Properties of Silver Loaded Regenerated Silk Fibroin Nanofiber Gels

    Institute of Scientific and Technical Information of China (English)

    王圣杰; 刘江敏; 吴雯

    2015-01-01

    利用物理吸附的方法在静电纺再生丝素蛋白纳米纤维膜中引入银盐。采用扫描电镜(SEM)对丝素蛋白溶液静电纺纳米纤维进行表征,并考察载银前后纳米纤维凝胶的吸水性、溶失性和抗菌性。结果表明:相同静电纺条件下,纳米纤维直径随丝素蛋白浓度的增加而增大;载银前后纳米纤维凝胶均具有较高的吸水率和较低的溶失率。载银之后,纳米纤维凝胶对大肠杆菌和金黄色葡萄球菌均具有良好的抑菌抗菌性。%In this experiment,silver particles were introduced into regenerated silk fibroin (SF)nanofiber gels bases on electrospun by physical adsorption.The obtained nanofibers were characterized by scanning electronic microscope (SEM). The water absorption and dissolution performance,as well as antibacterial properties of SF nanofiber gels with or without silver were studied respectively.The results showed that the diameter of the SF based nanofibers increased with the concentration under the same electrospinning condition increasing.The SF based nanofiber gels showed high water absorbability,and low dissolve-loss ratio with or without silver.After loaded silver,the nanofiber gels showed excellent antibacterial property.

  19. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    Science.gov (United States)

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections.

  20. 生物活性玻璃-丝素蛋白复合膜支持人牙髓干细胞增殖与分化初探%Bioactive glass 45S5-silk fibroin membrane supports proliferation and differentiation of human dental pulp stem cells

    Institute of Scientific and Technical Information of China (English)

    吕孝帅; 李正茂; 王海燕; 杨雪超

    2015-01-01

    Objective To investigate the effect of bioactivity glass 45S5-silk fibroin(BG45S5-SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex.Methods hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h.No material membrane orifice plate was used as blank control group.Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes).Cell proliferation was assessed by cell counting kit-8 on the 4, 7, 14, and 21 days.The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining;and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential.The expression of odontoblastic differentiation-related genes was measured by real-time PCR.Results Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51°±0.12°, 70.32°±0.07° and 71.31°±0.09° respectively.hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05).Dentin matrix protein1(DMP-1), dentin sialoprotein(DSP), ALP, osteoealcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days.Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days.Conclusions BG45S5-SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC.This finding suggests that BG45S5

  1. 胶原/丝素导管介导雪旺细胞联合神经干细胞修复坐骨神经缺损%Collagen/silk fibroin conduit combined with the co-culture of Schwann cells and neural stem cells for bridging sciatic nerve defect

    Institute of Scientific and Technical Information of China (English)

    徐云强; 张振辉; 余欣; 陈旭义; 李东; 李瑞欣; 冯世庆

    2015-01-01

    目的 观察胶原/丝素导管介导雪旺细胞联合神经干细胞所构建的组织工程化神经修复大鼠10 mm坐骨神经缺损的效果.方法 体外分离培养乳鼠坐骨神经雪旺细胞(SCs),并做S-100蛋白免疫荧光鉴定;从孕14 ~ 15 d的SD大鼠体内取出子鼠,分离纯化获得原代神经干细胞(NSCs)进行体外培养.实验分为4组,每组10只:自体神经移植组(A组)、胶原/丝素导管介导雪旺细胞联合神经干细胞移植组(B组)、胶原/丝素导管移植组(C组)、单纯损伤组(D组).SCs-NSCs与胶原/丝素导管联合培养14 d后,行扫描电镜观察.分别将3种不同移植物桥接于大鼠坐骨神经10 cm缺损处,并在12周后进行大体观察、电生理学检测、形态学观察及计量学分析.结果 术后12周,桥接组都不同程度地实现了坐骨神经缺损再通,且实验动物未出现明显排斥及炎性反应.神经电生理学检测坐骨神经复合肌动作电位(CMAPs)波幅分别为:未手术正常侧(21.00±1.83) mV,A组(15.00±1.12) mV,B组(13.00±1.06) mV,C组(6.00±0.58) mV,透射电子显微镜再生神经纤维髓鞘厚度分别为:A组(0.80±0.15) μm,B组(0.70±0.11) μm,C组(0.30±0.07) μm,D组(0.25±0.06) μm.统计结果表明:A组与B组之间差异无统计学意义(P>0.05),但两者相对C组及D组差异有统计学意义(P<0.05).结论 SCs和NSCs能够在胶原/丝素导管上共同生长分化,生物相容性良好.胶原/丝素导管介导雪旺细胞联合神经干细胞所构建的组织工程化神经对坐骨神经缺损的修复具有良好的桥接和促神经生长作用.%Objective To observe the repair effect of collagen/silk fibroin conduit transplanted with co-cultured Schwann cells (SCs) and neural stem cells (NSCs) for bridging 10 mm sciatic nerve defect by tissue engineering technique in rats.Methods SCs were isolated and purified from the sciatic nerve of neonatal SD rats,and were identified by immunocytochemical labelling for S100

  2. Studies on nano-TiO2 modified silk fibroin and its dyeing characteristic%纳米TiO2改性丝素性能及整理织物染色性能的研究

    Institute of Scientific and Technical Information of China (English)

    陈建勇; 冯新星; 许丹

    2007-01-01

    利用超声分散原理,将Ti(OC4H9)4/乙醇加入到丝素溶液中,发生水解-缩聚反应,制得纳米TiO2再生丝素膜.对膜的溶失率和机械强度测试,续对之进行SEM、XRD、FTIR、EDS及复合丝素整理织物的染色性能的表征.结果表明,纳米粒子在丝素膜中分布均匀,随着纳米TiO2的加入,膜机械强度提高,在水中溶失率下降;丝素膜的结晶结构从Silk Ⅰ向Silk Ⅱ转化,用复合丝素整理织物的上染率和色牢度均比纯丝素整理的高.

  3. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin.

    Science.gov (United States)

    Collin, Matthew A; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2016-02-15

    Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers.

  4. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin

    Science.gov (United States)

    Collin, Matthew A.; Clarke, Thomas H.; Ayoub, Nadia A.; Hayashi, Cheryl Y.

    2016-01-01

    Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers. PMID:26875681

  5. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    OpenAIRE

    Ping Jiang; Núria Marí-Buyé; Rodrigo Madurga; María Arroyo-Hernández; Concepción Solanas; Alfonso Gañán; Rafael Daza; Plaza, Gustavo R.; Guinea, Gustavo V.; Manuel Elices; José Luis Cenis; José Pérez-Rigueiro

    2014-01-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much la...

  6. The expression of GFP under the control of fibroin promotor in primary ovarian cells of Antheraea pernyi

    Indian Academy of Sciences (India)

    Wenli Li; Liji Jin; Pengcheng Bu; Lijia An

    2003-12-01

    The fibroin promoter can stably express foreign gene in lepidopteran cells. Total RNA was extracted from the gland of silkworm, Antheraea pernyi and the transcription initiation site of fibroin gene of A. pernyi was identified by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). The expression vector (pGFP-N2/Fib) was constructed by use of replacing the CMV promoter with the fibroin promoter. The results of visual screening under a fluorescent inverted microscope and Western blot analysis indicated that the GFP gene was expressed in the primary cells of ovary origins from A. pernyi.

  7. The natural silk spinning process. A nucleation-dependent aggregation mechanism?

    Science.gov (United States)

    Li, G; Zhou, P; Shao, Z; Xie, X; Chen, X; Wang, H; Chunyu, L; Yu, T

    2001-12-01

    The spinning mechanism of natural silk has been an open issue. In this study, both the conformation transition from random coil to beta sheet and the beta sheet aggregation growth of silk fibroin are identified in the B. mori regenerated silk fibroin aqueous solution by circular dichroism (CD) spectroscopy. A nucleation-dependent aggregation mechanism, similar to that found in prion protein, amyloid beta (Abeta) protein, and alpha-synuclein protein with the conformation transition from a soluble protein to a neurotoxic, insoluble beta sheet containing aggregate, is a novel suggestion for the silk spinning process. We present evidence that two steps are involved in this mechanism: (a) nucleation, a rate-limiting step involving the conversion of the soluble random coil to insoluble beta sheet and subsequently a series of thermodynamically unfavorable association of beta sheet unit, i.e. the formation of a nucleus or seed; (b) once the nucleus forms, further growth of the beta sheet unit becomes thermodynamically favorable, resulting a rapid extension of beta sheet aggregation. The aggregation growth follows a first order kinetic process with respect to the random coil fibroin concentration. The increase of temperature accelerates the beta sheet aggregation growth if the beta sheet seed is introduced into the random coil fibroin solution. This work enhances our understanding of the natural silk spinning process in vivo.

  8. SPIDER SILK

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2014-05-01

    Full Text Available The strengthness and toughness of spider fiber and its multifunctional nature is only surpassed in some cases by synthetic high performance fibers. In the world of natural fibers, spider silk has been long time recognized as a wonder fiber for its unique combination of high strength and rupture elongation. Scientists in civil military engineering reveal that the power of biological material (spider silk lies in the geometric configuration of structural protein, and the small cluster of week hydrogen bonds that works together to resist force and dissipate energy. Each spider and each type of silk has a set of mechanical properties optimized for their biological function. Most silks, in particular deagline silk, have exceptional mechanical properties. They exhibit a unique combination of high tensile strength and extensibility (ductility. This enables a silk fiber to absorb a lot of energy before breaking (toughness, the area under a stress- strain curve. A frequent mistake made in the mainstream media is to confuse strength and toughness when comparing silk to other materials. As shown below in detail, weight for weight, silk is stronger than steel, but not as strong as Kevlar. Silk is,however, tougher than both.This paper inform about overview on the today trend in the world of spider silk.

  9. Physico-chemical characterization and biological evaluation of two fibroin materials.

    Science.gov (United States)

    Motta, Antonella; Segnana, Paola; Verin, Lucia; La Monica, Silvia; Fumarola, Claudia; Bucci, Giovanna; Gussago, Francesca; Cantoni, Anna Maria; Ampollini, Luca; Migliaresi, Claudio

    2014-11-01

    Silk fibroin fibres from two different sources, Bombyx mori pure-breed silkworms and polyhybrid cross-bred silkworm cocoons, were treated with formic acid under planar stirring conditions to prepare non-woven nets. The treatment partially dissolved the fibres, which bound together and formed a non-woven micrometric net with fibres coated by a thin layer of low molecular weight fibroin matrix. The starting fibres, net materials and fibroin coating layer were characterized in terms of amino acid composition, molecular weight and calorimetric properties. In vitro cell culture tests with rat fibroblasts were performed to investigate cell proliferation, morphology and spreading. Moreover, host-rat fibroblasts were preseeded on the afore-mentioned nets and implanted in the thorax of rats for histological analysis. In spite of the chemical differences between the two starting fibroins, the response of the said materials in vitro and in vivo were very similar. These results suggest that the outcome is likely correlated with the modification of the processing technique; that during the formation of the net, a thin gel layer of similar amino acid composition was formed on the fibroin fibres.

  10. Hierarchical charge distribution controls self-assembly process of silk in vitro

    Science.gov (United States)

    Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-12-01

    Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

  11. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    Science.gov (United States)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  12. In vitro phosphorylation as tool for modification of silk and keratin fibrous materials

    OpenAIRE

    Volkov, Vadim; Cavaco-Paulo, Artur

    2016-01-01

    An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phospho...

  13. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Gupta, Prerak; Adhikary, Mimi; M, Joseph Christakiran; Kumar, Manishekhar; Bhardwaj, Nandana; Mandal, Biman B

    2016-11-16

    Composite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential. Scaffolds were physico-chemically characterized for morphology, porosity, secondary structure conformation, water retention ability, biodegradability, and mechanical property. The results revealed a ∼5-fold increase in scaffold compressive modulus on addition of HA and silk fibers to liquid silk as compared to pure silk scaffolds while maintaining high scaffold porosity (∼90%) with slower degradation rates. X-ray diffraction (XRD) results confirmed deposition of HA crystals on composite scaffolds. Furthermore, the crystallite size of HA within scaffolds was strongly regulated by the intrinsic physical cues of silk fibroin. Fourier transform infrared (FTIR) spectroscopy studies indicated strong interactions between HA and silk fibroin. The fabricated tricomposite scaffolds supported enhanced cellular viability and function (ALP activity) for both MG63 osteosarcoma and human bone marrow stem cells (hBMSCs) as compared to pure silk scaffolds without fiber or HA addition. In addition, higher expression of osteogenic gene markers such as collagen I (Col-I), osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) further substantiated the applicability of HA composite silk scaffolds for bone related applications. Immunostaining studies confirmed localization of Col-I and BSP and were in agreement with real-time gene expression results. These findings demonstrate the osteogenic potential of developed biodegradable tricomposite scaffolds with the added advantage of the affordability of its components as bone graft substitute materials.

  14. Tissue Regeneration: A Silk Road

    Science.gov (United States)

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world’s best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. PMID:27527229

  15. Tissue Regeneration: A Silk Road.

    Science.gov (United States)

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration.

  16. Repair of rabbit articular cartilage and subchondral defects using porous silk fibroin/hydroxyapatite combined with adipose-derived stromal cells%多孔丝素蛋白/羟基磷灰石复合脂肪间充质干细胞修复兔关节软骨及软骨下骨缺损

    Institute of Scientific and Technical Information of China (English)

    鞠刚; 徐卫袁; 张亚; 张兴祥; 严飞; 沙卫平

    2011-01-01

    BACKGROUND: Silk fibroin/hydroxyapatite (SF/HA) is a good scaffold for three-dimensional culture of cells, and is a common material to repair bone defect with good biocompatibility. Adipose -derived stem cells (ADSCs) which can differentiate into bone and cartilage cells are ideal for repairing cartilage defect.OBJECTIVE: To observe the effects of the repair of articular cartilage and subchondral defects in rabbit knee joints with transforming growth factor-?1 and insulin like growth factor-1 in combination with SF/HA and ADSCs.METHODS: A total of 56 New Zealand rabbits were selected, and 2 were used for cultures of ADSCs, which were seeded onto SF/HA at a concentration of 3×109/L. The remaining 54 rabbits were used to establish model of articular cartilage and subchondral defects and randomly assigned to composite, simple and blank control groups. The composite and simple groups were respectively implanted with SF/HA/ADSCs scaffold and SF/HA scaffold. The blank control group was not implanted any materials. Repair of defects was observed and compared by gross, imaging and histological observations.RESULTS AND CONCLUSION: At 12 weeks, gross observation, CT, MRI and histological observations demonstrated that the articular cartilage and subchondral defects were repaired entirely in composite group. The color of repaired tissues was similar to surrounding cartilage. There was no evidence of the residue of silk fibroin or the infiltration of leukocytes. Defects were repaired partially and repaired with cartilage fibrosa in simple group. However, defects remained unchanged in blank control group.Results showed that SF/HA with ADSCs composite could successfully repair articular cartilage and subchondral defects of a rabbit knee joints and the effect was superior to SF/HA scaffold alone. The method for repairing the full-thickness hyaline cartilage defects and reconstructing anatomical structure and function of joints using SF/HA with ADSCs is feasible and promising to

  17. 丝素蛋白增强型磷酸钙复合rhBMP-2用于绵羊腰椎椎体间融合的实验研究%Experimental study on lumbar interbody fusion with silk fibroin enhanced calcium phosphate cement composite loaded with recombinant human bone morphogenetic protein-2 in sheep

    Institute of Scientific and Technical Information of China (English)

    陈亮; 顾勇; 陈晓庆; 干旻峰; 朱雪松; 杨惠林; 唐天驷

    2010-01-01

    Objective To evaluate the osteogenic characteristics of an injectable silk fibroin (SF) enhanced calcium phosphate cement (CPC) composite loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) on lumbar interbody fusion in sheep. Methods Twenty-four mature sheep were randomly divided into two groups. Each sheep underwent L1.2, L3.4 and L5.6 lumber interbody fusion, and the three disc spaces were randomly implanted with three of the following materials: SF/CPC, CPC/rhBMP-2, SF/CPC/rhBMP2 and autogenous iliac crest bone. One group was killed at 6 months and the other at 12 months. The fusion segments were observed and analyzed by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. Results The fusion rates of SF/CPC, CPC/rhBMP-2, SF/CPC/rhBMP-2 and autogenous bone assessed by manual palpation were 0, 33.33%, 55.56% and 77.78% respectively at 6 months. At 12 months, the fusion rates improved to 11.11%, 44.44%, 77.78% and 77.78%, respectively.The biomechanical results showed that fusion stiffness was significantly greater in autograft compared with SF/CPC/rhBMP-2, CPC/rhBMP-2, and SF/CPC in 4 degrees of freedom (flexion, extension, right bending, and left bending) at 6 months. The SF/CPC/rhBMP-2 composite showed similar stiffness as autograft, which was significantly greater than CPC/rhBMP-2 and SF/CPC at 12 nonths. Both CPC/rhBMP-2 and SF/CPC/rhBMP-2 showed significantly greater stiffness at 12 months compared with that of at 6 months. The results showed that bone volume was significantly greater in autograft compared with SF/CPC/rhBMP-2, CPC/rhBMP-2, and SF/CPC at 6 months. There was significant difference among ceramic residue among SF/CPC, CPC/rhBMP-2 and SF/CPC/rhBMP-2, with SF/CPC the greatest and SF/CPC/thBMP-2 the least. At 12 months, the bone volume of SF/CPC/rhBMP-2 composite was comparable with autograft, and greater than that of CPC/rhBMP-2 and SF/CPC. The bone volume of SF/CPC, CPC

  18. 新型丝素蛋白支架复合兔髓核细胞体内初步构建组织工程髓核的研究%Preliminary Construction of Tissue Engineering Nucleus Pulposus Combining Silk Fibroin Porous Scaffold with Rabbit Nucleus Pulposus Cells

    Institute of Scientific and Technical Information of China (English)

    赵家宁; 徐宝山; 曾超; 杨强; 马信龙; 张春秋; 李秀兰; 张扬

    2014-01-01

    目的:探讨新型丝素蛋白多孔支架复合经PKH26标记的兔髓核细胞初步构建组织工程髓核的可行性。方法消化分离兔髓核细胞,培养获取P1代细胞,对P1代髓核细胞行番红O以及Ⅱ型胶原免疫组织化学染色;PKH26标记兔髓核细胞,MTT法检测标记前后髓核细胞增殖情况,将标记后的细胞接种支架,体外培养4 d后,将细胞-支架复合物植入裸鼠皮下,体内培养12周后,进行活体荧光成像技术检测、HE染色、甲苯胺蓝染色、番红O染色和Ⅱ型胶原免疫组化染色。结果 P1代髓核细胞番红O染色阳性,Ⅱ型胶原免疫组织化学染色阳性;标记后细胞荧光强度分布均匀,标记前后髓核细胞光密度(OD)值比较差异无统计学意义(P>0.05);活体成像技术显示裸鼠皮下植入的细胞-支架复合体呈现强烈荧光;HE染色见多孔支架内壁有大量髓核细胞填满并分泌大量细胞外基质;甲苯胺蓝染色、番红O染色及Ⅱ型胶原免疫组化染色均呈阳性,细胞周围大量细胞外基质分泌。结论以新型丝素蛋白多孔支架复合兔髓核细胞经体内培养形成的类髓核样组织,可用于组织工程化髓核的构建。%Objective To investigate the feasibility of construction of tissue engineering nucleus pulposus by com⁃bining the novel silk fibroin porous scaffold with PKH26 labeled rabbit nucleus pulposus cells. Methods Rabbit nucleus pulposus cells were isolated and cultured, then the passage 1 nucleus pulposus cells were stained with safranin O and typeⅡcollagen immunohistochemical staining. The isolated rabbit nucleus pulposus cells were labeled with PKH26. MTT assay was used for examining the proliferation of the nucleus pulposus cells before and after labeling. Labeled cells were inoculat⁃ed in the scaffold, cultured for 4 days and then the cell-scaffold complexes were implanted subcutaneously into nude mice. After 12 weeks of in

  19. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    Science.gov (United States)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  20. MODIFICATION OF SILK FIBER via EMULSION GRAFT COPOLYMERIZATION WITH FLUOROACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Zhan-xiong Li; Fei-fei Jin; Ben-wen Cao; Xiao-fei Wang

    2008-01-01

    2,2,3,3,4,4,5,5-Octafluoropentyl acrylate was grafted onto silk fiber in a two-step heterogeneous system through the vinyl bonds of acryloyloxyethyl isocyanate modified on the silk. The grafted copolymer was analyzed by FTIR and WAXD, and the results revealed that the fluoroacrylate was successfully grafted onto silk fiber and the crystalline structure of silk fibroin with β-sheet structure was not changed after graft copolymerization. The FT-IR corrected method was used to simulate the grafting yield onto silk compared with the weight increasing method. The results obtained from these two methods were roughly consistent. The influence of the initiator concentration, monomer concentration, react time and temperature on the graft yield was also investigated. The experimental data of thermogravimetry (TG) and differential thermal analysis (DTA) showed that the thermal stability of the modified silk fibers was improved due to the introduction of fluoroacrylate. In comparison with the untreated silk fibers, the water repellence of the modified silk fibers was also improved.

  1. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    Science.gov (United States)

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-12-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering.

  2. Spider silk gut: development and characterization of a novel strong spider silk fiber.

    Science.gov (United States)

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R; Guinea, Gustavo V; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-12-05

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering.

  3. Self-assembly in the major ampullate gland of Nephila clavipes

    OpenAIRE

    Braun, F. N.; Viney, C.

    2002-01-01

    We present a tentative interpretation of the origin of nematic liquid crystalline order exhibited by dragline silk fibroin solutions collected from the spider Nephila clavipes. Liquid crystallinity is thought to confer certain rheological properties on the fibroin solution which are exploited during the dragline spinning process. We show that the feasibility of liquid crystallinity under physiological conditions depends critically on parameters characterising the amino-acid sequence of the fi...

  4. Molecular Conformations of Araneus Ventricosus Spider's Dragline Silk in the Spinning Process%大腹园蛛牵引丝在纺丝过程中的分子构象

    Institute of Scientific and Technical Information of China (English)

    潘志娟; 刘敏; 许箐

    2003-01-01

    The Circular dichroism(CD) spectrum of spider silk fibroin of Araneus Ventricosus major ampullate glands was measured,which indicated that the molecular conformations of spider silk in solution were primarily random coils and β-sheets.The Raman spectra were recorded for dragline silks next to the spigot and spun by a dropping spider.The results showed thatrandom coils were transformed into α-helix in the spider spinning process,andthat β-sheet orientation in dragline silk of a dropping spider was better than that of at the spigot because of dragging in air.The multiplicity of molecularstructures contributed excellent mechanical properties of dragline silk.%利用圆二色光谱测定大腹园蛛的丝蛋白,结果显示蜘蛛丝溶液中的构象最初是无规卷曲和β折叠,同时用拉曼光谱对蜘蛛吐丝口附近的牵引丝及垂直下落的蜘蛛牵引丝进行比较,结果表明在蜘蛛纺丝过程中无规卷曲转变为α螺旋,并且垂直下落的蜘蛛牵引丝由于受到空气中的拉伸其β折叠取向比吐丝口附近的牵引丝好.这些分子结构的多样性决定了蜘蛛牵引丝优异的机械性能.

  5. Preferential codon usage and two types of repetitive motifs in the fibroin gene of the Chinese oak silkworm, Antheraea pernyi.

    Science.gov (United States)

    Yukuhiro, K; Kanda, T; Tamura, T

    1997-02-01

    In this paper we describe the peculiar structures and preferential codon usage found in wild silkworm fibroin genes. We determined a 1350 bp nucleotide sequence from the Chinese oak silkworm, Antheraea pernyi. The deduced amino acid sequence was partitioned into thirteen polyalanine-containing repetitive motifs, which was one of the characteristics of Antheraea fibroins. Eleven of these arrays can be classified into two types of motifs depending on difference in amino acid sequences following polyalanine. Repetitive motifs structurally similar to those of A. pernyi were detected in a homologue of the Japanese oak silkworm, Antheraea yamamai. The most remarkable feature of this study was preferential codon usage, especially seen in alanine synonymous codons within both homologues of Antheraea: isocodon GCA most frequently occurred in alanine isocodons. In contrast, GCU isocodon was the most abundant in Bombyx mori fibroin heavy chain that lacks polyalanine arrays. This result strongly suggests different modes of selective constraint between the two types of fibroin gene. The similar finding that GCA isocodon was most frequent in two dragline silk sequences of the spider, Nephila clavipes, is consistent with our results because of the repetitive polyalanine-containing arrays seen in spider dragline silk.

  6. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  7. Silk from crickets: a new twist on spinning.

    Directory of Open Access Journals (Sweden)

    Andrew A Walker

    Full Text Available Raspy crickets (Orthoptera: Gryllacrididae are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants, rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.

  8. 生物活性玻璃58 S/丝素蛋白膜促进人牙髓干细胞增殖与分化%Bioactive glass 58 S/silk fibroin membrane premotes proliferation and differentiation of human dental pulp stem cells

    Institute of Scientific and Technical Information of China (English)

    吕孝帅; 李正茂; 杨雪超

    2015-01-01

    AIM:To investigate the effect of bioactive glass 58S/silk fibroin (BG58S/SF) membrane on the proliferation and differentiation of human dental pulp stem cells ( hDPSCs) . METHODS:hDPSCs were seeded on pure SF membrane and BG58S/SF with BG58S at 1 mg/mL and 5 mg/mL respectively after the materials were incubated in cell culture medium for 24 hours. Cell proliferation was assessed by CCK-8 kit after 4, 7, 14 and 21 d culture re-spectively. The adhesion of hDPSCs on the material surface was evaluated by SEM and cytoskeleton staining;ALP ac-tivity was measured by ALP kit and the expression of odontoblastic differentiation -related genes was measured by RT-PCR. One-way ANOVA and paired test were used for statistical analysis . RESULTS: hDPSCs proliferated well on the surface of the membranes throughout the culture period. ALP activity was enhanced in all the 3 groups from day 7, BG58S/SF membrane groups showed higher ALP activity than SF group (P<0. 05). BG58S/SF groups showed higher up-regulation of odontoblastic differentiation-associated genes than to SF group (P<0. 05). ALP activity and orodontoblastic differentiation-associated gene expression level in 5 mg/mL BG58S/SF group was higher than that in 1 mg/mL group (P<0. 05). CONCLUSION:BG58S/SF membrane may promote the proliferation and odontoblastic differentiation of hDPSCs.%目的::研究生物活性玻璃58S/丝素蛋白( BG58S/SF)膜对人牙髓干细胞( hDPSCs)增殖、分化的影响。方法:制备纯SF膜(A组)和1 mg/mL(B组)、5 mg/mL(C组)BG58S/SF膜预孵育24 h后分别接种hDPSCs。于培养4、7、14、21 d时,CCK-8法检测hDPSCs的增殖能力;扫描电镜和荧光染色观察hDPSCs在膜材料表面的粘附和增殖状态;ALP活性试验评估hDPSCs的分化潜能;Real-Time PCR检测hDPSCs向成牙本质细胞分化特异性相关基因的表达水平。结果:hDPSCs在纯SF膜和BG58S/SF膜材料上粘附良好;从第7天起,与A组相比,B、C组细胞ALP活性显著增高, h

  9. Controlling the cell adhesion property of silk films by graft polymerization.

    Science.gov (United States)

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  10. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.

    Science.gov (United States)

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-12-10

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia , indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  11. 取向性丝素蛋白支架复合脂肪干细胞体外构建组织工程软骨%In vitro cartilage tissue engineering using oriented silk fibroin scaffold and adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    杨强; 丁晓明; 徐宝山; 赵艳红; 刘越; 张杨; 胡永成; 马信龙

    2015-01-01

    目的 探讨丝素蛋白支架复合脂肪干细胞体外构建组织工程软骨的可行性.方法 以丝素蛋白为原料制作具有仿生取向微孔结构的支架,接种第3代兔脂肪干细胞,加入成软骨诱导液进行培养.CCK-8检测诱导液对细胞增殖的影响,组织学及Ⅱ型胶原免疫组化染色观察脂肪干细胞的基质分泌,Elisa定量检测蛋白多糖和Ⅱ型胶原分泌量,实时定量PCR检测软骨特定基因Ⅱ型胶原、蛋白多糖和Sox-9的表达水平,并检测支架的力学性能.结果 扫描电镜下支架纵切面为平行排列的微管样结构,横切面为椭圆或圆形孔隙结构.脂肪干细胞在支架上黏附良好,随诱导时间延长分泌大量取向分布的细胞外基质.脂肪干细胞在支架上呈对数生长趋势,成软骨诱导组吸光度值在诱导第7天、第21天高于普通培养基组.组织学及免疫组化染色结果在诱导第21天均呈阳性.诱导第21天蛋白多糖含量[(15.89±1.64) μg/mg]和Ⅱ型胶原含量[(1.89±0.28) μg/mg]高于诱导第7天[(5.02±0.91) μg/mg和(0.28±0.08) μg/mg],第7天高于第0天[(0.77±0.25) μg/mg和(0.12±0.05) μg/mg)].Ⅱ型胶原、蛋白聚糖、Sox-9的基因表达水平在第21天均高于第0天和第7天.第21天支架纵向压缩弹性模量为(84.41±7.12) kPa,高于第0天的(52.48±5.78) kPa和第7天的(59.30±6.43) kPa.结论 取向性丝素蛋白支架接种成软骨诱导的脂肪干细胞能够在体外构建组织工程软骨,并能提高支架的力学强度.%Objective To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced adipose-derived stem cells (ADSCs) for cartilage tissue engineering in vitro.Methods The silk fibroin scaffold with biomimetic oriented microstructure was made by the directional crystallization technology.The structure of scaffold was observed by the SEM.Rabbit ADSCs of passage 3 were seeded into the scaffold,and induced by chondrogenic medium

  12. 聚乙烯醇/柞蚕丝素蛋白材料作为肌腱组织工程支架材料的初步研究%PRELIMINARY STUDY ON POLYVINYL ALCOHOL/WILD ANTHERAEA PERNYI SILK FIBROIN AS NANOFIBER SCAFFOLDS FOR TISSUE ENGINEERED TENDON

    Institute of Scientific and Technical Information of China (English)

    吴琳琳; 李敏; 赵晋; 陈登龙; 周志华

    2011-01-01

    Objective To investigate the cellular compatibility of polyvinyl alcohol (PVA)/wild antheraea pernyi silk fibroin (WSF), and to explore the feasibility for tendon tissue engineering scaffold in vitro.Methods The solutions of WSF (11%), PVA (11%), and PVA/WSF (11%) were prepared with 98% formic acid (mass fraction) at a mass ratio of 9: 1.The electrospinning membranes of WSF, PVA, and PVA/WSF were prepared by electrostatic spinning apparatus.The morphologies of scaffolds were evaluated using scanning electronic microscope (SEM).The tendon cells were isolated from tail tendon of 3-dayold Sprague Dawley rats in vitro.The experiment was performed using the 3rd generation cells.The tendon cells (1 × 106/mL)were cocultured with PVA and PVA/WSF electrospinning film, respectively, and MTT test was used to assess the cell adhesion rate 4, 12 hours after coculture.The tendon cells were cultured in PVA and PVA/WSF extraction medium of different concentration (1, 1/2, and 1/4), respectively; and the absorbance (A) values were detected at 1, 3, 5, and 7 days to evaluate the cytotoxicity.The composite of tendon cells and the PVA or PVA/WSF scaffold were observed by HE staining at 7 days and characterized by SEM at 1,3,5, and 7 days.Results The solution of WSF could not be used to electrospin; and the solution of PVA and PVA/WSF could be electrospun.After coculture of tendon and PVA or PVA/WSF electrospinning membranes, the cell adhesion rates were 26.9% ±0.4% and 87.0% ± 1.0%, respectively for 4 hours, showing significant difference (t=100.400, P=0.000); the cell adhesion rates were 35.2% ± 0.6% and 110.0% ± 1.7%, respectively for 12 hours, showing significant difference (t=42.500, P=0.000).The cytotoxicity of PVA/WSF was less significantly than that of PVA (P < 0.05) and significant difference was observed between 1/2 PVA and 1/4 PVA (P < 0.05).HE staining and SEM images showed that the tendon cells could adhere to PVA and PVA/WSF scaffolds, but

  13. Preparation and Characterization of a Novel Hybrid Hydrogel Composed of Bombyx mori Fibroin and Poly(N-isopropylacrylamide

    Directory of Open Access Journals (Sweden)

    Ting Wang

    2013-01-01

    Full Text Available A novel hybrid hydrogel was prepared and investigated based on silkworm silk fibroin and poly(N-isopropylacrylamide (PNIPAAm. PNIPAAm was introduced to silk fibroin, the resultant composite hydrogel was examined, and freeze-dried SF/PNIPAAm scaffold was analyzed using LB-550 dynamic light scattering particle-size analyzer, circular dichroism (CD, and scanning electron microscopy (SEM. Our results suggested that the hybrid hydrogels owned the porous sponge-like structures, and the gelation time of SF/PNIPAAm hybrids decreased with an increase in temperature and concentration of each polymer. Results of rheological analysis suggested that the rheological property of resultant SF/PNIPAAm gel depended on the concentration combinations as well as the aging time, which elapsed after mixing the two polymers. Results of CD spectra demonstrated that pH showed little influence on the secondary structure of silk fibroin, and significant changes of , , and G* as surrounding increase temperature above the lower critical solution temperature (LCST.

  14. Elucidation of differential mineralisation on native and regenerated silk matrices.

    Science.gov (United States)

    Midha, Swati; Tripathi, Rohit; Geng, Hua; Lee, Peter D; Ghosh, Sourabh

    2016-11-01

    Bone mineralisation is a well-orchestrated procedure triggered by a protein-based template inducing the nucleation of hydroxyapatite (HA) nanocrystals on the matrix. In an attempt to fabricate superior nanocomposites from silk fibroin, textile braided structures made of natively spun fibres of Bombyx mori silkworm were compared against regenerated fibroin (lyophilized and films) underpinning the influence of intrinsic properties of fibroin matrices on HA nucleation. We found that native braids could bind Ca(2+) ions through electrostatic attraction, which initiated the nucleation and deposition of HA, as evidenced by discrete shift in amide peaks via ATR-FTIR. This phenomenon also suggests the involvement of amide linkages in promoting HA nucleation on fibroin. Moreover, CaCl2-SBF immersion of native braids resulted in preferential growth of HA along the c-axis, forming needle-like nanocrystals and possessing Ca/P ratio comparable to commercial HA. Though regenerated lyophilized matrix also witnessed prominent peak shift in amide linkages, HA growth was restricted to (211) plane only, albeit at a significantly lower intensity than braids. Regenerated films, on the other hand, provided no crystallographic evidence of HA deposition within 7days of SBF immersion. The present work sheds light on the primary fibroin structure of B. mori which probably plays a crucial role in regulating template-induced biomineralisation on the matrix. We also found that intrinsic material properties such as surface roughness, geometry, specific surface area, tortuosity and secondary conformation exert influence in modulating the extent of mineralisation. Thus our work generates useful insights and warrants future studies to further investigate the potential of bone mimetic, silk/mineral nanocomposite matrices for orthopaedic applications.

  15. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.

    Science.gov (United States)

    Chung, Da Eun; Kim, Hyung Hwan; Kim, Moo Kon; Lee, Ki Hoon; Park, Young Hwan; Um, In Chul

    2015-08-01

    Silk has attracted the attention of biomedical researchers because of its good biocompatibility. Although various characteristics of silk are needed for its successful application in biomedical fields, the performance of silk material is limited. Although there are many varieties of Bombyx mori silkworm, the effect of different silkworm varieties on regenerated silk has not been considered in detail. That is, the use of a diverse variety of silkworms has not been considered in non-textile applications resulting in limited performance of silk materials. In this study, the effects of different silkworm varieties on the structural characteristics and properties of silk cocoon and regenerated silk fibroin (SF) were examined. Structural characteristics of silk cocoon including color, fiber diameter, and porosity, differed depending on the silkworm variety. Furthermore, molecular weight, solution viscosity, and mechanical properties of regenerated SF were influenced by the variety of silkworm, while the amino acid composition, β-sheet crystallization by formic acid, and cyto-compatibility of regenerated SF did not differ between the samples from different varieties of silkworm. These results imply that diverse performance of silk can be obtained by controlling the silkworm variety, and that the use of different varieties of silkworm might be a good way to strengthen the performance of silk in biomedical fields.

  16. Relationships between physical properties and sequence in silkworm silks

    Science.gov (United States)

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-06-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.

  17. Silk porous scaffolds with nanofibrous microstructures and tunable properties.

    Science.gov (United States)

    Lu, Guozhong; Liu, Shanshan; Lin, Shasha; Kaplan, David L; Lu, Qiang

    2014-08-01

    Scaffold biomaterials derived from silk fibroin have been widely used in tissue engineering. However, mimicking the nanofibrous structures of the extracellular matrix (ECM) for achieving better biocompatibility remains a challenge. Here, we design a mild self-assembly approach to prepare nanofibrous scaffolds from silk fibroin solution. Silk nanofibers were self-assembled by slowly concentrating process in aqueous solution without any cross-linker or toxic solvent and then were further fabricated into porous scaffolds with pore size of about 200-250μm through lyophilization, mimicking nano and micro structures of ECM. Gradient water/methanol annealing treatments were used to control the secondary structures, mechanical properties, and degradation behaviors of the scaffolds, which would be critical for different tissue regeneration applications. With salt-leached silk scaffold as control, the ECM-mimetic scaffolds with different secondary structures were used to culture the amniotic fluid-derived stem cells in vitro to confirm their biocompatibility. All the ECM-mimetic scaffolds with different secondary structures represented better cell growth and proliferation compared to the salt-leached scaffold, confirming the critical influence of ECM-mimetic structure on biocompatibility. Although further studies such as cell differentiation behaviours are still necessary for clarifying the influence of microstructures and secondary conformational compositions, our study provides promising scaffold candidate that is suitable for different tissue regenerations.

  18. 人脂肪来源干细胞与膀胱脱细胞基质-丝素蛋白双层支架的生物相容性研究%Human Adipose-De rived Stem Cells and its Biocompatibility with Bladder Acellular Matrix Graft-Silk Fibroin Bilayer Scaffold

    Institute of Scientific and Technical Information of China (English)

    赵阳; 吴稼晟; 周哲; 周娟; 张明; 李伟; 王忠; 孙康; 卢慕峻

    2014-01-01

    Objective To observe the growth of human adipose-derived stem cells (hASCs) in bladder acellular matrix graft-silk fibroin (BAMG-SF) bilayer scaffold and to analyze the biological compatibility of BAMG-SF with hASCs. Methods hASCs were isolated from human subcutaneous adipose tissue after collagenase digesting, filtrating and centrifuging, then cultured in the leaching solution of BAMG-SF. The cytotoxicity of scaffold was evaluated by CCK-8 cell viability assay, and the growth curves were also observed. Surface morphology on BAMG-SF was observed by scanning electron microscopy (SEM). The hASCs of passage 3 were seeded onto the BAMG-SF bilayer scaffolds for 1 week, then the BAMG-SF bilayer scaffolds seeded with hASCs were transplanted into nude mouse for 1 week or 2 weeks. The growth of cells in BAMG-SF biomaterials was observed by HE staining. The species origin of these cells in the BAMG-SF scaffolds cultured in vivo was detected by Immunofluorescence. Results hASCs maintained high proliferation rate in the leaching solution of BAMG-SF and the BAMG-SF scaffolds were nontoxic absolutely. According to the growth curves of hASCs cultured in the leaching solution of the BAMG-SF and DMEM, BAMG-SF scaffolds were conducive to the growth of hASCs. The histological study found that hASCs could grow into the space of the BAMG-SF scaffolds after cultured in vitro and in vivo. There were more cells in the scaffolds cultured in vivo than in vitro. Immuno-fluorescence suggested that some of the cells inside the scaffolds were hASCs. Conclusion BAMG-SF bilayer scaffolds are nontoxic and have a good biocompatibility with hASCs, which can be used as a vehicle for hASCs in bladder defect reconstruction.%目的:观察人脂肪来源干细胞(Human adipose derived stem cells,hASCs)在膀胱黏膜下脱细胞基质-丝素蛋白(Bladder acellular matrix graft-silk fibroin,BAMG-SF)双层支架材料中的生长情况,分析其生物相容性。方法取hASCs,置

  19. Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications

    Science.gov (United States)

    Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van

    2017-01-01

    Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.

  20. Evaluating the impact of different exogenous factors on silk textiles deterioration with use of size exclusion chromatography

    Science.gov (United States)

    Pawcenis, Dominika; Smoleń, Mariusz; Aksamit-Koperska, Monika A.; Łojewski, Tomasz; Łojewska, Joanna

    2016-06-01

    Size exclusion chromatography (SEC), especially coupled with multiple angle laser light scattering detector (MALLS) is a powerful tool in diagnostics of deterioration of historic and art objects to evaluate their condition. In this paper, SEC-UV-MALLS-DRI technique was applied to study degradation of silk fibroin samples ( Bombyx mori) artificially aged under various conditions: in the presence of oxygen, in different amount of water vapour and in volatile organic products (VOCs), all at temperature of 90 °C. Conditions were chosen in such a way that it mimicked real conditions of textiles' storing during exhibitions and in show cases. The influence of temperature, moisture and VOCs content on the state of silk textiles was examined with the use of size exclusion chromatography. Pseudo-zero-order Ekenstam equation was applied to study degradation rates of fibroin with use of the approximated values of DP of fibroin.

  1. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.

    Science.gov (United States)

    Tian, Maozhen; Lewis, Randolph V

    2005-06-01

    As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.

  2. A simple model of multiphoton micromachining in silk hydrogels

    Science.gov (United States)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene; Kaplan, David L.; Omenetto, Fiorenzo G.

    2016-06-01

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or other photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.

  3. Decoration of silk fibroin by click chemistry for biomedical application.

    Science.gov (United States)

    Zhao, Hongshi; Heusler, Eva; Jones, Gabriel; Li, Linhao; Werner, Vera; Germershaus, Oliver; Ritzer, Jennifer; Luehmann, Tessa; Meinel, Lorenz

    2014-06-01

    Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material's biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.

  4. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.

    Science.gov (United States)

    Xu, Dian; Guo, Chengchen; Holland, Gregory P

    2015-07-13

    Spiders utilize fine adjustment of the physicochemical conditions within its silk spinning system to regulate spidroin assembly into solid silk fibers with outstanding mechanical properties. However, the exact mechanism about which this occurs remains elusive and is still hotly debated. In this study, the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. Incubating the protein-rich MA silk gland fluid at acidic pH conditions results in the formation of silk fibers that are 10-100 μm in length and ∼2 μm in diameter as judged by optical and electron microscope methods. The in vitro spider silk assembly kinetics were monitored as a function of pH with a (13)C solid-state MAS NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation as well as the percentage of β-sheet structure in the grown fibers depend on the pH. These results confirm the importance of an acidic pH gradient along the spinning duct for spider silk formation and provide a powerful spectroscopic approach to probe the kinetics of spider silk formation under various biochemical conditions.

  5. Silkomics: Insight into the Silk Spinning Process of Spiders.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Garcia, Ana Maria Caviquioli; Arcuri, Helen Andrade; Esteves, Franciele Grego; Salles, Heliana Clara; Lubec, Gert; Palma, Mario Sergio

    2016-04-01

    The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.

  6. Silk Spinning in Silkworms and Spiders.

    Science.gov (United States)

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-08-09

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.

  7. Functional expression of a Bombyx mori cocoonase: potential application for silk degumming

    Institute of Scientific and Technical Information of China (English)

    Prangprapai Rodbumrer; Dumrongkiet Arthan; Utai Uyen; Jirundon Yuvaniyama; Jisnuson Svasti; Pramvadee Y.Wongsaengchantra

    2012-01-01

    Cocoon,a shelter for larva development to silk moth,contains the fibrous protein fibroin,which is coated by the globular protein sericin.Emergence of the silk moth requires the action of cocoonase,a protease secreted by the pupa.The full-length prococoonase cDNA,with 780 bp open reading frame encoding 260 amino acids,was cloned by reverse transcription from total RNA of the head of 6-day-old Thai-silk Bombyx mori pupa.Only the gene fragment lacking the propeptide encoding sequence was successfully expressed in Pichia pastoris,yielding an extracellularly active cocoonase.The recombinant cocoonase was purified to homogeneity by 80% ammonium-suffate fractionation and CM-Sepharose chromatography,and its internal peptide sequences were analyzed by nano liquid chromatographymass spectrometry/mass spectrometry.This monomeric protein has native molecular weight of 26 kDa by gel exclusion analysis and 25 kDa subunit size by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.The enzyme hydrolyses sericin but does not hydrolyse fibroin,as shown by radial diffusion on thin-layer enzyme assay (RD-TEA).Scanning electron microscopy showed that purified recombinant cocoonase could remove sericin from natural silk completely in 24 h,without damaging fibroin,using only 1immobilized sericin unit (ISU) of enzyme as determined by RD-TEA.Natural cocoonase isolated from B.mori pupa could also digest sericin effectively,but required more enzymes (2 ISU) and longer time (48 h).In comparison,a commercial enzyme,alcalase,with the same activity not only showed less complete digestion of sericin but also caused damage of fibroin.These results suggest that recombinant B.mori cocoonase is potentially useful for silk degumming.

  8. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility.

    Science.gov (United States)

    Numata, Keiji; Yamazaki, Shoya; Katashima, Takuya; Chuah, Jo-Ann; Naga, Naofumi; Sakai, Takamasa

    2014-06-01

    A new method is developed to prepare silk hydrogels and silk-pectin hydrogels via dialysis against methanol to obtain hydrogels with high concentrations of silk fibroin. The relationship between the mechanical and biological properties and the structure of the silk-pectin hydrogels is subsequently evaluated. The present results suggest that pectin associates with silk molecules when the silk concentration exceeds 15 wt%, suggesting that a silk concentration of over 15 wt% is critical to construct interacting silk-pectin networks. The silk-pectin hydrogel reported here is composed of a heterogeneous network, which is different from fiber-reinforced, interpenetrated networks and double-network hydrogels, as well as high-stiffness hydrogels (elastic modulus of 4.7 ± 0.9 MPa, elastic stress limit of 3.9 ± 0.1 MPa, and elastic strain limit of 48.4 ± 0.5%) with regard to biocompatibility and biodegradability.

  9. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance.

    Science.gov (United States)

    Yan, Le-Ping; Silva-Correia, Joana; Oliveira, Mariana B; Vilela, Carlos; Pereira, Hélder; Sousa, Rui A; Mano, João F; Oliveira, Ana L; Oliveira, Joaquim M; Reis, Rui L

    2015-01-01

    Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoCaP layer. The scaffold presented compressive moduli of 0.4MPa in the wet state. Rabbit bone marrow mesenchymal stromal cells (RBMSCs) were cultured on the scaffolds, and good adhesion and proliferation were observed. The silk-nanoCaP layer showed a higher alkaline phosphatase level than the silk layer in osteogenic conditions. Subcutaneous implantation in rabbits demonstrated weak inflammation. In a rabbit knee critical size OCD model, the scaffolds firmly integrated into the host tissue. Histological and immunohistochemical analysis showed that collagen II positive cartilage and glycosaminoglycan regeneration presented in the silk layer, and de novo bone ingrowths and vessel formation were observed in the silk-nanoCaP layer. These bilayered scaffolds can therefore be promising candidates for OCD regeneration.

  10. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).

    Science.gov (United States)

    Blackledge, Todd A; Hayashi, Cheryl Y

    2006-07-01

    Orb-weaving spiders spin five fibrous silks from differentiated glands that contain unique sets of proteins. Despite diverse ecological functions, the mechanical properties of most of these silks are not well characterized. Here, we quantify the mechanical performance of this toolkit of silks for the silver garden spider Argiope argentata. Four silks exhibit viscoelastic behaviour typical of polymers, but differ statistically from each other by up to 250% in performance, giving each silk a distinctive suite of material properties. Major ampullate silk is 50% stronger than other fibers, but also less extensible. Aciniform silk is almost twice as tough as other silks because of high strength and extensibility. Capture spiral silk, coated with aqueous glue, is an order of magnitude stretchier than other silks. Dynamic mechanical properties are qualitatively similar, but quantitatively vary by up to 300% among silks. Storage moduli are initially nearly constant and increase after fiber yield, whereas loss tangents reach maxima of 0.1-0.2 at the yield. The remarkable mechanical diversity of Argiope argentata silks probably results in part from the different molecular structures of fibers and can be related to the specific ecological role of each silk. Our study indicates substantial potential to customize the mechanics of bioengineered silks.

  11. Effects of Combinates Transplantation of Bone Marrow Mesenchymal Stem Cells with Silk Fibroin Porous Scaffolds on Repair of Acute Hemi-transection Spinal Cord Injury in Rats%移植BMMSCs-蚕丝蛋白生物支架对急性大鼠脊髓半切损伤修复的影响

    Institute of Scientific and Technical Information of China (English)

    屈涛; 王世勇; 张军华; 文益民

    2013-01-01

    Objective:To investigate the effects of transplantation of BMMSCs-SFPS on repairing acute hemi-transection SCI in rats.Methods:BMMSCs were harvested by density gradient centrifugation and adherent-cultured.The third generation BMMSCs in logarithmic growth phase were injected into SFPS to construct the BMMSCs-SFPS scaffolds,which biocompatibility was observed in vitro at 2 weeks,40 SD adult rats were subjected hemi-transect at T11 level to build SCI model then divided randomly into 4 groups (each group,n=10),BMMSCs-SFPS,BMMSCs and SFPS that were implanted in group A,B,and C,respectively.Group D was blank control group.At 1,2,3 and 4 weeks after surgery,the functional recovery of the hind limbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotors rating score,And HE staining and immun-fluorescence assay were adopted at one month after surgery.Results:Abundance BMMSC has been confirmed adhering to the internal surface of scaffolds by SEM after co-cultivated 14 days,cells attached well to each other.After the surgery of hemi-transection 1 month,HE staining showed that the cavity of spinal marrow in group A was smaller than that in group B,C and D.Immunofluorescence staining showed that more neurofilament 200 (NF-200) positive fibers and Nestin positive cells were detected in group A,but GFAP positive cells significantly less than that in other three groups.The BBB scores at 2,3 and 4 weeks after surgery in group A was Top Rating than those in other 3 groups,and group D was the lowest at each test time,and the differences between groups were statistically significant (P <0.01).Conclusions:SFPS which can be biocompatible with BMMSCs in vitro,BMMSCs-SFPS scaffolds can ensure the number of survivalling BMMSCs and inhibit glial scar after transplanted into spinal cord,Synergistic effect of co-transplant BMMSCs-SFPS scaffolds can promote SCI rat motor function recover.%目的:以蚕丝蛋白支架(silk fibroin porous scaffolds SFPS)

  12. Silk fibroin-compound bone cement/recombinant human bone morphogenetic protein-2 to repair sheep vertebral defects%丝素蛋白/双相磷酸钙/半水硫酸钙/重组人骨形态发生蛋白-2骨水泥的制备及修复椎体骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    王根林; 陈广东; 朱雪松; 朱志军; 谢瑞娟; 卢神州; 张波; 夏太宝; 杨惠林

    2015-01-01

    目的 研制丝素蛋白(SF)/双相磷酸钙(BCP)/半水硫酸钙(CSH)/重组人骨形态发生蛋白-2(rhBMP-2)骨水泥,并探讨其在绵羊椎体内的成骨作用. 方法 制备SF/BCP/CSH/rhBMP-2骨水泥,分别在12只绵羊的L2 L3、L4椎体内制作直径为6.0mm、深度为10 mm的圆柱型骨缺损模型,在3个缺损处随机植入SF/BCP/CSH/rhBMP-2骨水泥作为实验组,植入聚甲基丙烯酸甲酯(PMMP)作为对照组,另一椎体缺损处不植入任何材料作为空白对照组.术后3、6个月分别随机处死6只绵羊进行CT、组织学和生物力学检查.结果 CT和组织学检查显示:术后3个月实验组椎体密度与正常椎体相似,骨缺损修复基本完成,术后6个月骨缺损修复完成;对照组术后3、6个月时PMMP无降解,并与骨之间结合疏松,表面无新骨形成;空白对照组术后3、6个月时骨缺损一直存在.生物力学测试显示:术后3、6个月时实验组椎体抗压强度和刚度与正常椎体相比差异无统计学意义(P>0.05). 结论 SF/BCP/CSH/rhBMP-2骨水泥具有良好的成骨作用,在成骨过程中能维持椎体的力学性能,有望成为经皮椎体强化术的一种可降解、具成骨作用的填充剂.%Objective To prepare compound bone cement of silk fibroin/biphasic calcium phosphate/alpha-calcium sulphate hemihydrate/recombinant human bone morphogenetic protein-2 (SF/BCP/CSH/rhBMP-2) and to study its osteogenesis capacity for sheep vertebral defects.Methods Compound bone cement SF/BCP/CSH/rhBMP-2 was prepared and a cylindrical bone defect (6.0 mm in diameter and 10 mm in depth) was created at lumbar vertebrae 2,3 and 4 by open operation in 12 sheep.The injured lumbar vertebrae in each sheep were randomly divided into 3 study groups.The experimental group was implanted with the SF/BCP/CSH/rhBMP-2,the control group with polymethylmethacrylate (PMMA),and the blank control group with nothing.At 3 and 6 months postoperation,6 random sheep were sacrificed for

  13. Physical characterization of functionalized spider silk: electronic and sensing properties

    Science.gov (United States)

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Branco Lopes, Elsa; Brooks, James S.; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G.

    2011-10-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  14. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  15. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  16. Spider Webs and Silks.

    Science.gov (United States)

    Vollrath, Fritz

    1992-01-01

    Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)

  17. The Silk Saga

    Institute of Scientific and Technical Information of China (English)

    Feng Yuan

    2008-01-01

    @@ Silk,with a history of over five thousand years,plays an important part in the civilization of China and around the world.Aiming to promote the silk culture and industrial development,ana popularize the silk manufacturer brands in China,China Textile magazine specially set a column to introduce the well-known silk production bases in China.

  18. Manufacturing Ancient Imperial Silk

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    China was the first country in the world to develop silkworm breeding silk reeling, silk weaving, dying and embroidering. Located in the middle and lower reaches of the Yangtze River, Zhejiang Province has a long history of silk production. At the Qianshanyang Remains, which date back 4,800 years, silk fabrics were excavated. All rulers of past ages had special organizations responsible for

  19. Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers

    Directory of Open Access Journals (Sweden)

    Camille Larracas

    2016-09-01

    Full Text Available The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2. Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID, electron transfer dissociation (ETD, and high energy collision dissociation (HCD to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1, widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4, cysteine-rich secretory protein 3 (CRISP3, fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers.

  20. Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers

    Science.gov (United States)

    Larracas, Camille; Hekman, Ryan; Dyrness, Simmone; Arata, Alisa; Williams, Caroline; Crawford, Taylor; Vierra, Craig A.

    2016-01-01

    The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA) gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID), electron transfer dissociation (ETD), and high energy collision dissociation (HCD) to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1), widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4), cysteine-rich secretory protein 3 (CRISP3), fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers. PMID:27649139

  1. Effects of pH and initial Ca2+-H2PO4-concentration on fibroin mineralization

    Institute of Scientific and Technical Information of China (English)

    PEN Yongjuan; SUN Xiaodan; CUI Fuzhai; KONG Xiangdong

    2007-01-01

    In the present study,the effects of pH and initial Ca2+-H2PO4-(Ca-P) concentration on fibroin mineralization were studied.The crystal growth of calcium phosphates was regulated by regenerated silk fibroin for 8 h(at pH 4.0.7.0and 1 0.0,respectively).Meanwhile,different concentrations of Ca2+ were employed at a certain pH value,keeping the initial Ca-P molar ratio constant at 1.67,i.e.,the stoichiometry of hydroxyapatite[Ca10(PO4)6(OH)2,HAP].The products were characterized by X-ray diffractometry(XRD),scanning electron microscopy(SEM) and thermogravimetric analysis (TGA).The results demonstrated that,compared to PH 4.0 and 10.0.pH 7.0 promoted the transformation of brushite alized fibroin,DCPD is the main inorganic phase at both relatively lowW and high pH,while HAP is the main inorganic phase at PH 7.0.Additionally,the initial Ca-P concentration does not afrect the kind of inorganic phase in the synthesized mineralized fibroin,but induce to different contents of inorganic mineral and different morphology of DCPD at PH 4.0 and pH 10.0.

  2. Functionalised Silk Fibres

    Science.gov (United States)

    2012-07-30

    method. We note that high levels of non-specific binding to silkworm silk have been reported in other laboratories (Lammel et al., 2011...are commonly used to induce ß-sheet formation in reconstituted silkworm silk and 16 result in water insensitive material. FTIR analysis...model for artificial honeybee silk. In contrast, hornet silk (Vespoidea) can be solubilised in lithium bromide (akin to silkworm silk). Therefore, the

  3. 纤维素-丝素复合膜的制备与表征%Preparation and characterization of cellulose/silk composite membrane

    Institute of Scientific and Technical Information of China (English)

    李娟; 何建新; 余燕平

    2011-01-01

    The cellulose-silk fibroin composite film is prepared by mixing cellulose solution dissolved primary wood pulp in solution containing of NaOH/urea/thiourea/water and silk fibroin solution. The composite film is characterized by scanning electron microscope (SEM) , Fourier transform infrared spectrometer (FT-IR) , X-ray diffraction (XRD). SEM shows the surface of the composite is uniform and rough. The as-prepared composite film may be a potential biomedical material. The results of IR and XRD show that composite film is composed of cellulose and silk fibroin molecules and exists an interaction including hydrogen bond between the molecular of cellulose and silk fibroin.%通过NaOH/尿素/硫脲/水新型溶剂溶解原生木浆纤维素得到纤维素溶液,并与丝素溶液混合制备纤维素-丝素复合膜.利用扫描电镜、红外光谱、X-射线衍射对复合材料的结构进行表征.SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在的生物医用材料.IR和X-衍射结果表明再生纤维素与丝素分子之间存在着强烈的氢键作用,且二者相容性较好.

  4. Silk-tropoelastin protein films for nerve guidance.

    Science.gov (United States)

    White, James D; Wang, Siran; Weiss, Anthony S; Kaplan, David L

    2015-03-01

    Peripheral nerve regeneration may be enhanced through the use of biodegradable thin film biomaterials as highly tuned inner nerve conduit liners. Dorsal root ganglion neuron and Schwann cell responses were studied on protein films comprising silk fibroin blended with recombinant human tropoelastin protein. Tropoelastin significantly improved neurite extension and enhanced Schwann cell process length and cell area, while the silk provided a robust biomaterial template. Silk-tropoelastin blends afforded a 2.4-fold increase in neurite extension, when compared to silk films coated with poly-d-lysine. When patterned by drying on grooved polydimethylsiloxane (3.5 μm groove width, 0.5 μm groove depth), these protein blends induced both neurite and Schwann cell process alignment. Neurons were functional as assessed using patch-clamping, and displayed action potentials similar to those cultured on poly(lysine)-coated glass. Taken together, silk-tropoelastin films offer useful biomaterial interfacial platforms for nerve cell control, which can be considered for neurite guidance, disease models for neuropathies and surgical peripheral nerve repairs.

  5. Identification and synthesis of novel biomaterials based on spider structural silk fibers

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Tang, Simon; Jeffery, Felicia; Geurts, Paul; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-11-01

    The diversity in function and mechanical behavior of spider silks, and the ability to produce these silks recombinantly, have tremendous potential in creating a new class of biomimetic materials. Here we investigate the structural and mechanical properties of pyriform silks from the golden orb-weaver, Nephila clavipes. Nanoscale indentation measurements using atomic force microscopy on natural pyriform silk suggests that this biomaterial has high toughness that may be suitable for dissipating high amounts of mechanical energy. We also observed the occurrence of highly organized nanocrystals within the pyriform silk fibers that may contribute to the remarkable energy dissipation capability of these silks. It has been demonstrated that poly-(Gly-Ala) and poly-Ala stretches within the internal block repeat modules of dragline silk fibroins form nanocrystals, and these nanocrystalline structures may be responsible for the high extensibility of the dragline silks. In contrast, amino acid sequence analysis shows that PySp2 does not contain the same motifs. In the absence of poly-(Gly-Ala) and poly-Ala repeats, we hypothesized that PySp2 contains new protein motifs sufficient to polymerize into functional structures. To investigate the functional contributions of these novel motifs during pyriform fiber formation, we expressed different recombinant PySp2 fibroins with various segments spanning its block repeat units. We demonstrate that PySp2 recombinant proteins with the Pro-rich sub-block domain (PXP motifs, where X= sub-set of the amino acids A, L, or R) and/or the Ser + Gln + Ala-rich sub-block domain (QQSSVAQS motifs) are sufficient for artificial fiber formation. Moreover, we show that recombinant PySp2 proteins that contain a single block repeat unit can self-assemble into foam-like nanostructures. Collectively, our findings support the use of PySp2 recombinant proteins for a wide range of biomimetic materials with morphologies ranging from fibers to porous

  6. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  7. Silk elasticity as a potential constraint on spider body size.

    Science.gov (United States)

    Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi

    2010-10-07

    Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large.

  8. Mechanical behaviour and formation process of silkworm silk gut.

    Science.gov (United States)

    Cenis, José L; Madurga, Rodrigo; Aznar-Cervantes, Salvador D; Lozano-Pérez, A Abel; Marí-Buyé, Núria; Meseguer-Olmo, Luis; Plaza, Gustavo R; Guinea, Gustavo V; Elices, Manuel; Del Pozo, Francisco; Pérez-Rigueiro, José

    2015-12-14

    High performance silk fibers were produced directly from the silk glands of silkworms (Bombyx mori) following an alternative route to natural spinning. This route is based on a traditional procedure that consists of soaking the silk glands in a vinegar solution and stretching them by hand leading to the so called silkworm guts. Here we present, to the authors' best knowledge, the first comprehensive study on the formation, properties and microstructure of silkworm gut fibers. Comparison of the tensile properties and microstructural organization of the silkworm guts with those of naturally spun fibers allows gain of a deeper insight into the mechanisms that lead to the formation of the fiber, as well as the relationship between the microstructure and properties of these materials. In this regard, it is proved that an acidic environment and subsequent application of tensile stress in the range of 1000 kPa are sufficient conditions for the formation of a silk fiber.

  9. Mechanical and biodegradable properties of regenerated fibroin fibers%再生丝素纤维的力学性能及其生物可降解特征

    Institute of Scientific and Technical Information of China (English)

    左保齐; 吴徵宇

    2006-01-01

    BACKGROUND: The molecular weight of fibroin is inevitably reduced in the course of the dissolution of regenerated fibroin fiber, and this is why we have not entered the stage of the practical application of the regenerated fibroin fiber till now.OBJECTIVE: To obtain biodegradable regenerated fibroin fiber.DESIGN: A single sample experiment.SETTING: Jiangsu Provincial Key Laboratory of Silk Project of Material Engineering College of Soochow University.MATERIALS: Leftover silk pieces were provided by Suzhou Silk Import & Export Corp.METHODS: This study was performed at Jiangsu Provincial Key Laboratory of Silk Project of Material Engineering College of Suzhou University between January 2003 and December 2004. By controlling the molecular of abandoned natural fibroin fiber during neutral salt dissolution process, wet spinning technique and draft method were applied to spin regenerated fibroin fibers that have certain mechanical and biodegradable properties.The specific procedure is as follows: ①fibroin preparations. ② Spinning solution preparations. ③ Regenerated fibroin fibers were spun with wet spinning method. ④Sodium lauryl sulphate-polyacrylamide gel electrophoresis method was used to detect the molecular weight of LiBr dissolved fibroin solution. ⑤To detect the crystallinity and orientation of fibroin fibers. ⑥ To detect the mechanic properties of regenerated fibroin fibers. ⑦ To detect the in vitro enzyme degradation rate of fibroin fibers.MAIN OUTCOME MEASURES: ①The relative molecular weight of LiBr dissolved silk fibroin. ② Result of X-Ray diffraction. ③The in vitro enzyme degradation rate of regenerated fibroin fibers.RESULTS: ①After LiBr dissolution, the molecular weight of fibroin spinning solution was mainly below 100 000. ②During the coagulation and pulling process of regenerated fibroin fiber wet spinning, fibroin fiber conformation changed from random convolution to the co-existence of β-folding and random coi1/

  10. Biocompatibility of a non-woven silk fibroin and poly L-lactic acid net and evaluation on its safety%丝素蛋白/左旋聚乳酸复合组织工程纳米材料的生物相容性及安全性评价

    Institute of Scientific and Technical Information of China (English)

    张晓燕; 李正强; 孙莹; 王冠勋; 郑璐; 韩冰

    2014-01-01

    好的生物相容性。%Objective To study the biocompatibility of silk fibroin/poly L-lactic acid (SF/PLLA) non-woven network,a kind of new composite tissue engineering nanomaterials,and to explore its possibility as the biological implant materials.Methods The PLLA non-woven network was prepared by electrostatic spinning.Physiological saline as control,the leaching solution was prepared and injected into the mice,then the mice were observed for 2 weeks.The materials were implanted into the back of the mice,and 3-0 suture was used as control.Tissues were collected at 1,2,3,and 4 weeks after operation,dyed by HE staining and then the photos were taken.The tissue reactions in experimental group and control group were observed.The rabbit knee joint cartilage cells were cultured,and then subculture cells were seeded to the surface of materials.After cultured invitro,the adhesion and growth of the cells were observed with inverted optical microscope.The bioactivities of the rabbit knee joint cartilage cells in negative control group(DMEM culture media),experimental group(DMEM containing materials) and positive control group(DMEM containing phenol solution)were determined by MTT assay after cocultured for 24 and 48 h.Results After injection,the body status of the mice in experimental group was the same to the control group.There were little fibroblasts was and a little of lymphocytes and macrophage cells in the materials which were implanted into the back of the mice at the beginning.Then the number of the fibroblasts was increased, but the number of the lymphocytes and macrophage cells did not change obviously.The materials degraded slowly, and the material degraded obviously at 4 weeks.The inflammation of tissue around the material reduced gradually from the 2nd week.The inflammation of tissue around the material was the same to the suture,and sometimes was slighter than the suture.After sed for 24 h,there were cells attaching to the fibers of the material.More and more cells attached to the fibers

  11. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution.

    Science.gov (United States)

    Zhang, Feng; You, Xinran; Dou, Hao; Liu, Zhi; Zuo, Baoqi; Zhang, Xueguang

    2015-02-11

    In this study, we report for the first time a novel silk fibroin (SF) nanofibrous films with robust mechanical properties that was fabricated by directly dissolving silk in CaCl2-formic acid solution. CaCl2-FA dissolved silk rapidly at room temperature, and more importantly, it disintegrated silk into nanofibrils instead of separate molecules. The morphology of nanofibrils crucially depended on CaCl2 concentrations, which resulted in different aggregation nanostructure in SF films. The SF film after drawing had maximum elastic modulus, ultimate tensile strength, and strain at break reaching 4 GPa, 106 MPa, and 29%, respectively, in dry state and 206 MPa, 28 MPa, and 188%, respectively, in wet state. Moreover, multiple yielding phenomena and substantially strain-hardening behavior was also observed in the stretched films, indicating the important role played by preparation method in regulating the mechanical properties of SF films. These exceptional and unique mechanical properties were suggested to be caused by preserving silk nanofibril during dissolution and stretching to align these nanofibrils. Furthermore, the SF films exhibit excellent biocompatibility, supporting marrow stromal cells adhesion and proliferation. The film preparation was facile, and the resulting SF films manifested enhanced mechanical properties, unique nanofibrous structures, and good biocompability.

  12. Biomimetic spinning of silk fibers and in situ cell encapsulation.

    Science.gov (United States)

    Cheng, Jie; Park, DoYeun; Jun, Yesl; Lee, JaeSeo; Hyun, Jinho; Lee, Sang-Hoon

    2016-07-01

    In situ embedding of sensitive materials (e.g., cells and proteins) in silk fibers without damage presents a significant challenge due to the lack of mild and efficient methods. Here, we report the development of a microfluidic chip-based method for preparation of meter-long silk fibroin (SF) hydrogel fibers by mimicking the silkworm-spinning process. For the spinning of SF fibers, alginate was used as a sericin-like material to induce SF phase separation and entrap liquid SFs, making it possible to shape the outline of SF-based fibers under mild physicochemical conditions. L929 fibroblasts were encapsulated in the fibric hydrogel and displayed excellent viability. Cell-laden SF fibric hydrogels prepared using our method offer a new type of SF-based biomedical device with potential utility in biomedicine.

  13. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application.

    Science.gov (United States)

    Wang, Feng; Xu, Hanfu; Wang, Yuancheng; Wang, Riyuan; Yuan, Lin; Ding, Huan; Song, Chunnuan; Ma, Sanyuan; Peng, Zhixin; Peng, Zhangchuan; Zhao, Ping; Xia, Qingyou

    2014-12-01

    Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.

  14. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  15. Early events in the evolution of spider silk genes.

    Science.gov (United States)

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  16. Suzhou Silk Museum

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    THEIR city’s beautiful gardens and exquisite silk are the pride of the people of Suzhou. The Suzhou Silk Museum has combined the two arts and become one of the biggest local attractions for visitors. Silk culture forms an important part of Suzhou’s history. In 1981 Qian Xiaoping, a female

  17. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel.

    Science.gov (United States)

    Yu, Dehong; Sun, Changling; Zheng, Zhaozhu; Wang, Xueling; Chen, Dongye; Wu, Hao; Wang, Xiaoqin; Shi, Fuxin

    2016-04-30

    Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming, 10 μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100 ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (Silk-PEG-mDEX hydrogel. A transient hearing threshold shift was found but then resolved after 14 days as revealed by auditory brainstem response (ABR), showing minimal inflammatory responses on the round window membrane and scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid.

  18. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  19. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    Science.gov (United States)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  20. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    Science.gov (United States)

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  1. Tough tendons. Mussel byssus has collagen with silk-like domains.

    Science.gov (United States)

    Qin, X X; Coyne, K J; Waite, J H

    1997-12-19

    The primary structure of the alpha-chain of preCol-D (molecular mass = 80 kDa), a tanned collagenous protein predominating in the distal portion of the byssal threads of the mussel Mytilus edulis, was deduced from cDNA to encode an unprecedented natural block copolymer with three major domain types: a central collagen domain flanked by fibroin-like domains and followed by histidine-rich termini. The fibroin-like domains have sequence motifs that strongly resemble the crystalline polyalanine-rich and amorphous glycine-rich regions of spider dragline silk fibroins. The terminal regions resemble the histidine-rich domains of a variety of metal-binding proteins. The silk domains may toughen the collagen by increasing its strength and extensibility. PreCol-D expression is limited to the mussel foot, which contains a longitudinal gradient of preCol-D mRNA. This gradient increases linearly in the proximal to distal direction and reaches a maximum just before the distal depression of the foot.

  2. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Paulo Autran Leite; Resende, Cristiane Xavier [Departamento de Ciências de Materiais, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n. Jardim Rosa Elze, São Cristóvão, Sergipe CEP 49000-100 (Brazil); Dulce de Almeida Soares, Glória [Departamento de Ciências de Materiais, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowisk, s/n. Ilha do Fundão, Rio de Janeiro, Rio de Janeiro CEP 21900-000 (Brazil); Anselme, Karine [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS LRC7228, 15, Jean Starcky Street, BP 2488, 68054 Mulhouse cedex (France); Almeida, Luís Eduardo, E-mail: lealmeida2009@gmail.com [Departamento de Ciências de Materiais, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n. Jardim Rosa Elze, São Cristóvão, Sergipe CEP 49000-100 (Brazil)

    2013-08-01

    This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2 ± 0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7 ± 2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. - Highlights: • Preparation of 3D-scaffolds based on CHI, with or without addition of SF and HA. • Scaffolds exhibited interconnected porous structure (pore size superior to 50 μm). • The tripolyphosphate did not induce any significant cytotoxic response. • The CHI/SF/HA composite showed a higher cell growth and ALP activity.

  3. Microfibrillar Structure of Silks

    Science.gov (United States)

    Putthanarat, Sirina; Eby, Ronald K.; Adams, W. W.; Liu, G. F.

    1998-03-01

    We have previously observed the dragline silk of Nephila clavipes and the silk of Bombyx mori exhibit a range of morphological feature including microfibers (S. Putthanarat; R.K. Eby; W.W. Adams; G.F. Liu J.M.S.-Pure Appl. Chem. 1996, A33(7), 899) and a layered structure. In successive layers the microfibers appeared to be oriented at different small angles to the fiber axis. Further work with the Atomic Force Microscope (AFM) on the silk of B. mori has confirmed these observations and shown other features. One of the latter is a series of raised "steps" spaced somewhat regularly along the fiber. Investigation of peeled three-molted B. mori and Antheraea yamamai (Japanese Tussah) and other silks has shown features very similar to all those in the silk of B. mori. AFM images, characterization, and analyses will be shown for all the silks and their features

  4. Reproducing Natural Spider Silks' Copolymer Behavior in Synthetic Silk Mimics

    Energy Technology Data Exchange (ETDEWEB)

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph [Wyoming; (Sandia); (Utah SU); (AZU)

    2012-10-30

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  5. Towards Silk Fiber Optics: Refractive Index Characterization, Fiber Spinning, and Spinneret Analysis

    Science.gov (United States)

    Spitzberg, Joshua David

    Of the many biologically derived materials, whose historical record of use by humans underscores an ex-vivo utility, silk is interesting for it's contemporary repurposing from textile to biocompatible substrate. And while even within this category silk is one of several materials studied for novel repurposing, it has the unique character of being evolutionarily developed specifically for fiber spinning in vivo. The work discussed here is inspired by taking what nature has given, to explore the in vitro spinning of silk towards biocompatible fiber optics applications. A common formulation of silk used in biomedical studies for re-forming it into the various structures begins with the silkworm cocoon, which is degummed and dissolved into an aqueous solution of its miscible protein, fibroin, and post-treated to fabricate solid structures. In the first aim, the optical refractive index (RI) of various post-treatment methods is discussed towards determining RI design techniques. The methods considered in this work for re-forming a solid fiber from the reconstituted silk fibroin (RSF) solution borrow from the industrial techniques of gel spinning, and dry-spinning. In the second aim, methods are applied to RSF and quality of the spun fibers discussed. A feature common to spinning techniques is passing the (silk) material through a spinneret of specific shape. In the third aim, fluid flow through a simplified native silkworm spinneret is modeled towards bio-inspired lessons in design. In chapter 1 the history, reconstitution, are discussed towards understanding the fabrication of several optical device examples. Chapter 2 then prefaces the experiments and measurements in fiber optics by reviewing electromagnetic theory of waveguide function, and loss factors, to be considered in actual device fabrication. Chapter 3 presents results and discussion for the first aim, understanding design principles for the refractive index of RSF. From this point, industrial fiber

  6. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    KAUST Repository

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  7. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    Science.gov (United States)

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  8. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.

    Directory of Open Access Journals (Sweden)

    Nadia A Ayoub

    Full Text Available Spider dragline (major ampullate silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons, recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.

  9. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  10. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.

    Science.gov (United States)

    Lefèvre, Thierry; Rousseau, Marie-Eve; Pézolet, Michel

    2007-04-15

    Taking advantage of recent advances in polarized Raman microspectroscopy, and based on a rational decomposition of the amide I band, the conformation and orientation of proteins have been determined for cocoon silks of the silkworms Bombyx mori and Samia cynthia ricini and dragline silks of the spiders Nephila clavipes and Nephila edulis. This study distinguished between band components due to beta-sheets, beta-turns, 3(1)-helices, and unordered structure for the four fibers. For B. mori, the beta-sheet content is 50%, which matches the proportion of residues that form the GAGAGS fibroin motifs. For the Nephila dragline and S. c. ricini cocoon, the beta-sheet content (36-37% and 45%, respectively) is higher than the proportion of residues that belong to polyalanine blocks (18% and 42%, respectively), showing that adjacent GGA motifs are incorporated into the beta-sheets. Nephila spidroins contain fewer beta-sheets and more flexible secondary structures than silkworm fibroins. The amorphous polypeptide chains are preferentially aligned parallel to the fiber direction, although their level of orientation is much lower than that of beta-sheets. Overall, the results show that the four silks exhibit a common molecular organization, with mixtures of different amounts of beta-sheets and flexible structures, which are organized with specific orientation levels.

  11. Silk Batik using Cochineal Dye

    Science.gov (United States)

    The history of silk, including sericulture (the production of raw silk, which requires the raising of silkworms on their natural diet, mulberry leaves) and silk manufacturing, is rich and extensive. It encompasses several famous “silk roads” (trade routes), various cultures and technologies, ideas,...

  12. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Directory of Open Access Journals (Sweden)

    Michael Floren

    2016-09-01

    Full Text Available Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.

  13. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Science.gov (United States)

    Floren, Michael; Migliaresi, Claudio; Motta, Antonella

    2016-01-01

    Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. PMID:27649251

  14. Art on Silk Hoops

    Science.gov (United States)

    Padrick, Deborah

    2012-01-01

    Painting on silk has a magic all its own. Versions of painting on silk can be found throughout the world from Japan and Europe to the United States. Themes for the paintings can be most any type of design or imagery. Applying the liquid dyes is exciting, as the vivid liquid colors flow and blend into the fabric. The process captures students'…

  15. "Carved Silk" Masterpieces

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    "Carved silk" originated during the Five Dynasties (907-960) period and gained great popularity during the Song Dynasty (960-1279). This particular style of weave, which features the same design on both sides, is clearly defined as if engraved with a knife. The distinct quality of the work led to the moniker "Carved Silk." The two most outstanding pieces of carved silk—

  16. Morphology and Microstructure of Spider Dragline Silk from Araneus Ventricosus

    Institute of Scientific and Technical Information of China (English)

    PAN Zhi-juan; MIURA Mikihiko; MORIKAWA Hideaki; IWASA Masayuki; LIU Min

    2005-01-01

    The spider dragline silk has excellent mechanical properties. The stress- strain curves of dragline silk fibers have intraspecific and intraindividual variability because of the spiders active control during spinning process. To investigate the relationship between the morphology of dragline silk fibers and spinning conditions, four samples were made at the reeling rates of 1mm/s, 20mm/s, 43.5mm/s and 110mm/s from the major ampullate glands of Araneus Ventricosus and the other two of dragline silks were prepared from a crawling or dropping spider. The surface microstructure and nanofibril characteristic were analyzed with atomic force microscopy (AFM). AFM images of 2000nm*2000nm and 500nm*500nm of these samples showed that the spinning condition influenced the surface roughness and fibril size, while AFM images of 200nm*200nm clearly displayed that dragline silk of Araneus Ventricosus included sheet macro-conformation structure. These results can facilitate the further investigation of the spinning mechanism of a spider in order to understand mechanical properties and macromolecular structures of dragline silk.

  17. Ultrastructure of the silk glands in three adult females of sphecid wasps of the genus Microstigmus (Hymenoptera: Pemphredoninae Ultraestructura de las glándulas de seda en hembras adultas de tres especies de avispas del género Microstigmus (Hymenoptera: Sphecidae: Pemphredoninae

    Directory of Open Access Journals (Sweden)

    JOSÉ EDUARDO SERRÃO

    2005-03-01

    Full Text Available The ultrastructure of silk glands in adult females of sphecid wasps is described. Individual glands are scattered in the more posterior portion of the metasoma being each gland formed by an enlarged secretory unity with one conducting canal. Each secretory unit is a gland cell containing a large lumen and numerous secretory granules, which are delimited by membrane and filled with middle electron dense content of homogeneous aspect, which are exocytosed into the extra cellular lumen. Cell cytoplasm is filled with rough endoplasmic reticulum, polyribosomes and Golgi apparatuses profiles. The basal plasma membrane has many short infoldings and is lined by a thin basement membrane. The apical membrane is invaginated to form the boundary of the lumen, containing scattered short microvilli. The cells are mononucleated and the nucleus is pleomorphic containing disperse chromatin. The extracellular lumen is separated of the receiving canal by a convoluted sponge-like wall forming many villi, which in their tip are lined by a thin single layered cuticle. In the basal region of the villi a cuticular covering is lacking. In the conducting canal secretion acquire two different electron densities. A thin cuticle lines the lumen of conducting canal and the cell cytoplasm is scarce and the organelles are represented for few rough endoplasmic reticulum and polyribosomes. These results are discussed in relation to function and origin of silk gland in adult SphecidaeSe describe la ultraestructura de las glándulas de la seda en tres hembras adultas de avispas Sphecidae del género Microstigmus. Las glándulas individualmente se dispersan en la porción más posterior del metasoma, y cada una de ellas está formada por una unidad secretora grande y un canal que conduce la secreción. Cada célula de la unidad secretora contiene un gran lumen y numerosos gránulos secretores, los que están delimitados por una membrana y repletos de un contenido denso a los

  18. Ion Recognition and Analytical Application of a Fibroin Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiong CHENG; Tu Zhi PENG; Xiao Bo HU; Catherine F.YANG

    2004-01-01

    A novel fibroin modified electrode with ion recognition was reported. The membrane with isoelectric point of pH 4.5, was modified on graphite and carbon fiber electrodes. The pH-responsive ion recognition of the modified electrode was investigated by use of some neurocompounds. The fibroin carbon fiber electrode has been used for in-vivo determination.

  19. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery

    Science.gov (United States)

    Lecomte, A.; Castagnola, V.; Descamps, E.; Dahan, L.; Blatché, M. C.; Dinis, T. M.; Leclerc, E.; Egles, C.; Bergaud, C.

    2015-12-01

    The use of soft materials as substrate for neural probes aims at achieving better compliance with the surrounding neurons while maintaining minimal rejection. Many strategies have emerged to enable such probes to penetrate the cortex, among which the use of resorbable polymers. We performed several tests involving two resorbable polymers considered most promising: polyethylene glycol (PEG) and silk fibroin (SF) from Bombyx Mori silkworms. Our coating method provides a repeatable, uniform structure optimized for a stress-reduced insertion of a parylene-C neural probe. Standard compression tests as well as in vitro and in vivo insertion assessments show that both SF and PEG-coated probes are stiff enough to avoid the buckling effect during insertion in the cortex. However, with a buckling force of 300 mN and a mechanical holding in vitro of tens of minutes, we assess silk fibroin to be more reliable for practical handling. In vivo first try-outs in mouse brain showed neither buckling issues of the probe nor undesired alteration of the signal recording. Moreover, we evidenced two distinct time scales in the bioresorption of our polymer coatings: silk fibroin degrades itself in a matter of weeks and PEG dissolves itself within seconds in the presence of water. We then present a hybrid PEG and SF coating that could be used as a drug delivery system with different time scales to reduce both the acute and the chronic body reaction.

  20. Experimental Study on Silk Protein- Three-dimensional Gelatin Scaffold and Compatibility of Liver Cells%蚕丝蛋白和明胶复合组织工程材料与肝细胞相容性的实验研究

    Institute of Scientific and Technical Information of China (English)

    徐丽莎; 刘文晶; 申少波; 杨照; 陈蕊蕊; 韩英; 尹芳; 时永全; 周新民

    2011-01-01

    Objective: To study the silk fibroin material's effect on proliferation of human normal hepatic cell line QZG,and to testify the cytocompatibility when blending of silk fibroin and gelatin into 3D scaffold. Methods:The activity of cell proliferation and relative growth rate (RGR) were assessed by MTT colorimetric assay and viable cell counting, The effect of silk protein materials on growth of cells was observed by scanning electron microscopy (SEM). Results: Human normal hepatic cell line QZG were cultivated in vitro directly on pure silk protein materials and silk fibroin/gelatin materials. Cells solidly adhered to the materials. The activity of cell proliferation on silk fibroin/gelatin materials was significantly more than that in the group of pure silk fibroin materials. The result of viable cell counting was compatible to MTT colorimetric assay. Conclusion:The silk fibroin materials together with gelatin has a good cytocompatibility with human normal hepatic cell line QZG. It will be useful in liver tissue engineering.%目的:研究蚕丝蛋白-明胶三维材料支架对人永生化肝细胞系QZG 贴附及增殖的影响.方法:采用四氮唑盐比色法(MTT)、细胞计数法检测QZG 细胞在纯蚕丝生物材料上与在蚕丝蛋白-明胶复合材料上的增殖情况,用扫描电镜观察QZG细胞在两种三维生物材料上的贴附与增殖情况.结果:QZG细胞可以在蚕丝蛋白生物材料贴附及增殖.在引入明胶的蚕丝蛋白材料上细胞贴附更紧密,增殖更明显.结论:蚕丝蛋白与明胶复合材料支架具有良好的细胞贴附性能.通过改进在肝组织工程应用方面将具有一定应用前景.

  1. Smart assembly of polymer fibers: lessons from major ampullate spider silk

    Science.gov (United States)

    Viney, Christopher

    1996-02-01

    Studies of major ampullate silk (MAS), especially the secretions and fibers produced by the spider Nephila clavipes (golden orb weaver), have yielded several results of potential value to the materials scientist/engineer. There are lessons to be learned about synthesis, processing and microstructural design of high-tensile polymer fibers. The 'smart' aspect of silk production in nature concerns the ability of the spider to rapidly process a concentrated, viscous aqueous solution of silk protein (stored in the gland) into water-insoluble fiber on demand. This process centers on the assembly of a shear-sensitive supramolecular liquid crystalline phase by aggregation of the solubilized globular protein molecules.

  2. Soft as Silk

    Institute of Scientific and Technical Information of China (English)

    INESAPLESKACHEUSKAYA

    2004-01-01

    In AD 300 a Chinese princess smuggled a silkworm out of the country. It was this treasured dowry item that brought the secrets of silk industry to the rest of the world, at least as legend would have it.

  3. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization.

    Science.gov (United States)

    Guinea, G V; Elices, M; Plaza, G R; Perea, G B; Daza, R; Riekel, C; Agulló-Rueda, F; Hayashi, C; Zhao, Y; Pérez-Rigueiro, J

    2012-07-09

    The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.

  4. The Tao of Silk

    Institute of Scientific and Technical Information of China (English)

    VALERIE; SARTOR

    2007-01-01

    China’s most ancient gift to the world, silk, arrived long before gunpowder, paper and printmaking. This coveted fabric predated Christ and Buddha. Silk startled the world: Lenient ancient Romans banned it as sexy and immoral. Durable, useful and elegant, it is one of the oldest fibers known to man. Production remained a Chinese secret until 550 when two Nestorian monks, risking their lives,

  5. Molecular architecture and engineering of spider dragline silk protein

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hengmu; LIU Jinyuan

    2005-01-01

    Spider dragline silk, which is produced in spider major ampullate gland, is a composite proteinacious fiber with highly repetitive Ala-Gly-rich domain. The unique combination of both high tensile strength and high elasticity makes spider dragline silk superior to almost any other natural or synthetic fibers. Cloning of the genes reveals that the silk is composed of at least two major proteins. Each protein component contains multiple repeats of modular structures that alternate between Ala-rich domains and Gly-rich domains. Molecular engineering not only opens a door to the production of spidroins but also provides a valuable experimental system to test and further establish the relationship between modular structures and mechanical properties. Here, based on our own studies, we review the latest progress of the modular structure and genetic engineering and outline the future prospects.

  6. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications.

    Science.gov (United States)

    Kim, Dong Wook; Lee, Ok Joo; Kim, Seong-Wan; Ki, Chang Seok; Chao, Janet Ren; Yoo, Hyojong; Yoon, Sung-Il; Lee, Jeong Eun; Park, Ye Ri; Kweon, HaeYong; Lee, Kwang Gill; Kaplan, David L; Park, Chan Hum

    2015-11-01

    Silk fibroin (SF) is a natural polymer widely used and studied for diverse applications in the biomedical field. Recently, genetically modified silks, particularly fluorescent SF fibers, were reported to have been produced from transgenic silkworms. However, they are currently limited to textile manufacturing. To expand the use of transgenic silkworms for biomedical applications, a solution form of fluorescent SF needed to be developed. Here, we describe a novel method of preparing a fluorescent SF solution and demonstrate long-term fluorescent function up to one year after subcutaneous insertion. We also show that fluorescent SF labeled p53 antibodies clearly identify HeLa cells, indicating the applicability of fluorescent SF to cancer detection and bio-imaging. Furthermore, we demonstrate the intraoperative use of fluorescent SF in an animal model to detect a small esophageal perforation (0.5 mm). This study suggests how fluorescent SF biomaterials can be applied in biotechnology and clinical medicine.

  7. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    Science.gov (United States)

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds.

  8. Untangling spider silk evolution with spidroin terminal domains

    Directory of Open Access Journals (Sweden)

    Garb Jessica E

    2010-08-01

    Full Text Available Abstract Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C-terminal domains, though they offer limited character data. The few known spidroin amino (N-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk

  9. Spider Silk For