WorldWideScience

Sample records for silicon-rich oxide film

  1. Photoconduction in silicon rich oxide films

    Science.gov (United States)

    Luna-López, J. A.; Aceves-Mijares, M.; Carrillo-López, J.; Morales-Sanchez, A.; Flores-Gracia, F. J.; Garcia-Salgado, G.

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH4 (silane) and N2O (nitrous oxide) as reactive gases at 700 °. The gas flow ratio, Ro = [N2O]/[SiH4] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to Ro = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies (~3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  2. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  3. DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Aceves-Mijares, M [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Barreto, J; DomInguez, C [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Peralvarez, M; Garrido, B [EME, Departament d' Electronica, Universitat de Barcelona, MartI i Franques 1, 08028 Barcelona (Spain); Luna-Lopez, J A, E-mail: amorales@inaoep.mx [CIDS-BUAP, Apartado 1651, Puebla, Pue, 72000 (Mexico)

    2010-02-26

    Electroluminescent properties of silicon-rich oxide (SRO) films were studied using metal oxide semiconductor-(MOS)-like devices. Thin SRO films with 4 at.% of silicon excess were deposited by low pressure chemical vapour deposition followed by a thermal annealing at 1100 deg. C. Intense continuous visible and infrared luminescence has been observed when devices are reversely and forwardly bias, respectively. After an electrical stress, the continuous electroluminescence (EL) is quenched but devices show strong field-effect EL with pulsed polarization. A model based on conductive paths-across the SRO film- has been proposed to explain the EL behaviour in these devices.

  4. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films.

    Science.gov (United States)

    Morales-Sánchez, A; Barreto, J; Domínguez, C; Aceves, M; Yu, Z; Luna-López, J A

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 °C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  5. The Luminescent Properties and Atomic Structures of As-Grown and Annealed Nanostructured Silicon Rich Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. D. Espinosa-Torres

    2016-01-01

    Full Text Available Not long ago, we developed a theoretical model to describe a set of chemical reactions that can potentially occur during the process of obtaining Silicon Rich Oxide (SRO films, an off stoichiometry material, notwithstanding the technique used to grow such films. In order to elucidate the physical chemistry properties of such material, we suggested the chemical reactions that occur during the process of growing of SRO films in particular for the case of the Low Pressure Chemical Vapor Deposition (LPCVD technique in the aforementioned model. The present paper represents a step further with respect to the previous (published work, since it is dedicated to the calculation by Density Functional Theory (DFT of the optical and electronic properties of the as-grown and annealed SRO structures theoretically predicted on the basis of the previous work. In this work, we suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the DFT, the contribution that they may have to the phenomenon of luminescence (PL, which is experimentally measured in SRO films. We evaluated the optical and electronic properties of both the as-grown and the annealed structures.

  6. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  7. Effect of rapid thermal annealing and hydrogen plasma treatment on the microstructure and light-emission of silicon-rich oxide film

    CERN Document Server

    Wang Yong; Chen Chang Yong; Diao Hong Wei; Zhang Shi Bin; Xu Yan Yue; Kong Guang Lin; Liao Xian Bo

    2002-01-01

    Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200 degree C. The effect of rapid thermal annealing and hydrogen plasma treatment on the microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600 degree C, which it increases with increasing annealing temperature from 600 to 900 degree C. The light-emission of the films are enhanced with increasing annealing temperature up to 500 degree C, while it is rapidly reduced when the annealing temperature exceeds 600 degree C. The peak position of the PL spectrum blue shifts by annealing at the temperature of 300 degree C, then it redshifts with further raising annealing temperature. The following hydrogen plasma treatment results i...

  8. Waveguiding properties of Er-implanted silicon-rich oxides

    International Nuclear Information System (INIS)

    Elliman, R.G.; Forcales, M.; Wilkinson, A.R.; Smith, N.J.

    2007-01-01

    The optical properties of erbium-doped silicon-rich silicon-oxide waveguides containing amorphous silicon nanoclusters and/or silicon nanocrystals are reported. Both amorphous nanoclusters and nanocrystals are shown to act as effective sensitizers for Er, with nanocrystals being more effective at low pump powers and nanoclusters being more effective at higher pump powers. All samples are shown to exhibit photo-induced absorption, as measured for a guided 1.5 μm probe beam while the waveguide was illuminated from above with a 477 nm pump beam. At a given pump power samples containing silicon nanocrystals exhibited greater attenuation than samples containing amorphous nanoclusters. The absorption is shown to be consistent with confined-carrier absorption due to photoexcited carriers in the nanocrystals and/or nanoclusters

  9. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    Energy Technology Data Exchange (ETDEWEB)

    Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  10. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  11. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  12. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  13. Microstructure analysis of silicon nanocrystals formed from silicon rich oxide with high excess silicon: Annealing and doping effects

    Science.gov (United States)

    Nomoto, K.; Yang, T. C. J.; Ceguerra, A. V.; Zhang, T.; Lin, Z.; Breen, A.; Wu, L.; Puthen-Veettil, B.; Jia, X.; Conibeer, G.; Perez-Wurfl, I.; Ringer, S. P.

    2017-07-01

    Thin films consisting of silicon nanocrystals fabricated by high silicon content in silicon rich oxide show unique properties of decreasing resistivity and increasing light absorption while maintaining quantum confinement effects. With that said, the effect of the annealing temperature and doping element on the microscopic structure of silicon nanocrystals (Si NCs) and the film are still under research. In this study, individual intrinsic, boron-, and phosphorus-doped films are annealed at various temperatures, and their structural properties are analyzed via atom probe tomography together with glancing incidence x-ray diffraction, Raman spectroscopy (Raman), transmission electron microscopy (TEM), and energy filtered TEM. In addition, photoluminescence (PL) is performed and linked with their microstructural properties. The Si NC growth is confirmed at annealing temperatures of 1000 °C and 1100 °C. The microstructure of the Si NCs in the whole film is dramatically changed by increasing the annealing temperature from 1000 °C to 1100 °C. In addition, doping changes the arrangement of the Si NCs by assisting their penetration across the SiO2 barrier layers. This study helps to understand the relationship between the microscopic and macroscopic properties of the Si NC film, showing that the size and distribution of the Si NCs are correlated with the obtained PL profiles.

  14. Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Miraj, E-mail: m.shah@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Wojdak, Maciej; Kenyon, Anthony J. [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Halsall, Matthew P.; Li, Hang; Crowe, Iain F. [Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, Sackville St Building, Manchester M13 9PL (United Kingdom)

    2012-12-15

    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er{sup 3+} ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO{sub 2} thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 {mu}m Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast {mu}s decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.

  15. Properties of silicon nanocrystals with boron and phosphorus doping fabricated via silicon rich oxide and silicon dioxide bilayers

    Science.gov (United States)

    Chien-Jen Yang, Terry; Nomoto, Keita; Puthen-Veettil, Binesh; Lin, Ziyun; Wu, Lingfeng; Zhang, Tian; Jia, Xuguang; Conibeer, Gavin; Perez-Wurfl, Ivan

    2017-07-01

    Effects of boron and phosphorus doping on the structural, electrical, and optical properties of silicon nanocrystals in superlattice thin films were investigated. Silicon nanocrystals were fabricated via magnetron sputtering of stoichiometric silicon rich oxide and silicon dioxide bilayers followed by high temperature annealing at 1100 degrees Celsius. The characterization techniques used include: high-resolution transmission electron microscopy with energy filtering, grazing incidence x-ray diffraction, Raman, photoluminescence, and photothermal deflection spectroscopy, as well as electrical measurements. Results showed that phosphorus doping causes the loss of the bilayer structure and an increase in the average size of the silicon nanocrystals due to softening of the silicon dioxide matrix during post-sputter annealing. The result was a decrease in quantum confinement and a redshift in photoluminescence spectrum with an absorption profile similar to crystalline silicon. The undoped (intrinsic) sample maintained its bilayer structure and displayed stronger quantum confinement with higher photoluminescence peak energy and higher absorption coefficient. In-between, the boron doped sample was more similar structurally to the intrinsic sample, although merging between bilayers resulted in an extensive silicon nanocrystalline network. Optically, it displayed different effects due to photoluminescence quenching and free carrier absorption. Finally, both doped samples exhibited a decrease in electrical resistivity.

  16. Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing of silicon rich oxide deposited by low pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves-Mijares, Mariano; Luna-Lopez, A; Du Jinhui; Bian Dongcai

    2006-01-01

    We report the preparation and characterization of Si nanoislands grown on a c-Si substrate by thermal annealing of silicon-rich oxide (SRO) films deposited using a conventional low pressure chemical vapour deposition (LPCVD) technique. Transmission electron microscopy revealed that a high density of Si nanoislands was formed on the surface of the c-Si substrate during thermal annealing. The nanoislands are nanocrystallites with the same crystal orientation as the substrate. The strain at the c-Si/SRO interface is probably the main reason for the nucleation of the self-assembled Si nanoislands that epitaxially grow on the c-Si substrate. The proposed method is very simple and compatible with Si integrated circuit technology

  17. Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx:H films

    Directory of Open Access Journals (Sweden)

    Sahu Bhabani

    2011-01-01

    Full Text Available Abstract In this study, a wide range of a-SiNx:H films with an excess of silicon (20 to 50% were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiNx:H films (SRSN were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.

  18. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical...... telecommunication. However, silicon clustering appears in the thin films when annealing above 1150 oC. Clustering is undesirable in waveguide materials because the localized variations of the refractive index associated with the clusters lead to Raleigh scattering, which can cause significant propagation loss...... in optical waveguides. This means that the annealing temperature must be high enough to break the N-H bonds, but no so high as to produce clusters. Therefore, the process window for an annealing step lies between 1100 and 1150 oC. The chemical composition of amorphous silicon-rich nitride has been...

  19. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  20. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical...... telecommunication. However, silicon clustering appears in the thin films when annealing above 1150 oC. Clustering is undesirable in waveguide materials because the localized variations of the refractive index associated with the clusters lead to Raleigh scattering, which can cause significant propagation loss...... investigated by Rutherford back scattering (RBS) and X-ray photoelectron spectroscopy (XPS). The influence of deposition parameters and annealing temperatures on the stoichiometry and the chemical bonds will be discussed. The origin of the clusters has been found to be silicon due to severe silicon out...

  1. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  2. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  3. MOCVD superconducting oxide films

    Science.gov (United States)

    Hirai, Toshio; Yamane, Hisanori

    1991-01-01

    Preparation of high- Tc superconducting oxide films by MOCVD, their films structure and superconducting properties are reviewed from the standpoint of "nano-composites" and "fine-composites". Y-Ba-Cu-O (YBCO) films formed on SrTiO 3(100) at 850°C showed a superconducting transition temperature with zero resistivity above 90 K. The maximum critical current density was 2.0×10 6 A/cm 2 at 77.3 K and 0 T, and 6.5×10 4 A/cm 2 at 77.3 K and 27 T. CuO and a-axis oriented YBCO grains were contained in the matrix of c-axis oriented YBCO. A transmission electron microscope observation revealed that inclusions of about 10-30 nm were embedded in the a- b plane of YBCO. MOCVD-YBCO films prepared on MgO(100) were used for superconducting devices. Some studies on the MOCVD films of Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O are also reviewed.

  4. Anodic oxide films on tungsten

    International Nuclear Information System (INIS)

    Di Paola, A.; Di Quarto, F.; Sunseri, C.

    1980-01-01

    Scanning electron microscopy was used to investigate the morphology of anodic oxide films on tungsten, obtained in various conditions of anodization. Studies were made of the growth of porous films, whose thickness increases with time and depends upon the current density. Temperature and electrolyte composition influence the film morphology. Gravimetric measurements of film dissolution at 70 0 C show that after a transient time, the rate of metal dissolution and that of film formation coincide. The porous films thicken because tungsten dissolves as WO 2 2+ and precipitates as WO 3 .H 2 O. (author)

  5. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  6. Assessment of potential toxicological aspects of dietary exposure to silicon-rich spirulina in rats.

    Science.gov (United States)

    Vidé, Joris; Romain, Cindy; Feillet-Coudray, Christine; Bonafos, Béatrice; Cristol, Jean Paul; Fouret, Gilles; Rouanet, Jean-Max; Gaillet, Sylvie

    2015-06-01

    Silicon has beneficial effects especially on bones and skin and is important in cardiovascular pathophysiology. Furthermore, in spontaneously hypertensive rats, it reduces hypertension and increases antihypertensive and antiatherogenic gene expressions in the aorta. Thus, incorporating silicon into spirulina could be a way to produce a bioavailable food supplement. The potential toxic effects of silicon-rich spirulina (SES) through haematological and biochemical parameters and inflammatory and oxidative status were evaluated in rats' blood and liver tissue. The study consisted in a 90-day experiment on female and male rats supplemented with three doses (28.5, 57 and 285 mg/kg BW/day) of SES. No mortality, abnormal clinical signs, behavioural changes or macroscopic findings were observed whatever the groups. Haematological parameters were not modified in SES treated-groups. No marked change was recorded in biochemical parameters The liver endogenous antioxidant enzymes (SOD, GPx, catalase) activities were not modified whatever the gender and the dose, just as markers of oxidative stress (O2°(-), TBARS, thiols) and inflammation such as IL-6 and TNF-alpha. Our findings indicate that dietary supplementation of silicon-rich spirulina on rats has no harmful side nor toxic effects and could be beneficial especially in the case of suspicion or installation of pathologies due to oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  8. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  9. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  10. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Berman M, D.; Piters, T. M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo 83190, Sonora (Mexico); Aceves M, M.; Berriel V, L. R. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51, Puebla 72000, Puebla (Mexico); Luna L, J. A. [CIDS, Benemerita Universidad Autonoma de Puebla, Apdo. Postal 1651, Puebla 72000, Puebla (Mexico)

    2009-10-15

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 {omega}-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N{sub 2} at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  11. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    Vanadium oxide films have been prepared by RF-sputtering using an oxygen containing sputter ps and a V2O5 target. The main component of these films is orthorhombic V2O5 with poor crystallinity and a tendency for ordering of the crystallites with the c-direction parallel to the substrate. All films...... were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  12. Electron-trapping-triggered anneal of defect states in silicon-rich hydrogenated amorphous silicon nitride

    International Nuclear Information System (INIS)

    Oversluizen, G.; Lodders, W.H.; Johnson, M.T.; van der Put, A.A.

    1997-01-01

    The dc-current stress behavior of Mo/a-SiN x H y /Mo thin-film diodes is discussed for several a-SiN x H y -plasma-deposition conditions. Current transport is governed by thermionic field emission of electrons over a reverse biased Schottky barrier. The barrier height is determined by the a-SiN x H y -plasma-deposition conditions. Therefore these back-to-back Schottky devices provide an elegant way to perform dc-current stressing at several well defined carrier densities for similar stress fields. It is shown that such experiments allow assessment of defect-state creation/anneal mechanisms in a-SiN x H y . An electron-trapping-triggered anneal mechanism accounts for the observed dependence of the defect density at the electrode injecting contact (cathode) on the hole-barrier height at the anode. Also a new microscopically detailed anneal reaction scheme is proposed. The defect-state creation/anneal mechanism is expected to be generally applicable for all silicon-rich hydrogenated amorphous silicon alloys. copyright 1997 American Institute of Physics

  13. Thin film hydrous metal oxide catalysts

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  14. The role of oxidative debris on graphene oxide films.

    Science.gov (United States)

    López-Díaz, David; Velázquez, Maria Mercedes; Blanco de La Torre, Santiago; Pérez-Pisonero, Ana; Trujillano, Raquel; García Fierro, José Luis; Claramunt, Sergi; Cirera, Albert

    2013-12-02

    We study the effect of oxidative impurities on the properties of graphene oxide and on the graphene oxide Langmuir-Blodgett films (LB). The starting material was grupo Antolín nanofibers (GANF) and the oxidation process was a modified Hummers method to obtain highly oxidized graphene oxide. The purification procedure reported in this work eliminated oxidative impurities decreasing the thickness of the nanoplatelets. The purified material thus obtained presents an oxidation degree similar to that achieved by chemical reduction of the graphite oxide. The purified and non-purified graphene oxides were deposited onto silicon by means of a Langmuir-Blodgett (LB) methodology. The morphology of the LB films was analyzed by field emission scanning microscopy (FE-SEM) and micro-Raman spectroscopy. Our results show that the LB films built by transferring Langmuir monolayers at the liquid-expanded state of the purified material are constituted by close-packed and non-overlapped nanoplatelets. The isotherms of the Langmuir monolayer precursor of the LB films were interpreted according to the Volmer's model. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  16. Electrochromism of sputtered tungstic oxide films

    International Nuclear Information System (INIS)

    Tatsuoka, Hirokazu; Urabe, Kazuo; Kitao, Michihiko; Yamada, Shoji

    1985-01-01

    Electrochromism of tungstic oxide films were investigated. The films were prerared by r.f. sputtering from compressed WO 3 target under various total pressure and O 2 content of Ar-O 2 mixed sputtering atmosphere. Blue films were obtained under low total pressure of sputtering atmosphere with low content of O 2 . These films could be colored more deeply by the conventional electrochemical procedure, but could not be bleached to transparent states. Transparent films were obtained under the condition of high total pressure or high O 2 content of sputtering atmosphere. The transparent films prepared under high pressure show good electrochromic behavior after aging process. During the aging process, ''passive protons'' are injected into WO 3 matrix, where the ''passive proton'' means that it has no influence on electrochromic absorption band, and is not able to be extracted electrochemically. (author)

  17. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......, the current bonding method can be also used for further MEMS applications. ...

  18. Investigation of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Mortensen, Emma L.

    This dissertation focuses on improvements to electrodeposited cuprous oxide as a candidate for the absorber layer for a thin film solar cell that could be integrated into a mechanical solar cell stack. Cuprous oxide (Cu2O) is an earth abundant material that has a bandgap of 2 eV with absorption coefficients around 102-106 cm-1. This bandgap is not optimized for use as a single-junction solar cell, but could be ideal for use in a tandem solar cell device. The theoretical efficiency of a material with a bandgap of 2.0 eV is 20%. The greatest actual efficiency that has been achieved for a Cu2O solar cell is only 8.1%. For the present work the primary focus has been on improving the microstructure of the absorber layer film. The Cu2O films were fabricated using electrodeposition. A seeding layer was developed using gold (Au); which was manipulated into nano-islands and used as the substrate for the Cu2O electrodeposition. The films were characterized and compared to determine the growth mechanism of each film using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to establish and compare the chemical phases that were present in each of the films. The crystal structure of the Cu2O film grown on gold was explored using transmission electron microscopy (TEM), and this helped confirm the effect that the gold had on the growth of Cu2O. The Tauc method was then used to determine the bandgap of the films of Cu2O grown on both substrates and this showed that the Au based Cu2O film was a superior film. Electrical tests were also completed using a solar simulator and this established that the film grown on gold exhibited photoconductivity that was not seen on the film without gold. In addition, for this thesis, a method for depositing an n-type Cu2O film, based on a Cu-metal solution-boiling process, was investigated. Three forms of copper were tested: a sheet of copper, electrodeposited copper, and sputtered copper. The chemical phases were observed using

  19. Laser patterning of superconducting oxide films

    International Nuclear Information System (INIS)

    Gupta, A.; Hussey, B.W.; Koren, G.; Cooper, E.I.; Jagannathan, R.

    1988-01-01

    The focused output of an argon ion laser (514.5 nm) has been used for wiring superconducting lines of Y/sub 1/Ba/sub 2/CU/sub 3/O/sub 7-δ/ using films prepared from nitrate and trifluoroacetate solution precursors. A stoichiometric solution of the precursors is sprayed or spun on to the substrate to form a film. The film is patterned by irradiating in selected areas to convert the irradiated layers to an intermediate oxide or fluoride state, the nonirradiated areas being unchanged. The nonirradiated areas are then dissolved away, leaving a pattern of the oxide or fluoride material. This patterned layer is converted to the superconducting 1-2-3 oxide in a subsequent annealing step. Maskless patterning of superconducting films has also been demonstrated by laser-assisted etching of the films in aqueous KOH solution. Although superconductivity is destroyed when the films are placed in solution, it can be restored after a brief anneal in oxygen

  20. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    OpenAIRE

    Boltz, Janika

    2011-01-01

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO2 and TiO2. In order to ach...

  1. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  2. Transparent Aluminum Oxide Films by Edge Anodization

    Science.gov (United States)

    Stott, Jonathan; Greenwood, Thomas; Winn, David

    In this paper we present our recent work on manufacturing thin (3 - 5 μm) films of porous aluminum(III) oxide [PAO] using a novel edge-anodization technique. With this modified anodization process, we are able to create transparent PAO films on top of insulating substrates such as glass or plastic. By controlling the processing parameters, the index of refraction of PAO films can be engineered to match the substrate, which gives us a durable reflection-free and scratch-resistant coating over conventional optics or LCD displays. Eventually we hope to create ordered porous aluminum oxide cladding around an optical fiber core, which could have a number of interesting optical properties if the pore spacing can be matched to the wavelength of light in the fiber. This work was funded by Fairfield University startup funding.

  3. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  4. Photoluminescence enhancement through silicon implantation on SRO-LPCVD films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A., E-mail: amorales@inaoep.mx [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Leyva, K.M.; Aceves, M. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Barreto, J.; Dominguez, C. [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Luna-Lopez, J.A.; Carrillo, J. [CIDS-BUAP, Apdo. 1651, Puebla 72000 (Mexico); Pedraza, J. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2010-10-25

    Photoluminescence (PL) properties of thin and thick silicon-rich oxide (SRO) and silicon implanted SRO (SI-SRO) films with different silicon excess fabricated by low pressure chemical vapor deposition (LPCVD) were studied. The effects of the annealing temperature and silicon implantation on the PL were also studied. Maximum luminescence intensity was observed with an annealing temperature of 1150 and 1100 deg. C for thin and thick SRO films, respectively. The PL intensity is strongly enhanced when SRO films are implanted with silicon, especially for thin SRO films. Thin SI-SRO films emit up to six times more than non-implanted films, meanwhile the PL in thick SI-SRO films is only improved less than two times. Therefore, thin SI-SRO films are an interesting alternative for applications such as the fabrication of efficient Si-nps based LEDs.

  5. Photo and cathode luminescence emission in oxide silicium films implanted with silicium; Emision de foto y catodoluminiscencia en peliculas de oxido de silicio termico implantadas con silicio

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F; Aceves, M. [Instituto Nacional de Astrofisica Optica y Electronica, Mexico, D.F. (Mexico); Carrillo, J. [Benemrita Universidad Autonoma de Puebla, Puebla (Mexico); Dominguez, C. [Universida Autonoma de Barcelona, Barcelona (Spain); Falcony, C. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2001-10-01

    We studied the photo and cathodoluminescence of Silicon Rich Oxides (SRO) obtained by ion implant of Si in thermal oxides. Doses of 10{sup 1}6 cm{sup -}2 (low dose) and 10{sup 1}7 cm{sup -}2 (high dose) and implant energy of 150 keV were used. The films were annealed for 30, 60 and 180 minutes in nitrogen at 1100 Celsius degrees. The spectra show photo and cathodoluminescence emission in the visible range, the bands in the spectra change with the conditions of ion implant and annealing. The films without thermal treatment in both dose present photoluminescence bands around 1.9 eV (band B) and 2.4 eV (band C). With the thermal treatments, the band B disappears. In the case of the films with low dose, the band C shows a blue shift and a decrease in intensity. The high dose films have a band centered in 1.7 eV (band A) that increases its intensity with annealings. The cathodoluminescence bands in all the cases are in 2.7 eV (band D) and they present changes with the thermal treatments that it seems they depend on the variation in the implant parameters. [Spanish] Se estudian las propiedades de foto y la catodoluminiscencia de peliculas de oxidos de silicio ricos en Si (Silicon Rich Oxide SRO) obtenidas por implantacion ionica de Si en oxidos termicos. Se usaron dosis de 10{sup 1}6 cm{sup -}2 (dosis baja) y 10{sup 1}7 cm{sup -}2 (dosis alta) y energia de implantacion de 150 keV. Las peliculas se sometieron a tratamientos termicos por 30, 60 y 180 minutos en nitrogeno de 1100 grados centigrados. Se encontro emision foto y catodoluminiscente en el rango visible, las bandas en los espectros cambian con las condiciones de implantacion ionica y con los tratamientos termicos. Las peliculas sin tratamiento termico en ambas dosis presentan bandas de fotoluminiscencia alrededor de 1.9 eV (banda B) y 2.4 eV (banda C). Con los tratamientos termicos, la banda B desaparece. En el caso de las peliculas con dosis baja, la banda C muestra un corrimiento hacia el azul junto con una

  6. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    Chemical Properties ZnO occurs  as white powder  known  as  zinc white or  as  the mineral  zincite.  Zinc  oxide   is  an  amphoteric   oxide .  It  is...AFRL-OSR-VA-TR-2015-0044 Review of Zinc Oxide Thin Films Tom Otiti COLLEGE OF COMPUTING AND INFORMATION SCIENCE MAKERERE U Final Report 12/23/2014...COVERED (From - To)      01-07-2011 to 30-06-2014 4.  TITLE AND SUBTITLE ZINC OXIDE MATERIALS FOR PHOTOVOLTAIC APPLICATIONS 5a.  CONTRACT NUMBER 5b

  7. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  8. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  9. Chemically abrupt interface between Ce oxide and Fe films

    International Nuclear Information System (INIS)

    Lee, H.G.; Lee, D.; Kim, S.; Kim, S.G.; Hwang, Chanyong

    2005-01-01

    A chemically abrupt Fe/Ce oxide interface can be formed by initial oxidation of an Fe film followed by deposition of Ce metal. Once a Ce oxide layer is formed on top of Fe, it acts a passivation barrier for oxygen diffusion. Further deposition of Ce metal followed by its oxidation preserve the abrupt interface between Ce oxide and Fe films. The Fe and Ce oxidation states have been monitored at each stage using X-ray photoelectron spectroscopy

  10. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Metallic zinc thin films were deposited onto glass substrates using vacuum thermal evaporation method. By thermal oxidation of as-deposited Zn films, in ambient conditions, at different temperatures (570,. 670 and 770 K, respectively, for 1 h) zinc oxide thin films were obtained. The structural characteristics of the.

  11. High-Index Contrast Silicon Rich Silicon Nitride Optical Waveguides and Devices

    DEFF Research Database (Denmark)

    Philipp, Hugh Taylor

    2004-01-01

    This research focused on the realization of high-density integrated optical devices made with high-index contrast waveguides. The material platform used for to develop these devices was modeled after standard silicon on silicon technology. The high-index waveguide core material was silicon rich...... silicon nitride. This provided a sharp contrast with silica and made low-loss waveguide bending radii less than 25mm possible. An immediate consequence of such small bending radii is the ability to make practical ring resonator based devices with a large free spectral range. Several ring resonator based...

  12. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  13. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Epitaxial thin films of high c cuprates, metallic, ferroelectric, ferromagnetic, dielectric oxides, super conduc tor-metal-superconductor Josephson junctions and oxide superlattices have been made by PLD. In this article, an overview of preparation, characterization and properties of epitaxial oxide films and their applications ...

  14. Formation of zinc oxide film by boiling metallic zinc film in ultrapure water

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Zhiyong; Nadamura, Yuichiro [Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510 Chiba (Japan); Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.j [Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510 Chiba (Japan)

    2010-08-31

    A simple method for forming zinc oxide (ZnO) films has been discovered. Radio-frequency (rf) sputtered metallic zinc (Zn) film is boiled in ultrapure water at 368 K. The opaque Zn film changes into a transparent film. It is confirmed by transmission electron microscopy and X-ray diffraction that the transparent film is hexagonal ZnO. Optical and morphological properties of the ZnO film are discussed.

  15. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  16. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  17. UV photodissociation spectroscopy of oxidized undecylenic acid films.

    Science.gov (United States)

    Gomez, Anthony L; Park, Jiho; Walser, Maggie L; Lin, Ao; Nizkorodov, Sergey A

    2006-03-16

    Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.

  18. Sensitization of erbium in silicon-rich silica : the effect of annealing temperature and hydrogen passivation

    International Nuclear Information System (INIS)

    Wilkinson, A.R.; Forcales, M.; Elliman, R.G.

    2005-01-01

    This paper reports on the effect of annealing temperature and hydrogen passivation on the excitation cross-section and photoluminescence of erbium in silicon-rich silica. Samples were prepared by co-implantation of Si and Er into SiO 2 followed by a single thermal anneal at temperatures ranging from 800 to 1100 degrees C, and with or without hydrogen passivation performed at 500 degrees C. Using time-resolved photoluminescence, the effective erbium excitation cross-section is shown to increase by a factor 3, while the number of optically active erbium ions decreases by a factor of 4 with increasing annealing temperature. Hydrogen passivation is shown to increase the luminescence intensity and to shorten the luminescence lifetime at 1.54 μm only in the presence of Si nanocrystals. The implications fo these results for realizing a silicon-based optical amplifier are also discussed. (author). 19 refs., 3 figs

  19. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Infrared spectroscopic study reveals that films grown above 600°C are free of carbon. Keywords. MOCVD; thin films .... Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) of the complex was carried ..... quality thin films of rare earth oxides by MOCVD, using the phenanthroline adducts of pentadionate ...

  20. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Unknown

    to the other CVD techniques, simultaneously yielding reasonably good quality films for sensor applications. The deposited films were confirmed to be polycrystalline zinc oxide by XRD analysis. The change in electrical resistance of the films was measured while exposing those to the different concentrations of DMA vapour.

  1. Stoichiometry control in oxide thin films by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, R.

    2017-01-01

    A general challenge in the synthesis of complex oxide nanostructures and thin films is the control of the stoichiometry and herewith control of thin film properties. Pulsed Laser Deposition (PLD) is widely known for its potential for growing near stoichiometric highly crystalline complex metal oxide

  2. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    Transparent metal oxide thin films of samarium oxide (Sm 2 O 3 ) were prepared on pre-cleaned fused optically flat quartz substrates by radio-frequency (RF) sputtering technique. The as-deposited thin films were annealed at different temperatures (873, 973 and 1073 K) for 4 h in air under normal atmospheric pressure.

  3. Properties of advanced (reduced) graphene oxide-alginate biopolymer films

    NARCIS (Netherlands)

    Vilcinskas, K.

    2016-01-01

    In this work, properties of Calcium alginate-reduced graphene oxide and Barium alginate‐reduced graphene oxide composite films are explored. In addition, the properties of the divalent metal ion-cross-linked alginate composite films are compared to the analogous properties of uncross‐linked Sodium

  4. Formation of corrosion-resistant oxide film on uranium

    International Nuclear Information System (INIS)

    Petit, G.S.

    1976-01-01

    A vacuum heat-treatment method was developed for coating metallic uranium with an adherent protective film of uranium oxide. The film is prepared by vacuum heat-treating the metallic uranium at 625 0 C for 1 h while controlling the amount of oxygen being metered into the furnace. Uranium coupons with the protective film were exposed for several hundred hours in a corrosion test bath at 95 0 C and 100 percent RH without corroding. Film thicknesses ranging from 5 to 25 μm (0.0002 to 0.001 in.) were prepared and corrosion tested; the film thickness can be controlled to less than +-2.5 μm (+-0.0001 in.). The oxide film is hard, nonwetting, and very adherent. The resulting surface finish of the metal is equivalent to that of the original finish. The advantages of the oxide films over other protective coatings are given. 12 fig

  5. Flexible electrostatic nanogenerator using graphene oxide film.

    Science.gov (United States)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-10-07

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.

  6. Amorphous tin-cadmium oxide films and the production thereof

    Science.gov (United States)

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  7. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  8. Active Oxygen Generator by Silent Discharge and Oxidation Power in Formation of Oxide Thin Films

    Science.gov (United States)

    Tanaka, Masaaki; Kawagoe, Yasuyuki; Tsukazaki, Hisashi; Yamanishi, Kenichiro

    We have studied the low pressure silent discharge type active oxygen generator in terms of the application to the formation of oxide thin films. In this paper the oxidation power of active oxygen in the oxide thin film formation is compared with that of oxygen and ozone by forming silicon oxide thin films. It was confirmed that the oxidation power is in turn of active oxygen > ozone > oxygen from the experimental result of the number of x in SiOx thin film. Furthermore we applied active oxygen to the formation of the thin film high temperature super conductor and active oxygen was found to be effective to the formation of the thin film with high performance.

  9. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  10. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  11. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  12. Multiferroicity in oxide thin films and heterostructures

    International Nuclear Information System (INIS)

    Glavic, Artur

    2012-01-01

    In this work a variety of different systems of transition metal oxides ABO 3 (perovskite materials, where B stands for a transition metal and A for a rare earth element) were produced as thin films and heterostructures and analyzed for the structural, magnetic and ferroelectric properties. For the epitaxial film preparation mostly pulse laser deposition (PLD) was applied. For one series high pressure oxide sputter deposition was used as well. The bulk multiferroics TbMnO 3 and DyMnO 3 , which develop their electric polarization due to a cycloidal magnetic order, have been prepared as single layers with thicknesses between 2 and 200 nm on YAlO 3 substrates using PLD and sputter deposition. The structural characterization of the surfaces and crystal structure where performed using X-ray reflectometry and diffraction, respectively. These yielded low surface roughness and good epitaxial growth. The magnetic behavior was macroscopically measured with SQUID magnetometry and microscopically with polarized neutron diffraction and resonant magnetic X-ray scattering. While all investigated samples showed antiferromagnetic order, comparable with the collinear magnetic phase of their bulk materials, only the sputter deposited samples exhibited the multiferroic low temperature cycloidal order. The investigation of the optical second harmonic generation in a TbMnO 3 sample could proof the presence of a ferroelectric order in the low temperature phase. The respective transition temperatures of the thin films have been very similar to those of the bulk materials. In contrast an increase in the rare earth ordering temperature has been observed, which reduces the Mn order slightly, an effect not known from bulk TbMnO 3 crystals. The coupling of the antiferromagnetic order in TbMnO 3 to ferromagnetic layers of LaCoO 3 was investigated in super-lattices containing 20 bilayers produced with PLD on the same substrates. The SQUID magnetometry yielded a strong influence of the

  13. Chitosan–silver oxide nanocomposite film: Preparation and ...

    Indian Academy of Sciences (India)

    The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an ...

  14. Oxide ferroelectric thin films: synthesis from organometallic compounds and properties

    International Nuclear Information System (INIS)

    Vertoprakhov, Vladimir N; Nikulina, Lyubov' D; Igumenov, Igor K

    2005-01-01

    Chemical methods for the preparation of oxide ferroelectric thin films from organometallic compounds published over the last 10-15 years are considered systematically and generalised. Layers of these films are promising for the creation of non-volatile memory elements and for use in nano- and microelectronic devices.

  15. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Unknown

    Most of the materials so far grown into films by PLD are perovskite-related oxides. Therefore to grow these oxide films, lattice-matched single crystal substrates are necessary. Commonly used substrates are SrTiO3, LaAlO3, MgO, ZrO2 and sapphire which can be cut in [100], [110] or [111] direction. As thermal expansion.

  16. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  17. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  18. Chitosan/graphene oxide biocomposite film from pencil rod

    Science.gov (United States)

    Gea, S.; Sari, J. N.; Bulan, R.; Piliang, A.; Amaturrahim, S. A.; Hutapea, Y. A.

    2018-03-01

    Graphene Oxide (GO) has been succesfully synthesized using Hummber method from graphite powder of pencil rod. The excellent solubility of graphene oxide (GO)in water imparts its feasibilty as new filler for reinforcement hydrophilic biopolymers. In this research, the biocomposite film was fabricated from chitosan/graphene oxide. The characteristics of graphene oxide were investigated using Fourier Transform Infrared (FT-IR) and X-ray Diffraction (XRD). The results of the XRD showed graphene structur in 2θ, appeared at 9.0715°with interlayer spacing was about 9.74063Å. Preparation films with several variations of chitosan/graphene oxide was done by casting method and characterized by mechanical and morphological analysis. The mechanical properties of the tensile test in the film show that the film CS/GO (85: 15)% has the optimum Young’s modulus size of 2.9 GPa compared to other variations of CS / GO film. Morphological analysis film CS/GO (85:15)% by Scanning Electron Microscopy (SEM), the obtained biocomposites film showed fine dispersion of GO in the CS matrix and could mix each other homogeneously.

  19. Plasma oxidation as a tool to design oxide films at low temperatures

    International Nuclear Information System (INIS)

    Schennach, R.; Grady, T.; Naugle, D.G.; Parga, J.R.; McWhinney, H.; Cocke, D.L.

    2001-01-01

    Interfacial oxidation, an established approach to produce surface thin films for catalysts, corrosion, ware protective coatings and electronic structures is currently performed by thermal, anodic, and plasma methods. Fundamental physical-chemical models that can allow film design, particularly on alloys are lacking and plasma oxidation is the least studied of these methods. In this work, plasma oxidation of three CuZr alloys (CuZr 2 , CuZr, and Cu 51 Zr 14 ) has been studied using x-ray photoelectron spectroscopy and depth profiling methods. The dependence of the resulting oxide film on alloy composition and sample temperature during plasma oxidation is investigated. In contrast to thermal and electrochemical oxidation which lead to the formation of a zirconium oxide film, plasma oxidation leads to the formation of a copper oxide or metallic copper overlayer depending on temperature and copper concentration in the bulk. It is shown that plasma oxidation can be used to design oxide films at room temperature, which require high temperatures using thermal oxidation and are not achievable by anodic oxidation

  20. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  1. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  2. Doped nanostructured zinc oxide films grown by electrodeposition.

    Science.gov (United States)

    Donderis, V; Orozco, J; Cembrero, J; Curiel-Esparza, J; Damonte, L C; Hernández-Fenollosa, M A

    2010-02-01

    ZnO thin films doped with either In or Al are n-type oxide materials of interest for application in electronic devices and thin-film solar cells. In this work, the doped ZnO films were electrodeposited at 80 degrees C from an aqueous solution on polycrystalline conductive Indium Tin Oxide covered glass substrates. The incorporation of the dopants into the ZnO film has been verified by energy dispersive X-ray spectrum, X-Ray diffraction and optical transmission analysis. The optical and surface structure properties of the ZnO doped films are strongly affected by the In and Al concentrations in the electrodeposition solution as evidenced by optical transmission and reflection measurements, and scanning electron microscopy.

  3. Natural Oxidation of Ultra-Thin Copper Films

    Science.gov (United States)

    Semenov, V. A.; Oskirko, V. O.; Rabotkin, S. V.; Oskomov, K. V.; Solovyev, A. A.; Stepanov, S. A.

    2018-01-01

    The paper examines the oxidation of polycrystalline Cu films under the impact of ambient atmosphere in the course of extended time (from 20 to 90 days). It shows that in the case of 10 nm thick Cu films deposited onto the glass substrate by method of magnetron sputtering, one eventually observes the increase in transparency, surface resistance and surface roughness, as well as the decrease in reflection in the area of near infrared region. The most dramatic changes occur in films deposited in the pulse mode of sputtering with frequency of 3 kHz compared to films deposited in the direct current mode. Formation of sublayer ZnO:Al and 20 nm thick upper passivating layer ZnO:Al allows effectively preventing the oxidation of thin copper films under the impact of ambient atmosphere.

  4. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p...

  5. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...

  6. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Unknown

    Improved zinc oxide film for gas sensor applications. S ROY and S BASU*. Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices ...

  7. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  8. Oxide-based thin film transistors for flexible electronics

    Science.gov (United States)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  9. Topological properties and functionalities in oxide thin films and interfaces

    Science.gov (United States)

    Uchida, Masaki; Kawasaki, Masashi

    2018-04-01

    As symbolized by the Nobel Prize in Physics 2016, ‘topology’ has been recognized as an essential standpoint to understand and control the physics of condensed matter. This concept may be spreading even into application areas such as novel electronics. In this trend, there has been reported a number of studies for oxide films and heterostructures with topologically non-trivial electronic or magnetic states. In this review, we overview the trends of new topological properties and functionalities in oxide materials by sorting out a number of examples. The technological advances in oxide film growth achieved over the last few decades are now opening the door for harnessing novel topological properties.

  10. Electrochemical Formation of Cerium Oxide/Layered Silicate Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Adele Qi Wang

    2016-01-01

    Full Text Available Cerium oxide/montmorillonite nanocomposite films were synthesized electrochemically from solutions containing 0.5 to 50% Na-montmorillonite. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Nanocomposite films synthesized from montmorillonite concentrations lower than 10% were continuous, uniform, and dense. X-ray diffraction confirmed that the nanocomposite films retain the face-centered cubic structure of cerium oxide while incorporating exfoliated platelets of the montmorillonite into the matrix. In addition, calculations from XRD data showed particle sizes ranging from 4.50 to 6.50 nm for the nanocomposite coatings. Raman and FTIR spectroscopy had peaks present for cerium oxide and the layered silicates in the coatings. Cross-sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the presence of montmorillonite throughout the cerium oxide matrix.

  11. Sputter-deposited low reflectance vanadium oxide-molybdenum oxide thin films on silicon

    Science.gov (United States)

    Nayak, Manish Kumar; Esther, A. Carmel Mary; Bera, Parthasarathi; Dey, Arjun

    2017-09-01

    A single layer antireflective, smart, crystalline and nanocolumnar pulsed RF magnetron sputtered vanadium oxide-molybdenum oxide thin film on silicon is proposed for the alternate antireflective material for silicon based futuristic solar cell application. The VO-MO film with 130 nm thickness grown at 200 W shows significant low reflectance (1% within the 500-600 nm region). The VO-MO film with lowest reflectance shows a phase transition at around 55 °C which is beneficial due to film inherent variable IR emittance behaviour which may be helpful for eliminating excess heat load generated during in-service of silicon solar cell.

  12. WO3 Nanoplates Film: Formation and Photocatalytic Oxidation Studies

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available High surface area of tungsten oxide (WO3 nanoplates films was prepared via simple electrochemical anodization technique by controlling the fluoride content (NH4F in electrolyte. The design and development of WO3-based nanostructure assemblies have gained significant interest in order to maximize specific surface area for harvesting more photons to trigger photocatalytic oxidation reaction. This study aims to determine the optimum content of NH4F in forming WO3 nanoplates on W film with efficient photocatalytic oxidation reaction for organic dye degradation by utilizing our solar energy. The NH4F was found to influence the chemical dissolution and field-assisted dissolution rates, thus modifying the final morphological of WO3-based nanostructure assemblies film. It was found that 0.7 wt% of NH4F is the minimum amount to grow WO3 nanoplates film on W film. The photocatalysis oxidation experimental results showed that WO3 nanoplates film exhibited a maximum degradation of methyl orange dye (≈75% under solar illumination for 5 hours. This behavior was attributed to the better charge carriers transportation and minimizes the recombination losses with specific surface area of nanoplates structure.

  13. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Study of zinc oxide thin film characteristics

    OpenAIRE

    Johari Shazlina; Muhammad Nazalea Yazmin; Zakaria Mohd Rosydi

    2017-01-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influe...

  15. Properties of Edible Films Based on Oxidized Starch and Zein

    Directory of Open Access Journals (Sweden)

    Elizabeth Argüello-García

    2014-01-01

    Full Text Available The objective of this work was to investigate the effect of zein and film formulation on mechanical and structural properties of native (FNS, and oxidized with 2.5% (FOSA and 3.5% (FOSB banana starch. The oxidized starch showed differences from native starch due to the oxidation process, showing a decrease in lipids, proteins, and amylose. The increase of the sodium hypochlorite increased the content of carbonyl and carboxyl groups in the ranges 0.015–0.028% and 0.022–0.031%, respectively. The film obtained from FOSB displayed the highest tensile strength (5.05 MPa and satisfactory elongation value (27.1%. The zein addition caused a decrease in these mechanical properties, as well as a significant decrease in water vapour permeability (WVP. However, films from FOSA and FOSB showed higher permeability than that of the native starch. The addition of glycerol and the level of oxidation increased the films moisture. Micrographs showed that, during the oxidation process, impurities were largely eliminated from the starch granule, noting more homogeneous structures both in granules and films.

  16. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  17. Graphene Oxide Reinforced Polycarbonate Nanocomposite Films with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    R. Mahendran

    2016-01-01

    Full Text Available The incorporation of carbonaceous nanofillers into polymers can result in significant materials with improved physicochemical properties and novel composite functionalities. In this study, we have fabricated antibacterial, lightweight, transparent, and flexible graphene oxide (GO reinforced polycarbonate thin films by a facile and low-cost methodology. Solution blending is employed to get a homogeneous mixture of PC-GO composites at various loading of GO, and the thin films are prepared by dry-wet phase inversion technique. Thermal studies and micrographs of the films revealed the incorporation of GO in PC matrix. Microstructure of the thin films showed the homogeneous dispersion of GO at micro- and nanoscales; however, at higher loading of GO (0.7%, significant agglomeration is observed. More importantly, PC-GO composite films exhibited excellent antibacterial activities against E. coli and S. aureus, owing to the antibacterial nature of GO nanoparticles.

  18. Study of zinc oxide thin film characteristics

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  19. The growth of thin film epitaxial oxide-metal heterostructures

    CERN Document Server

    Wang, C

    1998-01-01

    films with lowest IR emissivity are those made from the purest targets despite their having comparable roughnesses to films from lower purity targets. The lowest emissivity achieved was in the range of 1.64% to 1.72% measured at 3.8 mu m for 1.5 to 1.8 mu m thick films. Modifications to standard idealized Drude theory have been made which, in a phenomenological way, take account of imperfections in the sputtered Al film, oxidation state and roughness. in electric properties of the Nb film and the reduction in crystalline quality of the MgO layer. The reduction of transition temperature to the superconducting state, Tc, and the similarly systematic increase in the Nb lattice parameter were observed consistent with oxygen content data reported in the literature, as the Nb became heavily oxidized. Examination of the surface of clean and oxidized Nb by atomic force microscopy, and deposition of MgO in UHV onto a previously oxidized Nb surface, suggested that the decrease in crystalline quality of the MgO can be a...

  20. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  1. Superlubricating graphene and graphene oxide films

    Science.gov (United States)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho; Berman, Diana

    2018-02-13

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  2. Comparison of topotactic fluorination methods for complex oxide films

    Science.gov (United States)

    Moon, E. J.; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; Barbash, D.; May, S. J.

    2015-06-01

    We have investigated the synthesis of SrFeO3-αFγ (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  3. Comparison of topotactic fluorination methods for complex oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, E. J., E-mail: em582@drexel.edu; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Barbash, D. [Centralized Research Facilities, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  4. Comparison of topotactic fluorination methods for complex oxide films

    Directory of Open Access Journals (Sweden)

    E. J. Moon

    2015-06-01

    Full Text Available We have investigated the synthesis of SrFeO3−αFγ (α and γ ≤ 1 perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  5. Reduction of Graphene Oxide Thin Films by Cobaltocene and Decamethylcobaltocene.

    Science.gov (United States)

    MacInnes, Molly M; Hlynchuk, Sofiya; Acharya, Saurabh; Lehnert, Nicolai; Maldonado, Stephen

    2018-01-17

    Reduced graphene oxide (RGO) films have been prepared by immersion of graphene oxide (GO) films at room temperature in nonaqueous solutions containing simple, outer-sphere metallocene reductants. Specifically, solutions of cobaltocene, cobaltocene and trifluoroacetic acid (TFA), and decamethylcobaltocene each showed activity for the rapid reduction of GO films cast on a wide variety of substrates. Each reactant increased the conductivity of the films by several orders of magnitude, with RGO films prepared with either decamethylcobaltocene or cobaltocene and TFA possessing the highest conductivities (∼10 4 S m -1 ). X-ray photoelectron spectroscopy suggested that while all three reagents lowered the content of carbon-oxygen functionalities, solutions of cobaltocene and TFA were the most effective at reducing the material to sp 2 carbon. Separately, Raman spectra and atomic force micrographs indicated that RGO films prepared with decamethylcobaltocene consisted of the largest graphitic domains and lowest macroscopic roughness. Cumulatively, the data suggest that the outer-sphere reductants can affect the conversion to RGO but the reactivity and mechanism depend on the standard potential of the reductant and the availability of protons. This work both demonstrates a new way to prepare high-quality RGO films on a wide range of substrate materials without annealing and motivates future work to elucidate the chemistry of RGO synthesis through the tunability of outer-sphere reductants such as metallocenes.

  6. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  7. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    Science.gov (United States)

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  9. Optical properties of aluminum oxide thin films and colloidal nanostructures

    International Nuclear Information System (INIS)

    Koushki, E.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Majles Ara, M.H.; Oliveira, P.W. de

    2015-01-01

    In this work, we prepared thin films of aluminum oxide (Al 2 O 3 ) with different thicknesses, using a wet chemical process. The Al 2 O 3 nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  10. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  11. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  12. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  13. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  14. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    2016-10-07

    Oct 7, 2016 ... spectra at nearly normal incident light. The estimated direct optical band gap energy (Ed g) values were found to increase by increasing the annealing temperatures. The dispersion curves of the refractive index of Sm2O3 thin films were found to obey the single oscillator model. Keywords. Transparent oxide ...

  15. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  16. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    Science.gov (United States)

    2012-12-11

    dehydration . Steady-state reactive molecular beam scattering (RMBS) shows that dehydration is the dominant reaction pathway on clean Mo(1 1 0), while C–Mo(1 1...photoelectrochemical water oxidation performance under simulated solar irradiation of hematite (α-Fe2O3) films synthesized by coevaporation of pure Si and Fe

  17. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  18. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  19. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    Abstract. In this research, indium oxide nanostructure undoped and doped with Mo were prepared on glass substrates using spray pyrolysis technique. Various parameters such as dopant concentration and deposition tem- peratures were studied. Structural properties of these films were investigated by X-ray diffraction and ...

  20. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    was investigated for some reducing gases such as acetone, methane and liquefied petroleum gas and it was observed that the films studied were selective to acetone. Keywords. Zinc oxide; structural analysis; optical parameters; electrical conductivity; gas sensitivity. 1. Introduction. In recent years, transparent conducting ...

  1. Studies on tin oxide films prepared by electron beam evaporation ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different pre- paration conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of un-.

  2. Studies on tin oxide films prepared by electron beam evaporation ...

    Indian Academy of Sciences (India)

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated ...

  3. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    In this research, indium oxide nanostructure undoped and doped with Mo were prepared on glass substrates using spray pyrolysis technique. Various parameters such as dopant concentration and deposition temperatures were studied. Structural properties of these films were investigated by X-ray diffraction and scanning ...

  4. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  5. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    Science.gov (United States)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  6. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  7. Organic thin film transistors with indium tin oxide bottom electrode

    International Nuclear Information System (INIS)

    Han, Chang-Wook; Shin, Hee-Sun; Park, Joong-Hyun; Han, Min-Koo; Pang, Hee-Suk; Kim, Ki-Yong; Chung, In-Jae; Pyo, Sang-Woo; Lee, Dong-Hyun; Kim, Young-Kwan

    2006-01-01

    Organic thin film transistors (OTFTs) which employ indium tin oxide (ITO) as source and drain electrodes instead of gold are fabricated. A double gate dielectric layer was used, which consists of benzocyclobutane (BCB) and silicon nitride (SiN x ). The pentacene TFT has lateral dimensions 192 μmx6 μm. The OTFT with the ITO bottom electrode shows a saturation mobility of 0.05∼0.09 cm 2 V -1 s -1 and an on-off current ratio of the order of 10 5 in a gate voltage span between 0 and -40 V. The TFT fabrication process steps had the beneficial side effect of changing the ITO surface from hydrophilic to hydrophobic. This change allows pentacene films with larger grains, observed up to 0.5 μm, to be grown on TFT compared to as-deposited ITO film onto which high quality films cannot be grown

  8. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  9. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  10. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  11. Memristive Properties of Thin Film Cuprous Oxide

    Science.gov (United States)

    2011-03-01

    transition metal-oxide, or semiconductor material. On a macroscopic scale, such a metal/insulator/metal (MIM) system describes a capacitor. The dielectric... semiconductor . 5 The I-V relationship is characterized first by a linear region of high resistance, followed by a region where the relationship is...oxide ( CuO ) is around 1.2eV or 1034nm [15]; no noticeable features were seen in that range. The peaks around 470nm and 330nm have also been reported

  12. Silicon nanocrystals embedded in oxide films grown by magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Caroline Bonafos

    2016-05-01

    Full Text Available This paper presents a comparison of the results that we obtained and reported over the last few years on the structural, optical and light emitting properties of Si-SiO2 and Si-Al2O3 films that were fabricated using a specific configuration of RF magnetron sputtering. In these films the Si volume fraction, x, varies along the film (which is typically 14 cm long from a value of ~0.1 at one end to ~0.9 at the other end. For the films with x > 0.3, the formation of amorphous Si clusters was observed in as-deposited Si-SiO2 and Si-Al2O3 films. Si nanocrystals (Si-ncs were generated by high-temperature annealing of the films in nitrogen atmosphere. We found that two processes can contribute to the Si-ncs formation: (i the crystallization of the existing amorphous Si inclusions in the as-deposited films, and (ii the thermally stimulated phase separation. Process (i can be responsible for the independence of Si-ncs mean sizes on x in annealed films with x > 0.5. At the same time, difference in the structural and the light emitting properties of the two types of films was observed. For the samples of the same x, the Si-ncs embedded in the Al2O3 host were found to be larger than the Si-ncs in the SiO2 host. This phenomenon can be explained by the lower temperature required for phase separation in Si-Al2O3 or by the lower temperature of the crystallization of Si-ncs in alumina. The latter suggestion is supported by Raman scattering and electron paramagnetic resonance spectra. In contrast with the Si-SiO2, the Si-ncs embedded in Si-Al2O3 films were found to be under tensile stress. This effect was explained by the strains at the interfaces between the film and silica substrate as well as between the Si inclusions and the Al2O3 host. It was also shown that exciton recombination in Si-ncs is the dominant radiative channel in Si-SiO2 films, while the emission from the oxide defects dominates in Si-Al2O3 films. This can be due to the high number of non

  13. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  14. Photoassisted oxidation of oil films on water

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.; Brock, J.R.

    1991-08-01

    The objective of the project is to develop TiO{sub 2}-based photocatalysts for the solar assisted oxidative dissolution of oil slicks. In a TiO{sub 2} crystal, absorption of a photon generates an electron-hole pair. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds, usually via an intermediate OH radical. Since the density of TiO{sub 2} (3.8g/cc for anatase, 4.3 g/cc for rutile) is greater than that of either oil or seawater, TiO{sub 2} crystals are attached to inexpensive, engineered hollow glass microspheres to ensure flotation on the oil slick surface. Portions of the microsphere surface not covered by TiO{sub 2} are made oleophilic so that the microbeads will be preferentially attracted to the oil-air interface.

  15. Preparation and characterization of properties of electrodeposited copper oxide films

    Science.gov (United States)

    Wang, Longcheng

    Copper oxides, including cuprous oxide and cupric oxide, are prepared by electrochemical deposition. The structural, optical and electrical properties of as-deposited copper oxides are evaluated, based on which cuprous oxide is selected as a promising material for photovoltaic applications. Electrodeposited cuprous oxide is a p-type semiconductor with a direct band gap of 2.06 eV. The mechanism of how pH affects the structural and electrical properties of electrodeposited cuprous oxide films is studied. In the pH range of 7.5 to 12.0, there are three different preferred crystal orientations: (100), (110) and (111). With different orientations, cuprous oxide shows different surface morphology and grain size. Bath pH effect on structural properties is explained by its effect on the growth rate of different crystallographic planes with different Cu+/O2- ratios. Capacitance-voltage measurements are performed to study electrical properties of differently oriented cuprous oxide films. The results show that the flat band potential shifts negatively as the bath pH increases. Electrodeposited cupric oxide is a p-type cupric oxide with an indirect band gap of 1.32 eV. Different cleaning methods are used to clean the substrate surface for electrodeposition of cupric oxide. Electrochemical etching is proven to be an effective method for Cu substrate cleaning in cupric oxide deposition. In particular, in-situ electrochemical etching is developed, which prevents the cleaned substrate from exposure to air. Current-voltage characterization shows that cupric oxide deposited on electrochemically etched Cu substrates has favorable electrical properties and better rectification behavior. Cuprous oxide is selected for the fabrication of p-n homo-junction because it has better crystallinity, bigger grains, better control over crystal quality and a direct band gap. Based on the model that bath pH can control the stoichiometry and native point defects in electrodeposited cuprous oxide

  16. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    OpenAIRE

    Ganesh E. Patil; D. D. Kajale; D. N. Chavan; N. K. Pawar; V. B. Gaikwad; G. H. Jain

    2010-01-01

    Polycrystalline tin oxide (SnO2) thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT). The film was characterized for their phase and morphology by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2), liquefied petroleum gas (LPG), ethanol vapors (C2H5OH), NH3, CO, CO2, Cl2 an...

  17. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  18. Investigation and characterization of oxidized cellulose and cellulose nanofiber films

    Science.gov (United States)

    Yang, Han

    Over the last two decades, a large amount of research has focused on natural cellulose fibers, since they are "green" and renewable raw materials. Recently, nanomaterials science has attracted wide attention due to the large surface area and unique properties of nanoparticles. Cellulose certainly is becoming an important material in nanomaterials science, with the increasing demand of environmentally friendly materials. In this work, a novel method of preparing cellulose nanofibers (CNF) is being presented. This method contains up to three oxidation steps: periodate, chlorite and TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation. The first two oxidation steps are investigated in the first part of this work. Cellulose pulp was oxidized to various extents by a two step-oxidation with sodium periodate, followed by sodium chlorite. The oxidized products can be separated into three different fractions. The mass ratio and charge content of each fraction were determined. The morphology, size distribution and crystallinity index of each fraction were measured by AFM, DLS and XRD, respectively. In the second part of this work, CNF were prepared and modified under various conditions, including (1) the introduction of various amounts of aldehyde groups onto CNF by periodate oxidation; (2) the carboxyl groups in sodium form on CNF were converted to acid form by treated with an acid type ion-exchange resin; (3) CNF were cross-linked in two different ways by employing adipic dihydrazide (ADH) as cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide (EDC) as carboxyl-activating agent. Films were fabricated with these modified CNF suspensions by vacuum filtration. The optical, mechanical and thermo-stability properties of these films were investigated by UV-visible spectrometry, tensile test and thermogravimetric analysis (TGA). Water vapor transmission rates (WVTR) and water contact angle (WCA) of these films were also studied.

  19. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  20. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  1. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  2. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M.

    2013-01-01

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al 2 O 3 and Cr 2 O 3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni 3 Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr 2 O 3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr 2 O 3

  3. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  4. Zinc oxide doped graphene oxide films for gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Chetna,, E-mail: chetna2288@gmail.com; Kumar, Shani; Chaudhary, S.; Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Garg, A.; Chowdhuri, A.; Dhingra, V. [Department of Electronic Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi- 110019 (India)

    2016-05-06

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer’s method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  5. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    Science.gov (United States)

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  7. Microstructure and protection characteristics of the naturally formed oxide films on Mg–xZn alloys

    International Nuclear Information System (INIS)

    Song, Yingwei; Han, En-Hou; Dong, Kaihui; Shan, Dayong; Yim, Chang Dong; You, Bong Sun

    2013-01-01

    Highlights: •The oxide films on Mg–xZn alloys consist of similar chemical composition. •The higher Zn content results in the thicker but higher defect of the oxide films. •The oxide films exhibit different protection performance under various potentials. -- Abstract: The naturally formed oxide films on Mg–2Zn and Mg–5Zn alloys were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The oxide films on the both alloys present a similar chemical composition, consisting of surface layer of basic magnesium carbonate and MgO following with MgO and ZnO, but the oxide film on Mg–5Zn is thicker and contains more defects. The protection performance of the oxide film on Mg–5Zn is worse under open circuit potential but better in a suitable anodic potential scope compared with that on Mg–2Zn alloy

  8. Thin Films of Reduced Hafnium Oxide with Excess Carbon for High-Temperature Oxidation Protection

    Science.gov (United States)

    2010-02-01

    deposited on the following substrates: Si, Si02 (fused silica), SiC (polished CVD slabs ), and highly oriented pyrolytic graphite (HOPG). For Si and...lost. SEM images of surfaces of films annealed in O2 show fissures (Fig. 14a) that become more pronounced for films with higher initial carbon...content (Fig. 14b). This indicates that the fissures are produced by the gaseous products of carbon oxidation (CO and CO2), which are generated in large

  9. PHOTOELECTRIC AND PHOTOMAGNETIC RESPONSE OF INDIUM-TIN OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    I. K. Meshkovsky

    2015-11-01

    Full Text Available Subject of Research. The goal of the present research is investigation of photoelectric and photomagnetic response of ITO (indium-tin oxide films under UV laser irradiation. Method. The ITO films were prepared by magnetron sputtering with the thickness equal to 300nm. The films were irradiated by UV laser light with 248 nm wavelength in laser pulse energy range from 10 mJ to 150 mJ by KrF excimer laser. Metallic electrodes were deposited on the films. Information about the films surface topography was obtained by atomic force microscopy and scanning electron microscopy. The film structure was investigated by X-ray diffraction. Main Results. It was shown that voltage appears between metallic contacts under the UV light effect. The electric current was observed through resistive load. The anisotropy of electric field producing photoelectric response was demonstrated for the first time. The appearance of magnetic field under the laser light irradiation was observed for the first time. The dependence of the response voltage on the laser pulse energy was linear over the whole measured energy range. The following physical mechanism was proposed for description of the observed phenomenon: electric voltage is associated with non-uniform distribution of the average crystallite size along the film surface, and, therefore, with mean free path of the charge carriers along the film surface. Photomagnetic response could be associated with collective behavior of the large number of charged particles, created due to high intensity laser irradiation. Practical Relevance. The phenomenon being studied could be applied for creation of new optoelectronic devices, for example, modulators, optical detectors, etc. Particularly, due to linear dependence of photoelectric response on the laser pulse energy, this phenomenon is attractive for manufacturing of simple and cheap excimer laser pulse energy detectors.

  10. Modification of graphene oxide films by radiofrequency N2 plasma

    Science.gov (United States)

    Neustroev, E. P.; Burtseva, E. K.; Soloviev, B. D.; Prokopiev, A. R.; Popov, V. I.; Timofeev, V. B.

    2018-04-01

    The effect of treatment in nitrogen plasma on the properties of partially reduced graphene oxide (rGO) was studied. A comparison is made between two different sample locations in the reaction chamber. It is shown that in the case when rGO films were turned towards the inductor of the plasma system, the etching rate is much higher. Effective nitrogen functionalization of rGO was established in the second position, when the rGO films were turned in the opposite direction. In this case, the nitrogen content increases to 5 at% of the initial value. The change in the current-voltage characteristics is observed under illumination, which is independent of the wavelength. On and off daylight changes the resistance to 30% of the initial value. The magnitude of the photocurrent increases depending on the applied voltage. The effect is most noticeable for thin rGO films 10-15 nm in thickness.

  11. Tunable Nanostructures and Crystal Structures in Titanium Oxide Films

    Directory of Open Access Journals (Sweden)

    Fuess H

    2008-01-01

    Full Text Available Abstract Controllable nanostructures in spin coated titanium oxide (TiO2 films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited to nanowires (600 °C and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2.

  12. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  13. Application of alternating current impedance measurements to characterize zirconium alloy oxidation films

    Science.gov (United States)

    Rosecrans, P. M.

    1982-06-01

    In an effort to understand observed differences in high temperature steam corrosion resistance, high frequency (500 Hz) a-c impedance measurements were used to monitor the permeability of oxidation films formed on Zircaloy 2 and Zircaloy 4 samples exposed to high temperature steam. Differences in oxidation resistance are related to differences in oxidation film permeability and ultimately to film characteristics. When these results are added to the existing data base established for zirconium alloy oxidation films using the high frequency impedance technique, improved understanding of the role of bulk corrodent access to the metal-oxide interface during oxidation becomes possible. In addition, differences in film character resulting from differences in oxidation environment become apparent upon review of the existing data base. Such differences may have practical application in selecting material preconditioning procedures and suggest explanations for some oxide film memory effects reported in the literature.

  14. Manganese oxide nanowires, films, and membranes and methods of making

    Science.gov (United States)

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  15. Photocatalytic oxide films in the built environment

    Science.gov (United States)

    Österlund, Lars; Topalian, Zareh

    2014-11-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources - either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc.

  16. Photocatalytic oxide films in the built environment

    International Nuclear Information System (INIS)

    Österlund, Lars; Topalian, Zareh

    2014-01-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources – either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO 2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO 2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO 2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc

  17. Strontium doped hydroxyapatite film formed by micro-arc oxidation

    International Nuclear Information System (INIS)

    Nan Kaihui; Wu Tao; Chen Jionghao; Jiang Shan; Huang Yong; Pei Guoxian

    2009-01-01

    A porous strontium-doped hydroxyapatite (Sr-HA) film was prepared on titanium substrates by an electrochemical oxidation method, i.e. micro-arc oxidation (MAO). The reaction was processed using a pulse power supply with titanium substrate acted as the anode in electrolytic solution containing calcium acetate, strontium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition and morphology of the coatings were investigated with X-ray diffraction (XRD), electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS). The thickness of the film was about 20 μm with the porous and uneven surfaces. XRD showed that the film was mainly made up of hydroxyapatite doped with strontium and the (Sr/(Sr + Ca) ratios ranged from 0-100%, which could be expressed as the general formula of Ca 10-X Sr X (PO 4 ) 6 (OH) 2 , 0 ≤ X ≤ 10). Such films are expected to have significant medical applications as dental implants and artificial bone joints.

  18. Metal oxide films on glass and steel substrates

    CERN Document Server

    Sohi, A M

    1987-01-01

    in the pH8 electrolyte supports the view that the rate limiting reduction reaction is possibly oxygen (or water) reduction although some contribution from an organic 'impurity' cannot be ruled out. Coatings of Fe sub 3 O sub 4 on mild steel have been prepared by CVD using pneumatic spraying techniques and the corrosion behaviour of coated electrodes in organic-phosphate electrolyte (pH8) has been examined. A variety of thin (10-1000nm) metal oxide films have been deposited on flat glass substrates by the pyrolysis of an aerosol of metal acetylacetonates in a suitable carrier. The optical characteristics and thickness of the films have been measured and particular interest has centered on the use of a novel pin on disc apparatus to measure the physical durability of such thin films. Characteristic friction/penetration force traces have been established for 1st Series transition metal oxide films and some ranking in terms of 'hardness' established. The use of SnO sub 2 - coated glass for electrodes in a light m...

  19. Epitaxial growth of zinc oxide thin films on silicon

    International Nuclear Information System (INIS)

    Jin Chunming; Narayan, Roger; Tiwari, Ashutosh; Zhou Honghui; Kvit, Alex; Narayan, Jagdish

    2005-01-01

    Epitaxial zinc oxide thin films were grown on Si(111) using aluminum nitride and magnesium oxide/titanium nitride buffer layers. The resultant films were examined using transmission electron microscopy, X-ray diffraction, electrical conductivity, and photoluminescence spectroscopy. The following epitaxial relationships were observed in the ZnO/AlN/Si(111) heterostructure: ZnO[0001] parallel AlN[0001] parallel Si[111] along the growth direction, and ZnO[21-bar 1-bar 0] parallel AlN[21-bar 1-bar 0] parallel Si[011-bar] along the in-plane direction. Domain-matching epitaxial growth of TiN on Si(111) substrate allows successful epitaxial growth of MgO and ZnO layers in a ZnO/MgO/TiN/Si(111) heterostructure. The epitaxial relationships observed for this heterostructure were ZnO[0001] parallel MgO/TiN/Si[111] along the growth direction and ZnO[21-bar 1-bar 0] parallel MgO/TiN/Si[011-bar] along in-plane direction. The resultant ZnO films demonstrate excellent electrical and optical properties. ZnO thin films exhibit extremely bright ultraviolet luminescence with relatively weak green-band emission

  20. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  1. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  2. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  3. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  4. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Science.gov (United States)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  5. Magnetic transparent conducting oxide film and method of making

    Science.gov (United States)

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  6. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xu, E-mail: GAO.Xu@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito, E-mail: GAO.Xu@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  7. Highly conductive grain boundaries in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deuermeier, Jonas, E-mail: j.deuermeier@campus.fct.unl.pt [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  8. Polymer assisted deposition of electrochromic tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kalagi, S.S. [Govindram Seksaria Science College, Belgaum 590006, Karnataka (India); Dalavi, D.S.; Pawar, R.C.; Tarwal, N.L.; Mali, S.S. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.i [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2010-03-18

    We report the synthesis of structurally and uniformly deposited porous tungsten oxide (WO{sub 3}) thin films for the first time by the novel route of polymer assisted deposition (PAD) using ammonium tungstate as a precursor with polyvinyl alcohol (PVA) as an additive. The effect of deposition parameters on the morphological, optical and electrochemical performance of the thin films is investigated. WO{sub 3} thin films were characterized for their structural, morphological, optical and electrochromic properties. XRD result indicates monoclinic phase of WO{sub 2.92}. FT-Raman studies show high intensity peaks centered at 997 cm{sup -1}and 798 cm{sup -1}. SEM results indicate that there is uniform deposition of porous WO{sub 3}-PVA agglomerates on the transparent substrates. SEM data show low dense structure of an average grain size of about 1 {mu}m. Electrochromic studies reveal highly reversible and the stable nature of the thin films. Transmission data show an optical modulation density of 46.57% at 630 nm with an excellent reversibility of 89% and an electrochromic coloration efficiency of 36 cm{sup 2}/C.

  9. Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films

    International Nuclear Information System (INIS)

    Ngaruiya, J.M.; Kappertz, O.; Mohamed, S.H.; Wuttig, M.

    2004-01-01

    A comparative study of reactive direct current magnetron sputtering for different transition metal oxides reveals crystalline films at room temperature for group 4 and amorphous films for groups 5 and 6. This observation cannot be explained by the known growth laws and is attributed to the impact of energetic particles, originating from the oxidized target, on the growing film. This scenario is supported by measured target characteristics, the evolution of deposition stress of the films, and the observed backsputtering

  10. Transparent Oxide Thin-Film Transistors: Production, Characterization and Integration

    Science.gov (United States)

    Barquinha, Pedro Miguel Candido

    This dissertation is devoted to the study of the emerging area of transparent electronics, summarizing research work regarding the development of n-type thin-film transistors (TFTs) based on sputtered oxide semiconductors. All the materials are produced without intentional substrate heating, with annealing temperatures of only 150-200 °C being used to optimize transistor performance. The work is based on the study and optimization of active semiconductors from the gallium-indium-zinc oxide system, including both the binary compounds Ga2O3, In2O3 and ZnO, as well as ternary and quaternary oxides based on mixtures of those, such as IZO and GIZO with different atomic ratios. Several topics are explored, including the study and optimization of the oxide semiconductor thin films, their application as channel layers on TFTs and finally the implementation of the optimized processes to fabricate active matrix backplanes to be integrated in liquid crystal display (LCD) prototypes. Sputtered amorphous dielectrics with high dielectric constant (high-kappa) based on mixtures of tantalum-silicon or tantalum-aluminum oxides are also studied and used as the dielectric layers on fully transparent TFTs. These devices also include transparent and highly conducting IZO thin films as source, drain and gate electrodes. Given the flexibility of the sputtering technique, oxide semiconductors are analyzed regarding several deposition parameters, such as oxygen partial pressure and deposition pressure, as well as target composition. One of the most interesting features of multicomponent oxides such as IZO and GIZO is that, due to their unique electronic configuration and carrier transport mechanism, they allow to obtain amorphous structures with remarkable electrical properties, such as high hall-effect mobility that exceeds 60 cm2 V -1 s-1 for IZO. These properties can be easily tuned by changing the processing conditions and the atomic ratios of the multicomponent oxides, allowing to

  11. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  12. Microorganism mediated synthesis of reduced graphene oxide films

    International Nuclear Information System (INIS)

    Tanizawa, Y; Suda, Y; Takikawa, H; Okada, H; Sandhu, A; Okamoto, Y; Tsuzuki, K; Nagao, Y; Iwasa, S; Hiraishi, A; Yoshida, N; Tero, R; Numano, R; Ishikawa, R

    2012-01-01

    The wide-ranging industrial application of graphene and related compounds has led researchers to devise methods for the synthesis of high quality graphene. We recently reported on the chemical synthesis, patterning, and doping of graphene films by the chemical exfoliation of graphite into graphene oxide (GO) with subsequent chemical reduction into graphene films. Here, we describe a hybrid approach for the synthesis of reduced graphene sheets, where chemically derived GO was reduced by microorganisms extracted from a riverside near the University. Our procedure enabled the production of ∼100 μm sized reduced graphene sheets, which showed excellent Raman spectra associated with high quality reduced graphene. We give a detailed account of the relationship between the type of microorganisms and the properties of the resulting reduced graphene.

  13. Structural characterization of sputtered indium oxide films deposited at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hotovy, I., E-mail: ivan.hotovy@stuba.s [Department of Microelectronics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pezoldt, J. [FG Nanotechnologie, Institut fuer Mikro- und Nanoelektronik, TU Ilmenau, Postfach 100565, 98684 Ilmenau (Germany); Kadlecikova, M. [Department of Microelectronics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Kups, T.; Spiess, L. [FG Werkstoffe der Elektrotechnik, Institut fuer Werkstofftechnik, TU Ilmeau, Postfach 100565, 98684 Ilmenau (Germany); Breza, J. [Department of Microelectronics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Sakalauskas, E.; Goldhahn, R. [FG Exprimentalphysik I, Institut fuer Physik, TU Ilmenau, Postfach 100565, 98684 Ilmenau (Germany); Rehacek, V. [Department of Microelectronics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-06-01

    Structural evolution of indium oxide thin films deposited at room temperature by reactive magnetron sputtering and annealing in a reducing atmosphere were investigated. The as deposited indium oxide (In{sub 2}O{sub 3}) films showed a dominating randomly oriented nanocrystalline structure of cubic In{sub 2}O{sub 3}. The grain size decreased with increasing oxygen concentration in the plasma. Annealing in reducing atmospheres (vacuum, nitrogen and argon), besides improving the crystallinity, led to a partial cubic to rhombohedral phase transition in the indium oxide films. Annealing improved the optical properties of the indium oxide film and shifted the absorption edge to higher energies.

  14. Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    Simelys Hernández

    2016-04-01

    Full Text Available Manganese oxides (MnOx, being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs. This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC films of commercial Mn2O3, Mn3O4 and MnO2 powders. Spin coating consists of few preparation steps and employs green chemicals (i.e., ethanol, acetic acid, polyethylene oxide and water. To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnOx films were also prepared by means of electrodeposition (ED and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn2O3-based films, since Mn (III species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO2-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn2O3 crystalline phase. Electrochemical impedance spectroscopy (EIS measurements were performed to study both electrode charge transport properties and electrode–electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn2O3 SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders.

  15. Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts.

    Science.gov (United States)

    Hernández, Simelys; Ottone, Carminna; Varetti, Sara; Fontana, Marco; Pugliese, Diego; Saracco, Guido; Bonelli, Barbara; Armandi, Marco

    2016-04-19

    Manganese oxides (MnO x ), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn₂O₃, Mn₃O₄ and MnO₂ powders. Spin coating consists of few preparation steps and employs green chemicals ( i.e. , ethanol, acetic acid, polyethylene oxide and water). To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnO x films were also prepared by means of electrodeposition (ED) and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn₂O₃-based films, since Mn (III) species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO₂-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn₂O₃ crystalline phase. Electrochemical impedance spectroscopy (EIS) measurements were performed to study both electrode charge transport properties and electrode-electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn₂O₃ SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders.

  16. Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts

    Science.gov (United States)

    Hernández, Simelys; Ottone, Carminna; Varetti, Sara; Fontana, Marco; Pugliese, Diego; Saracco, Guido; Bonelli, Barbara; Armandi, Marco

    2016-01-01

    Manganese oxides (MnOx), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn2O3, Mn3O4 and MnO2 powders. Spin coating consists of few preparation steps and employs green chemicals (i.e., ethanol, acetic acid, polyethylene oxide and water). To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnOx films were also prepared by means of electrodeposition (ED) and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn2O3-based films, since Mn (III) species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO2-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn2O3 crystalline phase. Electrochemical impedance spectroscopy (EIS) measurements were performed to study both electrode charge transport properties and electrode–electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn2O3 SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders. PMID:28773419

  17. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  18. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Sumita; Kumar, Mukesh, E-mail: kumarmukesh@gmail.com; Kumar, Dinesh; Sharma, Sumit

    2015-06-30

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO{sub 2}/Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents.

  19. Plasma Enhanced Complete Oxidation of Ultrathin Epitaxial Praseodymia Films on Si(111

    Directory of Open Access Journals (Sweden)

    Olga Kuschel

    2015-09-01

    Full Text Available Praseodymia films have been exposed to oxygen plasma at room temperature after deposition on Si(111 via molecular beam epitaxy. Different parameters as film thickness, exposure time and flux during plasma treatment have been varied to study their influence on the oxygen plasma oxidation process. The surface near regions have been investigated by means of X-ray photoelectron spectroscopy showing that the plasma treatment transforms the stoichiometry of the films from Pr2O3 to PrO2. Closer inspection of the bulk properties of the films by means of synchrotron radiation based X-ray reflectometry and diffraction confirms this transformation if the films are thicker than some critical thickness of 6 nm. The layer distance of these films is extremely small verifying the completeness of the plasma oxidation process. Thinner films, however, cannot be transformed completely. For all films, less oxidized very thin interlayers are detected by these experimental techniques.

  20. Oxidizing annealing effects on VO{sub 2} films with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Yan-Kun, E-mail: douyankun3@163.com; Li, Jing-Bo, E-mail: lijb@bit.edu.cn; Cao, Mao-Sheng, E-mail: caomaosheng@bit.edu.cn; Su, De-Zhi, E-mail: sudezhihefish@126.com; Rehman, Fida, E-mail: fida_ph@yahoo.com; Zhang, Jia-Song, E-mail: zhangjiasong@126.com; Jin, Hai-Bo, E-mail: hbjin@bit.edu.cn

    2015-08-01

    Vanadium dioxide (VO{sub 2}) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO{sub 2} films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO{sub 2} films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO{sub 2} films with different microstructures in oxidation environment. The oxidized VO{sub 2} films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO{sub 2} films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO{sub 2} films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO{sub 2} films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO{sub 2} films, and provide useful knowledge for the design of VO{sub 2} materials to different applications.

  1. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.

    2015-06-29

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material. © 2015 IOP Publishing Ltd.

  2. Nanoscale reduction of graphene oxide thin films and its characterization.

    Science.gov (United States)

    Lorenzoni, M; Giugni, A; Di Fabrizio, E; Pérez-Murano, Francesc; Mescola, A; Torre, B

    2015-07-17

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  3. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  4. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  5. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    Science.gov (United States)

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.

  6. Electrochromic properties of electrodeposited tungsten oxide (WO3) thin film

    Science.gov (United States)

    Dalavi, D. S.; Kalagi, S. S.; Mali, S. S.; More, A. J.; Patil, R. S.; Patil, P. S.

    2012-06-01

    In this work, we report on a potentiostatic electrochemical procedure employing an ethanolic solution of peroxotungstic acid yielded tungsten oxide (WO3) films specifically for transmissive electrochromic devices (ECDs) such as "smart windows". WO3 film was confirmed from the binding energy determination by X-ray photoelectron spectroscopic studies. The diffusion coefficient during intercalation and deintercalation was found to be 2.59×10-10 and 2.40×10-10 cm2/C. Electrodeposited WO3 produce high color/bleach transmittance difference up to 74% at 630 nm. On reduction of WO3, the CIELAB 1931 2% color space coordinates show the transition from colorless to the deep blue state (L=95.18, a=2.12, b=0.3138, and L=57.78, a=-21.79, b=0.244) with steady decrease in relative luminance. The highest coloration efficiency (CE) of 92 cm2/C and good response time of 10.28 for coloration (reduction) and 3.2 s for bleaching (oxidation) was observed with an excellent reversibility of 89%.

  7. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  8. Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films

    Science.gov (United States)

    Hussin, Rosniza; Husin, M. Asri

    2017-12-01

    Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.

  9. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng [Iowa State Univ., Ames, IA (United States)

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  10. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Science.gov (United States)

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigation on the pure and fluorine doped vanadium oxide thin films deposited by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Margoni, Mudaliar Mahesh; Mathuri, S. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur, – 603203 Kancheepuram Dt., Tamil Nadu (India); Ramamurthi, K., E-mail: krmurthin@yahoo.co.in [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur, – 603203 Kancheepuram Dt., Tamil Nadu (India); Babu, R. Ramesh [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu (India); Sethuraman, K. [School of Physics, Madurai Kamaraj University, Madurai – 625021, Tamil Nadu (India)

    2016-05-01

    Vanadium oxide and fluorine doped vanadium oxide thin films were deposited on the micro-slide glass substrates at 400 °C by spray pyrolysis technique. Vanadium oxide films were deposited using 0.1 M ammonium meta vanadate aqua solution. Precursor solution used to deposit fluorine doped vanadium oxide films was prepared adding separately 5 wt.%, 10 wt.%, 15 wt.% and 20 wt.% of ammonium fluoride with the 0.1 M ammonium meta vanadate aqua solution. X-ray diffraction results showed that the films are in mixed phases of β-V{sub 2}O{sub 5}, V{sub 2}O{sub 5} and V{sub 3}O{sub 7}. Surface morphology and band gap of these films were modified due to different levels of fluorine doping. The average visible transmittance (500–800 nm) of vanadium oxide films is decreased due to low level concentration of fluorine doping. - Highlights: • Addition of a few ml HCl yielded clear precursor aqua solution. • F doped vanadium oxide films were deposited for less concentration of fluorine. • Low level fluorine doping modified the surface morphology of the thin films. • Direct band gap of vanadium oxide film is slightly increased by fluorine doping.

  12. Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-12-01

    Full Text Available We investigated the effects of gallium (Ga and tin (Sn compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs. The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide and 0.30 (Sn oxide to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0:Sn(0.9 oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance.

  13. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached ...

  14. Transparent conducting zinc oxide thin film prepared by off-axis rf ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Transparent conductors; ZnO thin films; photovoltaics. 1. Introduction. Zinc oxide is an n-type semiconductor with a wide direct band gap of 3⋅3 eV. Thin films of ZnO find application as transparent conducting electrode in photovoltaics, .... surface energy will become larger as the film grows. Then the growth ...

  15. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    NARCIS (Netherlands)

    Ghimbeu, C.M.; Lumbreras, M.; Schoonman, J.; Siadat, M.

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and

  16. Room temperature transparent conducting oxides based on zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Clatot, J. [Laboratoire de Reactivite et de Chimie des Solides, UMR CNRS 6007, 33, rue Saint-Leu, 80039 Amiens (France); Campet, G. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB), CNRS, 87 Avenue du Docteur A. Schweitzer, 33608 Pessac Cedex (France); Zeinert, A. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue St. Leu, 80039, Amiens (France); Labrugere, C. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB), CNRS, 87 Avenue du Docteur A. Schweitzer, 33608 Pessac Cedex (France); Rougier, A., E-mail: aline.rougier@u-picardie.fr [Laboratoire de Reactivite et de Chimie des Solides, UMR CNRS 6007, 33, rue Saint-Leu, 80039 Amiens (France)

    2011-04-01

    Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O{sub 2} pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions ({<=}3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.

  17. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  18. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  19. Growth and Dissolution of Iron and Manganese Oxide Films

    Energy Technology Data Exchange (ETDEWEB)

    Scot T. Martin

    2008-12-22

    Growth and dissolution of Fe and Mn oxide films are key regulators of the fate and transport of heavy metals in the environment, especially during changing seasonal conditions of pH and dissolved oxygen. The Fe and Mn are present at much higher concentrations than the heavy metals, and, when Fe and Mn precipitate as oxide films, heavy metals surface adsorb or co-precipitate and are thus essentially immobilized. Conversely, when the Fe and Mn oxide films dissolve, the heavy metals are released to aqueous solution and are thus mobilized for transport. Therefore, understanding the dynamics and properties of Fe and Mn oxide films and thus on the uptake and release of heavy metals is critically important to any attempt to develop mechanistic, quantitative models of the fate, transport, and bioavailablity of heavy metals. A primary capability developed in our earlier work was the ability to grow manganese oxide (MnO{sub x}) films on rhodochrosite (MnCO{sub 3}) substrate in presence of dissolved oxygen under mild alkaline conditions. The morphology of the films was characterized using contact-mode atomic force microscopy. The initial growth began by heteroepitaxial nucleation. The resulting films had maximum heights of 1.5 to 2 nm as a result of thermodynamic constraints. Over the three past years, we have investigated the effects of MnO{sub x} growth on the interactions of MnCO{sub 3} with charged ions and microorganisms, as regulated by the surface electrical properties of the mineral. In 2006, we demonstrated that MnO{sub x} growth could induce interfacial repulsion and surface adhesion on the otherwise neutral MnCO{sub 3} substrate under environmental conditions. Using force-volume microscopy (FVM), we measured the interfacial and adhesive forces on a MnO{sub x}/MnCO{sub 3} surface with a negatively charged silicon nitride tip in a 10-mM NaNO3 solution at pH 7.4. The interfacial force and surface adhesion of MnOx were approximately 40 pN and 600 pN, respectively

  20. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route

    International Nuclear Information System (INIS)

    Zhao Dandan; Xu Maowen; Zhou Wenjia; Zhang Jin; Li Hulin

    2008-01-01

    A novel electrochemical route to fabricate ordered mesoporous metal oxide film electrodes has been investigated with particular reference to nickel oxide. Ordered mesoporous nickel oxide films are successfully synthesized by templated electrodeposition of H I -e nickel hydroxide and followed by heat-treatment in air at various temperatures. The films are characterized physically by thermogravimetry (TG), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The applicability of this film as inexpensive and high-performance supercapacitor electrode material is demonstrated by the electrochemical characterization using cyclic voltammetry (CV) and chronopotentiometry technique. The specific capacitance of the nickel oxide film depends on the annealing temperature, showing a maximum value of 590 F g -1 when the as-deposited film is heat-treated at 250 deg. C for 1.5 h

  1. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  2. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  3. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  4. Study of thin oxide films by electron, ion and synchrotron radiation beams

    CERN Document Server

    Sammelselg, V; Tarre, A; Asari, J; Rauhala, E; Arstila, K; Seppaelae, A; Zakharov, A; Aarik, J; Karlis, J; Martinson, Indrek

    2002-01-01

    Titanium oxide and zirconium oxide thin films deposited on silicon substrates were characterized using electron probe microanalysis (EPMA), Rutherford backscattering spectroscopy (RBS), time-of-flight elastic recoil detection analysis (TOF-ERDA) and scanning photoelectron microscopy (SPEM). The composition and mass thickness of the films were determined and the results of different methods compared. lt was revealed that the synchrotron radiation used for SPEM studies caused considerable modification of zirconia films grown at low temperatures. (author)

  5. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  6. Metal oxide semiconductor thin-film transistors for flexible electronics

    Science.gov (United States)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  7. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  8. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    Science.gov (United States)

    Kronawitter, Coleman Xaver

    Photoelectrochemistry and its associated technologies show unique potential to facilitate the large-scale production of solar fuels—those energy-rich chemicals obtained through conversion processes driven by solar energy, mimicking the photosynthetic process of green plants. The critical component of photoelectrochemical devices designed for this purpose is the semiconductor photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with respect to the redox couple of the electrolyte to drive the relevant electrochemical reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient and stable conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions. The unique range of functional properties of oxides, and especially the oxides of transition metals, relates to their associated diversity of cation oxidation states, cation electronic configurations, and crystal structures. In this dissertation, the use of metal oxide films, nanomaterials, and heterostructures in photoelectrodes enabling the solar-driven oxidation of water and generation of hydrogen fuel is examined. A range of transition- and post-transition-metal oxide material systems and nanoscale architectures is presented. The first chapters present results related to electrodes based on alpha-phase iron(III) oxide, a promising visible-light-active material widely investigated for this application. Studies of porous films fabricated by physical vapor deposition reveal the importance of structural quality, as determined by the deposition substrate temperature, on photoelectrochemical performance. Heterostructures with nanoscale feature dimensionality are explored and reviewed in a later chapter

  9. Measurements of processes in ruthenium oxide film electrodes with the quartz-crystal microbalance technique

    International Nuclear Information System (INIS)

    Buttry, D.; Gottesfeld, S.

    1987-01-01

    The authors describe the first application of the quartz-crystal microbalance (QCM) technique for monitoring electrochemical processes in oxide film electrodes. They have investigated a film of ruthenium oxide, applied by the thermal decomposition of ruthenium chloride onto one side of the quartz-crystal. The quartz-crystal was precoated with gold keyhole patterns on both sides for inducing the 5 MHz resonance, followed by a thin Ti layer to ensure good adherence of the ruthenium oxide. Ruthenium oxide films are being investigated at Los Alamos for potential use in electrochemical capacitors. The material exhibits large charge capacity per geometric area and fast charge-discharge rates. Different possible processes can be responsible for charge compensation in such oxide materials, including those associated with simple double-layer charging, with pseudocapacitance, and with ion insertion into the small grains of the high-surface-area oxide material. The dynamics of such processes are determined, for a given oxide film, by the nature of the electrolyte and the resulting mechanism of charge-compensation. The QCM technique provides interesting information on these processes, as well as on film hydration and film dissolution process. The authors' initial results are presented in this paper. The results demonstrate the QCM as a sensitive tool for following not only ionic insertion processes during potential modulation, but also processes of film swelling and film dissolution

  10. Deformation of confined poly(ethylene oxide) in multilayer films.

    Science.gov (United States)

    Lai, Chuan-Yar; Hiltner, Anne; Baer, Eric; Korley, LaShanda T J

    2012-04-01

    The effect of confinement on the deformation behavior of poly(ethylene oxide) (PEO) was studied using melt processed coextruded poly(ethylene-co-acrylic acid) (EAA) and PEO multilayer films with varying PEO layer thicknesses from 3600 to 25 nm. The deformation mechanism was found to shift as layer thickness was decreased between 510 and 125 nm, from typical axial alignment of the crystalline fraction, as seen in bulk materials, to nonuniform micronecking mechanisms found in solution-grown single crystals. This change was evaluated via tensile testing, wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). With the commercially relevant method of melt coextrusion, we were able to overcome the limitations to the testing of solution-grown single crystals, and the artifacts that occur from their handling, and bridged the gap in knowledge between thick bulk materials and thin single crystals.

  11. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  12. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    Science.gov (United States)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  13. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Cheng, Yuanhang; Yang, Qing-Dan; Xiao, Jingyang; Xue, Qifan; Li, Ho-Wa; Guan, Zhiqiang; Yip, Hin-Lap; Tsang, Sai-Wing

    2015-09-16

    Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.

  14. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  15. Sputtered boron indium oxide thin-film transistors

    Science.gov (United States)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  16. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  17. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  18. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  19. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  20. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  1. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  2. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    Mihaela Girtan

    2017-05-01

    Full Text Available A comprehensive study of a class of Oxide/Metal/Oxide (Oxide = ITO, AZO, TiO2 and Bi2O3, Metal = Au thin films was done by correlating the spectrophotometric studies with the ellispometric models. Films were deposited by successive sputtering from metallic targets In:Sn, Zn:Al, Ti and Bi in reactive atmosphere (for the oxide films and respective inert atmosphere (for the metallic Au interlayer films on glass substrates. The measurements of optical constants n—the refractive index and k—the extinction coefficient, at different incident photon energies for single oxide films and also for the three layers films oxide/metal/oxide samples were made using the spectroscopic ellipsometry (SE technique. The ellipsometry modelling process was coupled with the recorded transmission spectra data of a double beam spectrophotometer and the best fitting parameters were obtained not only by fitting the n and k experimental data with the dispersion fitting curves as usual is practiced in the most reported data in literature, but also by comparing the calculated the transmission coefficient from ellipsometry with the experimental values obtained from direct spectrophotometry measurements. In this way the best dispersion model was deduced for each sample. Very good correlations were obtained for the other different thin films characteristics such as the films thickness, optical band gap and electrical resistivity obtained by other measurements and calculation techniques. The ellipsometric modelling, can hence give the possibility in the future to predict, by ellipsometric simulations, the proper device architecture in function of the preferred optical and electrical properties.

  3. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  4. Organosilane-functionalization of nanostructured indium tin oxide films.

    Science.gov (United States)

    Pruna, R; Palacio, F; Martínez, M; Blázquez, O; Hernández, S; Garrido, B; López, M

    2016-12-06

    Fabrication and organosilane-functionalization and characterization of nanostructured ITO electrodes are reported. Nanostructured ITO electrodes were obtained by electron beam evaporation, and a subsequent annealing treatment was selectively performed to modify their crystalline state. An increase in geometrical surface area in comparison with thin-film electrodes area was observed by atomic force microscopy, implying higher electroactive surface area for nanostructured ITO electrodes and thus higher detection levels. To investigate the increase in detectability, chemical organosilane-functionalization of nanostructured ITO electrodes was performed. The formation of 3-glycidoxypropyltrimethoxysilane (GOPTS) layers was detected by X-ray photoelectron spectroscopy. As an indirect method to confirm the presence of organosilane molecules on the ITO substrates, cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were also carried out. Cyclic voltammograms of functionalized ITO electrodes presented lower reduction-oxidation peak currents compared with non-functionalized ITO electrodes. These results demonstrate the presence of the epoxysilane coating on the ITO surface. EIS showed that organosilane-functionalized electrodes present higher polarization resistance, acting as an electronic barrier for the electron transfer between the conductive solution and the ITO electrode. The results of these electrochemical measurements, together with the significant difference in the X-ray spectra between bare ITO and organosilane-functionalized ITO substrates, may point to a new exploitable oxide-based nanostructured material for biosensing applications. As a first step towards sensing, rapid functionalization of such substrates and their application to electrochemical analysis is tested in this work. Interestingly, oxide-based materials are highly integrable with the silicon chip technology, which would permit the easy adaptation of such sensors into lab

  5. Role of plasma activation in tailoring the nanostructure of multifunctional oxides thin films

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M.; Losurdo, Maria; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy); Bruno, Giovanni [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy)], E-mail: giovanni.bruno@ba.imip.cnr.it

    2009-03-01

    Potential of O{sub 2} remote plasmas for improving structural, morphological and optical properties of various multifunctional oxides thin films both during plasma assisted growth as well as by post-growth treatments is discussed. In particular, an O{sub 2} remote plasma metalorganic chemical vapor deposition (RP-MOCVD) route is presented for tailoring the structural, morphological and optical properties of Er{sub 2}O{sub 3} and ZnO films. Furthermore, post-growth room-temperature remote O{sub 2} plasma treatments of indium-tin-oxides (ITO) films are demonstrated to be effective in improving morphology of ITO films.

  6. Characteristics of tin oxide-based thin film transistors prepared by DC magnetron sputtering.

    Science.gov (United States)

    Moon, Yeon-Keon; Kim, Woong-Sun; Kim, Kyung-Taek; Shin, Se-Young; Park, Jong-Wan

    2012-04-01

    Here we demonstrate the fabrication of SnO(x) thin-film transistors (TFTs), where SnO(x) thin films are deposited as an active channel layer by DC magnetron sputtering. We analyzed the effects of the oxygen partial pressure ratio and post-deposition heat treatment (PDHT) on the characteristics of the SnO(x) thin films. We found improved performance of the TFTs obtained by using interface modification with the optimized deposition condition of SnO(x) thin films. These results are helpful for fabricating oxide-TFTs, including simple binary oxide semiconductors, as an active channel layer.

  7. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  8. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  9. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States); McGlone, J.M.; Landau, N.P.; Wager, J.F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 (United States); Stickle, W.F. [Hewlett-Packard Company, Corvallis, OR 97333 (United States); Herman, G.S., E-mail: greg.herman@oregonstate.edu [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States)

    2015-11-30

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni (< 30 min), and then by outward diffusion of Zr (> 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  10. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  11. Structure and Optical Properties of Nanocrystalline Hafnium Oxide Thin Films (PostPrint)

    Science.gov (United States)

    2014-09-01

    AFRL-RX-WP-JA-2014-0214 STRUCTURE AND OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) Neil R. Murphy AFRL...OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...publication is available at http://dx.doi.org/10.1016/j.optmat.2014.08.005 14. ABSTRACT Hafnium oxide (HfO2) films were grown by sputter-deposition by

  12. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  13. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  14. Growth and characterization of indium tin oxide thin films deposited on PET substrates

    International Nuclear Information System (INIS)

    Lee, Jaehyeong; Jung, Hakkee; Lee, Jongin; Lim, Donggun; Yang, Keajoon; Yi, Junsin; Song, Woo-Chang

    2008-01-01

    Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 x 10 -3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters

  15. Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition

    KAUST Repository

    Kim, Hyunho

    2017-02-27

    Extraordinary oxidant-dependent changes in the thermoelectric properties of undoped ZnO thin films deposited by atomic layer deposition (ALD) have been observed. Specifically, deionized water and ozone oxidants are used in the growth of ZnO by ALD using diethylzinc as a zinc precursor. No substitutional atoms have been added to the ZnO films. By using ozone as an oxidant instead of water, a thermoelectric power factor (σS) of 5.76 × 10 W m K is obtained at 705 K for undoped ZnO films. In contrast, the maximum power factor for the water-based ZnO film is only 2.89 × 10 W m K at 746 K. Materials analysis results indicate that the oxygen vacancy levels in the water- and ozone-grown ZnO films are essentially the same, but the difference comes from Zn-related defects present in the ZnO films. The data suggest that the strong oxidant effect on thermoelectric performance can be explained by a mechanism involving point defect-induced differences in carrier concentration between these two oxides and a self-compensation effect in water-based ZnO due to the competitive formations of both oxygen and zinc vacancies. This strong oxidant effect on the thermoelectric properties of undoped ZnO films provides a pathway to improve the thermoelectric performance of this important material.

  16. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  17. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenchao [School of Science, Tianjin University, Tianjin (China); Wang, Zhipeng [School of Science, Tianjin University, Tianjin (China); School of Chemical Engineering, Tianjin University, Tianjin (China); Liu, Yu; Li, Nan [School of Science, Tianjin University, Tianjin (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin (China); Gao, Jianping, E-mail: jianpingg@eyou.com [School of Chemical Engineering, Tianjin University, Tianjin (China)

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  18. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  19. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides

  20. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  1. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  2. Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

    Science.gov (United States)

    Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Benelmekki, Maria; Bohra, Murtaza; Hawash, Zafer; Baughman, Kenneth W.; Sowwan, Mukhles

    2014-05-01

    Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

  3. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  4. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Andrade, E.; Huerta, L.; Pineda, J.C.; Zavala, E.P.; Barrera, E.; Rocha, M. F.; Vargas, C.A.

    2001-01-01

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4 He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12 C(d,p 0 ) 13 C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  5. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  6. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing

  7. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  9. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  10. Effect of Different Post Deposition Annealing Treatments on Properties of Zinc Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Arti Arora

    2010-06-01

    Full Text Available Two different post deposition annealing atmospheres of oxygen and forming gas have been investigated for the improvement of rf sputtered zinc oxide thin films. The results show that type of atmosphere (oxidant o reduction plays an important role in the changes observed in structural, electrical and optical properties. It has been found that the structural properties of rf sputtered zinc oxide films improve in all the annealing environments. The intensity and grain size increases as the annealing temperature increases. It has been found that films become stress free at lowest temperature in oxygen as compare to forming gas annealing. The zinc oxide films annealed in oxygen shows sufficient resistivity associated to high transmittance (83 % characteristics required for MEMS based acoustic devices.

  11. Optical and electrical characterizations of cerium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Fu-Chien; Lai, Chih-Ming, E-mail: fcchiu@mail.mcu.edu.t [Department of Electronic Engineering, Ming Chuan University, No. 5, De Ming Rd., Gui Shan District, Taoyuan County 333, Taiwan (China)

    2010-02-24

    The optical dielectric function of cerium oxide (CeO{sub 2}) was characterized by the spectroscopic ellipsometry (SE) technique using the Kramers-Kronig relation and the Tauc-Lorentz (TL) dispersion model. Experimental results showed that the bandgap energy and refractive index at 632.8 nm of CeO{sub 2} are about 3.23 {+-} 0.05 eV and 2.33 {+-} 0.08, respectively. Based on the optical properties, the electrical conduction mechanisms in CeO{sub 2} thin films are determined to be Schottky emission in a medium electric field (0.5-1.6 MV cm{sup -1}) from 350 to 500 K and Poole-Frenkel emission in a high electric field (>2.36 MV cm{sup -1}) from 450 to 500 K. Accordingly, the conduction band offsets between Al and CeO{sub 2} and the trap energy level are about 0.62 {+-} 0.01 eV and 1.53 {+-} 0.01 eV, respectively.

  12. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  13. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...... considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation...

  14. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  15. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxide film defects in Al alloys and the formation of hydrogen- related porosity

    International Nuclear Information System (INIS)

    Griffiths, W D; Yue, Y; Gerrard, A J

    2016-01-01

    Double oxide film defects have also been held responsible for the origins of hydrogen porosity, where hydrogen dissolved in the Al melt passes into the interior atmosphere of the double oxide film defect causing it to inflate. However, this is in opposition to long- established evidence that H cannot readily diffuse through aluminium oxide. To investigate this further, samples of commercial purity Al were first degassed to remove their initial H content, and then heated to above their melting point and held in atmospheres of air and nitrogen respectively, to determine any differences in H pick-up. The experiment showed that samples held in an oxidising atmosphere, and having an oxide skin, picked up significantly less H than when the samples were held in a nitrogen atmosphere, which resulted in the formation of AlN in cracks in the oxide skin of the sample. It is suggested that double oxide film defects can give rise to hydrogen-related porosity, but this occurs more quickly when the oxygen in the original oxide film defect has been consumed by reaction with the surrounding melt and nitrogen reacts to form AlN, which is more permeable to H than alumina, more easily allowing the oxide film defect to give rise to a hydrogen pore. This is used to interpret results from an earlier synchrotron experiment, in which a small pore was seen to grow into a larger pore, while an adjacent large pore remained at a constant size. (paper)

  17. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  18. Nanomechanical properties of dip coated indium tin oxide films on glass

    International Nuclear Information System (INIS)

    Biswas, Nilormi; Ghosh, Priyanka; Sarkar, Saswati; Moitra, Debabrata; Biswas, Prasanta Kumar; Jana, Sunirmal; Mukhopadhyay, Anoop Kumar

    2015-01-01

    Nanomechanical properties of indium tin oxide (ITO) thin films dip coated from precursor sols of varying equivalent oxide weight percentage (wt.%) onto commercial soda lime silica (SLS) glass substrate were evaluated by nanoindentation technique at an ultralow load of 50 μN. It was found that the increase in wt.% beyond 6 in the precursor sols, had an adverse effect on nanohardness and Young's modulus of the films. Moreover, relatively thicker triple layered film (about 240 nm) had inferior nanomechanical properties as compared to the single layered film. Interestingly, the ITO foam coating on SLS glass substrate had nanomechanical properties nearly as good as those of the single layered films. These observations are explained in terms of the relative differences in crystallinity, stiffness and elastic deformation ability of the films. - Highlights: • Sol–gel indium tin oxide thin films and foam coating • Crystallinity and nanomechanical property inversely relate to sol oxide content. • Foam coating behaves like the thin films

  19. Study of optical characteristics of tin oxide thin film prepared by sol ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we present details of preparation of tin oxide (SnO2) thin film by sol–gel process. The film was synthesized on a glass (Corning 7059) plate by dip coating method. Here, we used tin (II) chloride as precursor and methanol as solvent. Optical characteristics and physical properties like refractive index, ...

  20. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-layer- induced Octahedral Distortion

    NARCIS (Netherlands)

    Thomas, S.; Kuiper, B.; Hu, J.; Smit, J.; Liao, Z.; Zhong, Z.; Rijnders, G.; Vailionis, A.; Wu, R.; Koster, G.; Xia, J.

    2017-01-01

    With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging

  1. Raman and XPS characterization of vanadium oxide thin films with temperature

    Science.gov (United States)

    Ureña-Begara, Ferran; Crunteanu, Aurelian; Raskin, Jean-Pierre

    2017-05-01

    The oxidation mechanisms and the numerous phase transitions undergone by VO2 thin films deposited on SiO2/Si and Al2O3 substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO2 monoclinic phase at R.T. and the final V2O5 phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO2 films prepared on SiO2/Si and Al2O3 substrates.

  2. Growth, structuring and characterisation of all-oxide thin film devices prepared by pulsed laser deposition

    NARCIS (Netherlands)

    Cillessen, J.F.M.; Wolf, R.M.; Giesbers, J.B.; Blom, P.W.M.; Grosse Holz, K.O.; Pastoor, E.

    The combination of a variety of oxidic thin films in two materials systems is described. The first one focuses on the growth of BaZrO3 on SrTiO3 (both perovskites) and the use of these stacks as a substrate for the growth of magnetic ferrite spinel films. The second system shows the combination of

  3. Gas-chromism in ultrasonic spray pyrolyzed tungsten oxide thin films

    Indian Academy of Sciences (India)

    A simple and inexpensive ultrasonic spray pyrolysis (USP) technique has been employed to deposit tungsten oxide (WO3) thin films by spraying 2.0 mM aqueous ammonium metatungstate solution onto the amorphous glass substrates kept at 250°C. The films were further annealed at 400°C for 4 h in air. X-ray diffraction ...

  4. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films

    OpenAIRE

    Henley, SJ; Carey, JD; Silva, SRP

    2005-01-01

    he mechanisms controlling the nanostructuring of thin metal-on-oxide films by nanosecond pulsed excimer lasers are investigated. When permitted by the interfacial energetics, the breakup of the metal film into nanoscale islands is observed. A range of metals (Au, Ag, Mo, Ni, Ti, and Zn) with differing physical and thermodynamic properties, and differing tendencies for oxide formation, are investigated. The nature of the interfacial metal-substrate interaction, the thermal conductivity of the ...

  5. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  6. Characterization of quaternary metal oxide films by synchrotron x-ray fluorescence microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Thompson, A.C.; Russo, R.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A high demand for thin films in industrial technology has been responsible for the creation of new techniques for the fabrication of such films. One highly effective method for the syntheses of variable composition thin films is pulsed-laser deposition (PLD). The technique has a large number of characteristics which make it an attractive approach for making films. It offers rapid deposition rates, congruent material transfer, simple target requirements from which to make the films, in situ multilayer deposition, and no gas composition or pressure requirements. Additionally, the technique can also afford crystalline films and films with novel structures. Pulsed-laser deposition can be used to make films of semiconductors, insulators, high-temperature superconductors, diamond-like films, and piezoelectric materials. Quaternary metal oxides involving calcium, nickel, and potassium have been shown to be quite effective in the catalysis of coal gasification and methane coupling. One approach to incorporating all three of the metal oxides into one phase is the use of laser ablation to prepare films of the catalysts so that they may be used for coatings, smooth surfaces on which to conduct detailed studies of gas-solid interface reactions that are involved in catalytic processes, and other applications. The problem of dissimilar boiling points of the three metal oxides system is overcome, since the laser ablation process effects the volatilization of all three components from the laser target essentially simultaneously. There is strong interest in gaining an understanding of the chemical and morphological aspects of the films that are deposited. Phenomena such as lattice defects and chemical heterogeneity are of interest. The experimental data discussed here are restricted to the matrix homogeneity of the films themselves for films which were void of microparticles.

  7. Ultra-low power thin film transistors with gate oxide formed by nitric acid oxidation method

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kim, W. B.; Matsumoto, T.

    2011-01-01

    We have developed a low temperature fabrication method of SiO 2 /Si structure by use of nitric acid, i.e., nitric acid oxidation of Si (NAOS) method, and applied it to thin film transistors (TFT). A silicon dioxide (SiO 2 ) layer formed by the NAOS method at room temperature possesses 1.8 nm thickness, and its leakage current density is as low as that of thermally grown SiO 2 layer with the same thickness formed at ∼900 deg C. The fabricated TFTs possess an ultra-thin NAOS SiO 2 /CVD SiO 2 stack gate dielectric structure. The ultrathin NAOS SiO 2 layer effectively blocks a gate leakage current, and thus, the thickness of the gate oxide layer can be decreased from 80 to 20 nm. The thin gate oxide layer enables to decrease the operation voltage to 2 V (cf. the conventional operation voltage of TFTs with 80 nm gate oxide: 12 V) because of the low threshold voltages, i.e., -0.5 V for P-ch TFTs and 0.5 V for N-ch TFTs, and thus the consumed power decreases to 1/36 of that of the conventional TFTs. The drain current increases rapidly with the gate voltage, and the sub-threshold voltage is ∼80 mV/dec. The low sub-threshold swing is attributable to the thin gate oxide thickness and low interface state density of the NAOS SiO 2 layer. (authors)

  8. Determination of oxide film thickness on aluminium using 14-MeV neutron activation and BET method

    International Nuclear Information System (INIS)

    Foerster, H.

    1983-01-01

    A new method is described for the determination of the mean film thickness of aluminium oxides by 14-MeV neutron activation analysis of the oxygen and by BET measurement of the surface area. The mean film thickness obtained is independent of the surface roughness. Stable oxide films consisting of only a few atomic layers of oxygen are detected on aluminium. (author)

  9. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J.P.; Hakam, A.; Ennaoui, A

    2002-11-30

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrol onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM)

  10. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J.P.; Hakam, A.; Ennaoui, A.

    2002-01-01

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrolysis onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM)

  11. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    Science.gov (United States)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J. P.; Hakam, A.; Ennaoui, A.

    2002-11-01

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrolysis onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM).

  12. Depth Profiling Analysis of Aluminum Oxidation During Film Deposition in a Conventional High Vacuum System

    Science.gov (United States)

    Kim, Jongmin; Weimer, Jeffrey J.; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    The oxidation of aluminum thin films deposited in a conventional high vacuum chamber has been investigated using x-ray photoelectron spectroscopy (XPS) and depth profiling. The state of the Al layer was preserved by coating it with a protective MgF2 layer in the deposition chamber. Oxygen concentrations in the film layers were determined as a function of sputter time (depth into the film). The results show that an oxidized layer is formed at the start of Al deposition and that a less extensively oxidized Al layer is deposited if the deposition rate is fast. The top surface of the Al layer oxidizes very quickly. This top oxidized layer may be thicker than has been previously reported by optical methods. Maximum oxygen concentrations measured by XPS at each Al interface are related to pressure to rate ratios determined during the Al layer deposition.

  13. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  14. Transparent thin films of indium tin oxide: Morphology-optical investigations, inter dependence analyzes

    Science.gov (United States)

    Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.

    2017-12-01

    Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.

  15. Surface roughness characterization of Al-doped zinc oxide thin films using rapid optical measurement

    Science.gov (United States)

    Kuo, Chil-Chyuan

    2011-07-01

    Transparent conductive oxide thin films have been widely investigated in photoelectric devices such as flat panel display (FPD) and solar cells. Al-doped zinc oxide (AZO) thin films have been widely employed in FPD. Measuring the surface roughness of AZO thin films is important before the manufacturing of photoelectric device using AZO thin films because surface roughness of AZO thin films will significantly affect the performance of photoelectric device. Traditional methods to measure surface roughness of AZO thin films are scanning electron microscopy and atomic force microscopy. The disadvantages of these approaches include long lead time and slow measurement speed. To solve this problem, an optical inspection system for rapid measurement of the surface roughness of AZO thin films is developed in this study. It is found that the incident angle of 60° is a good candidate to measure the surface roughness of AZO thin films. Based on the trend equation y=-3.6483 x+2.1409, the surface roughness of AZO thin films ( y) can be directly deduced from the peak power density ( x) using the optical inspection system developed. The maximum measurement-error rate of the optical inspection system developed is less than 8.7%.The saving in inspection time of the surface roughness of AZO thin films is up to 83%.

  16. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  17. Thermoluminescent characterization of thin films of aluminium oxide submitted to beta and gamma radiation

    International Nuclear Information System (INIS)

    Villagran, E.; Escobar A, L.; Camps, E.; Gonzalez, P.R.; Martinez A, L.

    2002-01-01

    By mean of the laser ablation technique, thin films of aluminium oxide have been deposited on kapton substrates. These films present thermoluminescent response (Tl) when they are exposed to beta and gamma radiation. The brilliance curves show two peaks between 112 C and 180 C. A dose-response relationship study was realized and the Tl kinetic parameters were determined using the computerized deconvolution of the brilliance curve (CGCD). The thin films of aluminium oxide have potential applications as ultra.thin radiation dosemeters. (Author)

  18. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  19. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution.

    Science.gov (United States)

    Basirun, Wan J; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R; Ebadi, Mehdi

    2013-09-24

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  20. Physiochemical Characterization of Iodine (V Oxide Part II: Morphology and Crystal Structure of Particulate Films

    Directory of Open Access Journals (Sweden)

    Brian K. Little

    2015-11-01

    Full Text Available In this study, the production of particulate films of iodine (V oxides is investigated. The influence that sonication and solvation of suspended particles in various alcohol/ketone/ester solvents have on the physical structure of spin or drop cast films is examined in detail with electron microscopy, powder x-ray diffraction, and UV-visible absorption spectroscopy. Results indicate that sonicating iodine oxides in alcohol mixtures containing trace amounts of water decreases deposited particle sizes and produces a more uniform film morphology. UV-visible spectra of the pre-cast suspensions reveal that for some solvents, the iodine oxide oxidizes the solvent, producing I2 and lowering the pH of the suspension. Characterizing the crystals within the cast films reveal their composition to be primarily HI3O8, their orientations to exhibit a preferential orientation, and their growth to be primarily along the ac-plane of the crystal, enhanced at higher spin rates. Spin-coating at lower spin rates produces laminate-like particulate films versus higher density, one-piece films of stacked particles produced by drop casting. The particle morphology in these films consists of a combination of rods, plates, cubes, and rhombohedra structure.

  1. Effect of Pro-Degradation Additive on Photo-Oxidative Aging of Polypropylene Film

    International Nuclear Information System (INIS)

    Noor Zalikha Mohamed Islam; Nadras Othman; Zulkifli Ahmad; Hanafi Ismail

    2011-01-01

    This paper describes the effect of pro-degradation additives (PDA) on photo-oxidative aging of polypropylene (PP) films after being time accelerated in UV-weathering chamber. Thin films (0.12 mm) containing these additives were prepared by sheeting process. The effect of UV on PP films in the presence of these additives was investigated. Changes in the PP films appearance, tensile properties and carbonyl index (CI) were used to investigate the degradation behavior. The films became completely pulverised after 100 h of photo-oxidative treatment and could not be tested further. Films containing PDA showed rapid loss in tensile properties within 100 h of photo-oxidative aging. In addition, the CI results of photo-oxidative films increased with increasing PDA amount within the time interval of aging and the activity was due to the mechanism reaction of PP with PDA particles. During the aging process the material becomes denser due to tighter packing and incorporation of oxygen into the amorphous regions of the polymer. The results indicated that the presence of PDA contributed to the photo degradation and the activity was very much influenced by the amount PDA. (author)

  2. Effect of annealing on pulse laser deposition grown copper oxide thin film

    Science.gov (United States)

    Mistry, Vaibhavi H.; Mistry, Bhaumik V.; Modi, B. P.; Joshi, U. S.

    2017-05-01

    Cuprous oxide (Cu2O) is a promising non-toxic and low cost semiconductor with potential applications in photovoltaic devices and sensor applications. Copper oxide thin films were prepared on glass substrate by pulse laser deposition. The effects of annealing on the structural, optical and electrical properties of copper oxide thin films were studied. The films were annealed in air for different temperature ranging from 200 to 450 °C. X-ray diffraction patterns reveals that the films as-deposited and annealed at 200 and 250 °C are of cuprite structure with composition Cu2O. Annealing at 300 °C and above converts these films to CuO phase. The atomic force microscopy results show that both the phase has nanocrystalline and particle size of the films is increasing with increase in annealing temperature. The conversion from Cu2O to CuO phase was confirmed by a shift in the optical band gap from 2.20 eV to 1.74 eV. The annealing conditions play a major role in the structural properties of copper oxide thin films.

  3. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Science.gov (United States)

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  4. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  5. Structural and optical properties of zinc oxide film using RF-sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, A. J.; Jaafar, M. S.; Ghazai, Alaa J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Pinang (Malaysia); Physics Department, Science College, Thi-Qar University (Iraq)

    2012-11-27

    This paper reports the fabrication of zinc oxide (ZnO) film using RF-sputtering technique. Determination of the structural properties using High Resolution X-ray Diffraction (HRXRD) confirmed that ZnO film deposited on silicon (Si) substrate has a high quality. This result is in line with the Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) which were used to image the morphology of the film, in which a rough surface was demonstrated. Photoluminescence (PL) emission is included to study the optical properties of ZnO film that shows two PL peak in the UV region at 371 nm and in visible region at 530 nm respectively.

  6. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  7. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    Science.gov (United States)

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey

    2017-06-01

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

  8. Reduction of resistivity in Cu thin films by partial oxidation: Microstructural mechanisms

    International Nuclear Information System (INIS)

    Prater, Walter L.; Allen, Emily L.; Lee, Wen-Y.; Toney, Michael F.; Daniels, Jonathan; Hedstrom, Jonathan A.

    2004-01-01

    We report on the electrical resistance and microstructure of sputter deposited copper thin films grown in an oxygen containing ion-beam sputtering atmosphere. For films thinner than 5 nm, 6%-10% oxygen causes a minimum in film resistivity, while for thicker films, there is a monotonic increase in resistivity. X-ray reflectivity measurements show significantly smoother films for these oxygen flow rates. X-ray diffraction shows that the oxygen doping causes a refinement of the copper grain size and the formation of cuprous oxide. We suggest that the formation of cuprous oxide limits copper grain growth, which causes smoother interfaces, and thus reduces resistivity by increasing specular scattering of electrons at interfaces

  9. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  10. Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications

    Science.gov (United States)

    Politano, Grazia Giuseppina; Cazzanelli, Enzo; Versace, Carlo; Vena, Carlo; De Santo, Maria Penelope; Castriota, Marco; Ciuchi, Federica; Bartolino, Roberto

    2018-01-01

    In the last years the potential of combining the attractive materials characteristics of graphene related materials and silver nanostructures for SERS and metamaterials has emerged. Here, we report of graphene oxide thin films deposited by dip-coating on magnetron sputtered silver thin films. Our work represents a novelty in the field of the study of graphene oxide- silver composites, since magnetron sputtering deposition is an alternative way to silver thin films fabrication; previous works used instead silver nitrate aqueous solution mixed with the graphene oxide. Micro-Raman technique, morphological analysis and variable angle spectroscopic ellipsometry were performed. The final SERS signal intensity was investigated and we found Raman peaks dependent on the intensity of the laser and the thickness of silver and GO films. These results could open somestudies on plasmonics and on the reduction of graphene oxide mediated by silver thin films. Moreover, effective medium theory calculations show the possible use of these graphene oxide/silver thin films in multilayer hyperbolic metamaterials for optical applications.

  11. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films

    International Nuclear Information System (INIS)

    Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun

    2015-01-01

    Graphical abstract: - Highlights: • We prepared silver/mental-oxide nanocomposite films by physical sputtering technology to investigate the environment-dependent photo-dissolution of silver nanoparticles. • We built up an airtight and in situ monitorable system to measure photochromism of different films in various atmospheres. • Silver nanoparticles were found to be more easily photo-dissolved on the n-type metal oxide films compared with that on the p-type one, conductor and insulator. • Oxygen and humidity were verified to accelerate the photochromism of silver nanoparticles. - Abstract: Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag + -ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.

  12. Temperature-dependent phase evolution of copper-oxide thin-films on Au(111).

    Science.gov (United States)

    Möller, Christoph; Fedderwitz, Hanna; Noguera, Claudine; Goniakowski, Jacek; Nilius, Niklas

    2018-02-21

    The formation of ultrathin copper oxide layers on an Au(111) surface is explored with scanning tunneling microscopy and density functional theory. Depending on the thermal treatment of as-grown Cu-O samples, a variety of thin-film morphologies is observed. Whereas 1D oxide stripes with Au[112[combining macron

  13. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    Science.gov (United States)

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  14. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  15. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition.

    Science.gov (United States)

    Waltz, Florian; Schwarz, Hans-Christoph; Schneider, Andreas M; Eiden, Stefanie; Behrens, Peter

    2015-01-01

    In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity.

  16. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    Directory of Open Access Journals (Sweden)

    Florian Waltz

    2015-03-01

    Full Text Available In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps, a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step. In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity.

  17. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  18. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  19. Investigation of thermal oxidative break-down of polyethylene films modified with grafted polyacrylonitrile

    International Nuclear Information System (INIS)

    Krul', L.P.; Gert, E.V.

    1981-01-01

    Thermal oxidative destruction of polyethylene (PE) films modified by radiation (#betta#-radiation, dose rate is 0.56 Mrad/hr) liquid-phase graft polymerization of acrylonitrile (AN) has been studied. Comparative stability of grafted copolymers, homopolymers and mechanical mixtures of PE and PAN (polyacrylonitrile) to thermal oxidative destruction is studied using the derivatographic method. It is shown that graft of PAN considerably decelerates the development of oxidative and destructive processes in PE, at that, the efficiency of PE chain stabilization increases with the increase of grafted PAN amount. The sample with PAN content x=0.367 (in parts of the mass of grafted film) possesses the highest stability

  20. A review on the recent developments of solution processes for oxide thin film transistors

    Science.gov (United States)

    Du Ahn, Byung; Jeon, Hye-Ji; Sheng, Jiazhen; Park, Jozeph; Park, Jin-Seong

    2015-06-01

    This review article introduces the recent advances in the development of oxide semiconductor materials based on solution processes and their potential applications. In the early stage, thin film transistors based on oxide semiconductors fabricated by solution processes used to face critical problems such as high annealing temperatures (>400 °C) required to obtain reasonable film quality, and the relatively low field effect mobility (biosensors, and non-volatile memory devices. As such, further innovations in the solution process methods of oxide semiconductor devices are anticipated to allow the realization of cost effective, large area electronics in the near future.

  1. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L

    International Nuclear Information System (INIS)

    Stefanov, P.; Marinova, T.

    2000-01-01

    The structure and composition of chromium oxide films formed on stainless steel by immersion in a chromium electrolyte have been studied by SEM and XPS. Cr 2 O 3 crystallites in the range 30-150 nm are fully developed and cover the whole surface. The chemical composition in the depth and the thickness of the oxide layer have been determined by XPS sputter profiles. The oxide film can be described within the framework of a double layer consisting of a thin outer hydrated layer and an inner layer of Cr 2 O 3 . (orig.)

  2. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  3. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  4. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  5. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical va- pour deposition using an adducted β-diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (~ 550°C), while they grow with a strong (111) orientation as the.

  6. Conductance of perovskite oxide thin films and interfaces

    NARCIS (Netherlands)

    Mubeen Dildar, Ishrat

    2013-01-01

    This thesis deals with the properties of doped perovskite manganites in the form of thin films, and with interfaces between insulating perovskites. The first question we investigate has to do with the strong reduction of the metal-insulator (MI) transition temperature when the films are strained.In

  7. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    Science.gov (United States)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  8. Characterization of steam generated anti-corrosive oxide films on Aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Aluminium and its alloys are widely used in structural and transportation industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further...... be converted or transformed into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use...... chemical additives on surface morphology and growth of oxide film on different intermetallic particles and corrosion behaviour of such alloys.Surface morphology was observed by using FEG-SEM, EDX and FIB-SEM. Metal oxide surface characterization and compositional depth profiling were investigated by using...

  9. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  10. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  11. Effects of Deposition Parameters and Oxygen Addition on Properties of Sputtered Indium Tin Oxide Films

    Directory of Open Access Journals (Sweden)

    Badrul Munir

    2013-04-01

    Full Text Available Indium tin oxide (ITO films were sputtered on corning glass substrate. Oxygen admixture and sputtering deposition parameters were optimized to obtain the highest transparency as well as lowest resistivity. Structural, electrical and optical properties of the films were then examined. Increasing deposition rate and film thickness changed the crystallographic orientation from (222  to (400 and (440, as well as higher  surface roughness. It was necessary to apply substrate heating during reposition to get films with better crystallinity. The lowest resistivity of 5.36 x 10-4 Ω•cm was obtained at 750 nm film thickness. The films’ resistivity was increased by addition of oxygen up to 2% in the argon sputtering gas. All films showed over 85% transmittance in the visible wavelength range, possible for applications in photovoltaic and display devices. 

  12. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  13. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications.

    Science.gov (United States)

    Mendoza, J Guzmán; Frutis, M A Aguilar; Flores, G Alarcón; Hipólito, M García; Maciel Cerda, A; Azorín Nieto, J; Montalvo, T Rivera; Falcony, C

    2010-01-01

    Hafnium oxide (HfO(2)) films were deposited by the ultrasonic spray pyrolysis process. The films were synthesized from hafnium chloride as raw material in deionized water as solvent and were deposited on corning glass substrates at temperatures from 300 to 600 degrees C. For substrate temperatures lower than 400 degrees C the deposited films were amorphous, while for substrate temperatures higher than 450 degrees C, the monoclinic phase of HfO(2) appeared. Scanning electron microscopy showed that the film's surface resulted rough with semi-spherical promontories. The films showed a chemical composition close to HfO(2), with an Hf/O ratio of about 0.5. UV radiation was used in order to achieve the thermoluminescent characterization of the films; the 240 nm wavelength induced the best response. In addition, preliminary photoluminescence spectra, as a function of the deposition temperatures, are shown. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications

    International Nuclear Information System (INIS)

    Guzman Mendoza, J.; Aguilar Frutis, M.A.; Flores, G. Alarcon; Garcia Hipolito, M.; Maciel Cerda, A.; Azorin Nieto, J.; Rivera Montalvo, T.; Falcony, C.

    2010-01-01

    Hafnium oxide (HfO 2 ) films were deposited by the ultrasonic spray pyrolysis process. The films were synthesized from hafnium chloride as raw material in deionized water as solvent and were deposited on corning glass substrates at temperatures from 300 to 600 deg. C. For substrate temperatures lower than 400 deg. C the deposited films were amorphous, while for substrate temperatures higher than 450 deg. C, the monoclinic phase of HfO 2 appeared. Scanning electron microscopy showed that the film's surface resulted rough with semi-spherical promontories. The films showed a chemical composition close to HfO 2 , with an Hf/O ratio of about 0.5. UV radiation was used in order to achieve the thermoluminescent characterization of the films; the 240 nm wavelength induced the best response. In addition, preliminary photoluminescence spectra, as a function of the deposition temperatures, are shown.

  15. Optical, structural and electrical properties of nanosized zinc oxide sintered films for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Kumar V.

    2013-01-01

    Full Text Available Zinc oxide films have been deposited on ultra-clean glass substrates by screenprinting method followed by sintering process. Optimum conditions for preparing good quality screen-printed films have been found. The optical band gap of the films has been studied using reflection spectra in wavelength range 325-600 nm by using double beam spectrophotometer. X-ray diffraction studies revealed that the films are polycrystalline in nature, single phase exhibiting wurtzite (hexagonal structure with strong preferential orientation of grains along the (101 direction. Surface morphology of films has been studied by scanning electron microscopy (SEM technique. The electrical resistivity of the films was measured in vacuum by two probe technique. PACS: 78.20.Ci; 78.50.Ge; 78.66.-w; 78.66.Hf.

  16. Structural-optical study of high-dielectric-constant oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, M.M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Luchena, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Capezzuto, P. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Toro, R.G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Malandrino, G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Fragala, I.L. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Nigro, R. Lo [Istituto di Microelettronica e Microsistemi, IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy)

    2006-10-31

    High-k polycrystalline Pr{sub 2}O{sub 3} and amorphous LaAlO{sub 3} oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr{sub 2}O{sub 3} films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO{sub 3} films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.

  17. Characterization of Semolina Protein Film with Incorporated Zinc Oxide Nano Rod Intended for Food Packaging

    Directory of Open Access Journals (Sweden)

    Jafarzadeh Shima

    2017-09-01

    Full Text Available This study intended to provide biopolymer films used as food packaging, which will result in reducing environmental pollution produced by the activities of synthetic food packaging. We used zinc oxide nanorods (ZnO-nr and we prepared nanocomposite films by means of solvent casting. FTIR and SEM were employed to characterize the final films. SEM images revealed that ZnO-nr particles were homogenously distributed throughout the film surface. The thermal, optical, and heat sealability properties of the films were also examined. Adding ZnO-nr significantly reduced oxygen permeability and heat sealability. The semolina films’ UV absorbance was highly impacted by the degree of ZnO-nr addition. The nanocomposite films absorbed above 90% of the near infrared spectra. In addition, the zeta potential revealed the surface charge of ZnO-nr had a negative charge of about −33.9 mV.

  18. Sputter-Grown Sb-DOPED Silicon Nanocrystals Embedded in Silicon-Rich Carbide for si Heterojunction Solar Cells

    Science.gov (United States)

    Chen, Xiaobo; Tang, Yu; Hao, Jiabo

    Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.

  19. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  20. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  1. In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available Gallium and aluminum codoped zinc oxide (GAZO films were deposited at different temperatures by in-line sputtering. Aluminum is thermally unstable compared to other elements in GAZO films. The grains of GAZO films increase with deposition temperature. Coalescence between grains was observed for GAZO films deposited at 250°C. The deposition temperature exhibits positive influence on crystallinity, and electrical and optical properties of GAZO films. The carrier concentration and mobility of GAZO films increase, while the electrical resistivity of GAZO films decreases with deposition temperature. The average optical transmittance of GAZO films rises with deposition temperature. In-line sputtering demonstrates a potential method with simplicity, mass production, and large-area deposition to produce GAZO films with good electrical and optical quality. The electrical resistivity of 4.3 × 10−4 Ω cm and the average optical transmittance in the visible range from 400 to 800 nm of 92% can be obtained for GAZO films deposited at 250°C. The hybrid organic solar cells (OSC were fabricated on GAZO-coated glass substrates. Blended poly(3-hexylthiophene (P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM were the photoactive materials in OSC. The power conversion efficiency of OSC is 0.65% for the OSC with the 250°C deposited GAZO electrode.

  2. Oxidation/reduction studies on nanoporous platinum films by electrical resistance measurements

    Science.gov (United States)

    Zhu, Liangzhu; Kapoor, Siddharth; Parry, Quintin; Nahata, Ajay; Virkar, Anil V.

    2014-12-01

    Mechanisms and kinetics of surface reactions in nanoporous platinum films were investigated. Nanoporous films of platinum of ∼250 nm thickness were deposited on glass slides by co-sputtering Pt and carbon followed by subsequently burning off carbon in air at 450 °C. Electrical resistance was measured in air and in 10% H2 + nitrogen at 80 °C as a function of time. The change in electrical resistance was extremely fast when switched to the H2 + N2 atmosphere. When switched to air, the film resistance increased with time at a much slower rate. The increase in resistance in air was attributed to the formation of Pt-oxide on the internal surfaces of the nanoporous films. The kinetics of oxidation was described by a model which includes two surface kinetic steps and a diffusional step. The use of nanoporous films makes it possible to investigate mechanisms and kinetics of surface reactions by ensuring a large surface to volume ratio. Oxide scale thickness at 80 °C in air after several hours of oxidation was only sub-monolayer. Oxide scale thickness after 3 h at 450 °C was about 1 nm. Implications of the results for proton exchange membrane fuel cell (PEMFC) Pt catalyst degradation are discussed.

  3. Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide.

    Science.gov (United States)

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO(2)), tungsten oxide (WO(3)) and indium oxide (In(2)O(3)) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H(2)S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of R(air)/R(gas) is given by Cu-SnO(2) films (2500) followed by WO(3) (1200) and In(2)O(3) (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO(2)) or oxidizing (NO(2)) gases.

  4. Synthesis of Bismuth Oxide Thin Films Deposited by Reactive Magnetron Sputtering

    International Nuclear Information System (INIS)

    Iljinas, A.; Burinskas, S.; Dudonis, J.

    2011-01-01

    In this work Bi 2 O 3 thin films were deposited onto the Si (111) and soda lime glass substrates by the reactive direct current magnetron sputtering system using pure Bi as a sputtering target. The dependences of electro-optical characteristics of the films on the substrate type and temperature were investigated. Transmittance and reflectance of the Bi 2 O 3 films were measured with ultraviolet and visible light spectrometer. It was found that the substrate temperature during deposition has a very strong influence on the phase components of thin films. The results indicate that the direct allowed transitions dominate in the films obtained in this work. For the direct allowed transitions the band gap energy is found to be about 1.98 eV and 2.2 eV. The reflectance of thin bismuth oxide film depends on the substrate. Small transparency of thin films grown on glass is more related to large reflectance than absorption. The reflectance spectra of the bismuth oxide thin films deposited on the Si substrates show higher quality of optical characteristics compared to the samples deposited on glass substrates. (author)

  5. Thermochromic properties of vanadium oxide films prepared by dc reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cui Haining [College of Physics, JiLin University, 2519 JieFangDaLu Road, 130021 ChangChun (China); Centro de Fisica e Departamento de Fisica, Universidade do Minho, 4710 Braga (Portugal)], E-mail: hncui@yahoo.co; Teixeira, Vasco [Centro de Fisica e Departamento de Fisica, Universidade do Minho, 4710 Braga (Portugal); Meng Lijian [Centro de Fisica e Departamento de Fisica, Universidade do Minho, 4710 Braga (Portugal); Departamento de Fisica, Instituto Superior de Engenharia do Porto, Rua de Sao Tome, 4200 Porto (Portugal); Wang Rong; Gao Jinyue [College of Physics, JiLin University, 2519 JieFangDaLu Road, 130021 ChangChun (China); Fortunato, Elvira [Dept. Ciencia dos Materiais, CENIMAT, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, PT-2829-516 Caparica (Portugal)

    2008-02-15

    A transparent vanadium oxide film has been one of the most studied electrochromic (EC) and Thermochromic (TC) materials. Vanadium oxide films were deposited at different substrate temperatures up to 400 deg. C and different ratios of the oxygen partial pressure (P{sub O2}). SEM, AFM and X-ray diffraction's results show detail structure data of the films. IR mode assignments of the films measured by IR reflection-absorbance in NGIA (near grazing incidence angle) are given. It is found that the film has V{sub 2}O{sub 5} and VO{sub 2} combined structures. The films exhibit clear changes in transmittance when the environment temperature (T{sub e}) is varied, especially in the 3600-4000 cm{sup -1} range. Applying a T{sub e} that is higher than a critical temperature (T{sub c}) to the samples, the as-RT (room temperature) deposited film with 9% P{sub O2} has a transmittance variation of 30%, but the films that were deposited on a heated substrate of 400 deg. C have little variation. There is tendency of bigger variation in transmittance for the sample deposited at a larger P{sub O2}, when it is applied by 200 deg. C T{sub e}.

  6. Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses

    Directory of Open Access Journals (Sweden)

    Mia Nasrul Haque

    2017-10-01

    Full Text Available Zinc oxide thin films with different thicknesses were prepared on microscopic glass slides by sol-gel spin coating method, then hydrothermal process was applied to produce zinc oxide nanorod arrays. The nanorod thin films were characterized by various spectroscopic methods of analysis. From the images of field emission scanning electron microscope (FESEM, it was observed that for the film thickness up to 200 nm the formed nanorods with wurtzite hexagonal structure were uniformly distributed over the entire surface substrate. From X-ray diffraction analysis it was revealed that the thin films had good polycrystalline nature with highly preferred c-axis orientation along (0 0 2 plane. The optical characterization done by UV-Vis spectrometer showed that all the films had high transparency of 83 % to 96 % in the visible region and sharp cut off at ultraviolet region of electromagnetic spectrum. The band gap of the films decreased as their thickness increased. Energy dispersive X-ray spectroscopy (EDS showed the presence of zinc and oxygen elements in the films and Fourier transform infrared spectroscopy (FT-IR revealed the chemical composition of ZnO in the film.

  7. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  8. Tin etching from metallic and oxidized scandium thin films

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, J.M.; Bijkerk, Frederik

    The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show

  9. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    International Nuclear Information System (INIS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-01-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water. - Highlights: • Trace PbO addition into the high temperature water block the formation of spinel oxides on Incoloy 800HT. • The donor density of oxide film decreases with trace PbO addition. • The current density of potentiodynamic polarization decreases of oxide film with trace PbO addition.

  10. Neutron Detection Utilizing Gadolinium Doped Hafnium Oxide Films

    National Research Council Canada - National Science Library

    Blasy, Bryan D

    2008-01-01

    ... retains monoclinic local symmetery for all levels of doping. Current as a function of voltage experiments identified the films as having poor diode characteristics with high leakage current in the forward bias region...

  11. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  12. Studies on tin oxide films prepared by electron beam evaporation ...

    Indian Academy of Sciences (India)

    Unknown

    Lousa A, Gimeno S and Marti J 1994 Vacuum 45 1143. Lou J C, Lin M S, Chyi J I and Shieh J H 1983 Thin Solid. Films 106 163. Melsheimer J and Tesche B 1986 Thin Solid Films 138 71. Minami Tadatsugu, Hidehito, Hidechito Nanto and Takata. Shinzo 1988 Jap. J. Appl. Phys. 27 L-28. Nomura K, Ujihira Y and Sharma ...

  13. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    Science.gov (United States)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  14. Tin etching from metallic and oxidized scandium thin films

    Directory of Open Access Journals (Sweden)

    M. Pachecka

    2017-08-01

    Full Text Available The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show that Sn adsorbs rather weakly to a non-oxidized Sc surface, and is etched relatively easily by atomic hydrogen. In contrast, the presence of native oxide on Sc allows Sn to adsorb more strongly to the surface, slowing the etching. Furthermore, thinner layers of scandium oxide result in weaker Sn adsorption, indicating that the layer beneath the oxide plays a significant role in determining the adsorption strength. Unexpectedly, for Sn on Sc2O3, and, to a lesser extent, for Sn on Sc, the etch rate shows a variation over time, which is explained by surface restructuring, temperature change, and hydrogen adsorption saturation.

  15. Fabrication of transparent cellulose acetate/graphene oxide nanocomposite film for UV shielding

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Nusrat; Khan, Wasi, E-mail: wasiamu@gmail.com; Azam, Ameer; Naqvi, A. H. [Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh - 202002 (India)

    2016-05-23

    In this work, we have fabricated transparent cellulose acetate/graphene oxide nanocomposite (CAGONC) films for ultraviolet radiations (UVR) shielding. Graphene oxide (GO) was synthesized by modified Hummer’s method and CAGONC films were fabricated by solvent casting method. The films were analyzed using characterization techniques like x-ray diffraction (XRD), energy dispersive x-ray (EDX) equipped scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultra-violet visible (UV-VIS) spectroscopy. Four films were prepared by varying the wt% of GO (0.1wt%, 0.2wt% and 0.3wt%) with respect to cellulose acetate (CA). UV-vis measurements exhibit optical transparency in the range of 76-99% for visible light while ultra-violet radiation was substantially shielded.

  16. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    Science.gov (United States)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  17. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  18. Positron beam and RBS studies of thermally grown oxide films on stainless steel grade 304

    Science.gov (United States)

    Horodek, P.; Siemek, K.; Kobets, A. G.; Kulik, M.; Meshkov, I. N.

    2015-04-01

    The formation of oxide films on surfaces of stainless steel 304 AISI annealed at 800 °C in vacuum, air and in flow N2 atmospheres was studied using variable energy positron beam technique (VEP) and Rutherford backscattering/nuclear reaction (RBS/NR) methods. In frame of these studies, Doppler broadening of annihilation line (DB) measurements were performed. For a sample heated in vacuum the oxide film ca. 8 nm is observed. For specimens oxidized in air and N2 the multi-layered oxide films of about a few hundred nanometers are recognized. The RBS/NR measurements have shown that the sample annealed in vacuum contains a lower quantity of oxygen while for samples heated in the air and N2 non-linear and rather linear time-dependency are observed, respectively. The thicknesses of total oxide films obtained from RBS/NR tests are in good agreement with the VEP results. Time evolution of the oxide growing was studied as well.

  19. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  20. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications

    International Nuclear Information System (INIS)

    Rim, Y.S.; Kim, H.J.; Kim, K.H.

    2010-01-01

    The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates using the facing targets sputtering (FTS) system. The electrical, optical and structural properties of the IZO thin films deposited as functions of sputtering parameters on the glass and PES substrates. An optimal IZO deposition condition is fabricated for organic light-emitting device (OLED) based on glass and PES. The amorphous IZO anode-based OLEDs show superior current density and luminance characteristics.

  1. Properties of Gallium Oxide Films Obtained by HF-Magnetron Sputtering

    Science.gov (United States)

    Lygdenova, T. Z.; Kalygina, V. M.; Novikov, V. A.; Prudaev, I. A.; Tolbanov, O. P.; Tyazhev, A. V.

    2018-03-01

    The results of an analysis of structure and phase composition of gallium oxide films obtained by HF-magnetron sputtering are presented. It is shown that in the interval 290-350 K, the increase in the film conductivity with increasing temperature is due to the excitation of electrons from a local level E t located 0.95 eV below the conduction band bottom.

  2. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    Science.gov (United States)

    Soo Kim, Dong; Chul Lee, Hee

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni3+ ions is found to increase with the O2 ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni3+ ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  3. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  4. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M. [Houston Univ., TX (United States); Atagi, L.M. [Houston Univ., TX (United States)]|[Los Alamos National Lab., NM (United States); Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang [Houston Univ., TX (United States); Rubiano, R.R. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Springer, R.W.; Smith, D.C. [Los Alamos National Lab., NM (United States)

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  5. Influence of substrate temperature on the properties of spray deposited nanofibrous zinc oxide thin films

    Science.gov (United States)

    Sharmin, Mehnaz; Bhuiyan, A. H.

    2018-01-01

    Zinc oxide (ZnO) thin films were deposited onto glass substrates by a spray pyrolysis technique at the substrate temperatures ( T S) between 250 and 500 °C. T S was observed to be one of the key parameters to influence the structural, surface morphological, optical and transport properties of ZnO thin films. X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane which got more prominent with the increase of T S. Field emission scanning electron microscopy of ZnO thin films showed the existence of nanofibers in the films with the average thickness ranging from 308 to 540 nm. Atomic force microscopy revealed that roughness of the ZnO thin film increased at higher T S. ZnO thin films were highly transparent in the visible to near infrared region with the maximum transmittance of 89% and the optical band gap was found from 3.23 to 3.31 eV. ZnO thin films showed n-type conductivity with the carrier concentrations ranging between 1019 and 1020 cm- 3. ZnO thin film deposited at the T S of 400 °C showed the highest mobility, highest carrier concentration and less resistivity.

  6. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  7. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  8. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  9. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  10. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  12. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoxuan; Sun, Huiyuan, E-mail: huiyuansun@126.com; Liu, Lihu; Hou, Xue; Liu, Huiyuan

    2015-07-01

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications.

  13. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  14. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    Science.gov (United States)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  15. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  16. Ultrathin free-standing graphene oxide film based flexible touchless sensor

    Science.gov (United States)

    Liu, Lin; Wang, Yingyi; Li, Guanghui; Qin, Sujie; Zhang, Ting

    2018-01-01

    Ultrathin free-standing graphene oxide (GO) films were fabricated by vacuum filtration method assisted with Ni(OH)2 nanosheets as the sacrifice layer. The surface of the obtained GO film is very clean as the Ni(OH)2 nanosheets can be thoroughly etched by HCl. The thickness of the GO films can be well-controlled by changing the volume of GO dispersion, and the thinnest GO film reached ~12 nm. As a novel and transparent dielectric material, the GO film has been applied as the dielectric layer for the flexible touchless capacitive sensor which can effectively distinguish the approaching of an insulator or a conductor. Project supported by the National Natural Science Foundation of China (No. 61574163) and the Foundation Research Project of Jiangsu Province (Nos. BK20160392, BK20170008).

  17. Structural and optical studies of Au doped titanium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Gama Pinto, 21649-003 Lisboa (Portugal); Franco, N.; Barradas, N.P. [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Gama Pinto, 21649-003 Lisboa (Portugal); Nunes, B. [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Lopes, J. [Instituto Superior de Engenharia de Lisboa (Portugal); Cavaleiro, A. [SEC-CEMUC - Universidade de Coimbra, Dept. Eng. Mecanica, Polo II, 3030-788 Coimbra (Portugal); Torrell, M.; Cunha, L.; Vaz, F. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal)

    2012-02-01

    Thin films of TiO{sub 2} were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 Degree-Sign C. The undoped films were implanted with Au fluences in the range of 5 Multiplication-Sign 10{sup 15} Au/cm{sup 2}-1 Multiplication-Sign 10{sup 17} Au/cm{sup 2} with a energy of 150 keV. At a fluence of 5 Multiplication-Sign 10{sup 16} Au/cm{sup 2} the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 Degree-Sign C, reaching the precipitates dimensions larger than 40 nm at 600 Degree-Sign C. Annealing above 700 Degree-Sign C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps.

  18. Structural and optical studies of Au doped titanium oxide films

    International Nuclear Information System (INIS)

    Alves, E.; Franco, N.; Barradas, N.P.; Nunes, B.; Lopes, J.; Cavaleiro, A.; Torrell, M.; Cunha, L.; Vaz, F.

    2012-01-01

    Thin films of TiO 2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 °C. The undoped films were implanted with Au fluences in the range of 5 × 10 15 Au/cm 2 –1 × 10 17 Au/cm 2 with a energy of 150 keV. At a fluence of 5 × 10 16 Au/cm 2 the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3–5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 °C, reaching the precipitates dimensions larger than 40 nm at 600 °C. Annealing above 700 °C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps.

  19. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  20. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  1. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  2. Investigation of hexadecanethiol self-assembled monolayers on cadmium tin oxide thin films

    International Nuclear Information System (INIS)

    Rhodes, Crissy L.; Brewer, Scott H.; Folmer, Jaap; Franzen, Stefan

    2008-01-01

    This study reports the use of variable angle reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy to investigate the formation of a 1-hexadecanethiol adlayer on cadmium tin oxide (CTO) thin film surfaces. These adlayers appear to be robust, ordered monolayers. The optical and electronic properties of CTO thin films chemically vapor deposited onto glass substrates were also investigated. The reflectance of the CTO films was dependent upon the incident angle of the impinging radiation and revealed a reflectance decrease indicative of a plasma frequency in the mid-IR using p-polarized radiation

  3. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  4. Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films

    Science.gov (United States)

    Furio, A.; Landi, G.; Altavilla, C.; Sofia, D.; Iannace, S.; Sorrentino, A.; Neitzert, H. C.

    2017-02-01

    In this work the preparation of flexible polymeric films with controlled electrical conductivity, light transmission and surface wettability is reported. A drop casted graphene oxide thin film is photo-reduced at different levels by UV light or laser irradiation. Optical microscopy, IR spectroscopy, electrical characterization, Raman spectroscopy and static water contact angle measurements are used in order to characterize the effects of the various reduction methods. Correlations between the optical, electrical and structural properties are reported and compared to previous literature results. These correlations provide a useful tool for independently tuning the properties of these films for specific applications.

  5. Indium zinc oxide films deposited on PET by LF magnetron sputtering

    International Nuclear Information System (INIS)

    Kim, Eun Lyoung; Jung, Sang Kooun; Sohn, Sang Ho; Park, Duck Kyu

    2007-01-01

    Indium zinc oxide (IZO) has attracted much attention recently for use in transparent oxide films compared with the ITO film. We carried out the deposition of IZO on a polyethylene terapthalate (PET) substrate at room temperature by a low-frequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. The effects of LF applied voltage and O 2 flow rate were investigated. The electrical and optical properties were studied. At optimal deposition conditions, thin films of IZO with a sheet resistance of 32 Ω/sq and an optical transmittance of over 80% in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation of any additional post-deposition annealing treatment. The experimental results show that films with good qualities of surface morphology, transmittance and electrical conduction can be grown by the LF magnetron sputtering method on PET which is recommendable

  6. Synthesis and characterization of nanocrystalline vanadium oxide thin films: electrochemical behavior by annealing in different atmosphere

    Science.gov (United States)

    Asiabar, M. Amiri; Mohaghegh, Z.; Ghodsi, F. E.

    2018-01-01

    Nanocrystalline vanadium oxide thin films were prepared using sol-gel dip-coating technique. The effect of heat treatment in different environment including air, N2, Ar, and O2 gas on the structural, optical, electrical, and electrochemical properties of nanocrystalline vanadium oxide thin films were investigated. The results indicated that the calculated average crystallite size was reduced by annealing in Ar environment. Scanning electron microscopy (SEM) images showed layered morphology on the surface of the film annealed in air atmosphere, whereas the film annealed under Ar and N2 ambient revealed granular and wrinkle morphology, respectively. This morphology altered to rather smooth surface by annealing in O2 environment. The optical bandgap of the films were found to be 1.75, 1.84, 2.08, and 2.10 eV annealed in air, O2, N2, and Ar environment, respectively. It was observed that the films annealed under Ar and N2 ambient had low resistivity ( 0.2 Ω cm) and high carrier concentration, while the film annealed in nitrogen environment showed higher mobility of charge carrier. The electrochemical measurements showed that annealing under N2 ambient improved the intercalation of Li ions, leading a higher interfacial capacitance of 19.18 mF Cm-2, and decreased the charge transfer resistance due to surface defects created by heat treatment in nitrogen environment.

  7. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  8. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  9. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte...

  10. Investigation on vanadium oxide thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Margoni, Mudaliar Mahesh; Mathuri, S.; Ramamurthi, K., E-mail: krmurthin@yahoo.co.in, E-mail: ramamurthi.k@ktr.srmuniv.ac.in [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Kancheepuram Dt., Tamil Nadu (India); Babu, R. Ramesh [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu (India); Sethuraman, K. [School of Physics, Madurai Kamaraj University, Madurai – 625 021, Tamil Nadu (India)

    2016-05-06

    Vanadium oxide thin films were deposited at 400 °C by spray pyrolysis technique using 0.1 M aqueous precursor solution of ammonium meta vanadate (AMV) with two different pH values. X-ray diffraction results showed that the film prepared using aqueous precursor AMV solution (solution A; pH 7) is amorphous in nature and the film prepared by adding HNO{sub 3} in the AMV aqua solution A (solution B; pH 3) is polycrystalline in nature. Vanadium oxide film prepared from the precursor solution B is in the mixed phases of V{sub 2}O{sub 5} and V{sub 4}O{sub 7}. Crystallinity is improved for the film prepared using solution B when compared to film prepared from solution A. Crystallite size, strain and dislocation density calculated for the film prepared from solution B is respectively 72.1 nm, 0.4554 × 10{sup −3} lin.{sup −2}m{sup −4} and 1.7263 × 10{sup 14} lin.m{sup −2}. Morphology study revealed that the size of the flakes formed on the surface of the films is influenced by the pH of the precursor solution. Average Visible Transmittance and maximum transmittance of the deposited films exceed 70% and the direct optical band gap value calculated for the films deposited from A and B solution is 1.91 eV and 2.08 eV respectively.

  11. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  12. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.

    Science.gov (United States)

    Zhuang, Jiaqing; Sun, Qi-Jun; Zhou, Ye; Han, Su-Ting; Zhou, Li; Yan, Yan; Peng, Haiyan; Venkatesh, Shishir; Wu, Wei; Li, Robert K Y; Roy, V A L

    2016-11-16

    Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln 2 O 3 /Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

  13. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    Science.gov (United States)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).

  14. Physical and electrical properties of thermal oxidized Sm{sub 2}O{sub 3} gate oxide thin film on Si substrate: Influence of oxidation durations

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Heng; Haseeb, A.S.M.A.; Wong, Yew Hoong, E-mail: yhwong@um.edu.my

    2016-05-01

    Growth of 150 nm Sm{sub 2}O{sub 3} films by sputtered pure samarium metal film on silicon substrates and followed by thermal oxidation process in oxygen ambient at 700 °C through various oxidation durations (5 min, 10 min, 15 min and 20 min) has been carried out. The crystallinity of Sm{sub 2}O{sub 3} film and existence of interfacial layer have been evaluated by X-ray diffraction, Fourier transform infrared and Raman analysis. Crystallite size and microstrain of Sm{sub 2}O{sub 3} were estimated by Williamson–Hall plot analysis. Calculated crystallite size of Sm{sub 2}O{sub 3} from Scherrer equation has similar trend with the value from Williamson–Hall plot. The presence of interfacial layer is supported by composition line scan by energy dispersive X-ray spectroscopy analysis. The surface roughness and surface topography of Sm{sub 2}O{sub 3} film were examined by atomic force microscopy analysis. The electrical characterization revealed that 15 min of oxidation durations with smoothest surface has highest breakdown voltage, lowest leakage current density and highest barrier height value. - Highlights: • Thermal oxidation of sputtered pure metallic Sm in oxygen ambient • Formation of polycrystalline Sm{sub 2}O{sub 3} and semi-polycrystalline interfacial layers • Optimization of oxidation duration of pure metallic Sm in oxygen ambient • Enhanced electrical performance with smooth surface and increased barrier height.

  15. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Energy Technology Data Exchange (ETDEWEB)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  16. Surface oxidation on thin films affects ionization cross section induced by proton beam

    International Nuclear Information System (INIS)

    Bertol, Ana Paula Lamberti; Vasconcellos, M.A.Z.; Hinrichs, Ruth; Limandri, Silvina; Trincavelli, Jorge

    2012-01-01

    Full text: In microanalysis techniques such as Particle Induced X-ray Emission (PIXE), the transformation from intensity to concentration is made by standard less software that needs exact values of fundamental parameters such as the ionization cross section, transition probabilities of the different electronic levels, and fluorescent yield. The three parameters together measure the photon generating probability of an electronic transition and can be determined experimentally under the name of production cross section. These measurements are performed on thin films, with thickness around 10 nm, but most studies do not take into account any spontaneous surface oxidation. In this work, in the attempt to obtain cross section values of Al, Si and Ti, in metallic and oxide films, the influence of surface oxidation on the metallic films was established. Simulations considering the oxidation with the software SIMNRA on the Rutherford backscattering (RBS) spectra obtained from the films provided mass thickness values used to calculate the cross section data that were compared with theoretical values (PWBA and ECPSSR), and with experimental values and empirical adjustments from other studies. The inclusion of the natural oxidation affects the values of cross section, and may be one of the causes of discrepancies between the experimental values published in literature. (author)

  17. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

    Science.gov (United States)

    Mousavi, M.; Khorrami, Gh. H.; Kompany, A.; Yazdi, Sh. Tabatabai

    2017-12-01

    In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V2O5 phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V2O5 phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger.

  18. Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films.

    Science.gov (United States)

    Sanctis, Shawn; Koslowski, Nico; Hoffmann, Rudolf; Guhl, Conrad; Erdem, Emre; Weber, Stefan; Schneider, Jörg J

    2017-06-28

    Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between μ = 0.03 and 5.5 cm 2 /V s, with on/off ratios increasing from 10 5 to 10 8 when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

  19. Hydrogen absorption by zirconium alloy cladding tube with surface oxide film

    International Nuclear Information System (INIS)

    Uchida, Masaaki

    1991-08-01

    Hydrogen absorption kinetics of Zircaloy (2 and 4) and Zr-Nb (1% and 2.5%) cladding tubes were studied by heating in hydrogen gas after oxide film formation in steam, oxygen or air. Hydrogen absorption rate depended on the degree of pre-oxidation. In Zr-Nb, the absorption rate was also sensitive to the atmosphere used for pre-oxidation, whereas in Zircaloy the rate was relatively independent of the kind of oxidant. In all materials, pre-oxidation to the transition point was found to bring about high absorption rate in the subsequent hydriding step. After pre-oxidation to the post-transition region, hydrogen absorption rate by Zircaloy showed constant or slightly decreasing tendency with increasing oxidation level, whereas in Zr-Nb, particularly in Zr-2.5%Nb, the rate showed a clearly decreasing tendency depending on the pre-oxidation atmosphere. Different characteristics of Zircaloy and Zr-Nb can partly be explained in terms of different valencies of alloying elements which influence the lattice defect concentrations in the oxide films. (author)

  20. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    Science.gov (United States)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  1. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  2. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  3. Functional Properties of Polydomain Ferroelectric Oxide Thin Films

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Vergeer, Kurt; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Nishikawa, H.; Iwata, N.; Endo, T.; Takamura, Y.; Lee, G-H.; Mele, P.

    2017-01-01

    The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed experimentally, instead of the two-domain structure

  4. Assessment of Cellulose Acetate/Manganese Oxide Thin Film as ...

    Indian Academy of Sciences (India)

    5

    industry during the last few decades, large amounts of chemical compounds and contaminants have emerged to the environment [1]. The analysis of these .... at 4.0°C. To probe the selectivity of the synthesized adsorbents, batch adsorption experiments were performed by adding 10 mg of each thin film (CA/Mn-1 and ...

  5. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    ... in terms of smaller crystallites with larger surface areas at lower deposition temperature. The response and recovery time of this film were 5 s and. 10 min, respectively. Acknowledgement. We specially want to thank Mr K V Nelson, Department of Physics, University of Ruhuna, Matara, Sri Lanka, for technical support.

  6. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    2016-10-07

    Oct 7, 2016 ... important factor in optical communication. The deter- mination of the optical properties of any ... Post-annealing treatment plays a critical role in the final structure and properties of the TMO thin films. ..... A significant success of Wemple and Di Domenico model is that it relates the dispersion energy (Ed).

  7. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    Science.gov (United States)

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  8. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  9. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba, E-mail: zare.s@husky.neu.edu; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-15

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium–Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10{sup −10} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films. - Highlights: • Magnetoelectric (ME) hexaferrite thin films were deposited on conductive ITO. • Much lower voltage is required in order observe ME effects, as low as 0.5V. • ME films with conductive layers appear to be very promising in future IC circuitry.

  10. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-01

    Atomic-layer-deposition (ALD) of In2O3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H2O2) as precursors. The In2O3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (Eg) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In2O3, and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In2O3 thin-film transistors with an Al2O3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm2/Vṡs, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 107. This was ascribed to passivation of oxygen vacancies in the device channel.

  11. Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor

    Science.gov (United States)

    Zhu, Shuanglin

    Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

  12. Effect of cadmium incorporation on the properties of zinc oxide thin films

    Science.gov (United States)

    Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.

    2018-02-01

    Cd x Zn1-x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1-x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1-x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1-x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1-x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1-x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.

  13. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  14. Characterization of iron oxide thin films prepared by sol-gel processing.

    Science.gov (United States)

    Karakuscu, Aylin; Ozenbas, Macit

    2008-02-01

    Iron oxide thin films were prepared by spin-coating a gel solution of iron(III) nitrate dissolved in 2-methoxyethanol and acetylacetone on glass and quartz substrates. The film thickness was adjusted by changing the spinning rate of the spin coater. Annealing was carried out between 300 degrees C to 600 degrees C to investigate the phases present in the films. Viscosity of the main solution was found as 0.0035 Pa.s by viscosity measurement. TGA/DTA analyses showed that heat treatment should be done between 330 degrees C and 440 degrees C in order to produce maghemite thin films. SEM studies showed that single layer thickness of the films were between 65 and 80 nm. The structural characteristics were evaluated by changing the experimental parameters which are annealing temperature, annealing time and thickness of the films. From the X-ray diffraction analysis, maghemite formation was observed with decreasing annealing temperature, annealing time and film thickness. TEM results verified the presence of the maghemite phase by electron diffraction and selected area electron diffraction (SAED) methods. According to UV-Vis results transmittance of the films decreases with increasing annealing temperature.

  15. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility

    Directory of Open Access Journals (Sweden)

    Li JH

    2013-09-01

    Full Text Available Jianhua Li,1 Na Ren1, Jichuan Qiu,1 Xiaoning Mou,2 Hong Liu1,21Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, People's Republic of China; 2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: A genipin-cross-linked chitosan/graphene oxide (GCS/GO composite film was prepared using a solution casting method. Fourier transform infrared (FTIR and ultraviolet-visible (UV-Vis spectroscopy of the composite films showed that the interactions between the CS and oxygen-containing groups of GO resulted in good dispersion of the GO sheets in the CS network. The addition of GO decreased the expansion ratio of the composite films in physiological conditions and increased the resistance to degradation by lysozymes in vitro. As well, the tensile strength values of the GCS/GO films were significantly increased with the increasing load of GO. Moreover, the GCS/GO composite film also maintained the intrinsic fluorescence of GCS. The in vitro cell study results revealed that the composite films were suitable for the proliferation and adhesion of mouse preosteoblast (MC3T3-E1 cells. The GCS/GO biocomposite films might have a potential use in tissue engineering, bioimaging, and drug delivery.Keywords: chitosan film degradation, fluorescence, cytocompatibility

  16. Electrochromic properties of bipolar pulsed magnetron sputter deposited tungsten–molybdenum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Nan [Chemical Engineering Division, Institute of Nuclear Energy Research, Taoyuan 325, Taiwan, ROC (China); Lin, Yi Han; Lee, Chin Tan [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China); Han, Sheng [Center of General Education, National Taichung Institute of Technology, Taichung 404, Taiwan, ROC (China); Weng, Ko-Wei, E-mail: kowei@nqu.edu.tw [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China)

    2015-06-01

    There are great interests in electrochromic technology for smart windows and displays over past decades. In this study, the WMoO{sub x} thin films were deposited onto indium tin oxide glass and silicon substrates by pulsed magnetron sputter system with W and Mo targets. The films were deposited with fixed W target power while the variant parameter of Mo target power in the range 50, 100, 150 and 200 W was investigated. The working pressure was fixed at 1.33 Pa with a gas mixture of Ar (30 sccm) and O{sub 2} (15 sccm). The film thickness increased with the Mo target power. Higher plasma power resulted in a crystalline structure which would reduce the electrochromic property of the film. The influence of plasma powers applied to Mo target on the structural, optical and electrochromic properties of the WMoO{sub x} thin films has been investigated. WMoO{sub x} films grown at Mo target powers less than 100 W were found to be amorphous. The films deposited at 150 W, which is the optimal fabrication condition, exhibit better electrochromic properties with high optical modulation, high coloration efficiency and less color memory effect at wavelength 400, 550 and 800 nm. The improvement resulted from the effect of doping Mo has been tested. The maximum ΔT (%) values are 36.6% at 400 nm, 65.6% at 550 nm, and 66.6% at 800 nm for pure WO{sub 3} film. The addition of Mo content in the WMoO{sub x} films provides better resistance to the short wavelength light source and can be used in the concerned application. - Highlights: • WMoO{sub x} films are deposited by pulsed magnetron sputter with pure W and Mo targets. • Mo addition in WMoO{sub x} provides better resistance to short wavelength light source. • WMoO{sub x} films exhibit electrochemical stability in the cycling test.

  17. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    Science.gov (United States)

    Dalavi, D. S.; Suryavanshi, M. J.; Patil, D. S.; Mali, S. S.; Moholkar, A. V.; Kalagi, S. S.; Vanalkar, S. A.; Kang, S. R.; Kim, J. H.; Patil, P. S.

    2011-01-01

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO4-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm2/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO4-PC electrolyte.

  18. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, D.S.; Suryavanshi, M.J.; Patil, D.S.; Mali, S.S. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Moholkar, A.V. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Kalagi, S.S.; Vanalkar, S.A. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Kang, S.R.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Patil, P.S., E-mail: patilps_2000@yahoo.com [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India)

    2011-01-15

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO{sub 4}-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm{sup 2}/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO{sub 4}-PC electrolyte.

  19. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    Directory of Open Access Journals (Sweden)

    Andrei Ionut Mardare

    2014-01-01

    Full Text Available A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

  20. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    Science.gov (United States)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  1. Fotocromismo em filmes finos de óxidos de tungstênio de diferentes composições Photochromism in tungsten oxide thin films of different compositions

    Directory of Open Access Journals (Sweden)

    José R. Galvão

    2003-08-01

    Full Text Available Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.

  2. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  3. Crystal Orientation and Electrical Properties of Tin Oxide Transparent Conducting Films Deposited on Rutile Surface

    Science.gov (United States)

    Sawada, Y.; Hashimoto, Y.; Hoshi, Y.; Uchida, T.; Kobayashi, S.; Sun, L.; Yue, B.

    2017-10-01

    Thin films of tin oxide (SnO2) without doping are attractive transparent conducting film since environmentally unfavorable elements of antimony or fluorine are eliminated. Tin oxide films without doping were fabricated very cheaply on (001) and (100) planes of single crystal of rutile (TiO2) by spray chemical vapor deposition (mist CVD). The film deposited on rutile (001) surface was poorly epitaxial (double domain) but with higher mobility (24 cm2 V-1 s-1) and lower resistivity (1.6×10-3 Ω cm) than that deposited on glass substrate (16 cm2 V-1 s-1 and 2.4×10-3 Ω cm) for reference. Deposition on rutile (100) surface resulted in better epitaxial growth (single domain). The mobility (39 cm2 V-1 s-1) and the carrier electron density (2.7×1020 cm-3) were much higher. The resistivity (6.2×10-4 Ω cm) was compatible with those doped with antimony or fluorine and will be the lowest among tin oxide films without doping.

  4. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Xu Denghui; Deng Zhenbo; Xu Ying; Xiao Jing; Liang Chunjun; Pei Zhiliang; Sun Chao

    2005-01-01

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar o C in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10 -4 Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm 2

  5. Magneto-optical Kerr effect studies of copper oxide and cobalt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, Michael; Zahn, Dietrich R.T.; Salvan, Georgeta [Chemnitz University of Technology, Chemnitz (Germany); Mueller, Steve; Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Research Institution for Electronic Nano Systems ENAS, Chemnitz (Germany)

    2011-07-01

    Copper oxide is supposed to be a model material for tunnel-magneto-resistance (TMR) structures together with cobalt as ferromagnetic electrode. Therefore the magnetic properties of copper oxide itself are of interest and under investigation by various techniques. This contribution presents spectroscopic magneto-optical Kerr effect (MOKE) studies of thin films of this material. The films are produced by atomic layer deposition based on a Cu(I) {beta}-diketonate precursor at a process temperature of 120 C. The copper oxide films turned out to be magneto-optically active both in the spectral range around 2 eV and above 4 eV. Besides the experimental MOKE data the material-intrinsic magneto-optical Voigt constant extracted from optical model calculations are presented. Cobalt, the ferromagnetic counterpart in the TMR structures, was prepared by magnetron sputtering as thin films with different thicknesses. The Voigt constant of Co can be deduced from measurements on thick films (120 nm). It is investigated whether these data can be used to predict the magneto-optical response of thinner Co layers (10 nm).

  6. Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor

    Science.gov (United States)

    Yadav, B. C.; Singh, Satyendra; Yadav, Anuradha

    2011-01-01

    In the present work, ferric oxide nanonails were prepared by screen printing method on borosilicate glass substrate and their electrical and LPG sensing properties were investigated. The structural and morphological characterizations of the material were analyzed by means of X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD pattern revealed crystalline α-phase and rhombohedral crystal structure. SEM images show nanonails type of morphology throughout the surface. Optical characterization of the film was carried out by UV-visible spectrophotometer. By Tauc plot the estimated value of band gap of film was found 3.85 eV. The LPG sensing properties of the ferric oxide film were investigated at room temperature for different vol.% of LPG. The variations in electrical resistance of the film were measured with the exposure of LPG as a function of time. The maximum values of sensitivity and sensor response factors were found 51 and 50 respectively for 2 vol.% of LPG. The activation energy calculated from Arrhenius plot was found 0.95 eV. The response and recovery time of sensing film were found ˜120 s and 150 s respectively. These experimental results show that nanonails structured ferric oxide is a promising material as LPG sensor.

  7. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  8. Fluorine compounds for doping conductive oxide thin films

    Science.gov (United States)

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  9. Experimental study of the oxide film structural phase state in the E635 and E110 alloys

    International Nuclear Information System (INIS)

    Shevyakov, A. Yu.; Shishov, V. N.; Novikov, V. V.

    2013-01-01

    The microstructure, phase and element compositions of oxide films of E110 (Zr-1%Nb) and E635 (Zr-1%Nb-0,35%Fe-1,2%Sn) alloys after autoclave tests in pure water had been studied by the method of transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDS). TEM investigations of oxide film structure were carried on different oxide layers according to their thickness (near interface of “metal-oxide”, in central part of the oxide film and near outer surface) and in cross-section. The results of the tests show that oxide films of the alloys have different microstructure (grain size, fraction of tetragonal phase, content of defects, etc) and the phase compositions. The crystal structure of oxide films is mainly monoclinic, however, at the “metal-oxide” interface there are a significant fraction of the tetragonal phase. Researching of oxides on different stages of oxidation allow us to determine the kinetics of the second phase precipitate structure change: a) in E635 alloy at early oxidation stages of the amorphization process of the Laves phase precipitates begins with decreasing the content of iron and niobium; b) in E110 alloy the amorphization process of β-Nb precipitates begins at a later stage of oxidation. The influence of changes of the crystal structure and the chemical composition of the second phase precipitates on protective properties of the oxides had been determined. Researching of alloying element redistribution in E635 alloy oxide film shows that iron and niobium are concentrated in pores. Increased porosity of the E635 alloy oxide films at a later oxidation stage, in comparison with the E110 alloy, shows the influence of change composition and subsequent dissolution of the Laves phase particles on the pore formation in the oxide. (authors)

  10. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Dghoughi, L.; Elidrissi, B.; Bernede, C.; Addou, M.; Lamrani, M. Alaoui; Regragui, M.; Erguig, H.

    2006-01-01

    Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at T s ≤ 450 deg. C were amorphous; while those produced at T sub = 500 deg. C were polycrystalline α-Fe 2 O 3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe 2 O 3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO 4

  11. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    Science.gov (United States)

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy.

  12. High-κ Lanthanum Zirconium Oxide Thin Film Dielectrics from Aqueous Solution Precursors.

    Science.gov (United States)

    Woods, Keenan N; Chiang, Tsung-Han; Plassmeyer, Paul N; Kast, Matthew G; Lygo, Alexander C; Grealish, Aidan K; Boettcher, Shannon W; Page, Catherine J

    2017-03-29

    Metal oxide thin films are critical components in modern electronic applications. In particular, high-κ dielectrics are of interest for reducing power consumption in metal-insulator-semiconductor (MIS) field-effect transistors. Although thin-film materials are typically produced via vacuum-based methods, solution deposition offers a scalable and cost-efficient alternative. We report an all-inorganic aqueous solution route to amorphous lanthanum zirconium oxide (La 2 Zr 2 O 7 , LZO) dielectric thin films. LZO films were spin-cast from aqueous solutions of metal nitrates and annealed at temperatures between 300 and 600 °C to produce dense, defect-free, and smooth films with subnanometer roughness. Dielectric constants of 12.2-16.4 and loss tangents MIS devices utilizing LZO as the dielectric layer (1 kHz). Leakage currents <10 -7 A cm -2 at 4 MV cm -1 were measured for samples annealed at 600 °C. The excellent surface morphology, high dielectric constants, and low leakage current densities makes these LZO dielectrics promising candidates for thin-film transistor devices.

  13. Preparation, characterization and dissolution of passive oxide film on the 400 series stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Rufus, A.L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2015-12-15

    Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of “End-Fitting body” and “End-Fitting Liner tubes”. Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination. - Graphical abstract: SEM micrograph of the oxide film formed in an autoclave over the 403 SS and 410 SS surfaces, the “End-Fitting Body and End-Fitting Liner” materials of Pressurized Heavy Water Reactor (PHWR). - Highlights: • The oxides formed over 403 and 410 SS are spinels similar to magnetite. • Oxide is duplex in nature with chromium rich inner layer. • Dilute Chemical Decontamination process could dissolve only 60% of the oxide. • Oxidation-Reduction process dissolves 100% oxide layer but time consuming. • High Temperature process is 100% efficient and less time consuming.

  14. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  15. Unipolar resistive switching behaviors in amorphous lutetium oxide films

    Science.gov (United States)

    Gao, Xu; Xia, Yidong; Xu, Bo; Kong, Jizhou; Guo, Hongxuan; Li, Kui; Li, Haitao; Xu, Hanni; Chen, Kai; Yin, Jiang; Liu, Zhiguo

    2010-10-01

    The resistive switching properties in the amorphous Lu2O3 films deposited by pulsed laser deposition have been investigated. Well unipolar switching behaviors of Pt/Lu2O3/Pt stacks were obtained. The memory cells exhibited a high resistance ratio over 1×103, fast programming speed within 30 ns, and no obvious degradation after an endurance of 300 switching cycles and a duration of 3.2×106 s. The first-principles calculation indicates that the oxygen vacancies in cubic Lu2O3 will form defective energy level below the bottom of conduction band, and reduce the band gap. The absence of grain boundaries in the amorphous Lu2O3 films helps us attribute the switching mechanism of such stacks to the possible redistribution of defects related to oxygen vacancies along the filamentary paths during the resistive switching process.

  16. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  17. Effects of O{sup 7+} swift heavy ion irradiation on indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gokulakrishnan, V. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Parthiban, S. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Elangovan, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Ramamurthi, K., E-mail: krmurthin@yahoo.co.in [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Kanjilal, D.; Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Martins, R.; Fortunato, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal)

    2011-08-15

    Highlights: {yields} The structural, morphology and electrical properties of indium oxide thin films. {yields} From the XRD, the ion irradiation has changed the preferred orientation from (2 2 2) to (4 0 0). {yields} RMS roughness is significantly reduced to 10 nm for an ion fluency of 1 x 10{sup 13} ions/cm{sup 2}. {yields} The mobility of ion irradiated films (1 x 10{sup 13} ions/cm{sup 2}) is decreased from 76.6 to 43 cm{sup 2}/V s. {yields} The average transmittance (400-2500 nm) of the as-deposited IO film is decreased from 81% to 72% after SHI irradiation. - Abstract: Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O{sup 7+} ions with different fluences of 5 x 10{sup 11}, 1 x 10{sup 12} and 1 x 10{sup 13} ions/cm{sup 2}. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from {approx}78.9 to 43.0 cm{sup 2}/V s, following irradiation. Films irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2} showed a better combination of electrical properties, with a resistivity of 4.57 x 10{sup -3} {Omega} cm, carrier concentration of 2.2 x 10{sup 19} cm{sup -3} and mobility of 61.0 cm{sup 2}/V s. The average transmittance obtained from the as-deposited films decreased from {approx}81% to 72%, when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as 'radish-like' morphology when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}.

  18. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional...

  19. Photocurrent enhancement of d.c. sputtered copper oxide thin films

    Indian Academy of Sciences (India)

    Unknown

    Department of Physics, †Department of Chemistry, University of Ruhuna, Matara, Sri Lanka. ‡Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka. MS received 17 December 2004. Abstract. Copper oxide (CuO) thin films with photocurrent as high as 25 µΑ/cm2 were deposited on conduc- tive glass ...

  20. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    Unknown

    Introduction. Gas sensors play vital role in detecting, monitoring and controlling the presence of hazardous and poisonous gases in the atmosphere at very low concentrations. Semicon- .... detailed procedure for deposition of indium tin oxide films and the effect of .... The conductance of the sensor was measured with digital.

  1. Deposition of zinc oxide thin films by reactive pulsed laser ablation

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Zemek, Josef; Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Roč. 252, - (2006), s. 4604-4609 ISSN 0169-4332 Grant - others:NATO-CNR Outreach Fellowships Programm 2001(XE) 219.34 Institutional research plan: CEZ:AV0Z10100521 Keywords : reactive pulsed laser deposition * zinc oxide * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.436, year: 2006

  2. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  3. Nitric oxide-generating l-cysteine-grafted graphene film as a blood-contacting biomaterial.

    Science.gov (United States)

    Du, Zhen; Dou, Ruixia; Zu, Mian; Liu, Xueying; Yin, Wenyan; Zhao, Yuliang; Chen, Jingbo; Yan, Liang; Gu, Zhanjun

    2016-06-24

    By using polyethylenimine molecules as the linker, l-cysteine was immobilized onto graphene nanosheets, endowing the biocompatible l-cysteine-functionalized graphene film with the ability for catalytic decomposition of exogenous or endogenous donors to generate nitric oxide, and thus inhibiting the platelet activation and aggregation and reducing platelet adhesion.

  4. Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide thin film transistor

    NARCIS (Netherlands)

    Li, Jeng-Ting; Liu, Li-Chih; Chen, Jen-Sue; Jeng, Jiann-Shing; Liao, Po-Yung; Chiang, Hsiao-Cheng; Chang, Ting-Chang; Nugraha, Mohamad Insan; Loi, Maria Antonietta

    2017-01-01

    Carrier transport properties of solution processed ultra thin (4 nm) zinc-tin oxide (ZTO) thin film transistor are investigated based on its transfer characteristics measured at the temperature ranging from 310K to 77K. As temperature decreases, the transfer curves show a parellel shift toward more

  5. Flexible metal-oxide thin film transistor circuits for RFID and health patches

    NARCIS (Netherlands)

    Heremans, P.; Papadopoulos, N.; Jamblinne De Meux, A. de; Nag, M.; Steudel, S.; Rockele, M.; Gelinck, G.; Tripathi, A.; Genoe, J.; Myny, K.

    2016-01-01

    We discuss in this paper the present state and future perspectives of thin-film oxide transistors for flexible electronics. The application case that we focus on is a flexible health patch containing an analog sensor interface as well as digital electronics to transmit the acquired data wirelessly

  6. Antimony doped tin oxide nanoparticles and their assembly in mesostructured film

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Stefanic, G.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova-Rohlfing, D.

    2011-01-01

    Roč. 8, č. 6 (2011), s. 1759-1763 ISSN 1862-6351 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : transparent conducting oxides * mesoporous films * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  7. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe-containing intermet...

  8. Solution Processed Zinc Oxide Thin-Film Transistors

    OpenAIRE

    Faber, Hendrik Andreas

    2013-01-01

    In this thesis different methods to deposit inorganic materials by solution processing were investigated. The properties of the resulting layers were examined and then incorporated into thin-film transistors. Furthermore, techniques to improve their device performances were explored. The wide band gap material ZnO was selected as active n-type semiconductor. It combines several beneficial attributes such as high transparency, good electron mobilities, and the possibility for solution processi...

  9. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    Rozati S M and Akesteh Sh 2008 Cryst. Res. Technol. 43 273. Rozati S M, Moradi S, Golshahi S, Martins R and Fortunato E 2009. Thin Solid Films 518 1279. Ryu H, Kang J, Han Y, Kim D, Park J J, Park W K and Yang M S. 2003 J. Electron. Mater. 23 919. Tahar R B H, Ban T, Ohya Y and Takahashi Y 1997 J. Appl. Phys.

  10. Effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon films

    Science.gov (United States)

    Choi, Woong; Lee, Jung-Kun; Findikoglu, Alp T.

    2006-12-01

    The authors report studies of the effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon (ACSi) films by means of capacitance-voltage (C-V) measurements. C-V curves were measured on metal-oxide-semiconductor (MOS) capacitors fabricated on ⟨001⟩-oriented ACSi films on polycrystalline substrates. From high-frequency C-V curves, the authors calculated a decrease of interface trap density from 2×1012to1×1011cm-2eV-1 as the grain mosaic spread in ACSi films improved from 13.7° to 6.5°. These results demonstrate the effectiveness of grain alignment as a process technique to achieve significantly enhanced performance in small-grained (⩽1μm ) polycrystalline Si MOS-type devices.

  11. Chemical solution deposited lanthanum zirconium oxide thin films: Synthesis and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.S., E-mail: sean.chen@cantab.net [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kumar, R.V.; Glowacki, B.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2010-07-01

    Pyrochlore lanthanum zirconium oxide (LZO) thin films textured along <4 0 0> are synthesized using lanthanum acetate hydrate, zirconium propoxide, propionic acid, acetic acid glacial, and methanol as precursors. The materials growth and chemistry are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The formation of inkjet printed LZO films on Ni-5%W tape is found to be based on the decomposition of the LZO precursor solution. In the annealing process, Zr metal-oxides bonds are first eliminated between 150 and 250 deg. C, while carboxylates from precursors remain in LZO after the annealing carried out at 900 {sup o}C for an hour. Annealed LZO films have dense and smooth structure that are composed of nanoparticles sizing 10-15 nm and some pinholes sizing 25-35 nm accounted for less than 0.1% of the area are observed.

  12. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    Science.gov (United States)

    Thomas, S.; Kuiper, B.; Hu, J.; Smit, J.; Liao, Z.; Zhong, Z.; Rijnders, G.; Vailionis, A.; Wu, R.; Koster, G.; Xia, J.

    2017-10-01

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  14. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  15. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO2 nanogranular films

    International Nuclear Information System (INIS)

    Zhu, Li Qiang; Chao, Jin Yu; Xiao, Hui

    2014-01-01

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO 2 nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics

  16. Study of Interfacial Interactions Using Thing Film Surface Modification: Radiation and Oxidation Effects in Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Zhang, Jinsuo

    2014-01-09

    Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300°C, 500°C, and 700°C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500°C and 700°C, (4

  17. Study of Interfacial Interactions Using Thin Film Surface Modification: Radiation and Oxidation Effects in Materials

    International Nuclear Information System (INIS)

    2014-01-01

    Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300°C, 500°C, and 700°C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500°C and 700°C, (4

  18. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film.

    Science.gov (United States)

    Pu, Nen-Wen; Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Hsieh, Wei-Ting; Yu, Hau-Wei; Liang, Shih-Chang

    2015-09-21

    : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10 - ⁴ Ω/cm), carrier concentration (4.1 × 10 21 cm - ³), carrier mobility (10 cm²/Vs), and mean visible-light transmittance (90%) at wavelengths of 400-800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>10 21 cm - ³) with a high figure of merit (81.1 × 10 - ³ Ω - ¹) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  19. Growth of ferroelectric oxide films on n-GaN/c-sapphire structures

    Science.gov (United States)

    Fuflyigin, V.; Osinsky, A.; Wang, F.; Vakhutinsky, P.; Norris, P.

    2000-03-01

    High-quality (Pb, La)(Ti, Zr)O3 films were grown on n-GaN. The film thickness ranged from 0.5 to 5 μm. The material was prepared by a chemical solution method with compositions of 8/65/35 and 0/52/48. The films grown on GaN buffered with a thin layer of indium in oxide were highly textured and exhibited excellent ferroelectric properties with Pr=20-26 μC/cm2. A large field-induced birefringence of 0.025 was measured in the film with a composition of 8/65/35 under a field strength of 2×105 V/cm.

  20. Electric field assisted thermal annealing reorganization of graphene oxide/polystyrene latex films

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Graphene/polymer films were prepared by casting water dispersion of graphene oxide (GO in the presence of polystyrene (PS latex particles. The samples were heated up to 180°C and exposed to an external electric voltage during their annealing. We observed that for the GO/PS films deposited before the electric field assisted thermal annealing the polymer latex was embedded in the graphene sheets, while the electric field assisted thermal annealing induces a phase separation with the enrichment of the PS phase above an underlying GO layer. For the films annealed under an external electric field we have also found that as the electric current passes through the GO film, GO could be recovered to reduced GO with decreased resistance.

  1. Colored and transparent oxide thin films prepared by magnetron sputtering: the glass blower approach.

    Science.gov (United States)

    Gil-Rostra, Jorge; Chaboy, Jesús; Yubero, Francisco; Vilajoana, Antoni; González-Elipe, Agustín R

    2013-03-01

    This work describes the reactive magnetron sputtering processing at room temperature of several mixed oxide MxSiyOz thin films (M: Fe, Ni, Co, Mo, W, Cu) intended for optical, coloring, and aesthetic applications. Specific colors can be selected by adjusting the plasma gas composition and the Si-M ratio in the magnetron target. The microstructure and chemistry of the films are characterized by a large variety of techniques including X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and infrared spectroscopy, while their optical properties are characterized by UV-vis transmission and reflection analysis. Particularly, XAS analysis of the M cations in the amorphous thin films has provided valuable information about their chemical state and local structure. It is concluded that the M cations are randomly distributed within the SiO2 matrix and that both the M concentration and its chemical state are the key parameters to control the final color of the films.

  2. High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide

    Science.gov (United States)

    Kobayashi, Eiji; Watabe, Yoshimi; Yamamoto, Tetsuya

    2015-01-01

    We have developed 100-nm-thick cerium-doped hydrogenated indium oxide (ICO:H) films with a superior Hall mobility of 130-145 cm2 V-1 s-1. The ICO:H films deposited at 150 °C by dc arc-discharge ion plating were post-annealed at 200 °C. The relationship between the Hall mobility and carrier density of the polycrystalline ICO:H films shows that the carrier transport is limited by an ionized impurity scattering mechanism inside the grains. The surfaces of the ICO:H films were found to be very smooth and clear grain-boundary areas were not observed.

  3. Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films.

    Science.gov (United States)

    Fukuya, Miki Noda; Senoo, Kazunobu; Kotera, Masaru; Yoshimoto, Mamoru; Sakata, Osami

    2017-12-11

    The crystallite orientation and crystallographic domain structure of poly(ethylene oxide) (PEO) in cellulose nanofiber-incorporated (CNF-incorporated) PEO films developed for packaging materials were observed using wide-angle X-ray diffraction for different CNF filling ratios. When a CNF filling ratio of 50 wt %, the PEO molecular chains were oriented in a direction parallel to the surface of the film. The fiber axis of the CNFs became parallel to the surface of the PEO/CNF composite film when the filling ratio was >25 wt %. The change in the orientation of the PEO crystals occurred because increasing the amount of CNF in the composite films decreased the space in which the PEO could be crystallized. Furthermore, the hydrogen bonds between the PEO and the CNF may behave as crystallization nuclei for the PEO. Our results thus pave the way toward the development of packaging materials that are more impermeable to gases than the current materials.

  4. Characterization of photoluminescent europium doped yttrium oxide thin-films prepared by metallorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    McKittrick, J.; Bacalski, C.F.; Hirata, G.A.; Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M.

    1998-01-01

    Europium doped yttrium oxide, (Y 1-x Eu x ) 2 O 3 , thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y 2 O 3 , grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y 2 O 3 :Eu 3+ was observed in x-ray diffraction for deposition temperatures ≥600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra

  5. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    Science.gov (United States)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  6. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface

    Directory of Open Access Journals (Sweden)

    Pei-Yu Li

    2016-05-01

    Full Text Available The photocatalytic activity of an amorphous titanium oxide (a-TiOx film was modified using a two-step deposition. The fluorinated base layer with a nano-textured surface prepared by a selective fluorination etching process acted as growth seeds in the subsequent a-TiOx deposition. A nanorod-like microstructure was achievable from the resulting a-TiOx film due to the self-assembled deposition. Compared to the a-TiOx film directly deposited onto the untreated base layer, the rate constant of this fluorinate-free a-TiOx film surface for decomposing methylene blue (MB solution that was employed to assess the film’s photocatalytic activity was markedly increased from 0.0076 min−1 to 0.0267 min−1 as a mechanism for the marked increase in the specific surface area.

  7. Preparation and characterization of tantalum oxide films produced by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ngaruiya, J.M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Jomo Kenyatta University of Agric. and Techn., Box 62000, Nairobi (Kenya); Venkataraj, S.; Drese, R.; Kappertz, O.; Leervad Pedersen, T.P. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); ISG3, Forschungszentrum Juelich, 52428 Juelich (Germany)

    2003-07-01

    We report on the influence of oxygen flow rate on structure, composition, density, deposition stress and optical properties of the as-deposited tantalum oxide thin films. The films were prepared by reactive direct current magnetron sputtering. The sputter current and total pressure were kept constant at 300 mA and 0.8 Pa, respectively. We could deposit fully transparent films at a rate of approximately 6 nm/min. without noticeable substrate warming from the plasma. Grazing angle XRD showed the films to be amorphous at all oxygen flow rates. Simulations to RBS data revealed, within errors, stoichiometric films above 2 sccm oxygen flow. Moreover argon incorporation in the films above 2 sccm oxygen flow was noted. The density was found to steeply decrease upto 2 sccm followed by a very slow linear decrease with oxygen flow as deduced from X-ray reflectometry. The refractive index, the extinction coefficient and the band gap energy were all obtained by optical spectroscopy. A band gap which increased from 4.17 to 4.23 eV with oxygen flow was determined for films in the transparent region. A characteristic of the defects in the film, {gamma}, which is obtained by simulating the optical spectra, was found to decrease from 85 meV at 6 sccm to 60 meV at 15 sccm oxygen flow. There was no significant change in {gamma} above 15 sccm. On the other hand the refractive index and the extinction coefficient were found to slightly decrease with increasing oxygen flow for the transparent films. Stress data revealed the films to be under some compressive stress upon deposition. The stress decreased with increasing oxygen flow and stabilized at roughly -250 MPa above 6 sccm oxygen flow. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Yildirim, Nurcan [Department of Physics Engineering, Ankara University, 06100 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Unalan, Husnu Emrah [Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Turan, Rasit [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-15

    In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu{sub 2}O) and copper hydroxide (Cu(OH){sub 2}) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors. - Highlights: • Effect of post-deposition annealing on copper oxide thin films was investigated. • Structural, optical, and electronic properties of the thin films were determined. • Oxidation states of copper oxide thin films were confirmed by XPS analysis. • Mixed phases of CuO and Cu{sub 2}O were found to coexist in copper oxide thin films.

  9. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    Science.gov (United States)

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  10. Zinc oxide films impurified with Ti and prepared by the Sol-gel method

    International Nuclear Information System (INIS)

    Tirado G, S.; Cazares R, J.M.; Maldonado, A.

    2006-01-01

    Titanium-doped zinc oxide thin films have been prepared on silicon substrate using the Sol-Gel technique. The structural, morphology, electrical and optical properties of such thin films were studied as a function of titanium concentration (0.5, 1 and 1.5 %) and the thin films thickness. Zinc acetate dihydrate and titanium (VI)-oxy acetylacetonate were used as precursor materials, using 2-methoxyethanol and monoethanolamine as via. The X-ray diffraction spectra show polycrystalline films in all the cases. It can see for all the thin films a preferential growth along the (002) planes where the titanium concentration and also the thin films thickness play an important rule. No structural changes are observed at all. The surface morphology studied shows as the grain size decreases when thin thickness is increases. For titanium concentration of 0.5, 1 and 1.5 % values the grains size increase also. The thin films thickness for titanium concentration of 1.5 % was 500 nm (4v), 400 nm (3v), 180 nm (2v) and 130 nm (1v), values obtained from cross-section micrographs. Highly resistive samples are obtained for substrate soda-lime even showing high transmittance. Better physical properties are required for gas sensors or semitransparent electrodes and other possible applications. (Author)

  11. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  12. The Effect of Annealing on Nanothick Indium Tin Oxide Transparent Conductive Films for Touch Sensors

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2015-01-01

    Full Text Available This study aims to discuss the sheet resistance of ultrathin indium tin oxide (ITO transparent conductive films during the postannealing treatment. The thickness of the ultrathin ITO films is 20 nm. They are prepared on B270 glass substrates at room temperature by a direct-current pulsed magnetron sputtering system. Ultrathin ITO films with high sheet resistance are commonly used for touch panel applications. As the annealing temperature is increased, the structure of the ultrathin ITO film changes from amorphous to polycrystalline. The crystalline of ultrathin ITO films becomes stronger with an increase of annealing temperature, which further leads to the effect of enhanced Hall mobility. A postannealing treatment in an atmosphere can enhance the optical transmittance owing to the filling of oxygen vacancies, but the sheet resistance rises sharply. However, a higher annealing temperature, above 250°C, results in a decrease in the sheet resistance of ultrathin ITO films, because more Sn ions become an effective dopant. An optimum sheet resistance of 336 Ω/sqr was obtained for ultrathin ITO films at 400°C with an average optical transmittance of 86.8% for touch sensor applications.

  13. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  14. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    Science.gov (United States)

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-08

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

  15. Tuning the properties of tin oxide thin films for device fabrications

    Science.gov (United States)

    Sudha, A.; Sharma, S. L.; Gupta, A. N.; Sharma, S. D.

    2017-11-01

    Tin oxide thin films were deposited on well cleaned glass substrates by thermal evaporation in vacuum and were annealed at 500 ∘C in the open atmosphere inside a furnace for 90 min for promoting the sensitivity of the films. The X-ray diffraction studies revealed that the as-deposited films were amorphous in nature and the annealed films showed appreciable crystalline behavior. The annealed thin films were then irradiated using 60Co gamma source. The radiation induced changes were then studied by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy and I- V characterization. The remarkable increase in the average grain size, the decrement in the energy band gap and resistivity due to the gamma irradiations up to a certain dose and the reversal of these properties at higher doses are the important observations. The large changes in the conductivity and energy band gap of the annealed thin films due to gamma irradiation make these films quite important device material for the fabrication of gamma sensors and dosimeters.

  16. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  17. Indium tin oxide films deposited on polyethylene naphthalate substrates by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G. [Centro de Investigacion y Estudios Avanzados del IPN-Unidad Queretaro, Apdo. postal 1-798, Queretaro, Qro., 76001 (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN-Unidad Queretaro, Apdo. postal 1-798, Queretaro, Qro., 76001 (Mexico)], E-mail: rrbon@qro.cinvestav.mx

    2009-02-27

    Indium tin oxide (ITO) thin films were deposited on unheated polyethylene naphthalate substrates by radio-frequency (rf) magnetron sputtering from an In{sub 2}O{sub 3} (90 wt.%) containing SnO{sub 2} (10 wt.%) target. We report the structural, electrical and optical properties of the ITO films as a function of rf power and deposition time. Low rf power values, in the range of 100-130 W, were employed in the deposition process to avoid damage to the plastic substrates by heating caused by the plasma. The films were analyzed by X-ray diffraction and optical transmission measurements. A Hall measurement system was used to measure the carrier concentration and electrical resistivity of the films by the Van der Pauw method. The X-ray diffraction measurements analysis showed that the ITO films are polycrystalline with the bixbite cubic crystalline phase. It is observed a change in the preferential crystalline orientation of the films from the (222) to the (400) crystalline orientation with increasing rf power or deposition time in the sputtering process. The optical transmission of the films was around 80% with electrical resistivity and sheet resistance down to 4.9 x 10{sup -4} {omega}cm and 14 {omega}/sq, respectively.

  18. Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, V. G.; Reshmi, R.; Devasia, Sebin; Anila, E. I., E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); Cheruvalathu, Ajina [International School of Photonics, CUSAT, Cochin-22 (India)

    2016-05-23

    In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and –C-H groups. The synthesized sample has good crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532 nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.

  19. Investigation of interaction between silver oxide electrode and separator hydrated cellulose film in silver-cadmium accumulators

    International Nuclear Information System (INIS)

    Molotkova, E.N.; Yarochkina, E.N.

    1975-01-01

    Oxidation-reduction interaction of the oxysilver electrode with hydrocellulose film during storing charged silver-cadmium accumulators. It was demonstrated that accumulator electric characteristics durinq storing are linearly depending on the capacity of this hydrocellulose film to interact with silver oxide: the more silver is absorbed by film the quicker is the decreasing of the electromotive force and capacity of the accumulators. Preservation of the silver electrode capacity in the silver-cadmium accumulators is determined first of all by hydrocellulose separation film properties and especially by film layer adjacent to positive electrode. The more inert film layer is, regarding to silver oxide in the electrolite, the slower is dissolution of the electrode and also decompousing speed of AgO, the longer is the accumulator preservation time

  20. Metal Oxides Doped PPY-PVA Blend Thin Films Based Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-02-01

    Full Text Available Synthesis of metal oxides doped polypyrrole–polyvinyl alcohol blend thin films by in situ chemical oxidative polymerization, using microwave oven on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature(304 K. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as observed in the SEM image was observed to be uniformly covering the entire substrate surface. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability metal oxides doped PPY-PVA films.

  1. Lanthanum-oxide thin films deposited by plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Joo; Ko, Myoung-Gyun; Kim, Beom-Yong; Park, Sang-Kyun; Kim, Heon-Do; Park, Jong-Wan [Hanyang University, Seoul (Korea, Republic of)

    2006-09-15

    Lanthanum oxide is suited as a gate oxide that can replace SiO{sub 2} due to its high dielectric constant with a band gap of 4.3 eV [1] and its thermal stability with silicon. In this work, La{sub 2}O{sub 3} thin films was performed on Si substrates by using plasma-enhanced atomic layer deposition with La(EtCp){sub 3} as the lanthanum precursor and O{sub 3} as the reactant gas. The fully saturated growth rate of lanthanum oxide films was 0.2 A/cycle at a plasma power of 500 W. Secondary ion mass spectrometry and Rutherford backscattering measurements detected no carbon impurity content.

  2. Comprehensive review on the development of high mobility in oxide thin film transistors

    Science.gov (United States)

    Choi, Jun Young; Lee, Sang Yeol

    2017-11-01

    Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.

  3. Growth, Optical Absorption, and Photoresponse of Copper Oxide Thin Films and Nanocavities

    Science.gov (United States)

    Parry, James P.

    Copper oxide, Cu2O, is one of the most studied semiconductors having been used in devices dating back to the 1920's. The material received additional study recently as an absorbing material in solar cells and hydrogen evolution reactions. The thickness of Cu2O in those devices is often hundreds of nanometers to over one micron thick. This work studies the use of thin film interference to enhance the optical absorption and photoresponse in very thin Cu2O films. The first section focuses on the growth of single phase Cu2O by reactive sputtering. The impact of synthesis parameters including sputtering rate, substrate temperature, oxygen flow, and post-growth annealing on deposited copper oxide films were studied. Other copper oxide phases, Cu4O 3 and CuO were evident when oxygen was added to the post-deposition annealing chamber atmosphere. Very thin Cu2O films were deposited on sputtered Al films by reactively sputtering Cu with DC power at 50W, Ar/O 2 flow 30/16 sccm, substrate deposition temperature at 150°C, followed by vacuum annealing at 350°C. Thin film interference in Cu2O grown on Al films was observed to highly enhance the absorption of films below 100nm thickness. 70nm of Cu 2O on Al absorbed 96% of incident light at 548nm. The absorption resonance wavelength increased with increasing copper oxide thickness, demonstrating the tunability of the resonance maximum. Thin layers of Al2O 3, 15nm or less, between the Al and Cu2O films modified the total absorption but not in a coherent manner. The optical absorption of nanocavities consisting of Al/Al2O 3 50nm/Cu2O were synthesized, optical absorption and photoresponse measured. The photoresponse of the synthesized nanocavities to light from a solar simulator was enhanced for short and long time scales, 1-3 minutes and several hours respectively. The photocurrent of 60nm Cu2O nanocavities doubled during a 2.5hr light soak, which was not enough to saturate the photoconductivity. Persistent photoconductivity

  4. Structural and interfacial characteristics of thin (2 films grown by electron cyclotron resonance plasma oxidation on [100] Si substrates

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Carl, D.A.; Hess, D.W.; Lieberman, M.A.; Gronsky, R.

    1991-04-01

    The feasibility of fabricating ultra-thin SiO 2 films on the order of a few nanometer thickness has been demonstrated. SiO 2 thin films of approximately 7 nm thickness have been produced by ion flux-controlled Electron Cyclotron Resonance plasma oxidation at low temperature on [100] Si substrates, in reproducible fashion. Electrical measurements of these films indicate that they have characteristics comparable to those of thermally grown oxides. The thickness of the films was determined by ellipsometry, and further confirmed by cross-sectional High-Resolution Transmission Electron Microscopy. Comparison between the ECR and the thermal oxide films shows that the ECR films are uniform and continuous over at least a few microns in lateral direction, similar to the thermal oxide films grown at comparable thickness. In addition, HRTEM images reveal a thin (1--1.5 nm) crystalline interfacial layer between the ECR film and the [100] substrate. Thinner oxide films of approximately 5 nm thickness have also been attempted, but so far have resulted in nonuniform coverage. Reproducibility at this thickness is difficult to achieve

  5. Oxide thin films for spintronics application growth and characterization

    OpenAIRE

    Popovici, Nicoleta, 1973-

    2009-01-01

    Tese de doutoramento, Física (Física), Universidade de Lisboa, Faculdade de Ciências, 2009 During my PhD research I have synthesized thin films of a material known as a diluted magnetic semiconductor (DMS) using the pulsed laser deposition (PLD) technique. This material is envisioned to be of importance in the emerging field of spintronics where both the charge and the spin of the carriers can be combined to yield unique functionalities. It was envisaged that if spin polarized charge carri...

  6. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/μc-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of θ i = 0 (normal sputtering) and θ i = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at θ i = 80 show the inclined columnar nanostructures compared to those at θ i = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/μc-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of ∝1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at θ i = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-09-15

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/{mu}c-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of {theta}{sub i} = 0 (normal sputtering) and {theta}{sub i} = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at {theta}{sub i} = 80 show the inclined columnar nanostructures compared to those at {theta}{sub i} = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/{mu}c-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of {proportional_to}1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at {theta}{sub i} = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing; Chen, Zheng [Jingdezhen Ceramic Institute, Jingdezhen (China). Key Lab. of Inorganic Membrane; Yu, Yun [Shanghai Institute of Ceramics, Shanghai (China). Key Lab. of Inorganic Coating Materials; Zhang, Xiaozhen; Wang, Yongqing; Zhou, Jianer [Jingdezhen Ceramic Institute, Jingdezhen (China). Dept. of Materials Engineering

    2018-03-01

    Graphene-based conductive films have already attracted great attention due to their unique and outstanding physical properties. In this work, in order to develop a novel, effective method to produce these films with good electrical conductivity, a simple and green method is reported to rapidly and effectively reduce graphene oxide film using a low temperature heat treatment. The reduction of graphene oxide film is verified by XRD, FT-IR and Raman spectroscopy. Compared with graphene oxide film, the obtained reduced graphene oxide film has better electrical conductivity and its sheet resistance decreases from 25.3 kΩ x sq{sup -1} to 3.3 kΩ x sq{sup -1} after the heat treatment from 160 to 230 C. The mechanism of thermal reduction of the graphene oxide film mainly results from the removal of the oxygen-containing functional groups and the structural changes. All these results indicate that the low temperature heat treatment is a suitable and effective method for the reduction of graphene oxide film.

  9. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    We all make use of oxide ultrathin films, even if we are unaware of doing so. They are essential components of many common devices, such as mobile phones and laptops. The films in these ubiquitous electronics are composed of silicon dioxide, an unsurpassed material in the design of transistors. But oxide films at the nanoscale (typically just 10 nm or less in thickness) are integral to many other applications. In some cases, they form under normal reactive conditions and confer new properties to a material: one example is the corrosion protection of stainless steel, which is the result of a passive film. A new generation of devices for energy production and communications technology, such as ferroelectric ultrathin film capacitors, tunneling magnetoresistance sensors, solar energy materials, solid oxide fuel cells, and many others, are being specifically designed to exploit the unusual properties afforded by reduced oxide thickness. Oxide ultrathin films also have tremendous potential in chemistry, representing a rich new source of catalytic materials. About 20 years ago, researchers began to prepare model systems of truly heterogeneous catalysts based on thin oxide layers grown on single crystals of metal. Only recently, however, was it realized that these systems may behave quite differently from their corresponding bulk oxides. One of the phenomena uncovered is the occurrence of a spontaneous charge transfer from the metal support to an adsorbed species through the thin insulating layer (or vice versa). The importance of this property is clear: conceptually, the activation and bond breaking of adsorbed molecules begin with precisely the same process, electron transfer into an antibonding orbital. But electron transfer can also be harnessed to make a supported metal particle more chemically active, increase its adhesion energy, or change its shape. Most importantly, the basic principles underlying electron transfer and other phenomena (such as structural

  10. Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications

    DEFF Research Database (Denmark)

    Kim, Jongbum; Zhao, Yang; Naik, Gururaj V.

    2013-01-01

    Transparent conductive oxides (TCOs) as substitutes to metals could offer many advantages for low-loss plasmonic and metamaterial (MM) applications in the near infrared (NIR) regime. By employing a lift-off process, we fabricated 2D-periodic arrays of TCO nanodisks and characterized the material...

  11. Electrical characterization of low temperature deposited oxide films ...

    Indian Academy of Sciences (India)

    Unknown

    of its wide ranging applications in integrated circuit manu- facturing and microelectronics technology as an ... tion parallel c-axis (002) (Water and Chu 2002). To improve the reliability of oxides, it is crucial to ... The capacitance of such a layer acts in series with the insulator capacitance causing frequency dispersion of.

  12. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor ...

  13. Influence of protecting gel film on oxidation of zirconium alloys

    Czech Academy of Sciences Publication Activity Database

    Frank, H.; Weishauptová, Zuzana; Vrtílková, V.

    2007-01-01

    Roč. 360, č. 3 (2007), s. 282-292 ISSN 0022-3115 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : fuel cladding * corrosion * Zirconium oxide Subject RIV: JF - Nuclear Energetics Impact factor: 1.643, year: 2007

  14. Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film

    Science.gov (United States)

    Grigorkina, G. S.; Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Fukutani, K.; Magkoev, T. T.

    2017-05-01

    The growth of thermally evaporated magnesium oxide thin film on Mo(110) substrate in ultra-high vacuum was studied by means of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and work function (WF) measurements. It is shown that at a growth rate of c.a. 0.1 monolayer per minute and the substrate temperature of 600 K the film acquires the MgO(111) structure. This structure begins to form at two monolayers and holds up to six monolayers. At higher thickness the film disorders due to weakening of the ordering effect of the isosymmetric Mo(110) support. Adsorption of CO and H2 on the formed MgO(111) film cooled down to 90 K was studied by means of ultraviolet photoelectron spectroscopy (UPS) and reflection absorption infrared spectroscopy (RAIRS) and compared with in-situ obtained results for CO on Pt(111). Comparison of UPS data of CO on MgO(111) and Pt(111) in combination with RAIRS results reveals quite different bonding mechanisms on the metal and the oxide supports. The main feature of CO on MgO(111) is quite high intensity of CO stretch vibration, considerably exceeding that on amorphous MgO, and comparable to that of CO on Pt(111). This is presumably due to the electrostatic effect of the uncompensated microscopic dipole moment of ultrathin MgO(111) film on the enhancing of CO dynamical dipole moment. Adsorption of H2 dramatically reduces the CO stretch intensity as a possible result of removing of dipole moment of MgO(111) surface by hydrogen and (CO+H2) interaction.

  15. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, G.; Ennaoui, A.; Fiechter, S.; Tributsch, H.; Hofmann, W.K.; Birkholz, M. (Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Solare Energetik Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Materialforschung); Kautek, W. (Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany, F.R.))

    1990-03-01

    Photoactive iron pyrite (FeS{sub 2}) thin film layers have been synthesized by a simple method involving the reaction of Fe{sub 3}O{sub 4} or Fe{sub 2}O{sub 3} with elemental sulfur. The films were formed on a variety of different substrate materials by converting or sulfurizing iron oxide layers. The subsequent sulfur treatment of the oxide layers consisted of exposure of the films to gaseous sulfur in open or closed ampules at 350degC for 0.5-2 h. The morphology, composition and photoactivity of the films produced were checked using X-ray diffraction, X-ray photoelectron spectroscopy (ESCA), optical absorption, steady state and transient photoconductivity. The best films showed good crystallinity and purity with concurrent photoconductivity and photoelectrochemical response. The ability of this technique to produce photoactive material can be explained by interpretation of the Gibbs ternary phase diagram for the Fe-O-S system, and may be related to the production of photoactive pyrite in nature. A discussion is made as to the future improvement of the solar cell response by proper optimization of geometric and configurational properties. (orig.).

  16. Tribological behavior of DLC films deposited on nitrided and post-oxidized stainless steel by PACVD

    Science.gov (United States)

    Dalibon, E. L.; Brühl, S. P.; Heim, D.

    2012-06-01

    In this work, the tribological behavior and adhesion of DLC films deposited by PACVD on AISI 420 martensitic stainless steel was evaluated. Prior to DLC deposition, the samples were nitrided and some of them also post-oxidized. The films were characterized by Raman and EDS, microhardness was assessed with Vickers indenter and the microstructure was analyzed by OM, SEM, FIB. Fretting and linear reciprocating sliding tests were performed using a WC ball as counterpart, and the adhesion of the DLC films was characterized using the Scratch Test and Rockwell C indentation. Corrosion behavior was evaluated by the Salt Spray Fog Test. The film showed a hardness of only about 1500 HV but it was about 15-20 microns thick. The results of the mechanical tests showed that pre-treatments (nitriding and oxidizing) of the substrate did not have a big influence in the tribological behavior of the coating. However, the nitriding treatment before the DLC coating process reduced the interface stress and enhanced the adhesion. Additionally, all the films evidenced good corrosion resistance in a saline environment, better than the AISI 420 itself.

  17. Electrochromism in tungsten oxide thin films prepared by chemical bath deposition

    Directory of Open Access Journals (Sweden)

    Julijana Velevska

    2017-03-01

    Full Text Available Tungsten oxide (WO3 thin films were prepared by a simple, economical, chemical bath deposition method onto fluorine doped tin oxide (FTO coated glass substrates. The electrochemical properties of the films were characterized by cyclic voltammetry. The obtained films exhibited electrochromism, changing color from initially colorless to deep blue, and back to colorless. Visible transmittance spectra of (WO3 films were recorded in-situ in their both, bleached and colored states. From those spectra, absorption coefficient (a and the optical energy gaps were evaluated. The dependence of the optical density on the charge density was examined and the coloration efficiency (h was calculated to be 22.11 cm2 C-1. The response times of the coloring and bleaching to an abrupt potential change from -2.5 V to +2.5 V and reverse, were found to be 9.3 and 1.2 s respectively. The maximum light intensity modulation ability of the films, when the AM1.5 spectrum is taken as an input, was calculated to be about 50 %.

  18. Chemical Processing for Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Y; Narishige, S; Fujioka, K; Uchida, H; Koda, S, E-mail: uchidah@sophia.ac.jp [Sophia University, Department of Materials and Life Sciences, Tokyo 102-8554 (Japan)

    2011-10-29

    Chemical processing using supercritical carbon dioxide fluid (scCO{sub 2}) was demonstrated for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO{sub 2} fluid. Precursor films of titanium dioxide (TiO{sub 2}) on soda-glass substrates prepared by sol-gel coating using Ti-alkoxide solution were converted to crystalline TiO{sub 2} (anatase) films successfully by the scCO{sub 2} treatment at a fluid pressure of 15 MPa and a substrate temperature of 300deg. C whereas no crystallization was occurred by conventional heat treatment at 400 deg. C. XPS analysis indicated that the interface reaction related to Si element was suppressed successfully by scCO{sub 2} treatment at 300 deg. C. These results suggest that the sol-gel synthesis using scCO{sub 2} fluid would be a cadidate for low-temperature processing of crystalline oxide films, which is more preferable than conventional techniques based on the heat treatment.

  19. Advantages of N-Type Hydrogenated Microcrystalline Silicon Oxide Films for Micromorph Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2013-01-01

    Full Text Available We report on the development and application of n-type hydrogenated microcrystalline silicon oxide films (n μc-SiO:H in hydrogenated amorphous silicon oxide/hydrogenated microcrystalline silicon (a-SiO:H/μc-Si:H micromorph solar cells. The n μc-SiO:H films with high optical bandgap and low refractive index could be obtained when a ratio of carbon dioxide (CO2 to silane (SiH4 flow rate was raised; however, a trade-off against electrical property was observed. We applied the n μc-SiO:H films in the top a-SiO:H cell and investigated the changes in cell performance with respect to the electrical and optical properties of the films. It was found that all photovoltaic parameters of the micromorph silicon solar cells using the n top μc-SiO:H layer enhanced with increasing the CO2/SiH4 ratio up to 0.23, where the highest initial cell efficiency of 10.7% was achieved. The enhancement of the open circuit voltage (Voc was likely to be due to a reduction of reverse bias at subcell connection—n top/p bottom interface—and a better tunnel recombination junction contributed to the improvement in the fill factor (FF. Furthermore, the quantum efficiency (QE results also have demonstrated intermediate-reflector function of the n μc-SiO:H films.

  20. In situ X-ray studies of film cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuoss, Paul, E-mail: fuoss@anl.gov; Chang, Kee-Chul; You, Hoydoo, E-mail: hyou@anl.gov

    2013-10-15

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO{sub 2}, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone.

  1. Fabrication of nanostructured metal oxide films with supercritical carbon dioxide: Processing and applications

    Science.gov (United States)

    You, Eunyoung

    Nanostructured metal oxide films have many applications in catalysis, microelectronics, microfluidics, photovoltaics and other fields. Since the performance of a device depends greatly on the structure of the material, the development of methodologies that enable prescriptive control of morphology are of great interest. The focus of this work is to control the structure and properties of the nanostructured metal oxide films using novel synthetic schemes in supercritical fluids and to use those films as key building components in alternative energy applications. A supercritical fluid is a substance at a temperature and pressure above its critical point. It typically exhibits gas-like transport properties and liquid-like densities. Supercritical fluid deposition (SFD) utilizes these properties of supercritical CO2 (scCO2) to deposit chemically pure metal, oxides and alloys of metal films. SFD is a chemical vapor deposition (CVD)-like process in the sense that it uses similar metal organic precursors and deposits films at elevated temperatures. Instead of vaporizing or subliming the precursors, they are dissolved in supercritical fluids. SFD has typically shown to exhibit higher precursor concentrations, lower deposition temperatures, conformal deposition of films on high aspect ratio features as compared to CVD. In2 O3, ZnO and SnO2 are attractive materials because they are used in transparent conductors. SFD of these materials were studied and In2 O3 deposition kinetics using tris(2,2,6,6-tetramethyl-3,5-heptanedionato) In (III) as precursor were determined. Growth rate dependence on the deposition temperature and the precursor concentrations were studied and the physicochemical and optical properties of In2 O3 films were characterized. Metal oxide nanochannels that can potentially be used for microfluidics have been fabricated by sequentially performing nanoimprint lithography (NIL) and SFD. NIL was used to pattern photoresist grating on substrates and SFD of TiO2

  2. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  3. Charge mobility increase in indium-molybdenum oxide thin films by hydrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, S.; Álvarez-Fraga, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Salas, E. [Spline CRG, ESRF, 38043 Grenoble (France); Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, 28911 Madrid (Spain); Rodriguez-Palomo, A.; Andrés, A. de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain)

    2016-11-15

    Highlights: • The charge mobility in IMO films is correlated with its hydrogen content. • The mobility behavior is explained by the presence of OH{sup −} groups in IMO films. • Mo{sup 4+} is identified in transparent conductive IMO by X-ray absorption spectroscopy. - Abstract: The increase of charge mobility in transparent conductive indium molybdenum oxide (IMO) films is correlated with the presence of hydroxyl groups. The introduction of H{sub 2} in the chamber during sputtering deposition compensates the excess charge introduced by cationic Mo doping of indium oxide either by oxygen or hydroxyl interstitials. Films present a linear increase of carrier mobility correlated with H{sub 2} content only after vacuum annealing. This behavior is explained because vacuum annealing favors the removal of oxygen interstitials over that of hydroxyl groups. Since hydroxyl groups offer lower effective charge and smaller lattice distortions than those associated with interstitial oxygen, this compensation mechanism offers the conditions for the observed increase in mobility. Additionally, the short-range order around molybdenum is evaluated by extended X-ray absorption fine structure (EXAFS) spectroscopy, showing that Mo{sup 4+} is placed at the In site of the indium oxide.

  4. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  5. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Louardi, A.; Rmili, A.; Ouachtari, F.; Bouaoud, A. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco)

    2011-09-15

    Highlights: > Co{sub 3}O{sub 4} thin films show a micro porous structure. > Co{sub 3}O{sub 4} thin films are formed with spherical grains less than 50 nm in diameter. > The porous structure of Co{sub 3}O{sub 4} films is expected to have promising application in electrochromism. - Abstract: Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of hydrated cobalt chloride salt (CoCl{sub 2}.6H{sub 2}O) as source of cobalt. The films were deposited onto the amorphous glass substrates kept at different temperatures (300-500 deg. C). The influences of molar concentration of the starting solution and substrate temperature on the structural, morphological and optical properties of (Co{sub 3}O{sub 4}) thin films were studied. It was found from X-ray diffraction (XRD) analysis that the films prepared with molar concentration greater than 0.025 M/L were polycrystalline spinel type cubic structure. The preferred orientation of the crystallites of these films changes gradually from (6 2 2) to (1 1 1) when the substrate temperature increases. By Raman spectroscopy, five Raman active modes characteristic of Co{sub 3}O{sub 4} spinel type cubic structure were found and identified at 194, 484, 522, 620 and 691 cm{sup -1}. The scanning electron microscopy (SEM) images showed micro porous structure with very fine grains less than 50 nm in diameter. These films exhibited also a transmittance value of about 70% in the visible and infra red range.

  6. Electrochemical reduction of graphene oxide in electrically conducting poly(3,4-ethylenedioxythiophene) composite films

    International Nuclear Information System (INIS)

    Lindfors, Tom; Österholm, Anna; Kauppila, Jussi; Pesonen, Markus

    2013-01-01

    Here we show that the graphene oxide (GO) can be electrochemically reduced in composite films of poly(3,4-ethylenedioxythiophene) (PEDOT) and GO. EDOT was electropolymerized in an aqueous GO dispersion at a constant potential resulting in the incorporation of GO in the PEDOT matrix. Scanning electron microscopy (SEM) images revealed that the formed PEDOT–GO films had a layered structure. X-ray photoelectron spectra measured after 10, 20 and 30 min of electrochemical reduction at −0.85 V, verified that the reduction efficiently removed the epoxy and hydroxyl groups from the GO surface. The number of oxygen-containing functional groups decreased considerably already after 10 min of electrochemical reduction and the C:O ratio of the composite films increased with increasing reduction time confirming that GO was successfully reduced in the polymer matrix. In contrast to chemical reduction in 0.15 M NaBH 4 , we show that the PEDOT matrix withstands the electrochemical reduction without any degradation in electroactivity. We also studied the effect of pH of the GO dispersion on the subsequent redox behavior of the PEDOT–GO films. Increasing the pH from 2.5 to 4.5 improved the electroactivity of the films and also facilitated film formation probably due to the presence of a higher amount of ionized carboxylic groups on the GO surface. Electrochemical impedance measurements showed that increasing the pH of the GO dispersion resulted in films with a higher redox capacitance. Atomic force microscopy measurements revealed that the electrochemical reduction slightly increased the surface roughness of the composite films. The simple and fully electrochemical synthesis and reduction procedure of the PEDOT–GO films are expected to be useful in the fabrication of interfacial materials for electrochemical all-solid-state devices where it is desirable to have reversible ion-to-electron transduction in combination with high redox capacitance

  7. An investigation of the electrical transport properties of graphene-oxide thin films

    International Nuclear Information System (INIS)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Mohan, Rajneesh; Kim, Sang-Jae

    2012-01-01

    Highlights: ► Four terminal electrical transport characterization of graphene-oxide thin film. ► Low temperature R–T and I–V studies on GO thin film. ► Electrical transport obeys VRH mechanism supported by Raman spectra. ► GO characterizations by SEM, AFM, UV–vis, XRD, FTIR and XPS. ► GO-FET confirms the p-type semiconducting behavior. - Abstract: The electrical transport properties of graphene-oxide (GO) thin films were investigated. The GO was synthesized by a modified Hummers method and was characterized by X-ray diffraction and UV–visible spectroscopy. The thin film of GO was made on a Si/SiO 2 substrate by drop-casting. The surface morphology of the GO film was analyzed by using scanning electron microscopy and atomic force microscopy techniques. Temperature dependent resistance and current–voltage measurements were studied using four-terminal method at various temperatures (120, 150, 175, 200, 250 and 300 K) and their charge transport followed the 3D variable range hopping mechanism which was well supported by Raman spectra analysis. The presence of various functional groups in GO were identified by using high resolution X-ray photo electron (XPS) and Fourier transform infra red (FT-IR) spectroscopic techniques. Graphene-oxide thin film field effect transistor devices show p-type semiconducting behavior with a hole mobility of 0.25 cm 2 V −1 s −1 and 0.59 cm 2 V −1 s −1 when measured in air and vacuum respectively.

  8. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  9. Formaldehyde assisted reduction achieved p-type orthorhombic tin oxide film prepared by an inexpensive chemical method

    Science.gov (United States)

    Sun, Jian; Chen, Zequn; Nie, Sha; Yu, Zhigen; Yan, Shenghui; Gong, Hao; Tang, Chunhua; Bai, Xue; Xu, Jianmei; Zhao, Ling; Zhou, Wei; Wang, Qing

    2017-11-01

    The fabrication of tin oxide thin film of orthorhombic phase has been succeeded under the high pressures from 1.5 GPa to 50 GPa. In this paper, we demonstrate the viability of p-type tin oxide thin film at atmosphere pressure of 0.1 MPa, by a chemical method employing formaldehyde (HCHO) during the annealing process. By using formaldehyde to form formaldehyde-argon mixed reducing ambiance in the chemical sol-gel process, limited oxidation is reached and p-type tin oxide films of orthorhombic phase under ambient pressure are eventually achieved under optimized experimental conditions. Specifically, we have developed a p-type tin oxide thin film with an optimal Hall mobility of 8.6 cm2 V‑1 s‑1. Besides, our results reveal that a Sn rich environment can lead to a higher hole mobility experimentally.

  10. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron

    International Nuclear Information System (INIS)

    Hiralal, P; Unalan, H E; Amaratunga, G A J; Wijayantha, K G U; Kursumovic, A; MacManus-Driscoll, J L; Jefferson, D

    2008-01-01

    A simple, catalyst-free growth method for vertically aligned, highly crystalline iron oxide (α-Fe 2 O 3 ) wires and needles is reported. Wires are grown by the thermal oxidation of iron foils. Growth properties are studied as a function of temperature, growth time and oxygen partial pressure. The size, morphology and density of the nanostructures can be controlled by varying growth temperature and time. Oxygen partial pressure shows no effect on the morphology of resulting nanostructures, although the oxide thickness increases with oxygen partial pressure. Additionally, by using sputtered iron films, the possibility of growth and patterning on a range of different substrates is demonstrated. Growth conditions can be adapted to less tolerant substrates by using lower temperatures and longer growth time. The results provide some insight into the mechanism of growth.

  11. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  12. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    Science.gov (United States)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  13. Oxidation and crystallization behavior of calcium europium silicon nitride thin films during rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M. de, E-mail: m.dejong-1@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Enter, V.E. van, E-mail: vvanenter@gmail.com [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Schuring, E.W., E-mail: schuring@ecn.nl [Energy Center of the Netherlands, Westerduinweg 3, 1755LE Petten (Netherlands); Kolk, E. van der, E-mail: e.vanderkolk@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2016-03-31

    Luminescent thin films were fabricated on silicon wafers using reactive magnetron sputtering of Ca, Si and Eu in Ar/N{sub 2} atmosphere. In order to activate the luminescence, the as-deposited nitride films were heated to 1100 °C by a rapid thermal processing treatment. X-ray diffraction measurements reveal the crystal phases that form during thermal treatment. By recording scanning electron microscopy images of the surface and the cross-section of the film at different radial locations, the formation of different layers with a thickness depending on the radial position is revealed. Energy dispersive x-ray spectroscopy analysis of these cross-sections reveals the formation of an oxide top layer and a nitride bottom layer. The thickness of the top layer increases as a function of radial position on the substrate and the thickness of the bottom layer decreases accordingly. The observation of different 4f{sup 6}5d{sup 1} → 4f{sup 7} Eu{sup 2+} luminescence emission bands at different radial positions correspond to divalent Eu doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4} and CaSiO{sub 3}, which is in agreement with the phases identified by X-ray diffraction analysis. A mechanism for the observed oxidation process of the nitride films is proposed that consists of a stepwise oxidation from the as-deposited amorphous nitride state to crystalline Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, to Ca{sub 2}SiO{sub 4} and finally CaSiO{sub 3}. The oxidation rate and final state of oxidation show a strong temperature–time dependency during anneal treatment. - Highlights: • A thin film of nitridated Ca, Si and Eu was deposited using magnetron sputtering. • Rapid thermal processing (RTP) results in Eu{sup 2+} doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4}, and CaSiO{sub 3}. • Oxidation rate differs with radial position due to a temperature gradient during RTP. • Cross-section SEM–EDX shows how the oxidation progresses in lateral direction.

  14. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J. L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surface (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron

  15. Magnetron sputtering of Fe-oxides on the top of HTS YBCO films

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Buchkov, K. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Gajda, G. [Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 10, 1113 Sofia (Bulgaria); Slavov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Starbova, I.; Starbov, N. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Nankovski, M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Sofia university “St. Kliment Ohridski”, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-01

    The possibilities for preparation of bilayers containing magnetic Fe-oxide (Fe-O) and high temperature superconducting (HTS) YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin films were investigated. For this purpose, Fe-O films were deposited using reactive magnetron sputtering at comparatively low temperatures T≤250 °C onto dielectric (for example, LaAlO{sub 3} (LAO)) substrates, covered with a HTS YBCO film. The sputtering of the Fe-O layer at such conditions did not lead to a crucial damage of the critical temperature T{sub C} of the YBCO film, but could affect the width of the superconducting transition. A decrease of the critical temperature of the (Fe-O)/YBCO/LAO bilayer kept at ambient conditions was observed, possibly due to the negative effects of the water vapour on the sample characteristics. The double peak structure of the imaginary component of the response signal to the AC harmonic magnetic field, observed in such a (Fe-O)/YBCO/LAO sample, was ascribed from two possible views: as a consequence of morphology determined inter- and intra-granular contributions and/or as transitions from dominant irreversible processes as Bean-Livingston barrier to vortex state chains formation. - Highlights: • Iron-oxide (Fe-O) film sputtered on the top of superconducting HTS YBCO film at not very high temperatures. • No crucially damaged superconducting properties of YBCO film during Fe-O sputtering process. • A negative effect of the ambient conditions on the critical temperature of the obtained samples. • A double peak structure of the response signal to the AC harmonic magnetic field in a (Fe-O)/YBCO/LAO is observed.

  16. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-01

    Thin films of tin(IV) oxide (SnO{sub 2}) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au{sup 8+} using 1 pnA current at normal incidence with ion fluences varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV–Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm{sup −1} in FTIR spectrum confirmed the O–Sn–O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO{sub 2} were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  17. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  18. Ultrathin films of homeotropically aligned columnar liquid crystals on indium tin oxide electrodes

    Science.gov (United States)

    Charlet, E.; Grelet, E.; Brettes, P.; Bock, H.; Saadaoui, H.; Cisse, L.; Destruel, P.; Gherardi, N.; Seguy, I.

    2008-01-01

    We report the achievement of very thin films (thickness of about 50nm) of thermotropic columnar liquid crystal in homeotropic (columns normal to the interface) orientation on indium tin oxide (ITO) electrodes. The face-on alignment of the discotic compound has been obtained by thermal annealing without any intermediate coating between the mesophase and the ITO substrate. Such a columnar mesophase alignment is thus shown on a substrate of technological interest in open supported thin film reaching the thickness range suitable for organic photovoltaic devices.

  19. Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films

    OpenAIRE

    Tripathi, T.S.; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-01

    Atomic layer deposition (ALD) is a vital gas-phase technique for atomic-level thickness-controlled deposition of high-quality thin films on various substrate morphologies owing to its self-limiting gas-surface reaction mechanism. Here we report the ALD fabrication of thin films of the semiconducting CuCrO2 oxide that is a highly prospective candidate for transparent electronics applications. In our process, copper 2,2,6,6-tetramethyl-3,5-heptanedionate (Cu(thd)2) and chromium acetyl acetonate...

  20. Thermoluminescence of films of metal oxides and its application to the low energy ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Azorin N, J.; Rivera M, T.; Furetta, C.; Falcony G, C.; Martinez S, E.; Garcia H, M.

    2002-01-01

    The obtained results from 1997 to date in the project S tudy of the thermoluminescence of metal oxides and their application to the ionizing radiation as regards to the development of ZrO 2 and of Al 2 O 3 doped and without doped films with rare earths are presented. The obtained results irradiating ZrO 2 and of Al 2 O 3 films with ultraviolet light and visible light have been satisfactory; whereas these materials have resulted promising to measure beta particles, X-rays and low energy gamma rays. (Author)