WorldWideScience

Sample records for silicon thin layers

  1. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  2. Doped nanocrystalline silicon oxide for use as (intermediate) reflecting layers in thin-film silicon solar cells

    NARCIS (Netherlands)

    Babal, P.

    2014-01-01

    In summary, this thesis shows the development and nanostructure analysis of doped silicon oxide layers. These layers are applied in thin-film silicon single and double junction solar cells. Concepts of intermediate reflectors (IR), consisting of silicon and/or zinc oxide, are applied in tandem

  3. Thin-film amorphous silicon germanium solar cells with p-and n-type hydrogenated silicon oxide layers

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2017-01-01

    Mixed-phase hydrogenated silicon oxide (SiOx:H) is applied to thin-film hydrogenated amorphous silicon germanium (a-SiGe:H) solar cells serving as both p-doped and n-doped layers. The bandgap of p-SiOx:H is adjusted to achieve a highly-transparent window layer while also providing a strong electric

  4. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  5. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  6. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  7. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    Science.gov (United States)

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; Prüser, Henning; Friedlein, Rainer; Sadowski, Jerzy T.; Hirjibehedin, Cyrus F.; Yamada-Takamura, Yukiko

    2017-06-01

    Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.

  9. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  10. Sintered porous silicon. Physical properties and applications for layer-transfer silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.K.

    2007-07-16

    This work focusses on the characterisation of sintered porous silicon and on the development of monocrystalline silicon thin-film solar cells from the Porous Silicon Process (PSI process). For the fabrication of these solar cells, a thin silicon film is epitaxially grown on a monocrystalline silicon growth substrate, that features a layer of porous silicon (PS) at the surface. Due to the thermal activation during the epitaxial growth process, the PS layer reconfigurates and mechanically weakens, which later permits the transfer of the thin-film device to a second carrier substrate. When separating the epitaxial film from the growth substrate, a residual layer of sintered porous silicon (SPS) remains attached to the rear side of the device. So far, the physical properties of this layer and its impact on the performance of PSI solar cells have been poorly investigated. This thesis aims at a comprehensive determination of the physical properties of sintered porous silicon, in particular, its thermal, optical and electrical properties. For the thermal characterisation of the fragile free standing SPS films, a contactless measurement technique based on lock-in thermography is developed and experimentally verified. This analysis identifies a third order power law dependence of the thermal conductivity of SPS on the porosity, in agreement with the predictions of the Looyenga model. Phonon scattering at the pore walls, which is known to drastically reduce the thermal conductivity of as-prepared PS, is also present in the sintered state. The obtained results reveal that, in the case of SPS, this effect is less pronounced, due to the increased structure size of the sintered material compared to the as-prepared state. The effective refractive index of SPS complies with the predictions of effective medium models, whereas Mie's theory successfully describes light scattering by the spherical pores in SPS. An analysis of the measured scattering coefficient shows that the

  11. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  12. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid

    International Nuclear Information System (INIS)

    Vlaic, Codruta Aurelia; Ivanov, Svetlozar; Peipmann, Ralf; Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan; Bund, Andreas

    2015-01-01

    Thin silicon layers containing about 20% carbon and 20% oxygen were deposited on copper substrates by potentiostatic electroreduction from a 1 M SiCl 4 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethyl) sulfonylimide [BMP][TFSI] electrolyte. The electrodeposition process was investigated by means of voltammetric techniques, coupled with in-situ microgravimetry (quartz crystal microbalance, QCM). The electrochemical and QCM data suggest a possible contribution of a partial Si 4+ to Si 2+ reduction and/or a restructuring of the metallic substrate. Considerable impact of side reactions parallel to the deposition process was indicated by QCM measurements performed under potentiostatic and potentiodynamic conditions. The deposition of silicon-based films was confirmed by energy dispersive X-ray analysis (EDX). Analysis of the chemical composition of the deposit and its elemental distribution were achieved by depth profiling X-ray photoelectron spectroscopy (XPS). The electrodeposited silicon containing layers showed stable lithiation and delithiation with capacity values of about 1200 mAhg −1 and 80% capacity retention after 300 cycles in standard EC/DMC electrolytes. In ionic liquid (IL) the material displayed lower capacity of ca. 500 mAhg −1 , which can be attributed to the higher viscosity of this electrolyte and deposition of IL decomposition products during lithiation

  13. Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide

    International Nuclear Information System (INIS)

    Allen, T. G.; Cuevas, A.

    2014-01-01

    This paper proposes the application of gallium oxide (Ga 2 O 3 ) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga 2 O 3 films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O 3 ) as the reactants. Surface recombination velocities as low as 6.1 cm/s have been recorded with films less than 4.5 nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2 Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga 2 O 3 interface has been found to be approximately 0.5 eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9 eV.

  14. Laser Direct Patterning of Organic Dielectric Passivation Layer for Fabricating Amorphous Silicon Thin-Film Transistors

    Science.gov (United States)

    Chen, Chao-Nan; Su, Kuo-Hui; Chen, Yeong-Chin

    2011-06-01

    In this study, a laser direct patterning process application in benzocyclobutene (BCB) organic dielectric passivation-based amorphous silicon (a-Si) thin film transistor (TFT) device fabrication has been carried out using a KrF excimer laser. A BCB organic photoresist material of 2000 nm with a dielectric constant = 2.7 served as the dielectric passivation layer in our device. Compared with conventional processes, laser direct patterning combining BCB organic photoresist dielectric passivation could eliminate at least four process steps. The etching depth of the BCB organic material passivation layer depends on the laser energy density and number of irradiation shots. The hydrogenated a-Si TFT devices are fabricated by replacing the passivation layer and contact hole patterning process. The mobility and threshold voltage reached 0.16 cm2 V-1 s-1 and -3.5 V, respectively. For TFT device performance, laser direct patterning technology is a potential method of replacing photolithography technology in the application of BCB organic dielectric passivation-based TFT manufacture.

  15. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    Science.gov (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  16. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Zhang, P P; Yang, B; Rugheimer, P P; Roberts, M M; Savage, D E; Lagally, M G; Liu Feng

    2009-01-01

    We investigate the influence of heteroepitaxially grown Ge on the thermal dewetting and agglomeration of the Si(0 0 1) template layer in ultrathin silicon-on-insulator (SOI). We show that increasing Ge coverage gradually destroys the long-range ordering of 3D nanocrystals along the (1 3 0) directions and the 3D nanocrystal shape anisotropy that are observed in the dewetting and agglomeration of pure SOI(0 0 1). The results are qualitatively explained by Ge-induced bond weakening and decreased surface energy anisotropy. Ge lowers the dewetting and agglomeration temperature to as low as 700 0 C.

  17. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  18. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    Science.gov (United States)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  19. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    Science.gov (United States)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.

  20. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  1. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  2. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  3. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films.

    Science.gov (United States)

    Zhang, Feifei; Krishnaswamy, Sridhar; Lilley, Carmen M

    2006-12-01

    The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump-probe technique is used to investigate the Young's moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump-probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A(0) mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.

  4. Visual loss after use of intraocular silicone oil associated with thinning of inner retinal layers

    DEFF Research Database (Denmark)

    Christensen, Ulrik C; la Cour, Morten

    2012-01-01

    Purpose: To investigate the incidence and cause of severe visual loss following use and removal of intraocular silicone oil (SiO) after uncomplicated vitrectomy and SiO injection for primary rhegmatogenous retinal detachment (RRD). Methods: Consecutive case series of 216 patients operated...... visual acuity =6/12 before surgery, where SiO had been removed, cataract surgery performed and no re-detachment had occurred. Examinations included best-corrected visual acuity (BCVA) and high-definition optical coherence tomography (OCT) of the macular area. Results: Preoperative characteristics were...

  5. Shallow melting of thin heavily doped silicon layers by pulsed CO2 laser irradiation

    International Nuclear Information System (INIS)

    James, R.B.; Christie, W.H.

    1989-01-01

    We show that an extremely shallow (approx. 2 laser pulse. Since the absorption of the CO 2 laser pulse is dominated by free-carrier transitions, the beam heating occurs primarily in the thin degenerately doped film at the sample surface, and there is little energy deposited in the underlying lightly doped substrate. For CO 2 pulse-energy densities exceeding a threshold value of about 5 J/cm 2 , surface melting occurs and the reflectivity of the incident laser pulse increases abruptly to about 90%. This large increase in the reflectivity acts like a switch to reflect almost all of the energy in the remainder of the CO 2 laser pulse, thereby greatly reducing the amount of energy available to drive the melt front to deeper depths in the material. This is in contrast to the energy deposition of a laser pulse that has a photon energy exceeding the band gap, in which case the penetration depth of the incident radiation is only weakly affected by the free-carrier density. Transmission electron microscopy shows no extended defects in the near-surface region after CO 2 laser irradiation, and van der Pauw electrical measurements verify that 100% of the implanted arsenic dopant is electrically active. Calculated values for the melt depth versus incident pulse-energy density (E/sub L/) indicate that there exists a window where the maximum melt-front penetration increases slowly with increasing E/sub L/ and has a value of less than a few hundred angstroms

  6. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  7. Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Arai, Nobutoshi; Matsumoto, Takuya; Ueno, Kazuya; Gotoh, Yasuhito; Adachi, Kouichiro; Kotaki, Hiroshi; Ishikawa, Junzo

    2004-01-01

    Formation of silver nanoparticles formed by silver negative-ion implantation in a thin SiO 2 layer and its I-V characteristics were investigated for development single electron devices. In order to obtain effective Coulomb blockade phenomenon at room temperature, the isolated metal nanoparticles should be in very small size and be formed in a thin insulator layer such as gate oxide on the silicon substrate. Therefore, conditions of a fine particles size, high particle density and narrow distribution should be controlled at their formation without any electrical breakdown of the thin insulator layer. We have used a negative-ion implantation technique with an advantage of 'charge-up free' for insulators, with which no breakdown of thin oxide layer on Si was obtained. In the I-V characteristics with Au electrode, the current steps were observed with a voltage interval of about 0.12 V. From the step voltage the corresponded capacitance was calculated to be 0.7 aF. In one nanoparticle system, this value of capacitance could be given by a nanoparticle of about 3 nm in diameter. This consideration is consistent to the measured particle size in the cross-sectional TEM observation. Therefore, the observed I-V characteristics with steps are considered to be Coulomb staircase by the Ag nanoparticles

  8. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  9. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Science.gov (United States)

    Ke, Cangming; Peters, Ian Marius; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf

    2015-06-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t+-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlOx) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlOx parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t+-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm2, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  10. Crystallization of HWCVD amorphous silicon thin films at elevated temperatures

    CSIR Research Space (South Africa)

    Muller, TFG

    2006-01-01

    Full Text Available Hot-wire chemical vapour deposition (HWCVD) has been used to prepare both hydrogenated amorphous silicon (a-Si:H) and nano/ microcrystalline thin layers as intrinsic material at different deposition conditions, in order to establish optimum...

  11. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    Science.gov (United States)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  12. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency.

    Science.gov (United States)

    Lin, Yinyue; Xu, Zhen; Yu, Dongliang; Lu, Linfeng; Yin, Min; Tavakoli, Mohammad Mahdi; Chen, Xiaoyuan; Hao, Yuying; Fan, Zhiyong; Cui, Yanxia; Li, Dongdong

    2016-05-04

    Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth.

  13. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  14. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  15. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers

    Science.gov (United States)

    Betz, Michael A.; Büchele, Patric; Brünnler, Manfred; Deml, Sonja; Lechner, Alfred

    2017-01-01

    Improvements on spray coating are of particular interest to different fields of technology as it is a scalable deposition method and processing from solutions offer various application possibilities outside of typical facilities. When it comes to the deposition of expensive and film-forming media such as organic semiconductors, consumption and nozzle cleaning issues are of particular importance. We demonstrate the simple steps to design and fabricate micro venturi nozzles for economical spray coating with a consumption as low as 30-50 µl · min-1. For spray coating an active area of 25 cm2 a 2.45-4.01 fold coating efficiency is observed compared to a conventional airbrush nozzle set. The electrical characterization of first diodes sprayed with an active layer thickness of ~750 nm using a single micronozzle at a coating speed of 1.7 cm2 · min-1 reveals a good external quantum efficiency of 72.9% at 532 nm and a dark current of ~7.4 · 10-5 mA · cm-2, both measured at  -2 V. Furthermore, the high resistance of the micronozzles against solvents and most acids is provided through realization in a silicon wafer with silicon dioxide encapsulation, therefore allowing easy and effective cleaning.

  16. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers

    International Nuclear Information System (INIS)

    Betz, Michael A; Brünnler, Manfred; Deml, Sonja; Lechner, Alfred; Büchele, Patric

    2017-01-01

    Improvements on spray coating are of particular interest to different fields of technology as it is a scalable deposition method and processing from solutions offer various application possibilities outside of typical facilities. When it comes to the deposition of expensive and film-forming media such as organic semiconductors, consumption and nozzle cleaning issues are of particular importance. We demonstrate the simple steps to design and fabricate micro venturi nozzles for economical spray coating with a consumption as low as 30–50 µ l · min −1 . For spray coating an active area of 25 cm 2 a 2.45–4.01 fold coating efficiency is observed compared to a conventional airbrush nozzle set. The electrical characterization of first diodes sprayed with an active layer thickness of ∼750 nm using a single micronozzle at a coating speed of 1.7 cm 2 · min −1 reveals a good external quantum efficiency of 72.9% at 532 nm and a dark current of ∼7.4 · 10 −5 mA · cm −2 , both measured at  −2 V. Furthermore, the high resistance of the micronozzles against solvents and most acids is provided through realization in a silicon wafer with silicon dioxide encapsulation, therefore allowing easy and effective cleaning. (paper)

  17. Chemical control over the formation and reactivity of ultra-thin films and amino-terminated layers on silicon

    Science.gov (United States)

    Rodriguez-Reyes, Juan Carlos F.

    The physical-chemical properties of several interfacial systems of technological relevance are investigated, having as a common goal the elucidation of strategies towards their atomic- and molecular-level control. Such systems can be classified in three groups: (i) ultra-thin films deposited using metalorganic precursors, (ii) metalorganic monolayers on silicon, and (iii) amine-functionalized silicon surfaces. Experimental, theoretical and chemometric methods are conveniently combined to gain a solid understanding of these systems. The ultra-thin films under investigation are titanium carbonitride (TiNC) and hafnium oxide (HfO2). Since these films may serve as substrates for deposition of other materials in circuit components, their surface chemistry needs to be understood and controlled in order to facilitate further deposition steps. The surface of a TiCN film is transformed to titanium nitride (TiN) through nitridation with ammonia; this compositional change can be reversed by the partial decomposition of ethylene molecules on the surface. The surface reactivity is observed to depend on the film composition, and therefore the method described above serves to reversibly tune the reactivity of Ti-based films. As for HfO2 films, it is found that the deposition temperature affects the degree of crystallinity of the films, which in turn affects their surface chemistry. Thus, together with a control of the composition, it is found that the reactivity of a film can be controlled precisely by controlling the crystallinity. The investigation of metalorganic monolayers on silicon surfaces was motivated by the need for understanding the first steps of metalorganic-based deposition of films, which is usually characterized by a heavy presence of contaminants that degrade the film properties. Through a combination of vibrational (infrared) spectroscopy and theoretical methods, a feasible pathway for the adsorption and decomposition of Ti[N(CH3)2]4 is found. This pathway

  18. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  19. "Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step

    Science.gov (United States)

    Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon

    2013-04-01

    During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.

  20. Comprehensive Die Shear Test of Silicon Packages Bonded by Thermocompression of Al Layers with Thin Sn Capping or Insertions

    Directory of Open Access Journals (Sweden)

    Shiro Satoh

    2018-04-01

    Full Text Available Thermocompression bonding for wafer-level hermetic packaging was demonstrated at the lowest temperature of 370 to 390 °C ever reported using Al films with thin Sn capping or insertions as bonding layer. For shrinking the chip size of MEMS (micro electro mechanical systems, a smaller size of wafer-level packaging and MEMS–ASIC (application specific integrated circuit integration are of great importance. Metal-based bonding under the temperature of CMOS (complementary metal-oxide-semiconductor backend process is a key technology, and Al is one of the best candidates for bonding metal in terms of CMOS compatibility. In this study, after the thermocompression bonding of two substrates, the shear fracture strength of dies was measured by a bonding tester, and the shear-fractured surfaces were observed by SEM (scanning electron microscope, EDX (energy dispersive X-ray spectrometry, and a surface profiler to clarify where the shear fracture took place. We confirmed two kinds of fracture mode. One mode is Si bulk fracture mode, where the die shear strength is 41.6 to 209 MPa, proportionally depending on the area of Si fracture. The other mode is bonding interface fracture mode, where the die shear strength is 32.8 to 97.4 MPa. Regardless of the fracture modes, the minimum die shear strength is practical for wafer-level MEMS packaging.

  1. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  2. Solar cell fabricated on welded thin flexible silicon

    Directory of Open Access Journals (Sweden)

    Hessmann Maik Thomas

    2015-01-01

    Full Text Available We present a thin-film crystalline silicon solar cell with an AM1.5 efficiency of 11.5% fabricated on welded 50 μm thin silicon foils. The aperture area of the cell is 1.00 cm2. The cell has an open-circuit voltage of 570 mV, a short-circuit current density of 29.9 mA cm-2 and a fill factor of 67.6%. These are the first results ever presented for solar cells on welded silicon foils. The foils were welded together in order to create the first thin flexible monocrystalline band substrate. A flexible band substrate offers the possibility to overcome the area restriction of ingot-based monocrystalline silicon wafers and the feasibility of a roll-to-roll manufacturing. In combination with an epitaxial and layer transfer process a decrease in production costs can be achieved.

  3. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma

    International Nuclear Information System (INIS)

    Franz, D.

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 o C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10 12 -10 1' 3 cm -3 . For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind of plasma. Diborane

  4. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  5. Characterization of dielectric materials in thin layers for the development of S.O.I. (Silicon on Insulator) substrates

    International Nuclear Information System (INIS)

    Gruber, Olivier

    1999-01-01

    This thesis deals with the characterization of oxide layer placed inside S.O.I. substrates and submitted to irradiation. This type of material is used for the development of hardened electronic components, that is to say components able to be used in a radiative environment. The irradiation induces charges (electrons or holes) in the recovered oxide. A part of these charges is trapped which leads to changes of the characteristics of the electronic components made on these substrates. The main topic of this study is the characterization of trapping properties of recovered oxides and more particularly of 'Unibond' material carried out with a new fabrication process: the 'smart-cut' process. This work is divided into three parts: - study with one carrier: this case is limited to low radiation doses where is only observed holes trapping. The evolution of the physical and chemical properties of the 'Unibond' material recovered oxide has been revealed, this evolution being due to the fabrication process. - Study with two carriers: in this case, there is trapping of holes and electrons. This type of trapping is observed in the case of strong radiation doses. A new type of electrons traps has been identified with the 'Unibond' material oxide. The transport and the trapping of holes and electrons have been studied in the case of transient phenomena created by short radiative pulses. This study has been carried out using a new measurement method. - Study with three carriers: here are added to holes and electrons the protons introduced in the recovered oxide by the annealing under hydrogen. These protons are movable when they are submitted to the effect of an electric field and they induce a memory effect according to their position in the oxide. These different works show that the 'Unibond' material is a very good solution for the future development of S.O.I. (author) [fr

  6. Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-05-01

    Non-c-axis oriented CaBi2Ta2O9 (CBT) thin films have been successfully deposited via the triple alkoxide solution method on Pt-coated Si substrates by inserting BaBi2Ta2O9 (BBT) thin buffer layers. The BBT thin buffer layer, which was prepared on Pt-coated Si, was a key material for suppression of the nonpolar c-axis orientation and promoting the ferroelectric structure perpendicular to the in-plane direction of CBT thin film. The annealing temperature and thickness of the BBT thin buffer layers affected the dielectric, ferroelectric, and fatigue properties of the stacked CBT/BBT thin films. The resultant 650 °C annealed CBT/BBT(30 nm) thin film exhibited good P-E hysteresis properties and fatigue behaviors.

  7. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  8. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  9. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building -integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  10. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  11. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  12. Light trapping effects in thin film silicon solar cells

    OpenAIRE

    Haug, FJ; Söderström, T; Dominé, D; Ballif, C

    2009-01-01

    We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material an...

  13. Method for producing silicon thin-film transistors with enhanced forward current drive

    Science.gov (United States)

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  14. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices.

    Science.gov (United States)

    Muñoz-Rosas, Ana Luz; Rodríguez-Gómez, Arturo; Alonso-Huitrón, Juan Carlos

    2018-03-22

    Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  15. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  16. Scanning proximal microscopy study of the thin layers of silicon carbide-aluminum nitride solid solution manufactured by fast sublimation epitaxy

    Directory of Open Access Journals (Sweden)

    Tománek P.

    2013-05-01

    Full Text Available The objective of the study is a growth of SiC/(SiC1−x(AlNx structures by fast sublimation epitaxy of the polycrystalline source of (SiC1−x(AlNx and their characterisation by proximal scanning electron microscopy and atomic force microscopy. For that purpose optimal conditions of sublimation process have been defined. Manufactured structures could be used as substrates for wide-band-gap semiconductor devices on the basis of nitrides, including gallium nitride, aluminum nitride and their alloys, as well as for the production of transistors with high mobility of electrons and also for creation of blue and ultraviolet light emitters (light-emitted diodes and laser diodes. The result of analysis shows that increasing of the growth temperature up to 2300 K allows carry out sublimation epitaxy of thin layers of aluminum nitride and its solid solution.

  17. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    Science.gov (United States)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  18. Spatially resolved photoconductive properties of profiled polycrystalline silicon thin films

    Science.gov (United States)

    Savenije, Tom J.; van Veenendaal, Patrick A. T. T.; de Haas, Matthijs P.; Warman, John M.; Schropp, Ruud E. I.

    2002-05-01

    To study the mobility and lifetime of charge carriers in thin film polycrystalline silicon deposited by hot-wire chemical vapor deposition, time-resolved microwave conductivity measurements have been performed. Using this technique the change in conductivity in the polycrystalline silicon films after pulsed excitation can be monitored on a nanosecond time scale, without the use of electrodes. Due to the different penetration depths of the laser wavelengths used (320, 500, and 690 nm) combined with illumination from different sides, the photoconductivity in different regions within the sample can be measured. Four different samples of polycrystalline silicon deposited on Corning glass have been studied: Poly1 (highly defective), Poly2 (device quality) and profiled layers of Poly1 and Poly2. For front or back illumination, the conductivity transients for the Poly1 film are very similar and show that lifetimes of the charge carriers generated are less than 1 ns. For the Poly2 film the mobility in the interfacial substrate region (μ=0.17 cm2/V s) is more than 1 order of magnitude lower than in the top region (μ=3.8 cm2/V s). The formation of a thin Poly1 film on the surface of the Corning substrate, acting as a seed layer for the Poly2 layer, followed by the deposition of the Poly2 layer, results in only a relatively small increase in the mobility in the region close to the substrate as compared to the bare Poly2 layer, while the mobility in the top region remains approximately constant.

  19. Energy loss in thin layers in GEANT

    International Nuclear Information System (INIS)

    Lassila-Perini, K.; Urban, L.

    1995-01-01

    A method for the simulation of the energy loss distribution in thin gaseous layers has been implemented in GEANT and tested. Comparisons are made between the new code and the standard method in GEANT. Improvements are made to the standard method to enable a fast and reliable simulation of energy losses in thin layers. (orig.)

  20. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  1. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  2. An approach to characterize ultra-thin conducting films protected against native oxidation by an in-situ capping layer

    NARCIS (Netherlands)

    Van Hao, B.; Wiggers, Frank Bert; de Jong, Machiel Pieter; Kovalgin, Alexeij Y.

    2014-01-01

    We propose and demonstrate the application of a test structure to characterize electrical properties of ultra-thin titanium nitride films passivated by a non-conducting amorphous silicon layer. The amorphous silicon layer is used to prevent the oxidation of the conducting layer. Platinum electrodes

  3. Controlled thinning and surface smoothening of silicon nanopillars

    International Nuclear Information System (INIS)

    Kalem, S; Werner, P; Talalaev, V G; Nilsson, B; Hagberg, M; Arthursson, Oe; Soedervall, U

    2009-01-01

    A convenient method has been developed to thin electron beam fabricated silicon nanopillars under controlled surface manipulation by transforming the surface of the pillars to an oxide shell layer followed by the growth of sacrificial ammonium silicon fluoride coating. The results show the formation of an oxide shell and a silicon core without significantly changing the original length and shape of the pillars. The oxide shell layer thickness can be controlled from a few nanometers up to a few hundred nanometers. While downsizing in diameter, smooth Si pillar surfaces of less than 10 nm roughness within 2 μm were produced after exposure to vapors of HF and HNO 3 mixture as evidenced by transmission electron microscopy (TEM) analysis. The attempt to expose for long durations leads to the growth of a thick oxide whose strain effect on pillars can be assessed by coupled LO-TO vibrational modes of Si-O bonds. Photoluminescence (PL) of the pillar structures which have been downsized exhibits visible and infrared emissions, which are attributable to microscopic pillars and to the confinement of excited carriers in the Si core, respectively. The formation of smooth core-shell structures while reducing the diameter of the Si pillars has a potential in fabricating nanoscale electronic devices and functional components.

  4. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  5. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  6. Boron-doped nanocrystalline silicon thin films for solar cells

    International Nuclear Information System (INIS)

    Fathi, E.; Vygranenko, Y.; Vieira, M.; Sazonov, A.

    2011-01-01

    This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 deg. C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si:H were obtained from transmission and reflection spectra. By employing p + nc-Si:H as a window layer combined with a p' a-SiC buffer layer, a-Si:H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements.

  7. Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La2O3 thin films

    NARCIS (Netherlands)

    Jinesh, K.B.; Lamy, Y.; Wolters, Robertus A.M.; Klootwijk, J.H.; Tois, E.; Roozeboom, F.; Besling, W.F.A.

    2008-01-01

    The use of aluminum as an electrode in metal-insulator-semiconductor devices containing lanthanum oxide is impaired by unacceptable leakage current levels. Time of flight secondary ion mass spectroscopy depth profiling shows a significant amount of silicon out-diffusion from the substrate and

  8. Simulation of radiation effects in ultra-thin insulating layers

    Directory of Open Access Journals (Sweden)

    Timotijević Ljubinko B.

    2013-01-01

    Full Text Available The Monte Carlo simulations of charged particle transport are used to investigate the effects of exposing ultra-thin layers of insulators (commonly used in integrated circuits to beams of protons, alpha particles and heavy ions. Materials considered include silicon dioxide, aluminum nitride, alumina, and polycarbonate - lexan. The parameters that have been varied in simulations include the energy of incident charged particles and insulating layer thickness. Materials are compared according to both ionizing and non-ionizing effects produced by the passage of radiation. [Projekat Ministarstva nauke Republike Srbije, br. 171007

  9. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  10. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  11. Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer

    International Nuclear Information System (INIS)

    Okba, F.; Cherkashin, N.; Claverie, A.; Di, Z.; Nastasi, M.; Rossi, F.; Merabet, A.

    2010-01-01

    We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to 'clean' the top layer from pre-existing defects.

  12. Experimental investigation of the excess charge and time constant of minority carriers in the thin diffused layer of 0.1 Ohm-cm silicon solar cells

    Science.gov (United States)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.

    1976-01-01

    The observed low open-circuit voltage in 0.1 Ohm-cm solar cells is probably related to an excessively high diode saturation current. Theoretical studies conducted by Lindholm et al. (1975) and by Godlewski et al. (1975) have shown that a high saturation current could be produced by either high recombination rates or bandgap narrowing effects. A description is given of an investigation which shows that bandgap narrowing effects have a first order significance in determining the charge carrier transport controlling the open-circuit voltage of 0.1 Ohm-cm silicon solar cells.

  13. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Drahokoupil, Jan; Fekete, Ladislav; Klimša, Ladislav; Kopeček, Jaromír; Purkrt, Adam; Remeš, Zdeněk; Čtvrtlík, Radim; Tomáštík, Jan; Frank, Otakar; Janíček, P.; Mistrík, J.; Mortet, Vincent

    2016-01-01

    Roč. 69, Oct (2016), s. 13-18 ISSN 0925-9635 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743; GA ČR GA13-31783S; GA MŠk(CZ) LD14011; GA MŠk LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * silicon carbide * adherence * mechanical properties * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) Impact factor: 2.561, year: 2016

  14. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-10-01

    A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  15. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Carini, G.; De Geronimo, G; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-01-22

    A new set of Thin-Window Silicon Drift Detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 {angstrom} silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 {micro}m). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 {angstrom} thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft x-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  16. Photo and electroluminescence of porous silicon layers

    International Nuclear Information System (INIS)

    Keshmini, S.H.; Samadpour, S.; Haji-Ali, E.; Rokn-Abadi, M.R.

    1995-01-01

    Porous silicon (PSi) layers were prepared by both chemical and electrochemical methods on n- and p-type Si substrates. In the former technique, light emission was obtained from p-type and n-type samples. It was found that intense light illumination during the preparation process was essential for PSi formation on n-type substrates. An efficient electrochemical cell with some useful features was designed for electrochemical etching of silicon. Various preparation parameters were studied and photoluminescence emissions ranging from dark red to light blue were obtained from PSi samples prepared on p-type substrates. N-type samples produced emission ranging from dark red to orange yellow. Electroluminescence of porous silicon samples showed that the color of the emission was the same as the photoluminescence color of the sample, and its intensity and duration depended on the current density passed through the sample. The effects of exposure of samples to air, storage in vacuum and heat treatment in air on luminescence intensity of the samples and preparation of patterned porous layers were also studied. (author)

  17. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela; Dascula, Dan

    1996-01-01

    Undoped and Sb-doped SnO2 sol–gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  18. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Dascalu, Dan; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela

    1997-01-01

    Undoped and Sb-doped SnO2 sol¿gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  19. Effects of initial layers on surface roughness and crystallinity of microcrystalline silicon thin films formed by remote electron cyclotron resonance silane plasma

    CERN Document Server

    Murata, K; Hori, Masaki; Goto, T; Ito, M

    2002-01-01

    We have observed mu c-Si:H films grown in the glass substrate in electron cyclotron resonance plasma-enhanced chemical vapor deposition employing two-step growth (TSG) method, where the seed layer was formed without charged species firstly, and subsequently, the film with charged species. The mu c-Si:H films with smooth surface and high crystallinity were synthesized with a relatively high deposition rate at a low substrate temperature by TSG. By Fourier transform infrared attenuated-total reflection, it was found that the surface roughness and crystallinity of seed layer were related to the ratio of SiH bonds over SiH sub 2 ones in the film. Consequently, the control of chemical bonds at the initial layer is of importance and TSG method is effective for the formation of mu c-Si:H film with high quality.

  20. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  1. Silicon based substrate with calcium aluminosilicate/thermal barrier layer

    Science.gov (United States)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  2. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  3. Thin film silicon modules: contributions to low cost industrial production

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A. [Universite de Neuchatel, Neuchatel (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the research work done during the two-year period 2003-04 at the Thin-Film Solar Cell Laboratory of the Institute of Microtechnology (IMT) at the University of Neuchatel in Switzerland. The transition from fundamental research work to concrete industrialisation issues, and changes within the research staff are discussed. The main results of the work done are presented, including basic techniques for the production of p-i-n solar cells on glass, new technologies for the deposition of n-i-p cells on low-cost flexible substrates and the optimisation of zinc oxide deposition methods. The key role played by substrate chemistry and roughness in the nucleation and growth of micro-crystalline silicon layers is looked at and diagnostic tools for the analysis of micro-crystalline solar cells are discussed.

  4. Additives to silane for thin film silicon photovoltaic devices

    Science.gov (United States)

    Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles

    2013-09-17

    Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.

  5. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  6. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  7. Sputter-deposited low reflectance vanadium oxide-molybdenum oxide thin films on silicon

    Science.gov (United States)

    Nayak, Manish Kumar; Esther, A. Carmel Mary; Bera, Parthasarathi; Dey, Arjun

    2017-09-01

    A single layer antireflective, smart, crystalline and nanocolumnar pulsed RF magnetron sputtered vanadium oxide-molybdenum oxide thin film on silicon is proposed for the alternate antireflective material for silicon based futuristic solar cell application. The VO-MO film with 130 nm thickness grown at 200 W shows significant low reflectance (1% within the 500-600 nm region). The VO-MO film with lowest reflectance shows a phase transition at around 55 °C which is beneficial due to film inherent variable IR emittance behaviour which may be helpful for eliminating excess heat load generated during in-service of silicon solar cell.

  8. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  9. Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation

    International Nuclear Information System (INIS)

    Alloatti, L.; Lauermann, M.; Koos, C.; Freude, W.; Sürgers, C.; Leuthold, J.

    2013-01-01

    We determine the optical losses in gate-induced charge accumulation/inversion layers at a Si/SiO 2 interface. Comparison between gate-induced charge layers and ion-implanted thin silicon films having an identical sheet resistance shows that optical losses can be significantly lower for gate-induced layers. For a given sheet resistance, holes produce higher optical loss than electrons. Measurements have been performed at λ = 1550 nm

  10. Silicon MIS/inversion-layer solar cells

    Science.gov (United States)

    Olsen, L. C.

    1982-10-01

    Silicon Metal-Insulator-Semiconductor/Inversion-Layer (MIS-IL) solar cells were investigated as an approach to low cost terrestrial photovoltaics. Considerable progress was made concerning the development of procedures for SiO deposition for inversion-layer formation, the characterization of the fixed charge in deposited SiO layers, surface state density at the Si-SiO interface, fabrication and characterization of MIS-IL solar cells. Improvements were also made in the theory of MIS-IL solar cells, and utilized to calculate cell performance for a range of insulator charge and base resistivities. Inversion layer formation was studied in several ways. MOS devices was analyzed to determine the magnitude of the net positive charge, Q/sub POS/, vensus surface potential, Psi/sub S/. In situ sheet resistance measurements was made to determine the charge distribution within the deposited SiO layer. Finally, estimates of Q/sub POS/ obtained by comparing experimental results for MIS-IL cells and theory are compared with values of Q/sub POS/ determined for MOS structures fabricated simultaneously with the solar cells. Cell fabrication procedures emphasized low temperature processing.

  11. Advantages of thin silicon solar cells for use in space

    Science.gov (United States)

    Denman, O. S.

    1978-01-01

    A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.

  12. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  13. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  14. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, Mark A.; Smithers, M.A.; Kip, Gerhardus A.M.; Lefferts, Leonardus

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are

  15. Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Datta, Moni Kanchan; Maranchi, Jeffrey; Chung, Sung Jae; Epur, Rigved; Kadakia, Karan; Jampani, Prashanth; Kumta, Prashant N.

    2011-01-01

    Research highlights: → Thin film amorphous C/Si. Good cycling response validates carbon matrix for Silicon anodes. → Thin film amorphous C/Si/C. Good cycling response validates carbon as an interface and matrix. - Abstract: The buffering effect of carbon on the structural stability of amorphous silicon films, used as an anode for lithium ion rechargeable batteries, has been studied during long term discharge/charge cycles. To this extent, the electrochemical performance of a prototype material consisting of amorphous Si thin film (∼250 nm) deposited by radio frequency magnetron sputtering on amorphous carbon (∼50 nm) thin films, denoted as a-C/Si, has been investigated. In comparison to pure amorphous Si thin film (a-Si) which shows a rapid fade in capacity after 30 cycles, the a-C/Si exhibits excellent capacity retention displaying ∼0.03% fade in capacity up to 50 cycles and ∼0.2% after 50 cycles when cycled at a rate of 100 μA/cm 2 (∼C/2) suggesting that the presence of thin amorphous C layer deposited between the Cu substrate and a-Si acts as a buffer layer facilitating the release of the volume induced stresses exhibited by pure a-Si during the charge/discharge cycles. This structural integrity combined with microstructural stability of the a-C/Si thin film during the alloying/dealloying process with lithium has been confirmed by scanning electron microscopy (SEM) analysis. The buffering capacity of the thin amorphous carbon layer lends credence to its use as the likely compliant matrix to curtail the volume expansion related cracking of silicon validating its choice as the matrix for bulk and thin film battery systems.

  16. Implanted Silicon Resistor Layers for Efficient Terahertz Absorption

    Science.gov (United States)

    Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.

    2005-01-01

    Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for

  17. Thin surface layers of SiO2 obtained from tetraethoxysilane (TEOS) in electric discharges stabilized by a dielectric barrier

    International Nuclear Information System (INIS)

    Schmidt-Szalowski, K.; Fabianowski, W.; Rzanek-Boroch, Z.; Gutkowski, R.

    1998-01-01

    The reported research was devoted to the process of thin layer deposition in a discharge at atmospheric pressure stabilized by a dielectric barrier. Thin surface layers composed mainly of silicon dioxide were produced by polycondensation of tetraethoxysilane vapor in mixtures with helium gas with a small amount of oxygen. The influence was studied of the voltage applied and of the time elapsed in the deposition process, on the thickness of the layer, as were the changes of composition of the deposited layers during and after storage. It is shown that good passivating pinhole-free silicon oxide layers can be produced in surface barrier discharges. (J.U.)

  18. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  19. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place....

  20. Quantifying Capacity Loss due to Solid-Electrolyte-Interphase Layer Formation on Silicon Negative Electrodes in Lithium-ion Batteries

    OpenAIRE

    Nadimpalli, Siva P. V.; Sethuraman, Vijay A.; Dalavi, Swapnil; Lucht, Brett; Chon, Michael J.; Shenoy, Vivek B.; Guduru, Pradeep R.

    2012-01-01

    Charge lost per unit surface area of a silicon electrode due to the formation of solid-electrolyte-interphase (SEI) layer during initial lithiation was quantified, and the species that constitute this layer were identified. Coin cells made with Si thin-film electrodes were subjected to a combination of galvanostatic and potentiostatic lithiation and delithiation cycles to accurately measure the capacity lost to SEI-layer formation. While the planar geometry of amorphous thin films allows accu...

  1. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  2. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films

    International Nuclear Information System (INIS)

    Xue Wei; Cui Tianhong

    2007-01-01

    Single-walled carbon nanotube (SWNT) multilayer thin films are deposited on silicon substrates with layer-by-layer self-assembly. The structural, mechanical, electrical, and thermal properties of the thin films are investigated using quartz crystal microbalance (QCM), nanoindentation, and rapid thermal annealing techniques, respectively. Scanning electron microscopy inspection shows that the SWNT multilayer is formed through a dense network of nanotube bundles. Based on the QCM measurement, the volume and mass ratios of SWNTs in the multilayer are calculated as 63.2% and 75%, respectively. Nanoindentation on the SWNT thin film shows that its Young's modulus and hardness are approximately 17 and 0.6 GPa, respectively. Current-voltage (I-V) and four-point probe techniques are used to study the electrical properties of the SWNT thin film after being heated at different temperatures. The conductance of the SWNT thin film at 300 deg. C is measured as 2.29 mS, which is 50 times higher than that at room temperature (0.045 mS)

  3. HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, James [Princeton Univ., NJ (United States)

    2017-12-04

    This project is the first investigation of the use of thin titanium dioxide layers on silicon as a hole-blocking / electron-transparent selective contact to silicon. The work was motivated by the goal of a high-efficiency low-cost silicon-based solar cells that could be processed entirely at low temperature (300 Degree Celsius) or less, without requiring plasma-processing.

  4. Design criteria for XeF2 enabled deterministic transformation of bulk silicon (100) into flexible silicon layer

    KAUST Repository

    Hussain, Aftab M.

    2016-07-15

    Isotropic etching of bulk silicon (100) using Xenon Difluoride (XeF2) gas presents a unique opportunity to undercut and release ultra-thin flexible silicon layers with pre-fabricated state-of-the-art Complementary Metal Oxide Semiconductor (CMOS) electronics. In this work, we present design criteria and mechanism with a comprehensive mathematical model for this method. We consider various trench geometries and parametrize important metrics such as etch time, number of cycles and area efficiency in terms of the trench diameter and spacing so that optimization can be done for specific applications. From our theoretical analysis, we conclude that a honeycomb-inspired hexagonal distribution of trenches can produce the most efficient release of ultra-thin flexible silicon layers in terms of the number of etch cycles, while a rectangular distribution of circular trenches provides the most area efficient design. The theoretical results are verified by fabricating and releasing (varying sizes) flexible silicon layers. We observe uniform translation of design criteria into practice for etch distances and number of etch cycles, using reaction efficiency as a fitting parameter.

  5. Silicon thin film growth by low temperature liquid phase epitaxy for photovoltaic applications

    International Nuclear Information System (INIS)

    Abdo, F.

    2007-03-01

    In this thesis is presented an economic, clean and innovating way to carry out silicon substrate in thin layer for photovoltaic applications. It is based on layer growth by low temperature liquid phase epitaxy on silicon substrates embrittled by ion implantation. The aim of this work is to find experimental conditions to decrease the epitaxy temperature (≤800 C instead of 1050 C) while conserving a relatively high growth velocity. An innovating method has been implemented; it consists to use two different baths: the first one Al-Sn-Si allows to de-oxidize the silicon substrate surface without using hydrogen and the second one containing Sn-Si allows the growth of a thick layer of silicon. Uniform layers of a thickness of 15μm have been obtained after three hours of growth. Thermodynamic studies exploiting the phase diagrams of ternary or quaternary mixtures have been carried out to reach high growth velocity. Tin and copper based alloys have been chosen, tin for lowering the temperature and copper for increasing the silicon solubility. Layers of 30 μm have been obtained after two hours of growth. It has been shown too that this epitaxy step could be compatible with the technology of ion implantation embrittlement. (O.M.)

  6. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  7. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  8. Studying the noise parameters of thin-film silicon resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1986-01-01

    The results of studies on spectral density and energy noise equivalent of thin-film resistors on the base of amorphous silicon and KIM and KVM commercial high-ohmic resistors are presented. Dependence of the active part of impedance on frequency is shown to be the main source of redundant noise in resistors. Dependence of spectral density of noise voltage of current noises of silicon resistors on applied voltage is described by the formula S T =B V 2 /f 1.6 with the values B=(1.4-1.7)x10 -12 Hz 0.6 . As to noise parameters the silicon resistor is superior to commercial resistors

  9. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  11. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  12. Expanding the versatility of silicon carbide thin films and nanowires

    Science.gov (United States)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. The direct growth of SrTiO3 (100) layers on silicon (100) substrates; application as a buffer layer for the growth of DyBa2Cu3O7-delta thin films

    NARCIS (Netherlands)

    Mechin, L.L.; Gerritsma, G.J.; Garcia lopez, J.J.

    1999-01-01

    Highly (100)-oriented SrTiO3 thin films were sputtered on Si (100) substrates. After the optimization of the deposition conditions, the fraction of (110)-oriented material in the SrTiO3 films was about 3%, but the rocking curve of the SrTiO3 (200) peak was quite large (full width at half maximum

  14. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......, the current bonding method can be also used for further MEMS applications. ...

  15. Layer-by-layer assembly of clay-filled polymer nanocomposite thin films

    Science.gov (United States)

    Jang, Woo-Sik

    2008-10-01

    A variety of functional thin films can be produced using the layer-by-layer assembly technique. In this work, assemblies of anionic clay and cationic polymer were studied with regard to film growth and gas barrier properties. A simple, yet flexible robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown and studied on poly(ethylene terephthalate) film or a silicon wafer. After 30 clay polymer bilayers were deposited, the resulting transparent film had an oxygen transmission rate (OTR) below 0.005 cm3/m2/day/atm. This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a "brick wall" nanostructure comprised of completely exfoliated clay bricks in polymeric "mortar". The growth of polymer and clay assemblies is then shown to be controlled by altering the pH of polyethylenimine (PEI). Growth, oxygen permeability, and mechanical behavior of clay-PEI assemblies were studied as a function of pH in an effort to tailor the behavior of these thin films. Thicker deposition at high pH resulted in reduced oxygen permeability and lower modulus, which highlights the tailorability of this system.

  16. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  17. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 6. XPS study of palladium sensitized nano porous silicon thin ... To stabilize the material PS surface was modified by a simple and low cost chemical method using PdCl2 solution at room temperature. X-ray photoelectron spectroscopy (XPS) was performed to ...

  18. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  19. Thin-film resistance thermometers on silicon wafers

    International Nuclear Information System (INIS)

    Kreider, Kenneth G; Ripple, Dean C; Kimes, William A

    2009-01-01

    We have fabricated Pt thin-film resistors directly sputtered on silicon substrates to evaluate their use as resistance thermal detectors (RTDs). This technique was chosen to achieve more accurate temperature measurements of large silicon wafers during semiconductor processing. High-purity (0.999 968 mass fraction) platinum was sputter deposited on silicon test coupons using titanium and zirconium bond coats. These test coupons were annealed, and four-point resistance specimens were prepared for thermal evaluation. Their response was compared with calibrated platinum–palladium thermocouples in a tube furnace. We evaluated the effects of furnace atmosphere, thin-film thickness, bond coats, annealing temperature and peak thermal excursion of the Pt thin films. Secondary ion mass spectrometry (SIMS) was performed to evaluate the effect of impurities on the thermal resistance coefficient, α. We present typical resistance versus temperature curves, hysteresis plots versus temperature and an analysis of the causes of uncertainties in the measurement of seven test coupons. We conclude that sputtered thin-film platinum resistors on silicon wafers can yield temperature measurements with uncertainties of less than 1 °C, k = 1 up to 600 °C. This is comparable to or better than commercially available techniques

  20. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  1. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Yang, Hyundeok; Chang, Man; Baek, Sungkweon; Hwang, Hyunsang; Jeon, Sanghun; Kim, Juhyung; Kim, Chungwoo

    2005-01-01

    Silicon nitride with silicon nanocrystals formed by low-energy silicon plasma immersion ion implantation has been investigated as a charge trapping layer of a polycrystalline silicon-oxide-nitride-oxide-silicon-type nonvolatile memory device. Compared with the control sample without silicon nanocrystals, silicon nitride with silicon nanocrystals provides excellent memory characteristics, such as larger width of capacitance-voltage hysteresis, higher program/erase speed, and lower charge loss rate at elevated temperature. These improved memory characteristics are derived by incorporation of silicon nanocrystals into the charge trapping layer as additional accessible charge traps with a deeper effective trap energy level

  2. Thermal analysis of thin layer boilover

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent [Universidad de las Americas, Puebla (Mexico); Mechanical Engineering Department, Cholula, Puebla (Mexico); Ferrero, Fabio; Munoz, Miguel; Arnaldos, Josep; Casal, Joaquim [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2008-10-15

    A mathematical model is developed to simulate the thin layer boilover phenomenon. This model takes into account convective currents as well as conduction and radiation absorption through the fuel layer and is resolved numerically employing a scheme of Runge-Kutta, combined with the numerical method of lines. Solutions of the model showed a good agreement with the experimental data, both from this work and by other authors, demonstrating the importance of the convective currents. The model provided velocities of these currents, of the same order of magnitude as the values reported in the technical literature. Thickness of the remaining fuel and the interface temperature are correctly calculated by the model, allowing the prediction of the time required for the boilover to start. (orig.)

  3. Thin layer fibres are a knotty problem

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Concern that emergency core cooling system (ECCS) strainers can be blocked by insulation debris has been generated by an incident at the Swedish Barsebaeck-2 BWR in 1992 and two subsequent incidents at the Perry and Limerick BWR plants in the USA. Recent studies are reported which show that blockage of the small, passive suction type strainers common to these and many other BWRs can occur when only very small quantities of fibrous material present in the suppression pool combine with particulates such as corrosion products to form thin layers on the strainer surface. Layers only a few millimetres thick lead to extremely high head losses on the strainer surface and can cause cavitation in the ECCS pumps. It is concluded that the most practical reliable and cost effective solution is to replace the small strainers with larger ones. (UK)

  4. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  5. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.

    Science.gov (United States)

    Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter

    2017-06-01

    Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.

  6. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  7. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  8. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  9. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  10. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    Science.gov (United States)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  11. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  12. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  13. Thin-film silicon detectors for particle detection

    OpenAIRE

    Wyrsch, Nicolas; Dunand, S.; Miazza, C.; Shah, A.; Anelli, G.; Despeisse, M.; Garrigos, A.; Jarron, P.; Kaplon. J.; Moraes, D.; Commichau, S. C.; Dissertori, G.; Viertel, G. M.

    2008-01-01

    Integrated particle sensors have been developed using thin-film on ASIC technology. For this purpose, hydrogenated amorphous silicon diodes, in various configurations, have been optimized for particle detection. These devices were first deposited on glass substrates to optimize the material properties and the dark current of very thick diodes (with thickness up to 50 μm). Corresponding diodes were later directly deposited on CMOS readout chips. These integrated particle sensors have been char...

  14. Nanostructured sp2-carbon infiltration of mesoporous silicon layers.

    Science.gov (United States)

    Polini, Riccardo; Valentini, Veronica; Mattei, Giorgio

    2009-06-01

    The preparation of composite layers made of porous silicon (PS) infiltrated with nanostructured carbon is reported. These composite layers were obtained by chemical vapor infiltration (CVI) of mesoporous silicon under process conditions normally employed to grow diamond films by Hot Filament Chemical Vapour Deposition (HFCVD). Micro-Raman spectroscopy and Field Emission Gun Scanning Electron Microscopy (FEG-SEM) techniques showed that diamond nucleation density was very low whilst sp2 carbon permeated completely, even after 1 h deposition, the thickness of the PS layers that preserved their mesoporous columnar structure.

  15. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  16. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  17. Fabrication and superconducting properties of alternately-layered MgB2/Ni thin films with different Ni-layer spacing

    International Nuclear Information System (INIS)

    Tanaka, Akira; Doi, Toshiya; Iwasaki, Ikumi; Hakuraku, Yoshinori; Kitaguchi, Hitoshi; Takahashi, Kenichiro; Hata, Satoshi

    2009-01-01

    We will show the superconducting properties of alternately-layered MgB 2 /Ni thin films inserted as very thin (1 nm) nickel layers between MgB 2 layers a few tens of nanometers thick. The MgB 2 /Ni thin films were prepared on silicon (100) substrates by sequentially switching electron-beam evaporation and coaxial vacuum arc evaporation techniques without post-annealing. In this study, we prepared alternately layered MgB 2 /Ni thin films with varying Ni-layer spacings. The Ni layer spacings were set to 32, 23 and 16 nm, respectively. The MgB 2 /Ni thin films were neither inter-diffusion nor chemical reactions between MgB 2 and Ni. Clear enhancements of the J c were observed in the MgB 2 /Ni thin films when the magnetic fields were applied parallel to the inserted Ni layers, and the peak positions in the F p -B curves shifted to higher magnetic fields with the decrease of the Ni-layer spacing. These results clearly indicate that the Ni layers inserted in alternately-layered MgB 2 /Ni thin films work as very effective flux-pinning centers. (author)

  18. Structural characterization of the interface structure of amorphous silicon thin films after post-deposition argon or hydrogen plasma treatment

    Science.gov (United States)

    Neumüller, Alex; Sergeev, Oleg; Vehse, Martin; Agert, Carsten

    2017-05-01

    The interfaces in silicon thin film solar cells and silicon heterojunction solar cells are considered to be very important for the solar cell conversion efficiency. This work studies the interface properties of hydrogenated amorphous silicon thin films deposited on crystalline silicon wafers after post-deposition hydrogen plasma treatment (HPT) or argon plasma treatment (APT). The investigation extends our previous study by examining the structural changes resulting from the post-deposition plasma treatment on silicon thin film solar cells. We analyzed the ellipsometry and infrared spectra of our samples to gain a deeper understanding of the fundamental plasma treatment effects. By using post-deposition APT and HPT, we were able to reduce the material stress and improve the structure of these layers. Our results show that APT yields a more compact material with fewer voids and less distinct localized tail states. We discuss the effect of APT and HPT on the most crucial interface in silicon heterojunction solar cells, the i-a-Si:H/c-Si interface. We propose to introduce APT as a post-deposition process step in the fabrication of silicon heterojunction solar cells.

  19. Fabrication of PIN diode detectors on thinned silicon wafers

    CERN Document Server

    Ronchin, Sabina; Dalla Betta, Gian Franco; Gregori, Paolo; Guarnieri, Vittorio; Piemonte, Claudio; Zorzi, Nicola

    2004-01-01

    Thin substrates are one of the possible choices to provide radiation hard detectors for future high-energy physics experiments. Among the advantages of thin detectors are the low full depletion voltage, even after high particle fluences, the improvement of the tracking precision and momentum resolution and the reduced material budget. In the framework of the CERN RD50 Collaboration, we have developed p-n diode detectors on membranes obtained by locally thinning the silicon substrate by means of tetra-methyl ammonium hydroxide etching from the wafer backside. Diodes of different shapes and sizes have been fabricated on 57 and 99mum thick membranes. They have been tested, showing a very low leakage current ( less than 0.4nA/cm**2) and, as expected, a very low depletion voltage ( less than 1V for the 57mum membrane). The paper describes the technological approach used for devices fabrication and reports selected results from the electrical characterization.

  20. Thin layer Characterization by ZGV Lamb modes

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S1-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S1-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  1. Thin layer Characterization by ZGV Lamb modes

    Energy Technology Data Exchange (ETDEWEB)

    Ces, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire, E-mail: maximin.ces@espci.fr [Laboratoire Ondes et Acoustique, ESPCI- Universite Paris 7- CNRS UMR 7587, 10 rue Vauquelin, 75231 Paris Cedex 05- France (France)

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S{sub 1}-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S{sub 1}-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  2. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  3. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  4. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    The modified thin layer chromatography can be used for the analysis of amino acids. When compared to the classical thin layer chromatography, the improved method was more rapid and inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino ...

  5. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    Science.gov (United States)

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  6. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  7. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films.

    Science.gov (United States)

    Morales-Sánchez, A; Barreto, J; Domínguez, C; Aceves, M; Yu, Z; Luna-López, J A

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 °C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  8. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  9. Thin-layer and paper chromatography

    International Nuclear Information System (INIS)

    Sherma, J.

    1986-01-01

    This selective review covers the literature of thin-layer chromatography (TLC) and paper chromatography (PC) cited in Chemical Abstracts from December 5, 1983, through November 25, 1985, and Analytical Abstracts from November 1983 to November 1985. Also researched directly were the following important journals publishing papers on TLC and PC: the Journal of Chromatography (including its bibliography issues), Journal of High Resolution Chromatography and Chromatography Communications, Journal of Chromatographic Science, Chromatographia, Analytical Chemistry, JAOAC, and the special TLC issues of the Journal of Liquid Chromatography. Many of the inherent advantages of TLC that are obvious to workers familiar with high performance, quantitative theory and practice still are not appreciated adequately by the majority of people using chromatography. These include unrestricted access to the separation process; introducing magnetic, thermal, electrical, and other physical forces to improve resolution; high sample throughput; truly multidimensional separations; and the use of controlled multiple gradients. Many advantages of TLC relative to column chromatography were discussed in the Introductions to our 1982 and 1984 reviews of TLC in this Journal. No complete commercial robotics system specifically for TLC has been developed, but all necessary modules are available for such a system. The combination of robotics, with the continued development of theory, practice, and instrumentation will lead eventually to TLC systems that are unrivaled for speed, versatility, accuracy, precision, and sensitivity. 573 references

  10. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  11. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  12. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons.

    Science.gov (United States)

    Ai, Hua; Meng, Hongdi; Ichinose, Izumi; Jones, Steven A; Mills, David K; Lvov, Yuri M; Qiao, Xiaoxi

    2003-09-30

    Electrostatic layer-by-layer (LbL) self-assembly, a novel method for ultrathin film coating has been applied to silicone rubber to encourage nerve cell adhesion. The surfaces studied consisted of precursor layers, with alternating cationic poly(ethyleneimine) (PEI) and anionic sodium poly(styrenesulfonate) (PSS) followed by alternating laminin and poly-D-lysine (PDL) layers or fibronectin and PDL layers. Film growth increased linearly with the number of layers. Every fibronectin/PDL and laminin/PDL bilayer was 4.4 and 3.5 nm thick, respectively. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. Of the coatings studied, a PDL layer was the most hydrophilic. A multilayer film with composition [PSS/PEI]3+[fibronectin/PDL]4 or [PSS/PEI]3+[laminin/PDL]4 was highly favorable for neuron adhesion, in contrast to bare silicone rubber substrate. The film coated on silicone rubber is biocompatible for cerebellar neurons with active viability, as shown by lactate dehydrogenase (LDH) assay and fluorescence cellular metabolism observations. These results demonstrate that LbL self-assembly provides an effective approach to apply films with nanometer thickness to silicone rubber. Such only few nanometer thick films are biocompatible with neurons, and may be used to coat devises for long-term implant in the central nervous system.

  13. Epitaxial Growth of Cadmium Selenide Films on Silicon with a Silicon Carbide Buffer Layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.; Rubets, V. P.

    2018-03-01

    An epitaxial cubic 350-nm-thick cadmium selenide has been grown on silicon for the first time by the method of evaporation and condensation in a quasi-closed volume. It is revealed that, in this method, the optimum substrate temperature is 590°C, the evaporator temperature is 660°C, and the growth time is 2 s. To avoid silicon etching by selenium with formation of amorphous SiSe2, a high-quality 100-nm-thick buffer silicon carbide layer has been synthesized on the silicon surface by substituting atoms. The powder diffraction pattern and the Raman spectrum unambiguously correspond to cubic cadmium selenide crystal. The ellipsometric, Raman, and electron diffraction analyses demonstrate high structural perfection of the cadmium selenide layer and the absence of a polycrystalline phase.

  14. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  15. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  16. Light scattering and trapping in thin film silicon solar cells with an n-i-p configuration

    OpenAIRE

    Böttler, Wanjiao

    2015-01-01

    Microcrystalline silicon μc-Si:H thin film solar cells with an n-i-p configuration were set up based on the optimized processes for solar cells with a p-i-n configuration. The deposition processes of window, absorber and front contact layers were optimized. The effects of the thickness and doping ratio of p-type layers, the thickness of the front contact layers and the silane concentration of the absorber layers on the solar cell performance were investigated. For all the optimization and inv...

  17. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  18. Protective silicon coating for nanodiamonds using atomic layer deposition

    International Nuclear Information System (INIS)

    Lu, J.; Wang, Y.H.; Zang, J.B.; Li, Y.N.

    2007-01-01

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH 4 ). The coating was performed by sequential reaction of SiH 4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability

  19. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  20. Adjustable optical response of amorphous silicon nanowires integrated with thin films.

    Science.gov (United States)

    Dhindsa, Navneet; Walia, Jaspreet; Pathirane, Minoli; Khodadad, Iman; Wong, William S; Saini, Simarjeet Singh

    2016-04-08

    We experimentally demonstrate a new optical platform by integrating hydrogenated amorphous silicon nanowire arrays with thin films deposited on transparent substrates like glass. A 535 nm thick thin film is anisotropically etched to fabricate vertical nanowire arrays of 100 nm diameter arranged in a square lattice. Adjusting the nanowire length, and consequently the thin film thickness permits the optical properties of this configuration to be tuned for either transmission filter response or enhanced broadband absorption. Vivid structural colors are also achieved in reflection and transmission. The optical properties of the platform are investigated for three different etch depths. Transmission filter response is achieved for a configuration with nanowires on glass without any thin film. Alternatively, integrating thin film with nanowires increases the absorption efficiency by ∼97% compared to the thin film starting layer and by ∼78% over nanowires on glass. The ability to tune the optical response of this material in this fashion makes it a promising platform for high performance photovoltaics, photodetectors and sensors.

  1. Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological features

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Jancelewicz, Mariusz; Nowaczyk, Grzegorz; Kempiński, Mateusz; Peplińska, Barbara; Jarek, Marcin; Załęski, Karol; Jurga, Stefan; Smyntyna, Valentyn

    2015-01-01

    TiO 2 thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl 4 and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO 2 crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO 2 are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO 2 and porous Si were established. • The approximate size of TiO 2 nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented

  2. The silicon-silicon oxide multilayers utilization as intrinsic layer on pin solar cells

    International Nuclear Information System (INIS)

    Colder, H.; Marie, P.; Gourbilleau, F.

    2008-01-01

    Silicon nanostructures are promising candidate for the intrinsic layer on pin solar cells. In this work we report on new material: silicon-rich silicon oxide (SRSO) deposited by reactive magnetron sputtering of a pure silica target and an interesting structure: multilayers consisting of a stack of SRSO and pure silicon oxide layers. Two thicknesses of the SRSO sublayer, t SRSO , are studied 3 nm and 5 nm whereas the thickness of silica sublayer is maintaining at 3 nm. The presence of nanocrystallites of silicon, evidenced by X-Ray diffraction (XRD), leads to photoluminescence (PL) emission at room temperature due to the quantum confinement of the carriers. The PL peak shifts from 1.3 eV to 1.5 eV is correlated to the decreasing of t SRSO from 5 nm down to 3 nm. In the purpose of their potential utilization for i-layer, the optical properties are studied by absorption spectroscopy. The achievement a such structures at promising absorption properties. Moreover by favouring the carriers injection by the tunnel effect between silicon nanograins and silica sublayers, the multilayers seem to be interesting for solar cells

  3. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    Science.gov (United States)

    2015-03-01

    ray energy, x is the thickness of the h-BN or Si region, Gammaφ is the gamma flux of the cobalt 60 source, and t is the irradiation time... Boron Nitride Thin Films Grown by Atomic Layer Deposition," Thin Solid Films, no. 571, pp. 51-55, 2014. [8] H. X . Chen, X . G. Zhao, Z. J. Ma, Y. Li...Gehrke and U. Vetter, "Modeling the diode characteristics of boron nitride/silicon carbide heterojunctions," Applied Physics Letters, vol. 97, 2010

  4. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Blanque, S. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Ibarz, D.; Bertomeu, J. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)

    2009-03-15

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances ({rho}{sub c} {approx} 10 m{omega} cm{sup 2}) have been obtained on 2.8 {omega} cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  5. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  6. Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells

    Science.gov (United States)

    Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han

    2017-09-01

    We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.

  7. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  8. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  9. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  10. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  11. Performance and stability of low temperature hydrogenated amorphous silicon thin film transistors fabricated on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Kim, Sung Ki; Lee, Jong-Kwon; Lee, Seok-Woo; Lee, Hong Koo; Peak, Seung Han; Park, Yong-In; Kim, Chang-Dong; Hwang, Yong Kee; Chung, In-Jae [LG Display R and D Center, Paju, Gyongki-do, 413-811 (Korea)

    2010-04-15

    The key development issues in the flexible displays are TFT backplane technology, which requires competitive device performance and low temperature process compatible with flexible substrate. Here, we have fabricated low temperature hydrogenated amorphous silicon thin film transistor on a stainless steel substrate coated with organic barrier layer. Then, we have studied initial device performance by varying plasma gas and pressure conditions at a low power and a low temperature during amorphous silicon and silicon nitride deposition steps. Also, we discuss the stability characteristics of this low temperature processed thin film transistor, which reveals enough possibility for use in flexible display applications. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Correlation studies between surface tension energy and ionic mobility in silicone - Dammar thin film for dye sensitized solar cells

    Science.gov (United States)

    Zakaria, R.; Ahmad, A. H.; Taib, M. F. Mohamad; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-09-01

    Organic thin film system consisting of Silicone-dammar (SD) polymer resin was prepared and studied with respect to their electrochemical properties. Dammar which is a local plant resin (Dipterocaupacea sp) was mixed with silicone in various compositions and the two components were modified by using a solvent. A thin film layered on glass slaid was obtained by Doctor Blade method and cured at room temperature. Silicone-dammar with a composition ratio of 80:20 (SD20) showed the highest non-wetting angle at 90.13 degrees however the sample with a composition ratio of 90:10 (SD10) showed the highest surface tension energy at 179.80 J in the contact angle test. Electrochemical Impedance Spectroscopy (EIS) analysis was done to investigate the electron transport and it was found that the SD10 sample provides a good medium for ionic mobility.

  13. Delamination of Compressed thin Layers at Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Jensen, Henrik Myhre; Sørensen, Kim Dalsten

    2008-01-01

    An analysis of delamination for a thin elastic film, attached to a substrate with a corner, is carried out. The film is in compression and the analysis is performed by combining results from fracture mechanics and the theory of thin shells. The results show a very strong dependency of the angle...

  14. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  15. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  16. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  17. Critical Dispersion Distance of Silicon Nanoparticles Intercalated between Graphene Layers

    Directory of Open Access Journals (Sweden)

    Shuze Zhu

    2012-01-01

    Full Text Available Nanocomposites of silicon nanoparticles (Si NPs dispersed in between graphene layers emerge as potential anode materials of high-charge capacity for lithium-ion batteries. A key design requirement is to keep Si NPs dispersed without aggregation. Experimental design of the Si NP dispersion in graphene layers has remained largely empirical. Through extensive molecular dynamics simulations, we determine a critical NP dispersion distance as the function of NP size, below which Si NPs in between graphene layers evolve to bundle together. These results offer crucial and quantitative guidance for designing NP-graphene nanocomposite anode materials with high charge capacity.

  18. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  19. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  20. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  1. Nonvolatile Polycrystalline-Silicon Thin-Film-Transistor Silicon-Oxide-Nitride-Oxide-Silicon Memory with Periodical Finlike Channels Fabricated Using Nanoimprint Technology

    Science.gov (United States)

    Chen, Henry J. H.; Huang, Chien-Jen

    2013-02-01

    This work addresses the characteristics of a nonvolatile polycrystalline-silicon thin-film-transistor silicon-oxide-nitride-oxide-silicon (SONOS) memory with periodical finlike channels fabricated using nanoimprint lithography. The polycrystalline silicon periodical finlike channels were fabricated using ultraviolet (UV) nano-imprint lithography and studied by transmission electron microscopy (TEM). The memories with periodical finlike channels have lower operation voltage, higher programming speed, larger memory window, and better endurance and data retention than those with a single channel. The proposed approach can be utilized to fabricate a high-performance thin-film-transistor memory at a low cost.

  2. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  3. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  4. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  5. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  6. Hydrogen in magnesium palladium thin layer structures

    NARCIS (Netherlands)

    Kruijtzer, G.L.

    2008-01-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high

  7. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  8. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  9. Fabrication and nuclear reactor tests of ultra-thin 3D silicon neutron detectors with a boron carbide converter

    Science.gov (United States)

    Fleta, C.; Guardiola, C.; Esteban, S.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodríguez, J.; Lousa, A.; Martínez-de-Olcoz, L.; Lozano, M.

    2014-04-01

    We describe the design, fabrication process and characterization of a thermal neutron detector based on ultra-thin silicon PIN diodes with 3D electrodes and a 10B4C neutron converter layer. The sensors were fabricated on SOI silicon with an active thickness of 20 μm which allows for a low gamma sensitivity, while the 3D structure of the electrodes results in a lower capacitance that in the equivalent planar sensor. The 2.7 μm 10B4C converter layer was deposited through RF magnetron sputtering on a whole silicon wafer, opening the path for mass-production. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and their intrinsic detection efficiency for themal neutrons and the gamma sensitivity as a function of the energy threshold were obtained.

  10. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  11. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  12. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  13. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias [Univ. of Marburg (Germany)

    2001-11-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  14. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias Franz [Univ. of Marburg (Germany)

    2002-08-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  15. Properties of ultrathin cholesterol and phospholipid layers surrounding silicon-carbide nanotube: MD simulations.

    Science.gov (United States)

    Raczyński, Przemysław; Raczyńska, Violetta; Górny, Krzysztof; Gburski, Zygmunt

    2015-08-15

    Computer simulation technique was used to study the dynamics of cholesterol and POPC phospholipid molecules forming a thin layer on the surface of the carbon and silicon-carbide nanotubes. Each nanotube was surrounded by an ultra-thin film formed by n lipid molecules, where n varies from 15 to 50. All studies were done for five temperatures, including physiological one (T=260, 285, 310, 335 and 360K). The influence of a nanotube on the dynamics of cholesterol or phospholipid molecules in a layer is presented and discussed. The water is ubiquitous in all biological milieus, where the cholesterol or lipids occur. Thus, simulations were performed in a water environment. Moreover, to show different behavior of lipids in systems with water the results were compared with the samples without it. The dynamical and structural observables, such as the mean square displacement, diffusion coefficient, radial distribution function, and activation energy were calculated to qualitatively investigate the behavior of cholesterol and phospholipid molecules in the layers. We observed remarkable differences between the cholesterol dynamics depending whether the ultrathin film surrounds carbon or silicon-carbide nanotube and whether the water environment appeared. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  17. Characterisation by optical spectroscopy of a plasma of depositions of thins layers

    International Nuclear Information System (INIS)

    Chouan, Yannick

    1984-01-01

    This research thesis reports a work which, by correlating emission and absorption spectroscopic measurements with properties of deposited thin layers, aimed at being a complement to works undertaken by a team in charge of the realisation of a flat screen. In a first part, the author reports the study of a cathodic pulverisation of a silicon target. He describes the experimental set-up, presents correlations obtained between plasma electric properties (target self-polarisation voltage), emission spectroscopic measurements (line profile and intensity) and absorption spectroscopic measurements (density of metastables), and the composition of deposited thin layers for two reactive pulverisation plasmas (Ar-H 2 and Ar-CH 4 ). The second part addresses the relationship between experimental conditions and spectroscopic characteristics (emission and absorption lines, excitation and rotation temperature) of a He-SiH 4 plasma. The author also determined the most adapted spectroscopic measurements to the 'control' of deposition, and which result in an optimisation of electronic properties and of the deposition rate for the hydrogenated amorphous silicon. The third part reports the characterisation of depositions. Electric and optic measurements are reported. Then, for both deposition techniques, the author relates the influence of experimental conditions to deposition properties and to spectroscopic diagnosis. The author finally presents static characteristics of a thin-layer-based transistor

  18. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    Science.gov (United States)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  19. The Layer 0 Inner Silicon Detector of the D0 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Angstadt, R.; Bagby, L.; Bean, A.; Bolton, T.; Buchholz, D.; Butler, D.; Christofek, L.; Cooper, W.E.; Daly, C.H.; Demarteau, M.; Foglesong, J.

    2009-11-01

    This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron {bar p}p collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.

  20. ZnO buffer layer for metal films on silicon substrates

    Science.gov (United States)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  1. Thin layer drying kinetics of amaranth (Amaranthus cruentus) grains ...

    African Journals Online (AJOL)

    An experimental solar tent dryer under natural convection was used to study thin layer drying kinetics of amaranth (Amaranthus cruentus) grains. Drying of grains in the dryer was carried out on a drying rack having two layers; top and bottom. The ambient temperature and relative humidity ranged from 22.6–30.4oC and ...

  2. Performance of Thin-Window Silicon Drift Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, , G.A.; Chen, W.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister; J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-10-20

    Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced at BNL and by a commercial vendor, KETEK. Each array consists of 14 independent detectors (pixels) and two additional test pixels at two of the corners. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are 4 guard rings surrounding the 14-pixel array area on both sides of the detector. Within each array, 7 of the pixels have an aluminum field plate - interrupted spirals that stabilize the electric potential under the Si-SiO2 interface, while the other 7 do not. The drift field in the silicon volume is controlled by three biases: one is applied to a rectifying contact, one to the detector entrance window, and the third to a contact on the outer portion of the spiral common to all pixels in the array. Some arrays have been newly measured in NSLS beam line U3C at BNL. The complete assemblies were installed in the vacuum and cooled to ?27 C. During this run, spectra for energies ranging between 400 and 900 eV were collected in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.

  3. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    Science.gov (United States)

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  4. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  5. Large Area Thin Film Silicon: Synergy between Displays and Solar Cells

    NARCIS (Netherlands)

    Schropp, R.E.I.

    2012-01-01

    Thin-film silicon technology has changed our society, owing to the rapid advance of its two major application fields in communication (thin-film displays) and sustainable energy (thin-film solar cells). Throughout its development, advances in these application fields have always benefitted each

  6. Reflectance analysis of porosity gradient in nanostructured silicon layers

    Science.gov (United States)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  7. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  8. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  9. Growth of (100)-highly textured BaBiO{sub 3} thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina); Marchini, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Granell, P. [INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Golmar, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, 1650 San Martín, Buenos Aires (Argentina); Albornoz, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); and others

    2016-08-01

    We report on the growth and characterization of non-epitaxial but (100)-highly textured BaBiO{sub 3} thin films on silicon substrates. We have found the deposition conditions that optimize the texture, and show that the textured growth is favoured by the formation of a BaO layer at the first growth stages. X-ray diffraction Φ-scans, together with the observation that the same textured growth is found on films grown on Pt and SiO{sub 2} buffered Si, demonstrate the absence of epitaxy. Finally, we have shown that our (100)-oriented BaBiO{sub 3} films can be used as suitable buffers for the growth of textured heterostructures on silicon, which could facilitate the integration of potential devices with standard electronics. - Highlights: • BaBiO{sub 3} thin films were grown on Si substrates and characterized. • Films prepared using optimized conditions are highly textured in the (100) direction. • The absence of in-plane texture was demonstrated by X-ray diffraction. • Our films are suitable buffers for the growth of (100)-textured oxide heterostructures.

  10. Towards lightweight and flexible high performance nanocrystalline silicon solar cells through light trapping and transport layers

    Science.gov (United States)

    Gray, Zachary R.

    This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.

  11. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    International Nuclear Information System (INIS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-01-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity. (paper)

  12. The recrystallization of ion-implanted silicon layers

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Baragiola, R.A.; Chivers, D.; Grant, W.A.; Williams, J.S.

    1978-01-01

    Rutherford backscattering and channeling (RBS) has been employed to investigate the annealing characteristics of ion-bombarded silicon for a wide range of implant species. The general recrystallization behaviour is that high levels of remnant disorder are observed for high-dose (typically > 10 15 ions cm -2 ) implants of all species investigated, and transmission electron microscopy indicates the presence of a polycrystalline reordered layer in such cases. The magnitude of the remnant disorder (misorientation of grains with respect to the underlying bulk substrate) is observed to increase with both implant dose and original amorphous-layer thickness and to exhibit a slight implant-mass dependence. Although the recrystallization behaviour is qualitatively similar for all species studied, certain species (mainly those soluble in silicon) are found to influence the regrowth process at low implant concentrations. It is suggested that stress/strain effects, attributed to high implanted concentrations, play a major role in the inhibition of epitaxial silicon recrystallization but that species effects can become dominant at lower implant concentrations. (author)

  13. Characterization of Lateral Structure of thep-i-nDiode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  14. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  15. Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer

    Science.gov (United States)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  16. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...... with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8 % have been made, paving the way towards a-Si/ c-Si tandem cells with more than 11% efficiency....

  17. Epitaxial growth of zinc oxide thin films on silicon

    International Nuclear Information System (INIS)

    Jin Chunming; Narayan, Roger; Tiwari, Ashutosh; Zhou Honghui; Kvit, Alex; Narayan, Jagdish

    2005-01-01

    Epitaxial zinc oxide thin films were grown on Si(111) using aluminum nitride and magnesium oxide/titanium nitride buffer layers. The resultant films were examined using transmission electron microscopy, X-ray diffraction, electrical conductivity, and photoluminescence spectroscopy. The following epitaxial relationships were observed in the ZnO/AlN/Si(111) heterostructure: ZnO[0001] parallel AlN[0001] parallel Si[111] along the growth direction, and ZnO[21-bar 1-bar 0] parallel AlN[21-bar 1-bar 0] parallel Si[011-bar] along the in-plane direction. Domain-matching epitaxial growth of TiN on Si(111) substrate allows successful epitaxial growth of MgO and ZnO layers in a ZnO/MgO/TiN/Si(111) heterostructure. The epitaxial relationships observed for this heterostructure were ZnO[0001] parallel MgO/TiN/Si[111] along the growth direction and ZnO[21-bar 1-bar 0] parallel MgO/TiN/Si[011-bar] along in-plane direction. The resultant ZnO films demonstrate excellent electrical and optical properties. ZnO thin films exhibit extremely bright ultraviolet luminescence with relatively weak green-band emission

  18. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy

    2012-08-20

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  19. Formation and properties of the buried isolating silicon-dioxide layer in double-layer “porous silicon-on-insulator” structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Davletkildeev, N. A.; Ivlev, K. E.; Roslikov, V. E. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation)

    2017-01-15

    The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to be promising for integrated chemical micro- and nanosensors.

  20. Temporomandibular joint ankylosis fixation technique with ultra thin silicon sheet

    Directory of Open Access Journals (Sweden)

    G S Kalra

    2011-01-01

    Full Text Available Background: Temporomandibular joint ankylosis is a highly distressing condition in which the joint space is obliterated by scar tissue and the patient has an inability to open the mouth. Different autogenous and alloplastic interposition materials have been used after the resection of the ankylotic bone to achieve desirable and long lasting results. The recurrence of disease is most distressing for both patients and surgeon. We have been using ultra thin silicon sheet as our preferred material for providing proper fixation and cover to the joint. We have been encouraged by good patient compliance, no implant extrusion and favourable outcome. Materials and Methods: The clinical study included 80 patients with temporomandibular joint ankylosis, treated between April 2001 and March 2009. In all patients, temporomandibular joint ankylosis had resulted following trauma. Diagnosis was based on clinical assessment supplemented by radiographic examination consisting of a panoramic radiograph, axial and coronal computer tomography. The technique of using ultra thin silicon sheet covering whole of the joint space fixed with non-absorbable nylon 3-0 suture both medially to medial pterygoid muscle and laterally to periosteum of zygomatic arch was employed in all patients. Results: A total of 80 patients were in this study (59 males and 21 females. The aetiology of temporomandibular joint ankylosis was post-traumatic in all cases. The patients′ age ranged from 5 to 45 years. The disease was unilateral in 61 cases and bilateral in 19 cases. Twelve patients, who had previous surgery done in the form of gap arthroplasty in 6 cases, costochondral graft in 4 cases and temporalis muscle in 2 cases, presented with recurrence on the same side. The pre-op inter-incisal mouth opening ranged from 4 to 12 mm. The intraoperative inter-incisal mouth opening ranged from 28 to 46 mm. An additional procedure was done in 13 patients, including placement of costochondral

  1. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane; Pollakowski, Beatrix; Beckhoff, Burkhard; Baumann, Jonas; Kanngiesser, Birgit; Amkreutz, Daniel; Rech, Bernd; Back, Franziska; Rudigier-Voigt, Eveline

    2015-01-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO x or SiO x /SiC x ) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO x compared to the SiO x /SiC x interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, David S.; Pedersen, Thomas

    2013-01-01

    The semiconducting materials used for photoelectrochemical (PEC) water splitting must withstand the corrosive nature of the aqueous electrolyte over long time scales in order to be a viable option for large scale solar energy conversion. Here we demonstrate that atomic layer deposited titanium...... dioxide (TiO2) overlayers on silicon-based photocathodes generate extremely stable electrodes. These electrodes can produce an onset potential of +0.510 V vs. RHE and a hydrogen evolution saturation current of 22 mA cm−2 using the red part of the AM1.5 solar spectrum (λ > 635 nm, 38.6 mW cm−2). A PEC...

  3. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  4. Thin film silicon solar cells: advanced processing and characterization - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, Ch.

    2008-04-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out at the photovoltaics laboratory at the University of Neuchatel in Switzerland. The project aimed to demonstrate the production of high-efficiency thin-film silicon devices on flexible substrates using low cost processes. New ways of improving processing and characterisation are examined. The process and manufacturing know-how necessary to provide support for industrial partners within the framework of further projects is discussed. The authors state that the efficiency of most devices was significantly improved, both on glass substrates and on flexible plastic foils. The process reproducibility was also improved and the interactions between the different layers in the device are now said to be better understood. The report presents the results obtained and discusses substrate materials, transparent conductors, defect analyses and new characterisation tools. Finally, the laboratory infrastructure is described.

  5. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    Science.gov (United States)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  6. Frequency dependence of the active impedance component of silicon thin-film resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1987-01-01

    A high-resistant resistor on the silicon thin-film substrate considerably superior in noise and frequency performance than commercial resistors is described. The frequency dependence of the active impedance component is tested for determining noise and frequency dependences of silicon thin-film resistors. The obtained results permit to calculate the energy equivalent of resistor noise in nuclear radiation detection units at any temperature according to its frequency characteristic at room temperature

  7. High-efficient n-i-p thin-film silicon solar cells

    NARCIS (Netherlands)

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a ?c-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar

  8. Low temperature processing of a large grain polycrystalline silicon thin film on soda-lime glass

    International Nuclear Information System (INIS)

    Wang, Kai; Wong, Kin Hung

    2011-01-01

    We have demonstrated that a polycrystalline silicon thin film can be fabricated in situ on soda-lime glass at 450 °C by an Al-induced crystallization method using electron beam evaporation. The catalytic Al is found to diffuse to the top of the crystallized Si layer and can be easily etched away by a mixture of acids. This low temperature Si crystallization process is well explained by thermodynamic consideration. Subsequent annealing at the same temperature (450 °C) for 6 h improves the crystallinity of the film and enlarges the average grain size to over 5 µm. There are no observable impurity phases. The poly-Si thin films are (1 1 1) oriented and all the grains are well aligned. A defect-free and excellent crystalline structure has been revealed by transmission electron microscopy. The measured resistivity, carrier concentration and charge mobility of these as-prepared poly-Si thin films indicate that our present low temperature processing technique has great advantage and prospect for the photonics industry

  9. Low temperature processing of a large grain polycrystalline silicon thin film on soda-lime glass

    Science.gov (United States)

    Wang, Kai; Wong, Kin Hung

    2011-09-01

    We have demonstrated that a polycrystalline silicon thin film can be fabricated in situ on soda-lime glass at 450 °C by an Al-induced crystallization method using electron beam evaporation. The catalytic Al is found to diffuse to the top of the crystallized Si layer and can be easily etched away by a mixture of acids. This low temperature Si crystallization process is well explained by thermodynamic consideration. Subsequent annealing at the same temperature (450 °C) for 6 h improves the crystallinity of the film and enlarges the average grain size to over 5 µm. There are no observable impurity phases. The poly-Si thin films are (1 1 1) oriented and all the grains are well aligned. A defect-free and excellent crystalline structure has been revealed by transmission electron microscopy. The measured resistivity, carrier concentration and charge mobility of these as-prepared poly-Si thin films indicate that our present low temperature processing technique has great advantage and prospect for the photonics industry.

  10. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  11. Silicon-based thin-film transistors with a high stability

    NARCIS (Netherlands)

    Stannowski, Bernd

    2002-01-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the

  12. Water vapor selective thin film nanocomposite membranes prepared by functionalized Silicon nanoparticles

    NARCIS (Netherlands)

    Baig, Muhammad Irshad; Ingole, Pravin G.; Jeon, Jae deok; Hong, Seong Uk; Choi, Won Kil; Jang, Boyun; Lee, Hyung Keun

    2017-01-01

    In this work, we have reported a facile method to improve the water vapor permeation performance of thin film nanocomposite membranes by tailoring the surface properties of Silicon nanoparticles. Inductively coupled plasma technique was utilized to synthesize amorphous Silicon nanoparticles (~. 10.

  13. Monolithic Mid-Infrared Integrated Photonics Using Silicon-on-Epitaxial Barium Titanate Thin Films.

    Science.gov (United States)

    Jin, Tiening; Li, Leigang; Zhang, Bruce; Lin, Hao-Yu Greg; Wang, Haiyan; Lin, Pao Tai

    2017-07-05

    Broadband mid-infrared (mid-IR) photonic circuits that integrate silicon waveguides and epitaxial barium titanate (BTO) thin films are demonstrated using the complementary metal-oxide-semiconductor process. The epitaxial BTO thin films are grown on lanthanum aluminate (LAO) substrates by the pulsed laser deposition technique, wherein a broad infrared transmittance between λ = 2.5 and 7 μm is observed. The optical waveguiding direction is defined by the high-refractive-index amorphous Si (a-Si) ridge structure developed on the BTO layer. Our waveguides show a sharp fundamental mode over the broad mid-IR spectrum, whereas its optical field distribution between the a-Si and BTO layers can be modified by varying the height of the a-Si ridge. With the advantages of broad mid-IR transparency and the intrinsic electro-optic properties, our monolithic Si on a ferroelectric BTO platform will enable tunable mid-IR microphotonics that are desired for high-speed optical logic gates and chip-scale biochemical sensors.

  14. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  15. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  16. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  17. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  18. Development of High Performance Thin Layer Chromatography for ...

    African Journals Online (AJOL)

    Background: The quality of antiretroviral medicines (ARVs) is vital in the management of HIV infection. Nevertheless ... and validation, a high performance thin layer chromatography (HPTLC) system with WinCATS software was used. Freshly prepared ..... into Vocational Excellence in East Africa (THRiVE)”, grant number ...

  19. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  20. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  1. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  2. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  3. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  4. Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology

    Science.gov (United States)

    2004-09-30

    Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology Stephen M. Bollens Department of Biology, and Romberg Tiburon Center...Department of Biology, and Romberg Tiburon Center for Environmental Studies,,San Francisco State University,,1600 Holloway Avenue,San Francisco,,CA,94132

  5. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    Science.gov (United States)

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  6. Somatic embryogenesis from zygotic embryos and thin cell layers ...

    African Journals Online (AJOL)

    Oil palm hybrid BRS Manicoré is important for plantations in the north of Brazil, as it is resistant to fatal yellowing and is compact. Seed germination is slow and reduced, so somatic embryogenesis is a promising alternative for its propagation. Two kinds of starting explants were used: Zygotic embryos (ZE) and thin cell layers ...

  7. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  8. A Thin Layer Chromotographic (TLC) detection methodology for ...

    African Journals Online (AJOL)

    This paper presents a Thin Layer Chromatographic (TLC) detection methodology for the qualitative and quantitative determination of herbicides, using some local plants/grasses as part of an on-going method development for providing alternative cost-effective analytical procedure for screening pesticide residues. Out of the ...

  9. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  10. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  11. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  12. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  13. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  14. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  15. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.

    1997-11-01

    Epitaxial grown thick layers (>100 μm) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2·10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5·10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects, in epitaxial layers. The 'sinking' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1·10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3·10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  16. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Science.gov (United States)

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  17. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  18. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    Science.gov (United States)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  19. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  20. Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass.

    Science.gov (United States)

    Eisenhauer, David; Köppel, Grit; Jäger, Klaus; Chen, Duote; Shargaieva, Oleksandra; Sonntag, Paul; Amkreutz, Daniel; Rech, Bernd; Becker, Christiane

    2017-06-01

    Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 μm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiO x nano-pillar arrays with spin-coated TiO x layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm -2 for planar reference cells to 24.5 mA cm -2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a j sc, EQE gain of 2.8 mA cm -2 .

  1. Thin film polycrystalline silicon photoelectric converter and fabricating method; Hakumaku takkesho shirikon koden henkan sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. [Kobe (Japan); Suzuki, T. [Kobe (Japan); Yoshimi, M. [Kobe (Japan)

    1995-04-07

    This invention relates to a fabricating method for a thin film polycrystalline silicon photoelectric converter which has a large area and can be produced at low cost. Successive formation of mono-conductive polycrystalline silicon thin film and reverse conducting polycrystalline silicon thin film on a translucent substrate requires no vapor phase epitaxial growth, and the film formation temperature for silicon thin film can be lowered. Orientation of the monocrystalline silicon thin film to any of the surface bearings of (100), (111), and (110) results in the function of determining the orientation of the reverse conducting polycrystalline silicon thin film formed thereon. This orientation is effective to obtain excellent characteristics, and results in effective surface orientation of the entire power generating area. In addition, the supporting substrate and the surface protective film of the solar cell can be combined by orienting the translucent substrate side to the light incident side. 2 figs., 1 tab.

  2. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  3. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  4. Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg

    2015-01-01

    The high-luminosity upgrade fo the large hadron collider foreseen for 2023 resulted in the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of $\\phi_{eq} \\approx 10^{16}$~cm$^{-2}$ and a dose of $\\approx 5$~MGy after an integrated luminosity of 3000~fb$^{-1}$. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good canditates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100~$\\mu$m. The investigation includes pad diodes and strip detectors irradiated up to a fluence of $\\phi_{eq} = 1.3 \\times 10^{16}$~cm$^{-2}$. The electrical properties of diodes have bee...

  5. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  6. Selective deposition contact patterning using atomic layer deposition for the fabrication of crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Cho, Young Joon; Shin, Woong-Chul; Chang, Hyo Sik

    2014-01-01

    Selective deposition contact (SDC) patterning was applied to fabricate the rear side passivation of crystalline silicon (Si) solar cells. By this method, using screen printing for contact patterning and atomic layer deposition for the passivation of Si solar cells with Al 2 O 3 , we produced local contacts without photolithography or any laser-based processes. Passivated emitter and rear-contact solar cells passivated with ozone-based Al 2 O 3 showed, for the SDC process, an up-to-0.7% absolute conversion-efficiency improvement. The results of this experiment indicate that the proposed method is feasible for conversion-efficiency improvement of industrial crystalline Si solar cells. - Highlights: • We propose a local contact formation process. • Local contact forms a screen print and an atomic layer deposited-Al 2 O 3 film. • Ozone-based Al 2 O 3 thin film was selectively deposited onto patterned silicon. • Selective deposition contact patterning method can increase cell-efficiency by 0.7%

  7. Bovine serum albumin adsorption on passivated porous silicon layers

    Science.gov (United States)

    Lockwood, David; Boukherroub, Rabah

    2005-03-01

    Hydrogen-terminated porous silicon (pSi) films were fabricated through electrochemical anodization of crystalline Si in HF-based solutions. The pSi-H surface was chemically functionalized by thermal reaction with undecylenic acid to produce an organic monolayer covalently attached to the silicon surface through Si-C bonds and bearing an acid terminal group. Bovine serum albumin (BSA) was then adsorbed onto the modified surface. SEM showed that the porous films were damaged and partially lifted off the Si substrate after a prolonged BSA adsorption. Ellipsometry revealed that the BSA had penetrated ˜ 1.3 micrometers into the porous structure. The film damage results from BSA anchoring itself tightly through strong electrostatic interactions to the acid-covered Si sidewalls. A change in surface tension during BSA film formation then causes the pSi layer to buckle and lift-off the underlying Si substrate. FTIR results from the modified pSi surfaces showed the presence of strong characteristic Amide I, II and III vibrational bands after BSA adsorption.

  8. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  9. Effect of annealing temperature on optical and electrical properties of metallophthalocyanine thin films deposited on silicon substrate

    Directory of Open Access Journals (Sweden)

    Skonieczny R.

    2016-09-01

    Full Text Available The cobalt phthalocyanine (CoPc thin films (300 nm thick deposited on n-type silicon substrate have been studied using micro-Raman spectroscopy, atomic force spectroscopy (AFM and I-V measurement. The CoPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The micro-Raman spectra of CoPc thin films have been recorded in the spectral range of 1000 cm-1 to 1900 cm-1 using 488 nm excitation wavelength. Moreover, using surface Raman mapping it was possible to obtain information about polymorphic forms distribution (before and after annealing of metallophthalocyanine (α and β form from polarized Raman spectra. The I-V characteristics of the Au/CoPc/n-Si/Al Schottky barrier were also investigated. The obtained results showed that influence of the annealing process plays a crucial role in the ordering and electrical conductivity of the molecular structure of CoPc thin films deposited on n-type silicon substrate.

  10. Analysis of Processing Mechanism in Stealth Dicing of Ultra Thin Silicon Wafer

    Science.gov (United States)

    Ohmura, Etsuji; Kumagai, Masayoshi; Nakano, Makoto; Kuno, Koji; Fukumitsu, Kenshi; Morita, Hideki

    In this study, “stealth dicing” (SD) was applied to ultra thin wafers 50 μm in thickness. A coupling problem composed of focused laser propagation in single crystal silicon, along with laser absorption, temperature rise and heat conduction was analyzed by considering the temperature dependence of the absorption coefficient. When the depth of the focal plane is too shallow, the laser is also absorbed at the surface as the thermal shock wave reaches the surface. As a result, not only is an internal modified layer generated but ablation occurs at the surface as well. When the laser is focused at the surface, strong ablation occurs. Ablation at the surface is unfavorable because of the debris pollution and thermal effect on the device domain. It was concluded that there is a suitable depth for the focal plane so that the thermal shock wave propagates inside the wafer only. The optimum irradiating conditions such as pulse energy, pulse width, spot radius, and depth of focal plane can be estimated theoretically also for ultra thin wafer.

  11. Comparative study on electrical properties of atomic layer deposited high-permittivity materials on silicon substrates

    International Nuclear Information System (INIS)

    Duenas, S.; Castan, H.; Garcia, H.; Barbolla, J.; Kukli, K.; Ritala, M.; Leskelae, M.

    2005-01-01

    Deep level transient spectroscopy, capacitance-voltage and conductance transient measurement techniques have been applied in order to evaluate the electrical quality of thin high-permittivity oxide layers on silicon. The oxides studied included HfO 2 film grown from two different oxygen-free metal precursors and Ta 2 O 5 and Nb 2 O 5 nanolaminates. The interface trap densities correlated to the oxide growth chemistry and semiconductor substrate treatment. No gap state densities induced by structural disorder were measured in the films grown on chemical SiO 2 . Trap densities were also clearly lower in HfO 2 films compared to Ta 2 O 5 -Nb 2 O 5

  12. Atomic layer deposition TiO{sub 2} coated porous silicon surface: Structural characterization and morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Iatsunskyi, Igor, E-mail: igoyat@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine); Jancelewicz, Mariusz; Nowaczyk, Grzegorz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Kempiński, Mateusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poland (Poland); Peplińska, Barbara [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Jarek, Marcin; Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Smyntyna, Valentyn [Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine)

    2015-08-31

    TiO{sub 2} thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl{sub 4} and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO{sub 2} crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO{sub 2} are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO{sub 2} and porous Si were established. • The approximate size of TiO{sub 2} nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented.

  13. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  14. Investigation of multi-layer thin films for energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd

    2009-01-01

    We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

  15. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Stability of the contact was studied for a time period of around 30 days and no significant ageing effect could be observed. Keywords. Porous silicon; passivation ... It has a wide range of applications in photonics and optoelectronics, quantum electronics, silicon-on insulator technology and recently in sensors (Dimitrov 1995; ...

  16. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Abstract. Nano porous silicon (PS) was formed on p-type monocrystalline silicon of 2–5 Ω cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its nano structure, is responsible for the uncontrolled oxidation in air and ...

  17. Spotting 2D atomic layers on aluminum nitride thin films.

    Science.gov (United States)

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  18. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  19. Mathematical Modelling of Thin Layer Dried Cashew Kernels | Asiru ...

    African Journals Online (AJOL)

    In this paper mathematical models describing thin layer drying of cashew kernels in a batch dryer were presented. The range of drying air temperature was 70 – 110°C. The initial moisture content of the cashew kernels was 9.29% (d.b.) and the final moisture content was in the range of 3.5 to 4.6% dry-basis. Seven different ...

  20. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  1. Ultra-thin, single-layer polarization rotator

    Energy Technology Data Exchange (ETDEWEB)

    Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)

    2016-08-15

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  2. Silicon carbide thin films for high temperature microelectromechanical systems

    Science.gov (United States)

    Fleischman, Aaron Judah

    Silicon Carbide (SiC) was studied for use as a material in microelectromechanical systems (MEMS). An APCVD reactor was built to deposit SiC on 100-mm diameter substrates. 3C-SiC films were grown heteroepitaxially atop 100-mm Si wafers. SiC was deposited atop suitable sacrificial layers of polysilicon and thermal oxide. The reactor gas flow was modeled using finite element techniques. The gas flow formed a recirculating pattern, with fresh reactant gases injected at the top of the reactor, traveling down the inside sidewalls and introduced at the bottom of the wafer, forming a plume of heated gases rising to the top of the reactor. This recirculation pattern explains the gradually decreasing growth rate from the wafer's bottom to its top as reactant gases are gradually depleted as they rise. Intentional doping of 3C-SiC films was studied, using diborane and phosphine dopant sources. SIMS indicated that B and P could be incorporated into 3C-SiC films, however B doped films were electrically compensated due to trace amounts of nitrogen in the diborane. Boron concentrations above 3C-SiC's solid solubility caused the SiC to become polycrystalline. Phosphorus incorporation was less predictable and did not vary linearly with phosphine flow rates. A reactive ion etch (REE) process was developed to etch 3C-SiC. Addition of He to the plasma chemistry enhanced the etch rates and etch anisotropy of the 3C-SiC. The etch recipe also produced similar results for polycrystalline SiC on polysilicon and thermal oxide. A maximum SiC etch rate of 1,267 A/min with a selectivity of 1.4 to Si was obtained. Using the above methods, SiC resonant devices were fabricated using polysilicon and thermal oxide as sacrificial layers. Polysilicon resonant devices were fabricated for comparison. The devices were tested by measuring their resonant frequency at room and elevated temperatures to 900°C to determine Young's modulus and its temperature dependence. All devices showed resonant frequency

  3. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    Science.gov (United States)

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, W.A.

    1980-12-01

    The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

  5. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, M. T.; Zhang, J.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, Pennsylvania 16802 (United States); Mantese, J. V. [United Technologies Research Center, East Hartford, Connecticut 06118 (United States); Whatmore, R. W. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork City, County Cork (Ireland)

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm{sup −2} °C{sup −1}, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  6. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  7. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  8. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    International Nuclear Information System (INIS)

    Mazzillo, M.; Renna, L.; Costa, N.; Badalà, P.; Sciuto, A.; Mannino, G.

    2016-01-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320–400 nm) and UV-B (290–320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni_2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm"2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  9. Oxidation and crystallization behavior of calcium europium silicon nitride thin films during rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M. de, E-mail: m.dejong-1@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Enter, V.E. van, E-mail: vvanenter@gmail.com [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Schuring, E.W., E-mail: schuring@ecn.nl [Energy Center of the Netherlands, Westerduinweg 3, 1755LE Petten (Netherlands); Kolk, E. van der, E-mail: e.vanderkolk@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2016-03-31

    Luminescent thin films were fabricated on silicon wafers using reactive magnetron sputtering of Ca, Si and Eu in Ar/N{sub 2} atmosphere. In order to activate the luminescence, the as-deposited nitride films were heated to 1100 °C by a rapid thermal processing treatment. X-ray diffraction measurements reveal the crystal phases that form during thermal treatment. By recording scanning electron microscopy images of the surface and the cross-section of the film at different radial locations, the formation of different layers with a thickness depending on the radial position is revealed. Energy dispersive x-ray spectroscopy analysis of these cross-sections reveals the formation of an oxide top layer and a nitride bottom layer. The thickness of the top layer increases as a function of radial position on the substrate and the thickness of the bottom layer decreases accordingly. The observation of different 4f{sup 6}5d{sup 1} → 4f{sup 7} Eu{sup 2+} luminescence emission bands at different radial positions correspond to divalent Eu doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4} and CaSiO{sub 3}, which is in agreement with the phases identified by X-ray diffraction analysis. A mechanism for the observed oxidation process of the nitride films is proposed that consists of a stepwise oxidation from the as-deposited amorphous nitride state to crystalline Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, to Ca{sub 2}SiO{sub 4} and finally CaSiO{sub 3}. The oxidation rate and final state of oxidation show a strong temperature–time dependency during anneal treatment. - Highlights: • A thin film of nitridated Ca, Si and Eu was deposited using magnetron sputtering. • Rapid thermal processing (RTP) results in Eu{sup 2+} doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4}, and CaSiO{sub 3}. • Oxidation rate differs with radial position due to a temperature gradient during RTP. • Cross-section SEM–EDX shows how the oxidation progresses in lateral direction.

  10. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering characteris...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...

  11. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF 6 + N 2 as precursors for layer-by-layer thinning of MoSe 2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe 2 were also demonstrated. • Equal numbers of MoSe 2 layers can be removed uniformly without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe 2 ) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe 2 can be changed from the indirect band gap to the direct band gap when MoSe 2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe 2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe 2 nanaosheets down to monolayer by using SF 6 + N 2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe 2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. By adjusting the etching rates we can achieve complete MoSe 2 removal and any disired number of MoSe 2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  12. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  13. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    Science.gov (United States)

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  14. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  15. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  16. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  17. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  18. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    International Nuclear Information System (INIS)

    Ambrosio, R.; Moreno, M.; Torres, A.; Carrillo, A.; Vivaldo, I.; Cosme, I.; Heredia, A.

    2015-01-01

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ dark changed by 5 order of magnitude under illumination, V d was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH 4 , H 2 , Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ RT ), activation energy (E a ), and optical band gap (E g ). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications

  19. Optical simulations of advanced light management for liquid-phase crystallized silicon thin-film solar cells

    Science.gov (United States)

    Jäger, Klaus; Köppel, Grit; Eisenhauer, David; Chen, Duote; Hammerschmidt, Martin; Burger, Sven; Becker, Christiane

    2017-08-01

    Light management is a key issue for highly efficient liquid-phase crystallized silicon (LPC-Si) thin-film solar cells and can be achieved with periodic nanotextures. They are fabricated with nanoimprint lithography and situated between the glass superstrate and the silicon absorber. To combine excellent optical performance and LPC-Si material quality leading to open circuit voltages exceeding 640 mV, the nanotextures must be smooth. Optical simulations of these solar cells can be performed with the finite element method (FEM). Accurately simulating the optics of such layer stacks requires not only to consider the nanotextured glass-silicon interface, but also to adequately account for the air-glass interface on top of this stack. When using rigorous Maxwell solvers like the finite element method (FEM), the air-glass interface has to be taken into account a posteriori, because the solar cells are prepared on thick glass superstrates, in which light is to be treated incoherently. In this contribution we discuss two different incoherent a posteriori corrections, which we test for nanotextures between glass and silicon. A comparison with experimental data reveals that a first-order correction can predict the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

  20. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  1. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  2. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  3. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    Science.gov (United States)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  4. In-depth porosity control of mesoporous silicon layers by an anodization current adjustment

    Science.gov (United States)

    Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.

    2017-12-01

    The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.

  5. Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films

    International Nuclear Information System (INIS)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Nozaki, Tomohiro; Ryu, Meguya; Morikawa, Junko

    2016-01-01

    Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs. (paper)

  6. Research of morphology and structure of 3C–SiC thin films on silicon by electron microscopy and X-ray diffractometry

    Directory of Open Access Journals (Sweden)

    Alexander S. Gusev

    2015-12-01

    Full Text Available Thin films of silicon carbide possessing unique properties attract increasing attention of researchers both in the field of semiconductor physics and in the technology of new semiconductor devices for high power, RF and optoelectronics. The growth of the production of silicon carbide based devices promotes the search for more resource saving and safe SiC layer synthesis technologies. Potential method is pulse laser deposition (PLD in vacuum. This technology does not require the use of chemically aggressive and explosive gases and allows forming thin and continuous coatings with thicknesses of from several nanometers at relatively low substrate temperatures. Submicron thickness silicon carbide films have been grown on single crystal silicon by vacuum laser ablation of a ceramic target. The physical and technological parameters of silicon carbide thin film low temperature synthesis by PLD have been studied and, in particular, the effect of temperature and substrate crystalline orientation on the composition, structural properties and morphology of the surface of the experimental specimens has been analyzed. At above 500 °C the crystalline β-SiC phase forms on Si (100 and (111. At a substrate temperature of 950 °C the formation of textured heteroepitaxial 3C–SiC films was observed.

  7. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  8. Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells

    Science.gov (United States)

    Hossain, Mohammad I.; Qarony, Wayesh; Hossain, M. Khalid; Debnath, M. K.; Uddin, M. Jalal; Tsang, Yuen Hong

    2017-10-01

    In thin-film solar cells, the photocurrent conversion productivity can be distinctly boosted-up utilizing a proper back reflector. Herein, the impact of different smooth and textured back reflectors was explored and effectuated to study the optical phenomena with interface engineering strategies and characteristics of transparent contacts. A unique type of wet-chemically textured glass-substrate 3D etching mask used in superstrate (p-i-n) amorphous silicon-based solar cell along with legitimated back reflector permits joining the standard light-trapping methodologies, which are utilized to upgrade the energy conversion efficiency (ECE). To investigate the optical and electrical properties of solar cell structure, the optical simulations in three-dimensional measurements (3D) were performed utilizing finite-difference time-domain (FDTD) technique. This design methodology allows to determine the power losses, quantum efficiencies, and short-circuit current densities of various layers in such solar cell. The short-circuit current densities for different reflectors were varied from 11.50 to 13.27 and 13.81 to 16.36 mA/cm2 for the smooth and pyramidal textured solar cells, individually. Contrasted with the comparable flat reference cell, the short-circuit current density of textured solar cell was increased by around 24%, and most extreme outer quantum efficiencies rose from 79 to 86.5%. The photon absorption was fundamentally improved in the spectral region from 600 to 800 nm with no decrease of photocurrent shorter than 600-nm wavelength. Therefore, these optimized designs will help to build the effective plans next-generation amorphous silicon-based solar cells.

  9. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  10. Thin-layer chromatography in analysis of inorganic substances

    International Nuclear Information System (INIS)

    Volynets, M.P.

    1988-01-01

    The use of thin-layer chromatography (TLC) for separation and determination of inorganic compounds is briefly considered. Universal character of the method, its simplicity, rapidness, high efficiency, clear separation and visual demonstration of results are pointed out, which permits to use TLC extensively for solving scientific and practical problems related to the determination of trace amounts of inorganic substances. TLC method permits to work with nano- and microgram amounts of substances and ensures the absolute limit of determination in the optimal conditions, which is 10 -2 -10 -7 g. Techniques of chromatographic determination of Te, rare earths, Y, Pu in various objects and their metrological characteristics are presented

  11. Investigation of thin ZnO layers in view of laser desorption-ionization

    Energy Technology Data Exchange (ETDEWEB)

    Grechnikov, A A; Borodkov, A S [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., 119991 Moscow (Russian Federation); Georgieva, V B [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Alimpiev, S S; Nikiforov, S M; Simanovsky, Ya O [General Physics Institute, Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow (Russian Federation); Dimova-Malinovska, D; Angelov, O I, E-mail: lazarova@issp.bas.b [Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  12. Lanthanum-oxide thin films deposited by plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Joo; Ko, Myoung-Gyun; Kim, Beom-Yong; Park, Sang-Kyun; Kim, Heon-Do; Park, Jong-Wan [Hanyang University, Seoul (Korea, Republic of)

    2006-09-15

    Lanthanum oxide is suited as a gate oxide that can replace SiO{sub 2} due to its high dielectric constant with a band gap of 4.3 eV [1] and its thermal stability with silicon. In this work, La{sub 2}O{sub 3} thin films was performed on Si substrates by using plasma-enhanced atomic layer deposition with La(EtCp){sub 3} as the lanthanum precursor and O{sub 3} as the reactant gas. The fully saturated growth rate of lanthanum oxide films was 0.2 A/cycle at a plasma power of 500 W. Secondary ion mass spectrometry and Rutherford backscattering measurements detected no carbon impurity content.

  13. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  14. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    International Nuclear Information System (INIS)

    Boukezzata, A.; Keffous, A.; Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A.; Nezzal, G.; Kechouane, M.; Bright, A.; Guerbous, L.; Menari, H.

    2010-01-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K 2 S 2 O 8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K 2 S 2 O 8 solution has been proposed.

  15. Collapse of molecularly thin lubricant layers between elastic substrates

    CERN Document Server

    Becker, T

    2003-01-01

    We investigated the dynamics of layering transitions and other structure formation processes in molecularly thin liquid films upon reducing the separation between two atomically smooth mica substrates. Using a newly developed surface forces apparatus with two-dimensional imaging capability, we followed the hydrodynamic processes during drainage with unprecedented precision. Depending on the substrate elasticity and the approach rate, drainage occurs either in a series of consecutive layering transitions or in a single step. In the latter case, nanoscopic amounts of liquid are trapped inside the contact area transiently. The experimental observations are explained qualitatively by combining hydrodynamic effects with elastic deformations of the substrates. Furthermore, we present evidence for anisotropy in the fluid dynamics induced by the lattice symmetry of the substrates.

  16. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  17. On-plate electrochemical detection for thin-layer chromatography

    International Nuclear Information System (INIS)

    Brown, G.N.; Birks, J.W.; Koval, C.A.

    1989-01-01

    Voltammetric electrochemical detection (ECD) coupled with tin-layer chromatography (TLC) was demonstrated for the quantification of trace organic compound directly on a TLC plate. The electrochemical detection solvent was a thin layer of aqueous potassium chloride. For undeveloped plates, detection limits for p-anisidine and p-phenetidine were 10 ng and 13 ng, respectively. Linearity was demonstrated over nearly 2 orders of magnitude. After development, detection limits increased by approximately a factor of ten. Advantages of this method over other quantitative TLC methods include sensitivity, speed, simplicity, and cost. In addition, this method is selective for electrochemically active compounds. Major sources of experimental error include spot size reproducibility, working electrode placement, and supporting electrolyte film thickness

  18. A simple quality factor for characterization of thin silicon films

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Mates, Tomáš; Ledinský, Martin; Stuchlíková, The-Ha; Stuchlík, Jiří; Fejfar, Antonín

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2227-2230 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 Keywords : microcrystalline silicon * deposition process * high growth rate * quality evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  19. Characterization of perovskite layer on various nanostructured silicon wafer

    Science.gov (United States)

    Rostan, Nur Fairuz Mohd; Sepeai, Suhaila; Ramli, Noor Fadhilah; Azhari, Ayu Wazira; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib; Zaidi, Saleem H.

    2017-05-01

    Crystalline silicon (c-Si) solar cell dominates 90% of photovoltaic (PV) market. The c-Si is the most mature of all PV technologies and expected to remain leading the PV technology by 2050. The attractive characters of Si solar cell are stability, long lasting and higher lifetime. Presently, the efficiency of c-Si solar cell is still stuck at 25% for one and half decades. Tandem approach is one of the attempts to improve the Si solar cell efficiency with higher bandgap layer is stacked on top of Si bottom cell. Perovskite offers a big potential to be inserted into a tandem solar cell. Perovskite with bandgap of 1.6 to 1.9 eV will be able to absorb high energy photons, meanwhile c-Si with bandgap of 1.124 eV will absorb low energy photons. The high carrier mobility, high carrier lifetime, highly compatible with both solution and evaporation techniques makes perovskite an eligible candidate for perovskite-Si tandem configuration. The solution of methyl ammonium lead iodide (MAPbI3) was prepared by single step precursor process. The perovskite layer was deposited on different c-Si surface structure, namely planar, textured and Si nanowires (SiNWs) by using spin-coating technique at different rotation speeds. The nanostructure of Si surface was textured using alkaline based wet chemical etching process and SiNW was grown using metal assisted etching technique. The detailed surface morphology and absorbance of perovskite were studied in this paper. The results show that the thicknesses of MAPbI3 were reduced with the increasing of rotation speed. In addition, the perovskite layer deposited on the nanostructured Si wafer became rougher as the etching time and rotation speed increased. The average surface roughness increased from ˜24 nm to ˜38 nm for etching time range between 5-60 min at constant low rotation speed (2000 rpm) for SiNWs Si wafer.

  20. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of

  1. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  2. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  3. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary); Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary); Klini, A. [Institute of Electronic Structure and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas (F.O.R.T.H.), P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Bor, Zs. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary)

    2007-07-31

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, {lambda} = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm{sup 2}, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 x 10{sup -3} Pa, and in the case of tooth and Teflon the substrates were heated at 250 deg. C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  4. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  5. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  6. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  7. Ultrafast terahertz conductivity and transient optical absorption spectroscopy of silicon nanocrystal thin films

    DEFF Research Database (Denmark)

    Titova, Lyubov V.; Harthy, Rahma Al; Cooke, David

    We use time-resolved THz spectroscopy and transient optical absorption spectroscopy as two complementary techniques to study ultrafast carrier dynamics in silicon nanocrystal thin films. We find that the photoconductive dynamics in these materials is dominated by interface trapping, and we observ...

  8. Utilization of geometrci light trapping in thin film silicon solar cells: simulations and experiments

    NARCIS (Netherlands)

    Jong, de M.M.; Sonneveld, P.J.; Baggerman, J.; Rijn, van C.J.M.; Rath, J.K.; Schropp, R.E.I.

    2014-01-01

    In this study, we present a new light absorption enhancement method for p-i-n thin film silicon solar cells using pyramidal surface structures, larger than the wavelength of visible light. Calculations show a maximum possible current enhancement of 45% compared with cells on a flat substrate. We

  9. Utilization of geometric light trapping in thin film silicon solar cells: Simulations and experiments

    NARCIS (Netherlands)

    de Jong, M.M.; Sonneveld, P.J.; Baggerman, J.; van Rijn, C.J.M.; Rath, J.K.; Schropp, R.E.I.

    2012-01-01

    In this study, we present a new light absorption enhancement method for p-i-n thin film silicon solar cells using pyramidal surface structures, larger than the wavelength of visible light. Calculations show a maximum possible current enhancement of 45% compared with cells on a flat substrate. We

  10. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  11. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  12. Light management in large area thin-film silicon solar modules

    Czech Academy of Sciences Publication Activity Database

    Losio, P.A.; Caglar, O.; Cashmore, J.S.; Hötzel, J.E.; Ristau, S.; Holovský, Jakub; Remeš, Zdeněk; Sinicco, I.

    2015-01-01

    Roč. 143, Dec (2015), s. 375-385 ISSN 0927-0248 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : micromorph * thin-film silicon solar cells * light management * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  13. Designing optimized nano textures for thin-film silicon solar cells

    NARCIS (Netherlands)

    Jäger, K.; Fischer, M.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2013-01-01

    Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces.

  14. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  15. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  16. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    Science.gov (United States)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  17. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    International Nuclear Information System (INIS)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films, including AZO/Ag/Al, AZO/Ag/nickel—chromium alloy (NiCr), and AZO/Ag/NiCr/Al, are utilized as the back reflectors of p—i—n amorphous silicon germanium thin film solar cells. NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion, which increases the short circuit current density of solar cell. NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization, the higher efficiency of solar cell is achieved. The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best. The initial conversion efficiency is achieved to be 8.05%

  18. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment

    Directory of Open Access Journals (Sweden)

    Yi Ding

    2017-12-01

    Full Text Available One of the foremost challenges in designing thin-film silicon solar cells (TFSC is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption layer, respectively. In this paper, highly promising light-trapping structures based on a photonic crystal (PC for TFSCs were investigated via simulation and experiment. Firstly, a highly-reflective one-dimensional photonic crystal (1D-PC was designed and fabricated. Then, two types of 1D-PC-based back reflectors (BRs were proposed: Flat 1D-PC with random-textured aluminum-doped zinc oxide (AZO or random-textured 1D-PC with AZO. These two newly-designed BRs demonstrated not only high reflectivity and sufficient conductivity, but also a strong light scattering property, which made them efficient candidates as the electrical contact and back reflector since the intrinsic losses due to the surface plasmon modes of the rough metal BRs can be avoided. Secondly, conical two-dimensional photonic crystal (2D-PC-based BRs were investigated and optimized for amorphous a-SiGe:H solar cells. The maximal absorption value can be obtained with an aspect ratio of 1/2 and a period of 0.75 µm. To improve the full-spectral optical properties of solar cells, a periodically-modulated PC back reflector was proposed and experimentally demonstrated in the a-SiGe:H solar cell. This periodically-modulated PC back reflector, also called the quasi-crystal structure (QCS, consists of a large periodic conical PC and a randomly-textured Ag layer with a feature size of 500–1000 nm. The large periodic conical PC enables conformal growth of the layer, while the small feature size of Ag can further enhance the light scattering. In summary, a comprehensive study of the design, simulation

  19. Studies on layer growth and interfaces on Ta-base thin layers by means of XPS

    International Nuclear Information System (INIS)

    Zier, M.

    2007-01-01

    In this thesis studies on the growth and on the formation of the interfaces of Ta and TaN layers on Si and SiO 2 were performed. In the system TaN on SiO 2 no reaction on the interface could be found. As the system with the mostly disturbed interface Ta on SiO 2 was proved. Here a reduction of the SiO 2 at simultaneous oxidation of the Ta was to be observed. Additionally tantalum silicide was formed to be considered concerning the bonding state as Ta 5 Si 3 , from which a double layer of a tantalum silicide and a tantalum suboxide resulted. A whole thickness of the double layer of above 1 nm resulted. In the system Ta on Si at the deposition of the film on the interface a tantalum silicide was formed to be characterized concerning the bonding state as TaSi 2 . The thickness of the interlayer growed thereby up to 0.8 nm in form of islands. Finally in the system TaN on Si a silicon nitride formation during the deposition was observed, which was attributed to the insertion of adsorbed nitrogen from the sputtering atmosphere by recoil implantation of the sputtered Ta atoms. The silicon nitride interlayer growed thereby up to a thickness of 0.8 nm

  20. SIMULATED 8 MeV NEUTRON RESPONSE FUNCTIONS OF A THIN SILICON NEUTRON SENSOR.

    Science.gov (United States)

    Takada, Masashi; Matsumoto, Tetsuro; Masuda, Akihiko; Nunomiya, Tomoya; Aoyama, Kei; Nakamura, Takashi

    2017-12-22

    Neutron response functions of a thin silicon neutron sensor are simulated using PHITS2 and MCNP6 codes for an 8 MeV neutron beam at angles of incidence of 0°, 30° and 60°. The contributions of alpha particles created from the 28Si(n,α)25Mg reaction and the silicon nuclei scattered elastically by neutrons in the silicon sensor have not been well reproduced using the MCNP6 code. The 8 MeV neutron response functions simulated using the PHITS2 code with an accurate event generator mode are in good agreement with experimental results and include the contributions of the alpha particles and silicon nuclei. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  2. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  3. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  5. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  6. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  7. Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries

    Science.gov (United States)

    Nadimpalli, Siva P. V.; Sethuraman, Vijay A.; Dalavi, Swapnil; Lucht, Brett; Chon, Michael J.; Shenoy, Vivek B.; Guduru, Pradeep R.

    2012-10-01

    Charge lost per unit surface area of a silicon electrode due to the formation of solid-electrolyte-interphase (SEI) layer during initial lithiation was quantified, and the species that constitute this layer were identified. Coin cells made with Si thin-film electrodes were subjected to a combination of galvanostatic and potentiostatic lithiation and delithiation cycles to accurately measure the capacity lost to SEI layer formation. While the planar geometry of amorphous thin films allows accurate calculation of surface area, creation of additional surface by cracking was prevented by minimizing the thickness of the Si film. The cycled electrodes were analyzed with X-ray photoelectron spectroscopy to characterize the composition of the SEI layer. The charge lost due to SEI formation measured from coin cell experiments was found to be in good agreement with the first-cycle capacity loss during the initial lithiation of a Si(100) crystal with planar geometry. The methodology presented in this work is expected to provide a useful practical tool for battery-material developers in estimating the expected capacity loss due to first cycle SEI layer formation and in choosing an appropriate particle size distribution that balances mechanical integrity and the first cycle capacity loss in large volume expansion electrodes for lithium-ion batteries.

  8. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Science.gov (United States)

    Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Akey, Austin; Aziz, Michael J.; Buonassisi, Tonio; Persans, Peter; Warrender, Jeffrey M.

    2016-05-01

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer's law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  9. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    International Nuclear Information System (INIS)

    Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Buonassisi, Tonio; Akey, Austin; Aziz, Michael J.; Persans, Peter; Warrender, Jeffrey M.

    2016-01-01

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  10. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, David [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996 (United States); Mathews, Jay [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States); Department of Physics, University of Dayton, Dayton, OH 45469 (United States); Sullivan, Joseph T.; Buonassisi, Tonio [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Akey, Austin [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Aziz, Michael J. [Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Persans, Peter [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Warrender, Jeffrey M., E-mail: jwarrend@post.harvard.edu [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States)

    2016-05-15

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  11. Seismic interpretation of subglacial till units: thin layer effects in amplitude-versus-angle (AVA) analysis.

    Science.gov (United States)

    Booth, A. D.; Clark, R. A.; Kulessa, B.; Murray, T.; Hubbard, A.

    2012-04-01

    The physical properties of subglacial material can be estimated using seismic amplitude-versus-angle (AVA) methods, although the interpretation of an AVA response is complicated in the case of a thinly-layered substrate. If the thickness of a layer is less than one-quarter of the seismic wavelength, it is considered seismically 'thin' and its upper and lower interfaces are perceived as a single horizon. Since a lodged (non-deforming) subglacial till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. We simulate seismic AVA responses for layered subglacial tills, in which dilatant layers of thickness 0.1-3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlie a lodged half-space, and assign typical acoustic impedance and Poisson's ratios to each. Neglecting thin layer considerations, we show that the AVA response to ultra-thin (AVA response. We present a thin layer interpretation for seismic data acquired on the Russell Glacier outlet of the West Greenland Ice Sheet. By invoking a thin layer argument, we show that the substrate comprises a stratified till with upper and lower layers of high- and low-porosity, interpreted respectively as dilatant and lodged material. Ignoring the effect of thin layers may lead to a serious misinterpretation of substrate physical properties, hence we recommend that their impact is considered in any AVA analysis.

  12. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  13. Development of A Thin Film Crystalline Silicon Solar Cell

    International Nuclear Information System (INIS)

    Sopori, B.; Chen, W.; Zhang, Y.

    1998-01-01

    A new design for a single junction, thin film Si solar cell is presented. The cell design is compatible with low-temperature processing required for the use of a low-cost glass substrate, and includes effective light trapping and impurity gettering. Elements of essential process steps are discussed

  14. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, M.; Aouadi, K. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Bertrand, D. [Particle Therapy Dept., Ion Beam Application IBA, 1348 Louvain-la-Neuve (Belgium); Olbrechts, B.; Delamare, R. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Raskin, J. P.; Gil, E. C. [Institut de Recherche en Mathematique et Physique IRMP, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Flandre, D. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2011-07-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 {mu}m. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 {mu}m over areas of several cm{sup 2}. Strip detectors are presently being processed and they will tentatively be thinned down to 20 {mu}m. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  15. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    International Nuclear Information System (INIS)

    Bouterfa, M.; Aouadi, K.; Bertrand, D.; Olbrechts, B.; Delamare, R.; Raskin, J. P.; Gil, E. C.; Flandre, D.

    2011-01-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 μm. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 μm over areas of several cm 2 . Strip detectors are presently being processed and they will tentatively be thinned down to 20 μm. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  16. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  17. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi

    2017-09-18

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence, and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulae are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.

  18. Electrical properties of ultra-thin oxynitrided layer using N2O plasma in inductively coupled plasma chemical vapor deposition for non-volatile memory on glass

    International Nuclear Information System (INIS)

    Jung, Sungwook; Hwang, Sunghyun; Kim, Kyunghae; Dhungel, S.K.; Chung, Ho-Kyoon; Choi, Byoung-Deog; Lee, Ki-Yong; Yi, J.

    2007-01-01

    In this work, the silicon oxynitride layer was studied as a tunneling layer for non-volatile memory application by fabricating low temperature polysilicon thin film transistors on glass. Silicon wafers were oxynitrided by only nitrous oxide plasma under different radio frequency powers and plasma treatment times. Plasma oxynitridation was performed in RF plasma using inductively coupled plasma chemical vapor deposition. The X-ray energy dispersive spectroscopy was employed to analyze the atomic concentration ratio of nitrogen/oxygen in oxynitride layer. The oxynitrided layer formed under radio frequency power of 150 W and substrate temperature of 623 K was found to contain the atomic concentration ratio of nitrogen/oxygen as high as 1.57. The advantage of high nitrogen concentration in silicon oxide layer formed by using nitrous oxide plasma was investigated by capacitance-voltage measurement. The analysis of capacitance-voltage characteristics demonstrated that the ultra-thin oxynitride layers of 2 nm thickness formed by only nitrous oxide plasma have good properties as tunneling layer for non-volatile memory device

  19. Surface and interface characterization of thin-film silicon solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Dominic

    2013-02-21

    our Si L{sub 2,3} XES analysis. Spatially resolved x-ray photoelectron spectroscopy data support this and even suggest the formation of sub-oxides or zinc silicate as an interface species. The electronic structure of the buried a-SiO{sub x}:H(B)/ZnO:Al and {mu}c-Si:H(B)/ZnO:Al interfaces are unraveled with ''depth resolved'' hard x-ray photoelectron spectroscopy. A surface band bending limited to the very surface of the silicon layers is found. The valence band maxima for the Si cover layers and the ZnO:Al TCO are determined and interface induced band bending for both interfaces are derived. At the a-SiO{sub x}:H(B)/ZnO:Al interface a tunnel barrier of (0.22 {+-} 0.31) eV and at {mu}c-Si:H(B)/ZnO:Al interface a tunnel barrier of (-0.08 {+-} 0.31) eV is determined. This explains a previously empirically found solar cell efficiency increase produced by introducing a {mu}c-Si:H(B) buffer layer between an a-Si p-i-n cell and the ZnO:Al/glass substrate.

  20. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper

  1. Nanocrystalline ZnO film deposited by ultrasonic spray on textured silicon substrate as an anti-reflection coating layer

    International Nuclear Information System (INIS)

    Sali, S.; Boumaour, M.; Kechouane, M.; Kermadi, S.; Aitamar, F.

    2012-01-01

    A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na 2 CO 3 ). Textured with Na 2 CO 3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn-O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.

  2. A simple quality factor for characterization of thin silicon films

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Mates, Tomáš; Ledinský, Martin; Stuchlíková, The-Ha; Stuchlík, Jiří; Fejfar, Antonín

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2227-2230 ISSN 0022-3093 R&D Projects: GA MŠk(CZ) LC06040; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413; GA AV ČR IAA1010316; GA MŽP(CZ) SN/3/172/05 Institutional research plan: CEZ:AV0Z10100521 Keywords : microcrystalline silicon * deposition process * high growth rate * quality evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  3. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  4. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  5. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  6. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  7. An improved method for thin layer chromatographic analysis of saponins.

    Science.gov (United States)

    Sharma, Om P; Kumar, Neeraj; Singh, Bikram; Bhat, Tej K

    2012-05-01

    Analysis of saponins by thin layer chromatography (TLC) is reported. The solvent system was n-butanol:water:acetic acid (84:14:7). Detection of saponins on the TLC plates after development and air-drying was done by immersion in a suspension of sheep erythrocytes, followed by washing off the excess blood on the plate surface. Saponins appeared as white spots against a pink background. The protocol provided specific detection of saponins in the saponins enriched extracts from Aesculusindica (Wall. ex Camb.) Hook.f., Lonicera japonica Thunb., Silene inflata Sm., Sapindusmukorossi Gaertn., Chlorophytum borivilianum Santapau & Fernandes, Asparagusadscendens Roxb., Asparagus racemosus Willd., Agave americana L., Camellia sinensis [L.] O. Kuntze. The protocol is convenient, inexpensive, does not require any corrosive chemicals and provides specific detection of saponins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Atmospheric corrosion evaluation of galvanised steel by thin layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Stroosnijder, M.F.; Brugnoni, C.; Laguzzi, G.; Luvidi, L.; De Cristofaro, N

    2004-09-01

    The release of certain metals, such as zinc, from outdoor constructions due to atmospheric corrosion is of some concern. For risk assessments the evaluation of the amount of released metal is of importance. Various methods can be used to study the release of metals. These include those using radiotracers, such as thin layer activation (TLA). To verify the reliability of TLA with respect to conventional techniques in the evaluation of atmospheric corrosion, galvanised steel was exposed to a mild marine environment. The amount of zinc in the corrosion products, released through artificial leaching, at different time intervals was evaluated by TLA and atomic absorption spectroscopy (AAS). A good correlation between the results was found indicating the feasibility of TLA for these release studies.

  9. Split energy cascade in turbulent thin fluid layers

    Science.gov (United States)

    Musacchio, Stefano; Boffetta, Guido

    2017-11-01

    We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer by means of high resolution numerical simulations of the Navier-Stokes equations. We observe the presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbulence, and a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably, we find that the inverse cascade of energy in this system is not a purely 2D phenomenon, as the coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes.

  10. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  11. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  12. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Fejfar, Antonín; Vetushka, Aliaksi; Stuchlík, Jiří; Rezek, Bohuslav; Kočka, Jan

    2011-01-01

    Roč. 5, 10-11 (2011), s. 373-375 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) LC06040; GA MŠk(CZ) MEB061012; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous silicon * nanocrystalline silicon * thin films * atomic force microscopy * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  13. An investigation of optimal interfacial film condition for Cu-Mn alloy based source/drain electrodes in hydrogenated amorphous silicon thin film transistors

    Directory of Open Access Journals (Sweden)

    Haruhiko Asanuma

    2012-06-01

    Full Text Available To aid in developing next generation Cu-Mn alloy based source/drain interconnects for thin film transistor liquid crystal displays (TFT-LCDs, we have investigated the optimal structure of a pre-formed oxide layer on phosphorus doped hydrogenated amorphous silicon (n+a-Si:H that does not degrade TFT electrical properties. We use transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS to examine composition depth profiles of and structural information for the Cu-Mn alloy/n+a-Si:H interface region. In aiming to achieve the same electrical properties as those of TFTs having conventional Mo source/drain electrodes, we have obtained three important findings: (1 in typical TFT-LCD manufacturing processes, no Mn complex oxide layer is formed because Mn cannot diffuse substantially into an n+a-Si:H surface during low temperature (below 300°C processes and the growth of Mn complex oxide layer would also be limited by the absence of excess oxygen species; (2 a pre-formed silicon oxide layer much thicker than 1 nm severely degrades TFT electrical properties and therefore an ultrathin (≈1 nm silicon oxide layer is required to prevent the degradation; (3 Cu diffuses into an n+a-Si:H layer at oxygen-deficient spots and thus uniform surface oxidation is required to prevent the diffusion.

  14. Ultra thin buried oxide layers formed by low dose Simox process

    International Nuclear Information System (INIS)

    Aspar, B.; Pudda, C.; Papon, A.M.

    1994-01-01

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO 2 precipitates. For 120 keV, this silicon layer is free of SiO 2 precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs

  15. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  16. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  17. Silicon oxide sacrificial layers deposited by pulsed-DC magnetron sputtering for MEMS applications

    Science.gov (United States)

    González-Castilla, Sheila; Olivares, Jimena; Clement, Marta; Vergara, Lucía; Pulido, Laura; Iborra, Enrique; Sangrador, Jesús

    2009-05-01

    Surface micromachining requires the use of easily-removable sacrificial layers fully compatible with all the materials and technological processes involved. Silicon dioxide films, thermally grown on silicon substrates or deposited by CVD, are commonly used as sacrificial layers in surface micromachining technologies, despite their low lateral etch rate in conventional fluorinate solutions. The development of silicon oxide layers with high etch rates poses a great technological challenge. In this work we have investigated the possibility of obtaining easily removable silicon oxide layers by pulsed-DC magnetron reactive sputtering. We have carried out a comprehensive study of the influence of the deposition parameters (total pressure and gas composition) on the composition, residual stress and lateral etch rate in fluorine wet solutions of the films. This study has allowed to determine the sputtering conditions to deposit, at very high rates (up to 0.1 μm/min), silicon oxide films with excellent characteristics for their use as sacrificial layers. Films with roughness around 5 nm rms, residual stress below 100 MPa and very high etch rate (up to 5 μm/min in the lateral directions), around 70 times greater than for thermal silicon oxide, have been achieved. The structural characteristics of these easily removable silicon oxide layers have been assessed by infrared spectroscopy and atomic force microscopy, which have revealed that the films exhibit some kind of porous structure, related to very specific sputter conditions. Finally, the viability of these films has been demonstrated by using them as sacrificial layer in the fabrication process of AlN-based microresonators.

  18. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  19. Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Silicon oxynitride $(SiO_{x}N_{y}:H)$ layers were grown from 2% $SiH_{4}/N_{2}$ and $N_{2}O$ gas mixtures by plasma-enhanced chemical vapor deposition (PECVD). Layer properties such as refractive index, deposition rate, thickness non-uniformity and hydrogen bond content were correlated to the

  20. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  1. The Acoustical Durability of Thin Noise Reducing Asphalt Layers

    Directory of Open Access Journals (Sweden)

    Cedric Vuye

    2016-05-01

    Full Text Available Within the context of the European Noise Directive, traffic noise action plans have been established. One of those actions is to deepen the knowledge about low noise roads, as they are considered the most cost-efficient measure for traffic noise abatement. Therefore, ten test sections were installed in May 2012 in Belgium, with the objective of integrating Thin noise-reducing Asphalt Layers (TAL in the Flemish road surface policy in a later stage. Eight test sections are paved with TAL with a thickness of a maximum of 30 mm and a maximum content of accessible voids of 18%. The other two sections consist of a Double-layer Porous Asphalt Concrete (DPAC and a Stone Mastic Asphalt (SMA-10 as a reference section. The acoustical quality of the asphalt surfaces has been monitored in time using Statistical Pass-By (SPB and Close-ProXimity (CPX measurements up to 34 months after construction. Texture measurements performed with a laser profilometer are linked to the noise measurement results. Very promising initial noise reductions were found, up to 6 dB(A, but higher than expected acoustic deterioration rates and the presence of raveling led to noise reductions of a max. of 1 dB(A after almost three years. It is shown that the construction process itself has a large influence on the acoustical quality over time.

  2. Transparent conductive thin-film encapsulation layers (Presentation Recording)

    Science.gov (United States)

    Behrendt, Andreas; Gahlmann, Tobias; Trost, Sara; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-01

    Gas diffusion barriers (GDB) are inevitable to protect sensitive organic materials or devices against ambient gases. Typically, thin-film gas diffusion barriers are insulators, e.g. Al2O3 or multilayers of Al2O3/ZrO2, etc.. A wide range of applications would require GDB which are at the same time transparent and electrically conductive. They could serve as electrode and moisture barrier simultaneously, thereby simplifying production. As of yet, work on transparent conductive GDB (TCGDBs) is very limited. TCGDBs based on ZnO prepared by atomic layer deposition (ALD) have been reported. Due to the chemical instability of ZnO, it turns out that their electrical conductivity severely deteriorates by orders of magnitude upon exposure to damp heat conditions after very short time. We will show that these issues can be overcome by the use of tin oxide (SnO2). Conductivities of up to 300 S/cm and extremely low water vapor transmission rates (WVTR) on the order of 10-6 g/(m2 day) can been achieved in SnOx layers prepared by ALD at low temperatures (solar cells and OLEDs.

  3. Analysis of Surface Waves in Saturated Layered Poroelastic Half-Spaces Using the Thin Layer Method

    Science.gov (United States)

    Chai, Huayou; Cui, Yujun; Zhang, Dianji

    2018-03-01

    There are multiple modes of surface waves in saturated layered poroelastic half-spaces. The phase velocity and the attenuation of the modes are frequency dependent. The frequency behaviour of the modes can be studied using the layer transfer, stiffness and the transmission/reflection matrix methods. However, it is very difficult to find the complex roots of the determinants because the entries of the matrices involve the complex exponential functions of the wavenumber and the thickness of layer. To overcome this difficulty, the entries in the matrix are expressed in the form of algebraic functions using the thin layer method. Thus, the eigenvalues and eigenvectors can be easily solved using the matrix decomposition techniques instead of the root-searching ones. Some of the eigenvalues correspond to the wavenumbers of the surface waves, and can be picked out based on the characteristics of the surface waves. The frequency behaviour, variations of the pore pressure and the skeleton's displacements with the depth can be then investigated from the corresponding eigenvalues and eigenvectors, respectively. The method is verified by comparing the analytical and the discrete results in the saturated poroelastic half-space with the permeable surface. The method is applied to appreciate the effects of an impermeable surface on Rayleigh waves (R-waves) and the existence of Stoneley waves in the poroelastic half-space. The frequency behaviour of Rayleigh waves in three typical layered poroelastic half-spaces is also analyzed.

  4. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  5. Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition

    Science.gov (United States)

    Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.

    2018-03-01

    The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.

  6. Fabricating 40 µm-thin silicon solar cells with different orientations by using SLiM-cut method

    Science.gov (United States)

    Wang, Teng-Yu; Chen, Chien-Hsun; Shiao, Jui-Chung; Chen, Sung-Yu; Du, Chen-Hsun

    2017-10-01

    Thin silicon foils with different crystal orientations were fabricated using the stress induced lift-off (SLiM-cut) method. The thickness of the silicon foils was approximately 40 µm. The ≤ft foil had a smoother surface than the ≤ft foil. With surface passivation, the minority carrier lifetimes of the ≤ft and ≤ft silicon foil were 1.0 µs and 1.6 µs, respectively. In this study, 4 cm2-thin silicon solar cells with heterojunction structures were fabricated. The energy conversion efficiencies were determined to be 10.74% and 14.74% for the ≤ft and ≤ft solar cells, respectively. The surface quality of the silicon foils was determined to affect the solar cell character. This study demonstrated that fabricating the solar cell by using silicon foil obtained from the SLiM-cut method is feasible.

  7. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Production and characterization of SLID interconnected n-in-p pixel modules with 75 micron thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. T...

  9. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  10. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    International Nuclear Information System (INIS)

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    Full text: For today silicon is one of the most suitable materials because it is investigated, cheap and several its parameters are even just as good as those of connections A III B V . Disintegration of the USSR has led to the must difficult position of the industry of silicon instrument manufacture because of all industry of semiconductor silicon manufacture had generally concentrated in Ukraine. The importance of semiconductor silicon is rather great, because of, in opinion of expects, the nearest decade this material will dominate over not only on microelectronics but also in the majority of basic researches. Research of obtain of semiconductor silicon, power electronics and solar conversion, is topical interest of the science. In the work research of technological conditions of obtain and measurement of parameters of epitaxial layers obtained from technical silicon + stannum is resulted. Growth of silicon epitaxial layer with suitable parameters on thickness, cleanliness uniformity and structural perfection depends on the correct choice of condition of the growth and temperature. It is shown that in this case the growth occurring without preliminary clearing of materials (mix materials and substrates) at crystallization of epitaxial layer from technical silicon is accompanied by clearing of silicon film from majority of impurities order-of-magnitude. As starting raw material technical silicon of mark Kr.3 has been taken. By means of X-ray microanalyzer 'Jeol' JSM 5910 LV - Japan the quantitative analysis from the different points has been and from the different sides and from different points has been carried out. After corresponding chemical and mechanical processing the quantitative analysis of layer on chip has been carried out. Results of the quantitative analysis are shown. More effective clearing occurs that of the impurity atoms such as Al, P, Ca, Ti and Fe. The obtained material (epitaxial layer) has the parameters: specific resistance ρ∼0.1-4.0

  11. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  12. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    Science.gov (United States)

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  13. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Lin, Che-Wei; Chen, Hsin-Jui; Chang, Che-Wei; Huang, Jhih-Jie; Yang, Ming-Jui; Tjahjono, Budi; Huang, Jian-Jia; Hsu, Wen-Ching; Chen, Miin-Jang

    2013-10-09

    Efficient nanotextured black silicon solar cells passivated by an Al2O3 layer are demonstrated. The broadband antireflection of the nanotextured black silicon solar cells was provided by fabricating vertically aligned silicon nanowire (SiNW) arrays on the n(+) emitter. A highly conformal Al2O3 layer was deposited upon the SiNW arrays by the thermal atomic layer deposition (ALD) based on the multiple pulses scheme. The nanotextured black silicon wafer covered with the Al2O3 layer exhibited a low total reflectance of ∼1.5% in a broad spectrum from 400 to 800 nm. The Al2O3 passivation layer also contributes to the suppressed surface recombination, which was explored in terms of the chemical and field-effect passivation effects. An 8% increment of short-circuit current density and 10.3% enhancement of efficiency were achieved due to the ALD Al2O3 surface passivation and forming gas annealing. A high efficiency up to 18.2% was realized in the ALD Al2O3-passivated nanotextured black silicon solar cells.

  14. Effect of weak metallic contamination on silicon epitaxial layer and gate oxide integrity

    Energy Technology Data Exchange (ETDEWEB)

    Mello, D.; Coccorese, C.; Ferlito, E.; Sciuto, G.; Ricciari, R.; Barbarino, P.; Astuto, M. [STMicroelectronics, Physics Lab. Stradale primosole, 50 I-95121 Catania (Italy)

    2011-08-15

    The detection of metallic contaminants in microelectronics devices is one of the main issues in production line. In fact they could diffuse rapidly into the silicon bulk and establishing energy states into the silicon energy-band gap. The presence of trace of metals on the silicon surface can also degrade the gate oxide integrity, cause structural defect in silicon epitaxial layers or anomalies in silicon/gate oxide interface. Usually in semiconductor manufacturing superficial metallic contamination is monitored using Total X-ray Reflection Fluorescence spectroscopy (TXRF) and performing specific electrical measurements on dedicated capacitor. In this work a weak contamination, undetected by TXRF analysis, was revealed by Transmission Electron Microscopy (TEM) observing lattice damaging and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) detecting an anomalous Na distribution in depth profile. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical Absorption Enhancement in CdTe Thin Films by Microstructuration of the Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jesús Rangel-Cárdenas

    2017-06-01

    Full Text Available In this work, the reflectance, optical absorption, and band gap have been determined for CdTe thin films grown on planar and microstructured substrates. The treated surface was prepared by laser ablation of a silicon wafer, forming holes in a periodic arrangement. Thin films were grown by pulsed laser ablation on silicon samples kept at 200 °C inside a vacuum chamber. The presence of CdTe was verified with X-ray diffraction and Raman spectroscopy indicating a nanocrystalline zinc blended structure. The optical absorption of thin films was calculated by using the Fresnel laws and the experimental reflectance spectrum. Results show that reflectance of 245 nm films deposited on modified substrates is reduced by up to a factor of two than the obtained on unchanged silicon and the optical absorption is 16% higher at ~456 nm. Additionally, it was determined that the band gap energy for planar and microstructured films is about 1.44 eV for both cases.

  16. Adhesion between coating layers based on epoxy and silicone

    DEFF Research Database (Denmark)

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....

  17. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Morel, J.; Kaplan, S.N.; Street, R.A.

    1986-02-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics

  18. Hafnium nitride buffer layers for growth of GaN on silicon

    Science.gov (United States)

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  19. Component with a wear protection layer containing silicon carbide. Bauteil mit einer siliziumcarbidhaltigen Verschleiss-Schutzschicht

    Energy Technology Data Exchange (ETDEWEB)

    Mielsch, G.; Froehler, M.; Rutka, A.

    1991-05-16

    A light metal component of an internal combustion engine subject to wear has an iron dispersion layer instead of the usual nickel dispersion coating. Silicon carbide particles are used here as wear protection particles, but the support layer is made of iron. A suitable composition of the electrolyte is also described for an electrolytic coating process similar to that of applying a nickel dispersion layer in the usual way. An advantageous coating plant is also described.

  20. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  1. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  2. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  3. A novel self-cleaning and anti-reflective multi-layer for thin-film solar PV module

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Shiue, J.D. [Kun-Shan Univ., Yung-Kung City, Taiwan (China). Clean Energy Center; Li, M.; Huang, M.C. [NanoWinTechnology Co., Ltd., Taiwan (China); Fu, Y.S.; Wei, S.S. [National Univ. of Tainan, Tainan, Taiwan (China)

    2007-07-01

    Titanium dioxide (TiO{sub 2}) acts as a photocatalyst, and can accelerate the decomposition of organic particulates and airborne pollutants that gather on solar arrays. In this study, a TiO{sub 2} film was coated on the outside surface of sodium glass in order to increase the self-cleaning ability of solar cells. DC magnetic sputtering was used to coat multi-layer thin films of silicon nitrides in order to increase their antireflective capabilities. The TiO{sub 2} thin film was fabricated using the sol-gel method. Optical properties of the microstructure and composition of the films were characterized using UV-V spectroscopy. Results showed that the best anti-reflection spectrum of the TiO{sub 2} was between 700 and 800 nm. Average transmission rates were 3.54 per cent higher than those observed in slide glass samples. It was concluded that overlapped titanium dioxide/silicon nitride thin films can achieve a very good anti-reflective effect as well as self-cleaning ability in the range of 400-800 nm. 9 refs., 4 figs.

  4. Sliver{sup (R)} solar cells: A new thin-crystalline silicon photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Verlinden, P.J.; Kerr, M.J.; Stuckings, M.F.; Gordeev, D.; Stocks, M.J. [Origin Energy Solar, G.P.O Box 1097, Adelaide, SA 5001 (Australia); Blakers, A.W.; Weber, K.J.; Babaei, J.; Everett, V. [Centre for Sustainable Energy Systems, ANU, Canberra, ACT 0200 (Australia)

    2006-11-23

    A new technique for producing thin single-crystal silicon solar cells has been developed. The new technology allows for large decreases in silicon usage by a factor of 12 (including kerf losses) compared to conventional crystalline silicon wafer technologies. The new Sliver{sup (R)} cell process uses a micromachining technique to form 60{mu}m-thick solar cells, fully processed while they are still supported by the silicon substrate at the edge of the wafer. The Sliver{sup (R)} solar cells are capable of excellent performance due to their thickness and unique cell design with demonstrated efficiencies over 19.3% and open-circuit voltages of 683mV. In addition, the cells are bifacial (accepts light from either sides) and very flexible. Several prototype modules have been fabricated using a new design approach that introduces a diffuse reflector to the rear of a bi-glass module. To save expensive silicon material, a significant gap is kept between cells. The light striking between cells is scattered from the rear reflector and is directed onto the rear surface of the bifacial Sliver{sup (R)} cells. Module efficiency of 13% (AM1.5, 25C) has been demonstrated with a module presenting a 50% solar-cell coverage fraction, and 18.3% with a 100% Sliver{sup (R)} cell coverage fraction. (author)

  5. Characterization and Electrochemical Performance at High Discharge Rates of Tin Dioxide Thin Films Synthesized by Atomic Layer Deposition

    Science.gov (United States)

    Maximov, M. Yu.; Novikov, P. A.; Nazarov, D. V.; Rymyantsev, A. M.; Silin, A. O.; Zhang, Y.; Popovich, A. A.

    2017-11-01

    In this study, thin films of tin dioxide have been synthesized on substrates of silicon and stainless steel by atomic layer deposition (ALD) with tetraethyl tin and by inductively coupled remote oxygen plasma as precursors. Studies of the surface morphology by scanning electron microscopy show a strong dependence on synthesis temperature. According to the x-ray photoelectron spectroscopy measurements, the samples contain tin in the oxidation state +4. The thickness of the thin films for electrochemical performance was approximately 80 nm. Electrochemical cycling in the voltage range of 0.01-0.8 V have shown that tin oxide has a stable discharge capacity of approximately 650 mAh/g during 400 charge/discharge cycles with an efficiency of approximately 99.5%. The decrease in capacity after 400 charge/discharge cycles was around 5-7%. Synthesized SnO2 thin films have fast kinetics of lithium ions intercalation and excellent discharge efficiency at high C-rates, up to 40C, with a small decrease in capacity of less than 20%. Specific capacity and cyclic stability of thin films of SnO2 synthesized by ALD exceed the values mentioned in the literature for pure tin dioxide thin films.

  6. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films : Influence of Si Doping and SnO2 Interfacial Layer

    NARCIS (Netherlands)

    Liang, Y.; Enache, C.S.; Van De Krol, R.

    2008-01-01

    a-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc)3. The donor density in the Fe2O3 films could be tuned between 10171020cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting

  7. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kordyasz, A.J.; Bednarek, A. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); Le Neindre, N.; Bougault, R.; Lopez, O.; Merrer, Y.; Vient, E. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); Parlog, M. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest Magurele (Romania); Casini, G.; Poggi, G.; Bini, M.; Valdre, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S. [INFN Firenze, Sesto Fiorentino (Italy); Universita di Firenze, Sesto Fiorentino (Firenze) (Italy); Kowalczyk, M. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Frankland, J.D.; Bonnet, E.; Chbihi, A.; Gruyer, D. [CEA et IN2P3-CNRS, GANIL, Caen-Cedex 05 (France); Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [IN2P3-CNRS, Institut de Physique Nucleaire, Orsay-Cedex (France); Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Alba, R.; Santonocito, D.; Maiolino, C. [INFN, Catania (Italy); Universita di Catania, LNS, Catania (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN LNL Legnaro, Legnaro (Padova) (Italy); Kozik, T.; Kulig, P.; Twarog, T.; Sosin, Z. [Jagiellonian University, Cracow (Poland); Gasior, K.; Grzeszczuk, A.; Zipper, W. [University of Silesia, Silesian University, Katowice (Poland); Sarnecki, J.; Lipinski, D.; Wodzinska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyzak, K. [Institute of Electronic Materials Technology, Warsaw (Poland); Tarasiuk, K.J. [University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Khabanowa, Z. [Faculty of Physics, Warsaw University of Technology, Warsaw (Poland); Kordyasz, L. [Warsaw University of Technology, Faculty of Mechatronics, Institute of Mikromechanics and Photonics, Department of Design of Precision Devices, Warsaw (Poland)

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R and D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B{sup +} ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from {sup 241}Am (left angle E{sub α} right angle = 5.5 MeV). Preliminary tests on the first thin detector (area ∼ 20 x 20 mm{sup 2}) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction {sup 84}Kr (E = 35 A MeV) + {sup 112}Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge. (orig.)

  8. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  9. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  10. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Directory of Open Access Journals (Sweden)

    S. Reboh

    2013-10-01

    Full Text Available To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  11. Effects of silicon:carbon P+ layer interfaces on solar cells

    International Nuclear Information System (INIS)

    Jeffrey, F.R.; Vernstrom, G.D.; Weber, M.F.; Gilbert, J.R.

    1987-01-01

    Results are presented showing the effects on amorphous silicon (a-Si) photovoltaic performance of the interfaces associated with a silicon carbide (a-Si:C) p+ layer. Carbon grading into the intrinsic layer from the p+ layer increases open circuit voltage (Voc) from 0.7V to 0.88V. This effect is very similar to the boron profile effect reported earlier and supports the contention that Voc is being limited by an electron current at the p-i interface. The interface between the p+ a-Si:C layer and the transparent conductive oxide (TCO) is shown to be a potential source of high series resistance, with an abrupt interface showing the most serious problem. The effect is explained by electron injection from the TCO into the p+ layer being inhibited as a result of band mismatch

  12. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  13. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  14. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  15. Somatic Embryogenesis of Lilium from Microbulb Transverse Thin Cell Layers.

    Science.gov (United States)

    Marinangeli, Pablo

    2016-01-01

    A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.

  16. Thin layer chromatography-ion mobility spectrometry (TLC-IMS).

    Science.gov (United States)

    Ilbeigi, Vahideh; Tabrizchi, Mahmoud

    2015-01-06

    Ion mobility spectrometry (IMS) is a fast and sensitive analytical method which operates at the atmospheric pressure. To enhance the capability of IMS for the analysis of mixtures, it is often used with preseparation techniques, such as GC or HPLC. Here, we report for the first time the coupling of the thin-layer chromatography and IMS. A variety of coupling schemes were tried that included direct electrospray from the TLC strip tip, indirect electrospray from a needle connected to the TLC strip, introducing the moving solvent into the injection port, and, the simplest way, offline introduction of scratched or cut pieces of strips into the IMS injection port. In this study a special solvent tank was designed and the TLC strip was mounted horizontally where the solvent would flow down. A very small funnel right below the TLC tip collected the solvent and transferred it to a needle via a capillary tubing. Using the TLC-ESI-IMS technique, acceptable separations were achieved for two component mixtures of morphine-papaverine and acridine-papaverine. A special injection port was designed to host the pieces cut off the TLC. The method was successfully used to identify each spot on the TLC by IMS in a few seconds.

  17. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    Science.gov (United States)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  18. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  19. Step-frequency radar applied on thin road layers

    Science.gov (United States)

    Dérobert, X.; Fauchard, C.; Côte, Ph.; Le Brusq, E.; Guillanton, E.; Dauvignac, J. Y.; Pichot, Ch.

    2001-07-01

    In the field of road construction and maintenance, the need for information on the thickness of very thin road layers is not satisfied by means of commercial pulse GPR, due to the inability of such devices to operate over ranges of several gigahertz. As a result, research has focused on the design of a step-frequency radar technique, able to work with very high-frequency synthetic pulses. An ultrawide band antenna, belonging to the family of Vivaldi antennas, has been developed for road applications. It has been created using stripline technology and yields a band width greater than one decade. During an initial step, this antenna was tested on various bituminous concrete samples with a network analyzer. Different parameters were studied, including band width, offset between antennas, and height and shape of the frequency-dependent pulse. A second step involved GPR dynamic measurements. A customized software program enabled recording data from the network analyzer. Several radar profiles were developed from selected road construction and maintenance test sites (e.g. the Circular Pavement Fatigue Test Track, composed of a number of known structures). Results show improved resolution when compared to a commercial impulse GPR system.

  20. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  1. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  2. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  3. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Science.gov (United States)

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQfibromyalgia exhibited significant thinning in the

  4. Single-layer graphene on silicon nitride micromembrane resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil

    2014-01-01

    for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling...

  5. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    Science.gov (United States)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  6. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  7. Enhanced Performance of Organic Thin Film Transistor Devices Using Hydroxyethyl-Terminated P3HT as the Active Layer.

    Science.gov (United States)

    Yeh, Je-Yuan; Tsiang, Raymond Chien-Chao

    2015-05-01

    Hydroxyethyl-terminated poly(3-hexylthiophene) (P3HT-OH) have been synthesized via a catalyst-transfer polycondensation using Grignard metathesis mediated by a nickel-based catalyst. This hydrophilic P3HT-OH is compared against the hydrophobic P3HT when used as an active layer on silicon dioxide (SiO2) wafer for organic thin-film-transistor (OTFT) fabrication. Hydroxyl groups at a 7.5% weight content lead to more chain regularity when polymer is bonded to SiO2 wafer surface and thus enhance the performance of OTFT Device, such as an 114.2% increase in ON/OFF ratio, an 12.4% increase in mobility, a 23.3% decrease in threshold voltage and a 30.1% decrease in surface roughness. Analysis and measurements reported in this paper have illustrated for the first time the feasibility of imparting hydrophilicity to the active layer for improving the OTFT performance.

  8. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  9. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride.

    Science.gov (United States)

    Kischkat, Jan; Peters, Sven; Gruska, Bernd; Semtsiv, Mykhaylo; Chashnikova, Mikaela; Klinkmüller, Matthias; Fedosenko, Oliana; Machulik, Stephan; Aleksandrova, Anna; Monastyrskyi, Gregorii; Flores, Yuri; Masselink, W Ted

    2012-10-01

    The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 μm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.

  10. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.

    Science.gov (United States)

    Driessen, Marion; Merkel, Benjamin; Reber, Stefan

    2011-09-01

    Crystalline silicon thin film (cSiTF) solar cells based on the epitaxial wafer-equivalent (EpiWE) concept combine advantages of wafer-based and thin film silicon solar cells. In this paper two processes beyond the standard process sequence for cSiTF cell fabrication are described. The first provides an alternative to wet chemical saw damage removal by chemical vapor etching (CVE) with hydrogen chloride in-situ prior to epitaxial deposition. This application decreases the number of process and handling steps. Solar cells fabricated with different etching processes achieved efficiencies up to 14.7%. 1300 degrees C etching temperature led to better cell results than 1200 degrees C. The second investigated process aims for an improvement of cell efficiency by implementation of a reflecting interlayer between substrate and active solar cell. Some characteristics of epitaxial lateral overgrowth (ELO) of a patterned silicon dioxide film in a lab-type reactor constructed at Fraunhofer ISE are described and first solar cell results are presented.

  11. Etch-stop behavior of buried layers formed by substoichiometric nitrogen ion implantation into silicon

    International Nuclear Information System (INIS)

    Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R.; Acero, M.C. Esteve, J.; Montserrat, J.; El-Hassani, A.

    1996-01-01

    In this work the etch-stop behavior of buried layers formed by substoichiometric nitrogen ion implantation into silicon is studied as a function of the processing parameters, the implantation dose and temperature, and the presence of capping layers during implantation. Etching characteristics have been probed using tetramethylammonium hydroxide or KOH solutions for different times up to 6 h. Results show that, after annealing, the minimum dose required for the formation of an efficient etch-stop layer is about 4 x 10 17 cm -2 , for an implantation energy of 75 keV. This is defined as a layer with an efficient etch selectivity in relation to Si of s ≥ 100. For larger implantation doses efficient etch selectivities larger than 100 are obtained. However, for these doses a considerable density of pits is observed in the etch-stop layer. These are related to the presence of nitrogen poor Si regions in the buried layer after annealing, due to a partial separation of silicon and silicon nitride phases during the annealing process. The influence of this separation of phases as well as nitrogen gettering in the buried layer on the etch-stop behavior is discussed as a function of the processing parameters

  12. Formation of (100)-oriented large polycrystalline silicon thin films with multiline beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Thuy Nguyen, Thi; Hiraiwa, Mitsuhisa; Koganezawa, Tomoyuki; Yasuno, Satoshi; Kuroki, Shin-Ichiro

    2018-03-01

    Low-temperature crystallization to (100)-oriented polycrystalline silicon (poly-Si) thin films is a key requirement for high-performance low-temperature poly-Si thin-film transistors (LTPS-TFTs). Biaxially (100)-oriented poly-Si thin films were formed by multiline beam continuous-wave laser lateral crystallization in single scans. By overlapping scanning, the (100) preferential orientation was stable and (100) silicon crystals were developed over a large area. The crystallinities of the poly-Si films were precisely characterized, especially by two-dimensional X-ray diffraction. It was found that the poly-Si thin films predominantly had (100)-surface-oriented crystals. The crystallinity of the laser-crystallized poly-Si films was dependent on the scanning speed and overlapping condition. The (100) poly-Si films were formed at scanning speeds below the threshold for lateral-crystallized silicon.

  13. Detection of Actaea racemosa Adulteration by Thin-Layer Chromatography and Combined Thin-Layer Chromatography-Bioluminescence

    Science.gov (United States)

    Verbitski, Sheryl M.; Gourdin, Gerald T.; Ikenouye, Larissa M.; McChesney, James D.; Hildreth, Jana

    2014-01-01

    Actaea racemosa L. (black cohosh; syn. Cimicifuga racemosa L. Nutt.) is a native North American perennial whose root and rhizome preparations are commercially available as phytomedicines and dietary supplements, primarily for management of menopausal symptoms. Despite its wide use, methods that accurately identify processed A. racemosa are not well established; product adulteration remains a concern. Because of its similar appearance and growing locales, A. racemosa has been unintentionally mixed with other species of the genus, such as Actaea pachypoda Ell. (white cohosh) and more commonly Actaea podocarpa DC. (yellow cohosh). The genus Actaea also has 23 temperate species with numerous common names, which can also contribute to the misidentification of plant material. Consequently, a variety of Actaea spp. are common adulterants of commercially available black cohosh preparations. Thin-layer chromatography (TLC) and combined TLC-bioluminescence (Bioluminex™) are efficient, economical, and effective techniques which provide characteristic patterns and toxicity profiles for each plant species. These data indicate that common black cohosh adulterants, such as yellow cohosh, can be differentiated from black cohosh by TLC and TLC-bioluminescence. This study also showed that unknown contaminants that were not detected using standard A. racemosa identity techniques were readily detected by TLC and TLC-bioluminescence. PMID:18476337

  14. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  15. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  16. Analysis of buried etch-stop layers in silicon by nitrogen-ion implantation

    International Nuclear Information System (INIS)

    Acero, M.C.; Esteve, J.; Montserrat, J.; Perez-Rodriguez, A.; Garrido, B.; Romano-Rodriguez, A.; Morante, J.R.

    1993-01-01

    The analysis of the etch-stop properties of layers obtained by substoichiometric nitrogen-ion implantation and annealing in silicon has been performed as a function of the implantation conditions. The analysis of the etching efficiency has been tested in TMAH-IPA systems. The results obtained show the need to implant at doses higher than 2 x 10 17 cm -2 to obtain etch-stop layers stable under high-temperature annealing. So, for implantation doses of 5 x 10 17 cm -2 , layers stand unetched for times longer than 2 h. The preliminary structural analysis of the samples suggests the presence of an amorphous silicon nitride layer for higher implantation doses. (author)

  17. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  18. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  19. Thin film limit correction method to the surface defective layer in low absorption spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Holovský, Jakub; Purkrt, Adam; Stuchlík, Jiří

    2015-01-01

    Roč. 7, č. 4 (2015), s. 343-346 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 Keywords : thin films * optical properties * hydrogenated amorphous silicon * photothermal deflection spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. A COMPARISON OF THE ENVIRONMENTAL IMPACT OF SOLAR POWER GENERATION USING MULTICRYSTALLINE SILICON AND THIN FILM OF AMORPHOUS SILICON SOLAR CELLS: CASE STUDY IN THAILAND

    Directory of Open Access Journals (Sweden)

    Wasin Khaenson

    2017-07-01

    Full Text Available This paper studies the environmental impact of two different forms of solar power generation in Thailand - that of multicrystalline silicon solar cells, and that of thin film amorphous silicon solar cells. It takes as its study two of the largest solar cell power plants of their kind in Thailand; a multicrystalline silicon plant in the north (generating 90 MW and a thin film amorphous silicon plant in the centre (generating 55 MW. The Life Cycle Assessment tool (LCA was used to assess the environmental impact of each stage of the process, from the manufacture of the cells, through to their transportation, installation and eventual recycling. The functional unit of the study was the generation of 1 kWh of power transmitted and distributed by the Electricity Generating Authority of Thailand (EGAT and Provincial Electricity Authority (PEA. The environmental impact results were calculated in terms of eco-points (Pt per functional unit of 1 kWh. The characterised data for 1 kWh of solar power generation was then compared with data for 1 kWh of combined cycle and thermal power generation (both in Thailand, using the same set of characterisation factors. After analyzing the results, both forms of solar power energy generation were found to impact upon the studied categories of Human Health, Ecosystem Quality and Resource Depletion, whilst also highlighting the importance of the solar cell module recycling process in decreasing the overall environmental impact. When the two solar cell technologies were compared, the overall impact of the multicrystalline silicon solar cell was found to be higher than that of the thin film amorphous silicon solar cell. Furthermore, when assessing the overall impact against non-renewable power generating technologies such as combined cycle and thermal power generation, the thin film amorphous silicon solar cells were found to have the lowest environmental impact of all technologies studied.

  1. MEMS optical tunable filter based on free-standing subwavelength silicon layers

    Science.gov (United States)

    Omran, Haitham; Sabry, Yasser M.; Sadek, Mohamed; Hassan, Khaled; Shalaby, Mohamed Y.; Khalil, Diaa

    2014-03-01

    We report a MEMS optical tunable filter based on high-aspect-ratio etching of sub-wavelength silicon layers on a silicon- on-insulator wafer. The reported filter has measured free-spectral and filter-tuning ranges of approximately 100 nm and a finesse of about 20 around a wavelength of 1550 nm, enabled by the use of 1000 nm-thick silicon layers and a balanced tilt-free motion using a lithographically-aligned electrostatic actuator. The average insertion loss of the filter is about 12 dB with a superior wavelength-dependent loss of about 1.5 dB. The filter has an out-of-band to in-band wavelength rejection ratio that is better than 20 dB. The reported filter experimental characteristics and its integrability are suitable for the production of integrated swept sources for optical coherence tomography application and miniaturized spectrometers.

  2. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices

    Science.gov (United States)

    Aurang, Pantea; Turan, Rasit; Emrah Unalan, Husnu

    2017-10-01

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  3. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    Science.gov (United States)

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  4. Study of problems raised by the production of electronic preamplifier by thin layer evaporation

    International Nuclear Information System (INIS)

    Lesaint, Jean

    1962-01-01

    This research thesis reports the study of the different methods of manufacturing electronic assemblies by deposition of various thin layers in order to reduce dimensions and weight of such assemblies. Thin layers have been prepared by vacuum evaporation. During this preparation, the author identified the problems raised by this miniaturisation technique. The most important ones have been solved and it was then possible to produce by this method charge preamplifiers aimed at the detection of nuclear particles. The author envisages the production of capacitors with such a technique based on thin layers [fr

  5. Layer thinning transition in an achiral four-ring hockey stick shaped liquid crystal

    Science.gov (United States)

    Paul, Manoj Kr.; Nath, Rahul K.; Moths, Brian; Pan, LiDong; Wang, Shun; Deb, Rajdeep; Shen, Yongqiang; Rao, Nandiraju V. S.; Huang, C. C.

    2012-12-01

    Depolarized reflected light microscopy and high resolution optical reflectivity measurements have been conducted on free-standing films of an achiral four-ring hockey stick shaped liquid crystal exhibiting SmA-B2-SmX* transition sequence. A layer thinning transition above the bulk isotropic-SmA phase transition has been observed. This behaviour was highly irreproducible, indicating an irregular layer thinning transition. From optical reflectivity data, both thickness of the free-standing films and the smectic interlayer spacing were determined. This is the first report of the layer thinning transition in a hockey stick shaped liquid crystal.

  6. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  7. Piecewise simulaton proton test of gallium arsenide and thin silicon solar cells

    Science.gov (United States)

    Peterson, D. G.; Billets, S. A.

    1984-01-01

    Gallium Arsenide (GaAs) solar cells are viewed as a potential primary power source on certain future Earth orbiting satellites. However, the relative merits of gallium arsenide over silicon in a space radiation environment are largely unknown because a general degradation model for gallium arsenide does not exist. The results of a test simulating the proton radiation environment existing in a polar orbit and the concomitant effects on GaAs and thin silicon (Si) solar cells are presented. The objectives and methodology of the simulation test were discussed. The electrical characteristics of GaAs and Si solar cells are given in graph form. It was concluded that GaAs cells are viable for use on satellites in low Earth orbit.

  8. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  9. Electrical response of electron selective atomic layer deposited TiO2‑x heterocontacts on crystalline silicon substrates

    Science.gov (United States)

    Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit

    2018-04-01

    Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.

  10. Preparation of lanthanum fluoride nanolayers by depositing ionic layers on silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhuchkov, B.S.; Tolstoi, V.P.; Murin, I.V.; Kirillov, S.N. [St. Petersburg State Univ. (Russian Federation)

    1995-11-10

    The kinetics of growth of LaF{sub 3} nanolayers on silicon surface was studied. Influences due to preparation conditions (the concentration and the pH values of the solution, the time of surface treatment, the number of cycles of ionic layer deposition) were evaluated.

  11. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    van Assche, F. J. H.; Unnikrishnan, S.; Michels, J. J.; van Mol, A. M. B.; van de Weijer, P.; M. C. M. van de Sanden,; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110 °C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic

  12. Hydrogenated Silicon Layers and Solar Cells Deposited at Very Low Substrate Temperature

    NARCIS (Netherlands)

    Bronsveld, P.C.P.

    2013-01-01

    For direct production of solar cells on cheap plastics, the quality of VHF-PECVD deposited intrinsic and doped silicon layers made at substrate temperatures ≤ 100 °C was optimized. The investigation showed that at lower substrate temperatures, higher hydrogen dilution of the source gas silane was

  13. Early stages of growth of gold layers sputter deposited on glass and silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Slepička, P.; Hnatowicz, Vladimír; Švorčík, V.

    2012-01-01

    Roč. 7, č. 241 (2012), s. 1-7 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : sputtering * gold layer * glass * silicon * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012

  14. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    Assche, F.J.H. Van; Unnikrishnan, S.; Michels, J.J.; Mol, A.M.B. van; Weijer, P. van de; Sanden, M.C.M. van de; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110°C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic photovoltaic cells

  15. Surface passivation and carrier selectivity of the thermal-atomic-layer-deposited TiO2 on crystalline silicon

    Science.gov (United States)

    Plakhotnyuk, Maksym M.; Schüler, Nadine; Shkodin, Evgeniy; Ammapet Vijayan, Ramachandran; Masilamani, Sangaravadivel; Varadharajaperumal, Muthubalan; Crovetto, Andrea; Hansen, Ole

    2017-08-01

    Here, we demonstrate the use of an ultrathin TiO2 film as a passivating carrier-selective contact for silicon photovoltaics. The effective lifetime, surface recombination velocity, and diode quality dependence on TiO2 deposition temperature with and without a thin tunneling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si) are reported. 5-, 10-, and 20-nm-thick TiO2 films were deposited by thermal atomic layer deposition (ALD) in the temperature range of 80-300 °C using titanium tetrachloride (TiCl4) and water. TiO2 thin-film passivation layers alone result in a lower effective carrier lifetime compared with that with an interlayer. However, SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si surfaces. Further annealing at 200 °C in N2 gas enhances the surface passivation quality of TiO2 tremendously. From these findings, design principles for TiO2-Si heterojunction with optimized photovoltage, interface quality, and electron extraction to maximize the photovoltage of TiO2-Si heterojunction photovoltaic cells are formulated. Diode behaviour was analysed with the help of experimental, analytical, and simulation methods. It is predicted that TiO2 with a high carrier concentration is a preferable candidate for high-performance solar cells. The possible reasons for performance degradation in those devices with and without interlayers are also discussed.

  16. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  17. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  18. Relation of nanoscale and macroscopic properties of mixed-phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Vetushka, Aliaksi; Kalusová, V.; Čertík, Ondřej; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 207, č. 3 (2010), s. 582-586 ISSN 1862-6300 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : conductive atomic force microscopy (C-AFM) * mixed phase silicon thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.458, year: 2010 http://dx.doi.org/10.1002/pssa.200982907

  19. Thin crystalline silicon with double-sided nano-hole array fabricated by soft UV-NIL and RIE

    Science.gov (United States)

    Wang, Min; Zhang, Yulian; Lu, Linfeng; Li, Dongdong; Zhu, Xufei

    2017-05-01

    The thin crystalline silicon (c-Si) is deemed to be an alternative material for solar cells, but it is too thin to effectively absorb light on a broad spectrum. Here we experimentally demonstrate, for the first time, that a double-sided nano-hole array on free-standing thin c-Si (20 µm) by combining soft ultra-violet nanoimprint lithography (soft UV-NIL) and reactive ion etching (RIE), which is simple and possible for mass production. This thin c-Si with double-sided nano-hole array proves to show 40% lower light reflectivity than flat silicon at long wavelength range, which is coincident with the simulated results. The thin c-Si with double-sided nano-hole array also has the advantages of good flexibility and uniform thickness, adding feasibility to apply the structure to photonic devices.

  20. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, S. David; Pedersen, Thomas

    2013-01-01

    The present work demonstrates that tuning the donor density of protective TiO2 layers on a photocathode has dramatic consequences for electronic conduction through TiO2 with implications for the stabilization of oxidation-sensitive catalysts on the surface. Vacuum annealing at 400 °C for 1 hour o...

  1. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide

    Directory of Open Access Journals (Sweden)

    P. Borowicz

    2013-01-01

    Full Text Available Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above, the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide.

  2. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Directory of Open Access Journals (Sweden)

    Elena Garcia-Martin

    Full Text Available To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT, as the retinal nerve fiber layer (RNFL is atrophied in patients with fibromyalgia compared with controls.Fibromyalgia patients (n = 116 and age-matched healthy controls (n = 144 were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis. Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ, and the European Quality of Life-5 Dimensions (EQ5D scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed.A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023, nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively. The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3

  3. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  4. Ab-initio study of encapsulated and functionalized silicon nanotube with a monoatomically thin Cu wire

    Energy Technology Data Exchange (ETDEWEB)

    Chandel, Surjeet Kumar; Ahluwalia, P. K.; Sharma, Raman [Department of Physics, Himachal Pradesh University, Shimla, Himachal Pradesh-171005 (India); Kumar, Arun, E-mail: arun242493@yahoo.com [Department of Physics, Govt. College Banjar, Kullu, Himachal Pradesh-175123 (India)

    2015-06-24

    First principle calculations based on DFT have been performed to study the interaction of monoatomically thin Cu wire with silicon nanotube in armchair configuration having chirality (6, 6) both by placing it inside (encapsulation) and outside (functionalisation) the tube. The lowest energy for positioning monoatomically thin Cu wire inside and outside surfaces of SiNT were found to possess cohesive energies of 4.03 eV and 4.02 eV respectively and hence the stability of both SiNTs is found to be almost same. However, From the electronic band structures study, the conductance in case of SiNT for the encapsulated and functionalized positioning of the Cu wire have been found to be 2G{sub 0} and 4G{sub 0} respectively showing enhanced conductance for the functionalized SiNT.

  5. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering

    International Nuclear Information System (INIS)

    Ryan, Joseph V.; Pantano, C. G.

    2007-01-01

    Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2-2x) C x films, with a continuous range of compositions where 0≤x≤1, were deposited by controlling the amount of oxygen present in the plasma with a SiC target. This resulted in a density range from 1.9 to 2.8 g/cm 3 and a range of refractive indexes from 1.35 to 2.85. Analysis of the film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between ∼0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% of the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established

  6. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...

  7. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence.......The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...

  8. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    Science.gov (United States)

    Carey, III, James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  9. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  10. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  11. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  12. Investigation of mechanical properties of CVD grown titanium silicon nitride thin films under reduced atmosphere

    Science.gov (United States)

    Guha, Spandan; Das, Soham; Bandyopadhyay, Asish; Das, Santanu; Swain, Bibhu P.

    2018-01-01

    Titanium silicon nitride (TiSiN) thin films were deposited by thermal chemical vapour deposition using TiO2 + Si3N4 powder with different H2 flow rates. Morphological, structural, and mechanical properties of deposited TiSiN films were characterized using different techniques by SEM, XRD, Raman, and nano-indentation. SEM images reveal that surface roughness of TiSiN thin films decreased with increasing of H2 flow rate. The Raman spectroscopy indicated that the intensity of acoustic phonon mode decreases, whereas intensity of optical phonon mode increases with increasing of H2 flow rate. The maximum hardness, Young's modulus, and yield strength of the TiSiN films are 18.23, 185.26, and 83.2 GPa, respectively. The crystallite size and lattice strain of TiSiN thin films vary 2.08-4.43 nm and 0.02-0.055, respectively, for different H2 flow rates. The quantitative and qualitative analyses of TiSiN thin were carried out using the Origin 9.0 software.

  13. The effect of oxidation on physical properties of porous silicon layers for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pirasteh, Parasteh [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Charrier, Joel [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France)]. E-mail: joel.charrier@univ-rennes1.fr; Soltani, Ali [Institut d' Electronique, de Microemectronique et de Nanotechnologie, CNRS-UMR 8520, Cite Scientifique Avenue Poincare, BP 69, 59652 Villeneuve d' Ascq Cedex (France); Haesaert, Severine [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Haji, Lazhar [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Godon, Christine [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France); Errien, Nicolas [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France)

    2006-12-15

    In order to understand the optical loss mechanisms in porous silicon based waveguides, structural and optical studies have been performed. Scanning and transmission electron microscopic observations of porous silicon layers are obtained before and after an oxidation process at high temperature in wet O{sub 2}. Pore size and shape of heavily p-type doped Si wafers are estimated and correlated to the optical properties of the material before and after oxidation. The refractive index was measured and compared to that determined by the Bruggeman model.

  14. Thin boron phosphide coating as a corrosion-resistant layer

    Science.gov (United States)

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  15. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    Science.gov (United States)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  16. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  17. Optical and Electrical Characteristic of Layer-by-layer Sol-gel Spin Coated Nanoparticles ZnO Thin Films

    International Nuclear Information System (INIS)

    Shafinaz Sobihana Shariffudin; Farah Farliana Samat; Sukreen Hana; Mohamad Rusop

    2011-01-01

    Transparent ZnO thin films have been deposited on glass substrate using sol-gel spin coating technique. 0.35 M sol were prepared by dissolving zinc acetate dehydrate in 2-methoxyethanol with monoethanolamine as the stabilizer. In this paper, a novel method called layer-by-layer is introduced, where the thin film is not only dried after each layer is spin-coated, but also directly annealed at 500 degree Celsius to improve the crystallinity of the films. Samples without annealing were also prepared as the control sample. ZnO thin films were characterized using field emission scanning electron microscopy, X-ray diffraction, current-voltage measurement, UV-Vis spectroscopy and photoluminescence spectroscopy. The results revealed that layer by- layer ZnO thin films have better conductivity and higher intensity peak for PL spectra at visible spectra of 580 nm. FE-SEM images shows nanoparticles almost hexagonal shaped with high crystallinity compared to control samples. (author)

  18. Optical properties of Al2O3 thin films grown by atomic layer deposition.

    Science.gov (United States)

    Kumar, Pradeep; Wiedmann, Monika K; Winter, Charles H; Avrutsky, Ivan

    2009-10-01

    We employed the atomic layer deposition technique to grow Al(2)O(3) films with nominal thicknesses of 400, 300, and 200 nm on silicon and soda lime glass substrates. The optical properties of the films were investigated by measuring reflection spectra in the 400-1800 nm wavelength range, followed by numerical fitting assuming the Sellmeier formula for the refractive index of Al(2)O(3). The films grown on glass substrates possess higher refractive indices as compared to the films on silicon. Optical waveguiding is demonstrated, confirming the feasibility of high-index contrast planar waveguides fabricated by atomic layer deposition.

  19. Efficient light incoupling into silicon thin-film solar cells by anti-reflecting MgO/high-compact-AZO with air-side textured glass

    International Nuclear Information System (INIS)

    Kang, Dong-Won; Han, Min-Koo; Lee, Heon-Min

    2013-01-01

    Light incoupling effects have been enhanced at front interfaces of silicon (Si) thin-film solar cells. Firstly, a MgO thin film was introduced at glass substrate/Al-doped ZnO (AZO) interface for anti-reflection effect. We additionally found that the surface morphology of AZO films grown on MgO film after texture-etching is dependent on the compactness of AZO. For high-compact AZO films, the texture-etched MgO/AZO double layer exhibited significantly enhanced light-scattering capability. Secondly, we made textured surfaces at air/glass interface through simple plasma-etching without sacrificial layers or masks by optimizing the etching pressure. The additional air-side texture contributed to further improvement of total light scattering from the MgO/AZO-coated glass substrate. Fabricated microcrystalline Si thin-film solar cells employing the MgO coated glass with air-side surface texture showed decreased cell reflectance and increased quantum efficiency. The J sc increased from 21.7 to 26.5 mA cm −2 and final efficiency of 9.49% was achieved. Based on our experimental results, the suggested structure, the MgO coating on glass substrate of which air-side surface is texture-etched, can offer a promising approach to improve the light incoupling and efficiency of Si thin-film solar cells. (paper)

  20. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  1. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  2. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    International Nuclear Information System (INIS)

    Seyedzahedi, A.; Moradian, A.; Setare, M.R.

    2016-01-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO 2 , mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  3. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    Energy Technology Data Exchange (ETDEWEB)

    Seyedzahedi, A. [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Moradian, A., E-mail: a.moradian@uok.ac.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO{sub 2}, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  4. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.

    Science.gov (United States)

    Tritsaris, Georgios A; Kaxiras, Efthimios; Meng, Sheng; Wang, Enge

    2013-05-08

    The energy density of Li-ion batteries depends critically on the specific charge capacity of the constituent electrodes. Silicene, the silicon analogue to graphene, being of atomic thickness could serve as high-capacity host of Li in Li-ion secondary batteries. In this work, we employ first-principles calculations to investigate the interaction of Li with Si in model electrodes of free-standing single-layer and double-layer silicene. More specifically, we identify strong binding sites for Li, calculate the energy barriers accompanying Li diffusion, and present our findings in the context of previous theoretical work related to Li-ion storage in other structural forms of silicon: the bulk and nanowires. The binding energy of Li is ~2.2 eV per Li atom and shows small variation with respect to Li content and silicene thickness (one or two layers) while the barriers for Li diffusion are relatively low, typically less than 0.6 eV. We use our theoretical findings to assess the suitability of two-dimensional silicon in the form of silicene layers for Li-ion storage.

  5. Restoration of perovskite phase in the top layer of thin BTO film by plasma treatment and annealing

    Science.gov (United States)

    Sengupta, Subhamita; Ghatak, Ankita; Sett, Shaili; Sreemany, Monjoy; Bysakh, Sandip; Ghosh, Barnali; Raychaudhuri, A. K.

    2018-02-01

    We report a simple method to restore the perovskite phase in the top surface/sub-surface region of a thin film (~100 nm) of barium titanate (BTO) fabricated by pulsed laser deposition on a platinized silicon surface and thus enhance its dielectric and ferroelectric properties. Phase evolution, surface morphology with local chemical composition of as-grown BTO films have been studied as a function of laser fluence. Investigations using x-ray diffraction, grazing-angle incidence x-ray diffraction and depth resolved x-ray photoelectron spectroscopy show that even after achieving a good phase formation there can be a presence of non-perovskite TiO2 phase at the surface and subsurface in such films that degrades its dielectric and ferroelectric response. The restoration of the degraded top layer was done by a combination of low energy Ar plasma treatment followed by an annealing process that enhances Ba content.

  6. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    International Nuclear Information System (INIS)

    Atyaoui, Malek; Dimassi, Wissem; Atyaoui, Atef; Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem

    2013-01-01

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n + emitter of silicon n + /p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties

  7. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atyaoui, Malek, E-mail: atyaoui.malek@yahoo.fr [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95, Hammam Lif 2050 (Tunisia); Dimassi, Wissem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia); Atyaoui, Atef [Laboratoire de traitement des eaux usées, Centre de recherches et des technologies des eaux, technopole de Borj-Cédria, PB: 273, Soliman 8020 (Tunisia); Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia)

    2013-09-15

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n{sup +} emitter of silicon n{sup +}/p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties.

  8. Density Measurement of Silicon Carbide Layers of Simulated Coated Particles by Using a Density Gradient Column

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Weon Ju; Kim, Young Min; Kim, Yeon Ku; Oh, Seung Chul; Jeong, Kyung Chai; Cho, Moon Sung

    2009-01-01

    The TRISO-coated fuel particle for a HTGR(high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of a buffer PyC(pyrolytic carbon) layer, inner PyC(I-PyC) layer, SiC(silicon carbide) layer, and outer PyC(O-PyC) layer. The SiC coating layer acts as the primary barrier to the release of metallic fission products as well as fission gas and iodine. The density of SiC layer is one of the most important material properties for evaluating the soundness of SiC layer. The SiC fragments are acquired by oxidizing the broken coated particles. The SiC fragments are so small and irregular that it is not easy to measure the weight and volume of the SiC fragments. Density gradient column and standard floats can be used to measure such a small fragment. Xray radiography is one of the alternatives to measure the density of coating layer. It is very difficult to calibrate the density by using the X-ray image. In this study, the densities of the SiC specimens of simulated TRISO-coated particles with ZrO 2 kernel were measured by a density gradient column with a density gradient solution

  9. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    International Nuclear Information System (INIS)

    Xi, Xi; Chen, Xiaojing; Zhang, Song; Shi, Zhengrong; Li, Guohua

    2015-01-01

    Highlights: • A stratification phenomenon of Al rear alloyed layer in solar cells is found. • The stratification phenomenon is related to the formula of the paste. • From the analyses, the stratification phenomenon is redundant and deleterious. • The highest cell's efficiency without stratification phenomenon is close to 20%. - Abstract: A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained

  10. Microstructural study of annealed gold-silicon thin films under nanoindentation

    International Nuclear Information System (INIS)

    Lee, W.-S.; Fong, F.-J.

    2008-01-01

    The mechanical properties of as-deposited Au/Si thin films indented to depths of 1000 nm are measured using a nanoindentation technique. The microstructural evolution of the as-deposited indented specimens and specimens annealed at temperatures of 250, 350 and 450 deg. C, respectively, are examined via transmission electron microscopy (TEM). The initial deposited thin film system is a composite structure consisting of a 500 nm Au thin film, a 5 nm Cr adhesive layer and a Si(1 0 0) substrate. The Au thin film has a polycrystalline structure, while both the Cr adhesive layer and the Si substrate have a single crystal state. The experimental nanoindentation results for the as-deposited specimens show that the loading curves are continuous and smooth. However, a pop-out feature is observed in the unloading curves. Furthermore, a pile-up of the thin film material is observed around the edges of the indentation. By contrast, a total recovery of the plastic zones in the indentation site takes place in the annealed specimens. TEM observations show that the microstructural evolution of the thin films within the indentation zone is strongly dependent on the annealing temperature. In the case of the as-deposited specimens, the indentation pressure induces a chain-like island structure and a distorted crystalline structure within the indentation zone. However, in the specimens annealed at temperatures of 250 and 350 deg. C, respectively, the microstructure of the indentation zone changes from a distorted crystalline structure to an amorphous phase as a result of the plastic deformation induced during indentation. The pop-out event observed in the unloading curve of the as-deposited specimens is also thought to be related to a similar amorphous transformation. At an annealing temperature of 450 deg. C, the microstructure contains both amorphous phase and crystalline eutectic phase. The formation of eutectic phase is the result of a higher annealing temperature and a greater

  11. Thin- layer drying of diced cassava roots | Kajuna | African Journal of ...

    African Journals Online (AJOL)

    Fresh cassava (Manihot spp) roots were obtained from a farm and used in this study. They were peeled and diced using a special dicing machine into cubes of side 0.5 cm. The cubes were dried in thin layers (one to three layers) in a drier that was specifically designed and fabricated in the Department of Agricultural ...

  12. Effect of operating conditions on thin layers of titanium posed on ...

    African Journals Online (AJOL)

    Effect of operating conditions on thin layers of titanium posed on steel 100C6 substrates with PVD method. ... Journal of Fundamental and Applied Sciences ... reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited layers.

  13. Copper(II) Schiff base complexes and their mixed thin layers with ...

    Indian Academy of Sciences (India)

    ning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For. Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of ...

  14. Thin TaC layer produced by ion mixing

    DEFF Research Database (Denmark)

    Barna, Árpád; Kotis, László; Pécz, Béla

    2012-01-01

    Ion-beam mixing in C/Ta layered systems was investigated. C 8nm/Ta 12nm and C 20nm/Ta 19nm/C 20nm layer systems were irradiated by Ga+ ions of energy in the range of 2–30keV. In case of the 8nm and 20nm thick C cover layers applying 5–8keV and 20–30keV Ga+ ion energy, respectively resulted...... in strongly asymmetric ion mixing; the carbon was readily transported to the Ta layer, while the reverse process was much weaker. Because of the asymmetrical transport the C/TaC interface remained sharp independently from the applied fluence. The carbon transported to the Ta layer formed Ta......Cx. The stoichiometry of the carbide produced varied along the depth. The TaCx layer contained implanted Ga, the concentration of which decreased with increasing depth. The thickness of the TaCx layer could be tailored by the ion fluence and energy making possible to produce coating layer of desired thickness....

  15. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  16. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    Science.gov (United States)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and

  17. Deposition of metal chalcogenide thin films by successive ionic layer ...

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  18. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  19. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  20. Surface photovoltage method for the quality control of silicon epitaxial layers on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Yaremchuk, A. F.; Starkov, A. V.; Zaikin, A. V., E-mail: lynch0000@gmail.com [National Rsearch University MIET (Russian Federation); Alekseev, A. V. [ZAO “Telekom-STV” (Russian Federation); Sokolov, E. M. [ZAO “Epiel” (Russian Federation)

    2014-12-15

    The surface photovoltage method is used to study “silicon-on-sapphire” epitaxial layers with a thickness of 0.3–0.6 μm, which are used to fabricate p-channel MOS (metal—oxide-semiconductor) transistors with improved radiation hardness. It is shown that the manner in which the photoconductivity of the epitaxial layer decays after the end of a light pulse generated by a light-emitting diode (wavelength ∼400 nm) strongly depends on the density of structural defects in the bulk of the structure. This enables control over how a “silicon-on-sapphire” structure is formed to provide the manufacturing of MOS structures with optimal operating characteristics.