WorldWideScience

Sample records for silicon si enhanced

  1. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  2. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    International Nuclear Information System (INIS)

    Song Alin; Li Zhaojun; Zhang Jie; Xue Gaofeng; Fan Fenliang; Liang Yongchao

    2009-01-01

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L -1 Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H 2 O 2 concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  3. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  4. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  5. Synthesis and analysis of silicon nanowire below Si-Au eutectic temperatures using very high frequency plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hamidinezhad, Habib; Wahab, Yussof; Othaman, Zulkafli; Ismail, Abd Khamim

    2011-01-01

    Silicon nanowires (SiNWs) were synthesized from pure silane precursor gas and Au nanoparticles catalyst at below Au-Si eutectic temperature. The SiNWs were grown onto Si (1 1 1) substrates using very high frequency plasma enhanced chemical vapor deposition via a vapor-solid-solid mechanism at temperatures ranging from 363 to 230 deg. C. The morphology of the synthesized SiNWs was characterized by means of field emission scanning electron microscope equipped with energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction technique and Raman spectroscope. Results demonstrated that the SiNWs can be grown at the temperature as low as 250 deg. C. In addition, it was revealed that the grown wires were silicon-crystallized.

  6. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Silicon Effects on Properties of Melt Infiltrated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Gyekenyesi, John Z.; Hurst, Janet B.

    2000-01-01

    Silicon effects on tensile and creep properties, and thermal conductivity of Hi-Nicalon SiC/SiC composites have been investigated. The composites consist of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats and a silicon matrix, or a mixture of silicon matrix and SiC particles. The Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained about 24 and 13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has no significant effect on creep and thermal conductivity, but does decrease the primary elastic modulus and stress corresponding to deviation from linear stress-strain behavior.

  8. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    Science.gov (United States)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  9. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2013-01-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  10. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  11. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  12. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  13. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    Science.gov (United States)

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  14. Release of Si from silicon, a ferrosilicon (FeSi alloy and a synthetic silicate mineral in simulated biological media.

    Directory of Open Access Journals (Sweden)

    Gunilla Herting

    Full Text Available Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG, an alloy (ferrosilicon, FeSi and a mineral (aluminium silicate, AlSi has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH4 in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media.

  15. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  16. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  17. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  18. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  19. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  20. On formation of silicon nanocrystals under annealing SiO2 layers implanted with Si ions

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Yanovskaya, S.G.; Volodin, V.A.; Kesler, V.G.; Lejer, A.F.; Ruault, M.-O.

    2002-01-01

    Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence have been used to study the formation of silicon nanocrystals in SiO 2 implanted with Si ions. Si clusters have been formed at once in the postimplanted layers, providing the excessive Si concentration more ∼ 3 at. %. Si segregation with Si-Si 4 bonds formation is enhanced as following annealing temperature increase, however, the Raman scattering by Si clusters diminishes. The effect is explained by a transformation of the chain-like Si clusters into compact phase nondimensional structures. Segregation of Si nanoprecipitates had ended about 1000 deg C, but the strong photoluminescence typical for Si nanocrystals manifested itself only after 1100 deg C [ru

  1. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  2. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    Science.gov (United States)

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.; Gumus, A.; Kutbee, A. T.; Wehbe, N.; Ahmed, S. M.; Ghoneim, M. T.; Lee, K. -T.; Rogers, J. A.; Hussain, M. M.

    2016-01-01

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  4. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  5. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  6. Silicon (100)/SiO2 by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

  7. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    Science.gov (United States)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  8. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  9. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  10. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    Science.gov (United States)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-03-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  11. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    NARCIS (Netherlands)

    van de Loo, B.W.H.; Ingenito, A.; Verheijen, M.A.; Isabella, O.; Zeman, M.; Kessels, W.M.M.

    2017-01-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly

  12. Evolution of a Native Oxide Layer at the a-Si:H/c-Si Interface and Its Influence on a Silicon Heterojunction Solar Cell.

    Science.gov (United States)

    Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin

    2015-12-09

    The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.

  13. Cluster-assisted nucleation of silicon phase in hypoeutectic Al–Si alloy with further inoculation

    International Nuclear Information System (INIS)

    Zhang, Yong; Zheng, Hongliang; Liu, Yue; Shi, Lei; Xu, Rongfu; Tian, Xuelei

    2014-01-01

    The paper discusses the responses of eutectic silicon and eutectic cells in Al–10Si alloy upon inoculation with an Al–10Si–2Fe master alloy. The further inoculation hardly destroys the modification effect of Sr but significantly refines the eutectic cells in Sr-modified samples, while in unmodified samples, it stimulates the occurrences of polyhedral silicon particles and divorced eutectic. Thermal analysis, scanning electron microscopy, (high-resolution) transmission electron microscopy and scanning and transmission electron microscopy have been used to elucidate the underlying mechanism. A cluster-assisted nucleation mechanism responsible for the enhanced nucleation of silicon phase upon inoculation is proposed. Icosahedral (AlFeSi) clusters are speculated to evolve from the added Al–10Si–2Fe master alloy in Al–10Si melt, around which aggregations of silicon atoms form. Through a series of structural evolutions, these clusters transform into precursors of a silicon crystal. The subsequent formation of silicon particles is achieved by the agglomerations and attachments of these precursors and individual silicon atoms. This hypothesis is further consolidated by the increased characteristic temperatures of eutectic and the anomalous appearance of a high density of nanoscale particles, as well as the abnormal disappearance of Sr-induced twins in further inoculated silicon particles. The increased characteristic temperatures are strong indications of the enhanced nucleation of the silicon phase. The high density of nanoscale particles with an indeterminate crystal structure are the survivors of these precursors. In an Sr-modified and further inoculated sample, the formation of Sr-induced twins is consequently inhibited due to the participation of these precursors during the growth of silicon particles. Furthermore, based on the proposed nucleation mechanism, the dependence of eutectic cell size on Sr level is elucidated in detail

  14. EFFECT OF SILICON CONTENT ON MACHINABILITY OF Al-Si ALLOYS

    Directory of Open Access Journals (Sweden)

    Birol Akyüz

    2016-09-01

    Full Text Available In this study the effect of the change in the amount of Silicon (Si occuring in Al-Si alloys on mechanical and machinability properties of the alloy was investigated. The change in mechanical properties and microstructure, which depends on the increase in Si percentage, and the effects of this change on Flank Build-up (FBU, wear on the cutting edge, surface roughness, and machinability were also studied. Alloys in different ratios of Si (i.e. 2 to 12 wt %, were employed in the study. The specimens for tests were obtained by casting into metal moulds. The results obtained from experimental studies indicate improved mechanical properties and machinability, depending on the rise in Si percentage in Al-Si alloys. It is also observed that the increase in Si percentage enhanced surface quality.

  15. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  16. Naturally occurring 32 Si and low-background silicon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  17. Naturally occurring 32Si and low-background silicon dark matter detectors

    Science.gov (United States)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  18. Effect of PECVD SiNx/SiOy Nx –Si interface property on surface passivation of silicon wafer

    International Nuclear Information System (INIS)

    Jia Xiao-Jie; Zhou Chun-Lan; Zhou Su; Wang Wen-Jing; Zhu Jun-Jie

    2016-01-01

    It is studied in this paper that the electrical characteristics of the interface between SiO y N x /SiN x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiO y N x layer on interface parameters, such as interface state density Di t and fixed charge Q f , and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin SiO y N x layer between the SiN x and the silicon wafer can suppress Q f in the film and D it at the interface. The positive Q f and D it and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiO y N x film increasing. Prepared by deposition at a low temperature and a low ratio of N 2 O/SiH 4 flow rate, the SiO y N x /SiN x stacks result in a low effective surface recombination velocity (S eff ) of 6 cm/s on a p-type 1 Ω·cm–5 Ω·cm FZ silicon wafer. The positive relationship between S eff and D it suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. (paper)

  19. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  20. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  1. Silicon for ultra-low-level detectors and sup 32 Si

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A recent dark matter experiment using a silicon diode detector confirms that the decay of {sup 32}Si is a dangerous background in ultra-low-level experiments using silicon as detector material or shielding. In this Letter we study the mechanism of how {sup 32}Si enters commercially available silicon. Ways to avoid this contamination are pointed out. Limits on the {sup 32}Si content of silicon from measurements with miniaturized low-level proportional counters are also given. (orig.).

  2. Silicon electrodeposition from chloride-fluoride melts containing K2SiF6 and SiO2

    Directory of Open Access Journals (Sweden)

    Zhuk Sergey I.

    2017-01-01

    Full Text Available Silicon electrodeposition on glassy carbon from the KF-KCl-K2SiF6, KF-KCl-K2SiF6-KOH and KF-KCl-K2SiF6-SiO2 melts was studied by the cyclic voltammetry. Тhe electroreduction of Si(IV to metallic Si was observed as a single 4-electron wave under all considered conditions. The reactions of cathode reduction of silicon from fluoride and oxyfluoride complexes were suggested. It was shown that the process can be controlled by the preliminary transformation of SiO44- to SiF62- and SiOxFyz-. The influence of the current density on structure and morphology of silicon deposits obtained during galvanostatic electrolysis of the KF-KCl-K2SiF6-SiO2 melt was studied.

  3. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.

    2009-01-01

    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  4. Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires

    International Nuclear Information System (INIS)

    Chong, Su Kong; Goh, Boon Tong; Wong, Yuen-Yee; Nguyen, Hong-Quan; Do, Hien; Ahmad, Ishaq; Aspanut, Zarina; Muhamad, Muhamad Rasat; Dee, Chang Fu; Rahman, Saadah Abdul

    2012-01-01

    High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, X C of ∼82% and are surrounded by a thin layer of SiO x . The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the X C to ∼65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ∼1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text. - Highlights: ► Growth of random oriented silicon nanowires using hot-wire assisted plasma enhanced chemical vapor deposition. ► Increase in rf power reduces the crystallinity of silicon nanowires. ► High density and nanocrystalline structure in silicon nanowires significant enhance the near IR light absorption. ► Oxide defects and silicon nanocrystallites in silicon nanowires reveal photoluminescence in red–orange and red regions.

  5. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); Schulze, Dirk [TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Ahrens, Carsten [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg (Germany)

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  6. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  7. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  8. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  9. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    Science.gov (United States)

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  10. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  11. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  12. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  13. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    OpenAIRE

    Sritharathikhun, Jaran; Krajangsang, Taweewat; Moollakorn, Apichan; Inthisang, Sorapong; Limmanee, Amornrat; Hongsingtong, Aswin; Boriraksantikul, Nattaphong; Taratiwat, Tianchai; Akarapanjavit, Nirod; Sriprapha, Kobsak

    2014-01-01

    This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtain...

  14. Optoelectronic enhancement of monocrystalline silicon solar cells by porous silicon-assisted mechanical grooving

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    One of the most important factors influencing silicon solar cells performances is the front side reflectivity. Consequently, new methods for efficient reduction of this reflectivity are searched. This has always been done by creating a rough surface that enables incident light of being absorbed within the solar cell. Combination of texturization-porous silicon surface treatment was found to be an attractive technical solution for lowering the reflectivity of monocrystalline silicon (c-Si). The texturization of the monocrystalline silicon wafer was carried out by means of mechanical grooving. A specific etching procedure was then applied to form a thin porous silicon layer enabling to remove mechanical damages. This simple and low cost method reduces the total reflectivity from 29% to 7% in the 300 - 950 nm wavelength range and enhances the diffusion length of the minority carriers from 100 {mu}m to 790 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    Science.gov (United States)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  16. Sponge-like Si-SiO2 nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide

    Science.gov (United States)

    Friedrich, D.; Schmidt, B.; Heinig, K. H.; Liedke, B.; Mücklich, A.; Hübner, R.; Wolf, D.; Kölling, S.; Mikolajick, T.

    2013-09-01

    Sponge-like Si nanostructures embedded in SiO2 were fabricated by spinodal decomposition of sputter-deposited silicon-rich oxide with a stoichiometry close to that of silicon monoxide. After thermal treatment a mean feature size of about 3 nm was found in the phase-separated structure. The structure of the Si-SiO2 nanocomposite was investigated by energy-filtered transmission electron microscopy (EFTEM), EFTEM tomography, and atom probe tomography, which revealed a percolated Si morphology. It was shown that the percolation of the Si network in 3D can also be proven on the basis of 2D EFTEM images by comparison with 3D kinetic Monte Carlo simulations.

  17. Sponge-like Si-SiO2 nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide

    International Nuclear Information System (INIS)

    Friedrich, D.; Schmidt, B.; Heinig, K. H.; Liedke, B.; Mücklich, A.; Hübner, R.; Wolf, D.; Kölling, S.; Mikolajick, T.

    2013-01-01

    Sponge-like Si nanostructures embedded in SiO 2 were fabricated by spinodal decomposition of sputter-deposited silicon-rich oxide with a stoichiometry close to that of silicon monoxide. After thermal treatment a mean feature size of about 3 nm was found in the phase-separated structure. The structure of the Si-SiO 2 nanocomposite was investigated by energy-filtered transmission electron microscopy (EFTEM), EFTEM tomography, and atom probe tomography, which revealed a percolated Si morphology. It was shown that the percolation of the Si network in 3D can also be proven on the basis of 2D EFTEM images by comparison with 3D kinetic Monte Carlo simulations

  18. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  19. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  20. Si Nano wires Produced by Very High Frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) via VLS Mechanism

    International Nuclear Information System (INIS)

    Yussof Wahab; Yussof Wahab; Habib Hamidinezhad; Habib Hamidinezhad

    2013-01-01

    Silicon nano wires (SiNWs) with diameter of about a few nanometers and length of 3 μm on silicon wafers were synthesized by very high frequency plasma enhanced chemical vapor deposition. Scanning electron microscopy (SEM) observations showed that the silicon nano wires were grown randomly and energy-dispersive X-ray spectroscopy analysis indicates that the nano wires have the composition of Si, Au and O elements. The SiNWs were characterized by high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. SEM micrographs displayed SiNWs that are needle-like with a diameter ranged from 30 nm at the top to 100 nm at the bottom of the wire and have length a few of micrometers. In addition, HRTEM showed that SiNWs consist of crystalline silicon core and amorphous silica layer. (author)

  1. Improved PECVD Si x N y film as a mask layer for deep wet etching of the silicon

    Science.gov (United States)

    Han, Jianqiang; Yin, Yi Jun; Han, Dong; Dong, LiZhen

    2017-09-01

    Although plasma enhanced chemical vapor deposition (PECVD) silicon nitride (Si x N y ) films have been extensively investigated by many researchers, requirements of film properties vary from device to device. For some applications utilizing Si x N y film as the mask Layer for deep wet etching of the silicon, it is very desirable to obtain a high quality film. In this study, Si x N y films were deposited on silicon substrates by PECVD technique from the mixtures of NH3 and 5% SiH4 diluted in Ar. The deposition temperature and RF power were fixed at 400 °C and 20 W, respectively. By adjusting the SiH4/NH3 flow ratio, Si x N y films of different compositions were deposited on silicon wafers. The stoichiometry, residual stress, etch rate in 1:50 HF, BHF solution and 40% KOH solution of deposited Si x N y films were measured. The experimental results show that the optimum SiH4/NH3 flow ratio at which deposited Si x N y films can perfectly protect the polysilicon resistors on the front side of wafers during KOH etching is between 1.63 and 2.24 under the given temperature and RF power. Polysilicon resistors protected by the Si x N y films can withstand 6 h 40% KOH double-side etching at 80 °C. At the range of SiH4/NH3 flow ratios, the Si/N atom ratio of films ranges from 0.645 to 0.702, which slightly deviate the ideal stoichiometric ratio of LPCVD Si3N4 film. In addition, the silicon nitride films with the best protection effect are not the films of minimum etch rate in KOH solution.

  2. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH 2 Cl 2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH 3 /SiH 2 Cl 2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  3. SiO2 films deposited on silicon at low temperature by plasma-enhanced decomposition of hexamethyldisilazane: Defect characterization

    International Nuclear Information System (INIS)

    Croci, S.; Pecheur, A.; Autran, J.L.; Vedda, A.; Caccavale, F.; Martini, M.; Spinolo, G.

    2001-01-01

    Silicon dioxide films have been deposited by plasma-enhanced chemical vapor deposition at low substrate temperature (50 deg. C) in a parallel-plate reactor using hexamethyldisilazane (HMDS), diluted in He, and O 2 as Si and O precursors. The effect of the O 2 /(HMDS+He) flow rate ratio on the oxide properties has been investigated in the range of 0.05-1.25 by means of deposition rate, wet etching rate, secondary ion mass spectrometry, thermally stimulated luminescence, and high frequency capacitance-voltage measurements. Both the deposition rate and the etching rate increase by increasing the O 2 /(HMDS+He) flow rate ratio and reach a constant value at flow rate ratios higher than 0.6. The strong increase and saturation in the deposition rate can be attributed to the impinging oxide atoms flux and to the consumption of silyl radicals at the deposition surface, respectively. The Si/SiO 2 interface state density and the positive fixed charge density are in the range 1x10 11 -1x10 12 eV -1 cm -2 and 6x10 11 -1.5x10 12 C cm -2 , respectively. These concentrations are comparable with literature data concerning SiO 2 films obtained by plasma enhanced chemical vapor deposition at temperatures higher than 200 deg. C using other Si precursors. Moreover, the interface state density decreases while the fixed oxide charge increases by increasing the O 2 /(HMDS+He) flow rate ratio. A correlation has been found between defects monitored by thermally stimulated luminescence and fixed oxide charges. From a comparison with secondary ion mass spectrometry results, the fixed oxide charges can be preliminarily attributed to intrinsic defects

  4. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Defforge, Thomas; Gautier, Gael, E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [Universite Francois Rabelais de Tours, CNRS CEA, INSA-CVL, GREMAN UMR 7347, 37071 Tours Cedex 2 (France); Loni, Armando [pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom); Kim, Dokyoung; Sailor, Michael J., E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Li, Z. Y. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Canham, Leigh T., E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom); Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2016-04-11

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals (<5 nm), pore collapse and morphological changes within the nanocrystalline structure after common drying processes can affect PL efficiency. We report the highly beneficial effects of using SCD for preparation of photoluminescent pSi powders. Significantly higher surface areas and pore volumes have been realized by utilizing SCD (with CO{sub 2} solvent) instead of air-drying. Correspondingly, the pSi powders better retain the porous structure and the nano-sized silicon grains, thus minimizing the formation of non-radiative defects during liquid evaporation (air drying). The SCD process also minimizes capillary-stress induced contact of neighboring nanocrystals, resulting in lower exciton migration levels within the network. A significant enhancement of the PL quantum yield (>32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.

  5. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    Science.gov (United States)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  6. Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3

    International Nuclear Information System (INIS)

    Benami, A; Santana, G; Ortiz, A; Ponce, A; Romeu, D; Aguilar-Hernandez, J; Contreras-Puente, G; Alonso, J C

    2007-01-01

    Strong white and blue photoluminescence (PL) from as-grown silicon nanocrystals (nc-Si) in SiN x films prepared by remote plasma enhanced chemical vapour deposition using SiCl 4 /NH 3 mixtures is reported. The colour and intensity of the PL could be controlled by adjusting the NH 3 flow rate. Samples with white emission were annealed at 1000 deg. C, obtaining a strong improvement of the PL intensity with a blue colour. The PL can be attributed to quantum confinement effect in nc-Si embedded in SiN x matrix, which is improved when a better passivation of nc-Si surface with chlorine and nitrogen atoms is obtained. The size, density and structure of the nc-Si in the as-grown and annealed films were confirmed and measured by high-resolution transmission electron microscopy

  7. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    Directory of Open Access Journals (Sweden)

    Kuen-Hsien Wu

    2015-09-01

    Full Text Available Porous-silicon (PS multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells.

  8. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  9. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  10. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    Science.gov (United States)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  11. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    Science.gov (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  12. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  13. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    Science.gov (United States)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (μc-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (μc-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (μc-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the μc-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the μc-SiOx:H (0 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor of Si 3p - O 2p hybridization in the upper valence band. This coincides with a significant increase of the material's resistivity, possibly indicating the breakdown of the conducting crystalline Si network. Silicon oxide layers with a thickness of several hundred nanometres were deposited in a PECVD (plasma-enhanced chemical vapor deposition) multi chamber system

  14. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  15. Electrical characterization of MIS devices using PECVD SiN{sub x}:H films for application of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin-Su; Cho, Jun-Sik; Park, Joo-Hyung; Ahn, Seung-Kyu; Shin, Kee-Shik; Yoon, Kyung-Hoon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yi, Jun-Sin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-07-15

    The surface passivation of crystalline silicon solar cells using plasma enhanced chemical vapor deposition (PECVD), hydrogenated, silicon-nitride (SiN{sub x}:H) thin films has become significant due to a low-temperature, low-cost and very effective defect passivation process. Also, a good quality antireflection coating can be formed. In this work, SiN{sub x}:H thin films were deposited by varying the gas ratio R (=NH{sub 3}/SiH{sub 4}+NH{sub 3}) and were annealed by rapid thermal processing (RTP). Metal-insulator- semiconductor (MIS) devices were fabricated using SiN{sub x}:H thin films as insulator layers and they were analyzed in the temperature range of 100 - 400 K by using capacitance-voltage (C-V) and current-voltage (I-V) measurements. The annealed SiN{sub x}:H thin films were evaluated by using the electrical properties at different temperature to determine the effect of surface passivation. We achieved an energy conversion efficiency of 18.1% under one-sun standard testing conditions for large-area (156 mm x 156 mm) crystalline-silicon solar cells.

  16. SiNTO EWT silicon solar cells

    OpenAIRE

    Fallisch, A.; Keding, R.; Kästner, G.; Bartsch, J.; Werner, S.; Stüwe, D.; Specht, J.; Preu, R.; Biro, D.

    2010-01-01

    In this work we combine the SiNTO cell process with the EWT cell concept. All masking steps are performed by inkjet printing technology. The via-holes and laser-fired contacts are created by high-speed laser drilling. A new polishing process, which is suitable for inkjet masking, to pattern the interdigitated grid on the rear side is developed. For passivation purposes a thermal silicon oxide is used for the rear surface and a silicon nitride antireflection coating for the front surface. An e...

  17. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    International Nuclear Information System (INIS)

    Gong Yibin; Dai Pengfei; Gao Anran; Li Tie; Zhou Ping; Wang Yuelin

    2011-01-01

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 °C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields. (semiconductor materials)

  18. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Jaran Sritharathikhun

    2014-01-01

    Full Text Available This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ solar cells. A p-μc-SiO:H film with a wide optical band gap (E04, 2.1 eV, can be obtained by increasing the CO2/SiH4 ratio; however, the tradeoff between E04 and dark conductivity must be considered. The CO2/SiH4 ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4 = 0, the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in the Voc and the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.

  19. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  20. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  1. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  2. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  3. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies.

    Science.gov (United States)

    Abinaya Sindu, P; Kolanthai, Elayaraja; Suganthi, R V; Thanigai Arul, K; Manikandan, E; Catalani, Luiz H; Narayana Kalkura, S

    2017-10-01

    The aim of the current study is to synthesize nanosized silicon incorporated HAp (Si-HAP) using sodium metasilicate as the silicon source. The sol-gel derived samples were further subjected to microwave irradiation. Incorporation of Si into HAp did not alter the HAp phase, as confirmed by the X-ray diffraction analysis (XRD). Moreover, variation in the lattice parameters of the Si-incorporated HAp indicates that Si is substituted into the HAp lattice. The decrease in the intensity of the peaks attributed to hydroxyl groups, which appeared in the FTIR and Raman spectra of Si-HAp, further confirms the Si substitution in HAp lattices. The silicon incorporation enhanced the nanorods length by 70%, when compared to that of pure HAp. Microwave irradiation improved the crystallinity of Si-HAp when compared to as-synthesized Si-HAp samples. As-synthesized Si-incorporated HAp sample showed an intense blue emission under UV excitation. Microwave irradiation reduced the intensity of blue emission and exhibited red shift due to the reduction of defects in the Si-HAp crystal. The morphological change from rod to spherical and ribbon-like forms was observed with an increase in silicon content. Further, Si-HAp exhibited better bioactivity and low dissolution rate. Initially there was a burst release of amoxicillin from all the samples, subsequently it followed a sustained release. The microwave-irradiated HAp showed extended period of sustained release than that of as-synthesized HAp and Si-HAp. Similarly, the microwave-irradiated Si-incorporated samples exhibited prolonged drug release, as compared to that of the as-synthesized samples. Hence, Si-HAp is rapidly synthesized by a simple and cost effective method without inducing any additional phases, as compared to the conventional sintering process. This study provides a new insight into the rapid green synthesis of Si-HAp. Si-HAp could emerge as a promising material for the bone tissue replacement and as a drug delivery system

  4. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    Directory of Open Access Journals (Sweden)

    Brian Ford

    2017-04-01

    Full Text Available The following study focuses on the photoluminescence (PL enhancement of chemically synthesized silicon oxycarbide (SiCxOy thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD, and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2 ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield.

  5. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  6. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  7. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  8. The microscopic mechanism of silicon precipitation in Al/Si system

    International Nuclear Information System (INIS)

    Zenou, V.Y.; Kiv, A.; Fuks, D.; Ezerski, V.; Moiseenko, N.

    2006-01-01

    A Homo-Heterogeneous Mechanism (HHM) for the precipitation of silicon atoms in aluminum is proposed. The main point of HHM is that the formation of critical nucleus consists of two steps. At the first step the pre-critical nucleus is formed. It plays a role of a preferable site for the further hetero-nucleation and then for the growth of Si precipitates on these nuclei. The reported results are based on ab initio calculations of total energy for equilibrium configurations of silicon clusters embedded into aluminum lattice. HHM explains the results of experimental studies of silicon precipitation in quenched Si-Al alloy obtained in this work and by other authors

  9. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  10. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    International Nuclear Information System (INIS)

    Ghrib, M.; Gaidi, M.; Ghrib, T.; Khedher, N.; Ben Salam, M.; Ezzaouia, H.

    2011-01-01

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  11. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  12. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  13. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  14. Origin of Si(LMM) Auger electron emission from silicon and Si-alloys by keV Ar/sup +/ ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Kim, S; Kataoka, Y; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar/sup +/ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  15. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  16. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  17. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Migration of CrSi2 nanocrystals through nanopipes in the silicon cap

    International Nuclear Information System (INIS)

    Galkin, N.G.; Dozsa, L.; Chusovitin, E.A.; Pecz, B.; Dobos, L.

    2010-01-01

    CrSi 2 nanocrystals (NC) were grown by reactive deposition epitaxy of Cr at 550 deg. C. After deposition the Cr is localized in about 20-30 nm dots on the Si surface. The NCs were covered by silicon cap grown by molecular beam epitaxy at 700 deg. C. The redistribution of NCs in the silicon cap was investigated by transmission electron microscopy and atomic force microscopy. The NCs are partly localized at the deposition depth, and partly migrate near the surface. A new migration mechanism of the CrSi 2 NCs is observed, they are transferred from the bulk toward the surface through nanopipes formed in the silicon cap. The redistribution of CrSi 2 NCs strongly depends on Cr deposition rate and on the cap growth temperature.

  19. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  20. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  1. Investigating the effect of silicon surface chemical treatment on Al/Si contact properties in GaP/Si solar cells

    Science.gov (United States)

    Kudryashov, D.; Gudovskikh, A.

    2018-03-01

    In the present work, experimental studies have been carried out to reveal how chemical treatment of a silicon surface affects the properties of the Al/Si contact. It has been shown that for p-type monocrystalline silicon substrates with a resistivity of 10 ohm cm, it is possible to form an ohmic Al/Si contact by magnetron sputtering of an aluminum thin film and its further annealing at temperatures of 400 - 450 °C. In the range of annealing temperatures of 250 - 400 °C, the Si substrate treatment in the HF solution leads to a significant increase in currents on the current-voltage curves of the Al/Si contact, while in the range of 450 - 700 °C, the effect of chemical treatment of the silicon is not detected.

  2. Si96: A New Silicon Allotrope with Interesting Physical Properties

    Directory of Open Access Journals (Sweden)

    Qingyang Fan

    2016-04-01

    Full Text Available The structural mechanical properties and electronic properties of a new silicon allotrope Si96 are investigated at ambient pressure by using a first-principles calculation method with the ultrasoft pseudopotential scheme in the framework of generalized gradient approximation. The elastic constants and phonon calculations reveal that Si96 is mechanically and dynamically stable at ambient pressure. The conduction band minimum and valence band maximum of Si96 are at the R and G point, which indicates that Si96 is an indirect band gap semiconductor. The anisotropic calculations show that Si96 exhibits a smaller anisotropy than diamond Si in terms of Young’s modulus, the percentage of elastic anisotropy for bulk modulus and shear modulus, and the universal anisotropic index AU. Interestingly, most silicon allotropes exhibit brittle behavior, in contrast to the previously proposed ductile behavior. The void framework, low density, and nanotube structure make Si96 quite attractive for applications such as hydrogen storage and electronic devices that work at extreme conditions, and there are potential applications in Li-battery anode materials.

  3. Effect of dc negative-bias and silicon introduction on performance of Si-B-N composite film by RF-PECD technique

    International Nuclear Information System (INIS)

    Meng Hua; Yu Xiang; Yu Junfeng; Wang Chengbiao

    2005-01-01

    Under action of different dc negative-bias voltages on samples incorporating with silicon, a series of Si-B-N composite films were synthesized on steel 1045 using RF-PECVD technique (radio-frequency plasma enhanced chemical vapor deposition), and the surface analysis of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and etc. were followed. The experimental results showed: Si-B-N composite films had an obvious mixture phase of c-BN and h-BN crystal at a certain dc negative bias, and the film's mechanical performances including micro-hardness and adhesion were improved. Moreover, bias effect on deposition performance of Si-B-N composite film has been systematically investigated, and silicon introduction was found to be necessary for the growth of Si-B-N film and the improvement of adhesion

  4. Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane

    International Nuclear Information System (INIS)

    Yamaoka, K.; Yoshizako, Y.; Kato, H.; Tsukiyama, D.; Terai, Y.; Fujiwara, Y.

    2006-01-01

    Carbon-doped silicon oxide (SiOCH) thin films were deposited by room-temperature plasma-enhanced chemical vapor deposition (PECVD) using tetraethoxysilane (TEOS). The deposition rate and composition of the films strongly depended on radio frequency (RF) power. The films deposited at low RF power contained more CH n groups. The SiOCH films showed high etch rate and low refractive index in proportion to the carbon composition. The deposition with low plasma density and low substrate temperature is effective for SiOCH growth by PECVD using TEOS

  5. Silicon-photonics light source realized by III-V/Si grating-mirror laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    waveguide are made in the Si layer of a silicon-on-insulator wafer by using Si-electronics-compatible processing. The HCG works as a highly-reflective mirror for vertical resonance and at the same time routes light to the in-plane output waveguide. Numerical simulations show superior performance compared...... to existing silicon light sources....

  6. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  7. Improving Crystalline Silicon Solar Cell Efficiency Using Graded-Refractive-Index SiON/ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Yung-Chun Tu

    2015-01-01

    Full Text Available The fabrication of silicon oxynitride (SiON/ZnO nanotube (NT arrays and their application in improving the energy conversion efficiency (η of crystalline Si-based solar cells (SCs are reported. The SiON/ZnO NT arrays have a graded-refractive-index that varies from 3.5 (Si to 1.9~2.0 (Si3N4 and ZnO to 1.72~1.75 (SiON to 1 (air. Experimental results show that the use of 0.4 μm long ZnO NT arrays coated with a 150 nm thick SiON film increases Δη/η by 39.2% under AM 1.5 G (100 mW/cm2 illumination as compared to that of regular SCs with a Si3N4/micropyramid surface. This enhancement can be attributed to SiON/ZnO NT arrays effectively releasing surface reflection and minimizing Fresnel loss.

  8. Chemical vapor deposition of Si/SiC nano-multilayer thin films

    International Nuclear Information System (INIS)

    Weber, A.; Remfort, R.; Woehrl, N.; Assenmacher, W.; Schulz, S.

    2015-01-01

    Stoichiometric SiC films were deposited with the commercially available single source precursor Et_3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000 °C in thermal CVD process and below 100 °C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000 °C using Et_3SiH and SiH_4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). - Highlights: • Stoichiometric silicon carbide films were deposited from a single source precursor. • Thermal as well as plasma-enhanced chemical vapor deposition was used. • Films morphology, crystallinity and chemical composition were characterized. • Silicon/silicon carbide multilayers of up to 10 individual nano-layers were deposited.

  9. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    Science.gov (United States)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  10. Transparent sculptured titania films for enhanced light absorption in thin-film Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang, E-mail: khhung@itri.org.tw [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chiou, Guan-Di; Wong, Ming-Show [Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan (China); Wang, Yu-Chih [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chung, I-Shan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2011-12-30

    This study presents a description of the enhancement of light absorption in thin-film silicon (Si) solar cells by using sculptured titania (TiO{sub 2}) films. We used an electron-beam evaporation system with a glancing angle deposition (GLAD) method to deposit porous TiO{sub 2} films on fluorine-doped SnO{sub 2} (FTO) substrates. The GLAD TiO{sub 2}/FTO films were used as conductive electrodes in hydrogenated microcrystalline silicon ({mu}c-Si:H) solar cells. Transmission electron microscopy revealed that the GLAD TiO{sub 2} films are composed of sculptured nano-pillars on an FTO surface, and this nanostructure provides a synergistic route for light scattering enhancement. The GLAD TiO{sub 2}/FTO exhibited a 68% improvement of optical haze (at {lambda} = 600 nm). The {mu}c-Si:H solar cells consisting of the GLAD-nanostructured TiO{sub 2} resulted in a 5% improvement of short-circuit current (J{sub sc}) and yielded a cell efficiency of 6.6%.

  11. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  12. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.; Niesen, Bjoern; Tomasi, Andrea; Ballif, Christophe; De Wolf, Stefaan

    2017-01-01

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  13. Polysilicon tft's fabricated by crystallization of a-si:h enhanced by hydrogen plasma

    International Nuclear Information System (INIS)

    Gallegos, O.; Garcia, R.; Estrada, M.; Cerdeira, A.; Leyva, A.

    2001-01-01

    Poly-silicon thin film transistors (TFTs) are widely applied in integrated LCD driving circuits and image sensors, because they have better characteristics than a-Si:H TFTs. Poly-silicon can deposited or obtained by crystallization of amorphous silicon layers after annealing above 900 oC. For the last years, research is been done in order to crystallize a- Si:H films at low temperature and time budget. In this work we present crystallization at 650 oC of intrinsic and doped a-Si:H layers after a hydrogen plasma annealing to enhanced the crystallization process. Intrinsic layers crystallized in 4-6 hours after annealing in hydrogen plasma, while doped layers crystallized for the same annealing times, independently of been or not annealed in hydrogen plasma. Layers were characterized by XRD and by resistivity measurements. Resistivity of n-type layers changed from 300 to 0.02 cm after crystallization. Resistivity of i-layers also decreased, but both values are very high and it is difficult to determine with precision its change. The high resistivity of the polycrystalline layers is determined by the small grain size. Poly-silicon TFTs were fabricated using the above procedure to crystallize the amorphous layers. The complete fabrication process is presented. Output characteristics are shown and compared to same characteristics for a-Si:H TFTs fabricated simultaneously with the exception of the crystallization process. TFTs' sensibility to light was also used to verify that crystallization took place

  14. Ultraviolet-enhanced photodetection in a graphene/SiO2/Si capacitor structure with a vacuum channel

    International Nuclear Information System (INIS)

    Kim, Myungji; Kim, Hong Koo

    2015-01-01

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO 2 /Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO 2 and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO 2 /Si structure are proposed

  15. Study on the fabrication of silicon nanoparticles in an amorphous silicon light absorbing layer for solar cell applications

    International Nuclear Information System (INIS)

    Park, Joo Hyung; Song, Jin Soo; Lee, Jae Hee; Lee, Jeong Chul

    2012-01-01

    Hydrogenated amorphous-silicon (a-Si:H) thin-film solar cells have advantages of relatively simple technology, less material consumption, higher absorption ratio compared to crystalline silicon, and low cost due to the use of cheaper substrates rather than silicon wafers. However, together with those advantages, amorphous-silicon thin-film solar cells face several issues such as a relatively lower efficiency, a relatively wider bandgap, and the Staebler-Wronski effect (SWE) compared to other competing materials (i.e., crystalline silicon, CdTe, Cu(In x Ga (1-x) )Se 2 (CIGS), etc.). As a remedy for those drawbacks and a way to enhance the cell conversion efficiency at the same time, the employment of crystalline silicon nanoparticles (Si-NPs) in the a-Si matrix is proposed to organize the quantum-dot (QD) structure as the light-absorbing layer. This structure of the light absorbing layer consists of single-crystal Si-NPs in an a-Si:H thin-film matrix. The single-crystal Si-NPs are synthesized by using SiH 4 gas decomposition with CO 2 laser pyrolysis, and the sizes of Si-NPs are calibrated to control their bandgaps. The synthesized size-controlled Si-NPs are directly transferred to another chamber to form a QD structure by using co-deposition of the Si-NPs and the a-Si:H matrix. Transmission electron microscopy (TEM) analyses are employed to verify the sizes and the crystalline properties of the Si-NPs alone and of the Si-NPs in the a-Si:H matrix. The TEM results show successful co-deposition of size-controlled Si-NPs in the a-Si:H matrix, which is meaningful because it suggests the possibility of further enhancement of the a-Si:H solar-cell structure and of tandem structure applications by using a single element.

  16. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  17. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  18. Role of chlorine in the nanocrystalline silicon film formation by rf plasma-enhanced chemical vapor deposition of chlorinated materials

    International Nuclear Information System (INIS)

    Shirai, Hajime

    2004-01-01

    We demonstrate the disorder-induced low-temperature crystallization in the nanocrystalline silicon film growth by rf plasma-enhanced chemical vapor deposition of H 2 -diluted SiH 2 Cl 2 and SiCl 4 . The combination of the chemical reactivity of SiCld (d: dangling bond) and SiHCl complexes and the release of the disorder-induced stress near the growing surface tightly correlate with the phase transitionity of SiCld and SiHCl complexes near the growing surface with the aid of atomic hydrogen, which induce higher degree of disorder in the a-Si network. These features are most prominent in the SiCl 4 compared with those of SiH 2 Cl 2 and SiH 4 , which preferentially enhance the nanocrystalline Si formation

  19. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect.

    Science.gov (United States)

    Li, Xiaoyi; Chen, Mengxiao; Yu, Ruomeng; Zhang, Taiping; Song, Dongsheng; Liang, Renrong; Zhang, Qinglin; Cheng, Shaobo; Dong, Lin; Pan, Anlian; Wang, Zhong Lin; Zhu, Jing; Pan, Caofeng

    2015-06-22

    n-ZnO nanofilm/p-Si micropillar heterostructure light-emitting diode (LED) arrays for white light emissions are achieved and the light emission intensity of LED array is enhanced by 120% under -0.05% compressive strains. These results indicate a promising approach to fabricate Si-based light-emitting components with high performances enhanced by piezo-phototronic effect, with potential applications in touchpad technology, personalized signatures, smart skin, and silicon-based photonic integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  1. Silicon Photomultipliers (SiPM) as novel photodetectors for PET

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Belcari, Nicola; Giuseppina Bisogni, Maria; Corsi, Francesco; Foresta, Maurizio; Guerra, Pedro; Marcatili, Sara; Santos, Andres; Sportelli, Giancarlo

    2011-01-01

    Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultipliers (SiPMs) is proposed for the construction of a 4D-PET module of 4.8x4.8 cm 2 aimed to replace the standard PMT based PET block detector. The module will be based on a LYSO continuous crystal read on two faces by Silicon Photomultipliers. A high granularity detection surface made by SiPM matrices of 1.5 mm pitch will be used for the x-y photon hit position determination with submillimetric accuracy, while a low granularity surface constituted by 16 mm 2 SiPM pixels will provide the fast timing information (t) that will be used to implement the Time of Flight technique (TOF). The spatial information collected by the two detector layers will be combined in order to measure the Depth of Interaction (DOI) of each event (z). The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Data Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities and to manage many channels. The paper describes the progress made on the development of the proof of principle module under construction at the University of Pisa.

  2. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  3. Piezoresistance of Silicon and Strained Si0.9Ge0.1

    DEFF Research Database (Denmark)

    Richter, Jacob; Hansen, Ole; Larsen, A. Nylandsted

    2005-01-01

    We present experimentally obtained results of the piezoresistive effect in p-type silicon and strained Si0.9Ge0.1. Today, strained Si1-xGex is used for high speed electronic devices. This paper investigates if this area of use can be expanded to also cover piezoresistive micro electro mechanical...... systems (MEMS) devices. The measurements are performed on microfabricated test chips where resistors are defined in layers grown by molecular beam epitaxy on (0 0 1) silicon substrates. A uniaxial stress along the [1 1 0] direction is applied to the chip, with the use of a four point bending fixture....... The investigation covers materials with doping levels of N-A = 10(18) cm(-3) and NA = 1019 cm(-3), respectively. The results show that the pi(66) piezoresistive coefficient in strained Si0.9Ge0.1 is approximately 30% larger than the comparable pi(44) piezoresistive coefficient in silicon at a doping level of N...

  4. Magnetically enhanced triode etching of large area silicon membranes in a molecular bromine plasma

    International Nuclear Information System (INIS)

    Wolfe, J.C.; Sen, S.; Pendharkar, S.V.; Mauger, P.; Shimkunas, A.R.

    1992-01-01

    The optimization of a process for etching 125 mm silicon membranes formed on 150 mm wafers and bonded to Pyrex rings is discussed. A magnetically enhanced triode etching system was designed to provide an intense, remote plasma surrounding the membrane while, at the same time, suppressing the discharge over the membrane itself. For the optimized molecular bromine process, the silicon etch rate is 40 nm/min and the selectivity relative to SiO 2 is 160:1. 14 refs., 6 figs

  5. Ultraviolet-enhanced photodetection in a graphene/SiO{sub 2}/Si capacitor structure with a vacuum channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myungji; Kim, Hong Koo, E-mail: hkk@pitt.edu [Department of Electrical and Computer Engineering and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2015-09-14

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.

  6. SiO2 on silicon: behavior under heavy ion irradiation

    International Nuclear Information System (INIS)

    Rotaru, C.

    2004-03-01

    Heavy ion irradiation was performed on a-SiO 2 layers deposited on Si. Damage of the surface was studied by means of Atomic Force Microscopy. Hillocks appear for an electronic stopping power higher than 16 keV/nm. The height of the hillocks decreases with the thickness of the oxide layer. Infrared Spectroscopy studies show that the damage threshold for a-SiO 2 is at an electronic stopping power of 2 keV/nm. Therefore it is probable that the origin of the hillocks comes from the silicon layer. This could be explain within the frame of thermal spike model. The theoretical thresholds are 8 keV/nm and 1.8 keV/nm for silicon and a-SiO 2 respectively. Chemical etching after irradiation gives a technical possibility to create nano-pits, whose size and shape can be controlled. Additionally, these structures allowed to determine the AFM tip radius. (author)

  7. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  8. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  9. Morphology and electronic transport of polycrystalline silicon films deposited by SiF sub 4 /H sub 2 at a substrate temperature of 200 deg. C

    CERN Document Server

    Hazra, S; Ray, S

    2002-01-01

    Undoped and phosphorous doped polycrystalline silicon (poly-Si) films were deposited using a SiF sub 4 /H sub 2 gas mixture at a substrate temperature of 200 deg. C by radio frequency plasma enhanced chemical vapor deposition (rf-PECVD). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) experiments reveal that the present poly-Si films are equivalent to the poly-Si films deposited at high temperature (>600 deg. C). XRD and scanning electron microscope observations show that the crystalline quality of slightly P-doped film is better compared to that of undoped poly-Si films. Phosphorus atom concentration in the slightly P-doped poly-Si film is 5.0x10 sup 1 sup 6 atoms/cm sup 3. Association of a few phosphorous atoms in the silicon matrix enhances crystallization as eutectic-forming metals do. Dark conductivity of slightly P-doped film is 4 orders of magnitude higher, although mobility-lifetime product (eta mu tau) is 2 orders of magnitude lower than that of undoped film. The presence o...

  10. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    Science.gov (United States)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  11. Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Inampudi, Sandeep; Capretti, Antonio [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Sugimoto, Hiroshi [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Fujii, Minoru [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Dal Negro, Luca, E-mail: dalnegro@bu.edu [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States)

    2015-06-15

    Light emitting silicon quantum dots by colloidal synthesis were uniformly spin-coated into a 20 nm-thick film and deposited atop a hyperbolic metamaterial of alternating TiN and SiO{sub 2} sub-wavelength layers. Using steady-state and time-resolved photoluminescence spectroscopy as a function of the emission wavelength in partnership with rigorous electromagnetic modeling of dipolar emission, we demonstrate enhanced Local Density of States and coupling to high-k modes in a broad spectral range. These findings provide an alternative approach for the engineering of novel Si-compatible broadband sources that leverage the control of radiative transitions in hyperbolic metamaterials and the flexibility of the widespread Si platform.

  12. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    International Nuclear Information System (INIS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-01-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm 2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm −2 of Nickle-63 ( 63 Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure. - Highlights: • Silicon parameters were studied in betavoltaic batteries. • Studied betavoltaic batteries include p-n and Schottky barrier structures. • The p-n structure has higher conversion efficiency.

  13. Low cost sol–gel derived SiC–SiO{sub 2} nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Azmira [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Solar Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Lee, Woojin [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Akhtar, M. Shaheer, E-mail: shaheerakhtar@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Li, Zhen Yu [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Yang, O.-Bong, E-mail: obyang@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of)

    2016-04-30

    Graphical abstract: - Highlights: • Sol–gel derived SiC–SiO{sub 2} nanocomposite was prepared. • It effectively coated as AR layer on p-type Si-wafer. • SiC–SiO{sub 2} layer on Si solar cells exhibited relatively low reflectance of 7.08%. • Fabricated Si solar cell attained highly comparable performance of 16.99% to commercial device. - Abstract: This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol–gel derived SiC–SiO{sub 2} nanocomposite. The prepared SiC–SiO{sub 2} nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol–gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO{sub 2} phases, which noticeably confirmed the formation of SiC–SiO{sub 2} nanocomposite. The SiC–SiO{sub 2} layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC–SiO{sub 2} nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional Si{sub x}N{sub x} AR coated Si solar cell. New and effective sol–gel derived SiC–SiO{sub 2} AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  14. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Rahmouni, H.; Selmi, A.; Ezzaouia, H.

    2005-01-01

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers (≥1 μm) are thermally evaporated followed by photo-thermal annealing treatments in N 2 atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N 2 /O 2 ambient in a solid phase from POCl 3 solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm 2 V -1 s -1 . However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium

  15. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    Science.gov (United States)

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  16. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  17. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    Science.gov (United States)

    Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah

    2017-11-01

    In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  18. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    Directory of Open Access Journals (Sweden)

    Abd Rahim Alhan Farhanah

    2017-01-01

    Full Text Available In this paper, an investigation of design and simulation of silicon germanium (SiGe islands on silicon (Si was presented for potential visible metal semiconductor metal (MSM photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD tools. The different structures of the silicon germanium (SiGe island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM photodetector was evaluated by photo and dark current-voltage (I-V characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  19. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  20. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    Science.gov (United States)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  1. Controlling the optical properties of monocrystalline 3C-SiC heteroepitaxially grown on silicon at low temperatures

    Science.gov (United States)

    Colston, Gerard; Myronov, Maksym

    2017-11-01

    Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventional materials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection of UV light and can offer a closely lattice matched virtual substrate for subsequent GaN heteroepitaxy. As 3C-SiC can be heteroepitaxially grown on silicon (Si) substrates its optical properties can be manipulated by controlling the thickness and doping concentrations. The optical properties of 3C-SiC epilayers have been characterized by measuring the transmission of light through suspended membranes. Decreasing the thickness of the 3C-SiC epilayers is shown to shift the absorbance edge to lower wavelengths, a result of the indirect bandgap nature of silicon carbide. This property, among others, can be exploited to fabricate very low-cost, tuneable 3C-SiC based UV photodetectors. This study investigates the effect of thickness and doping concentration on the optical properties of 3C-SiC epilayers grown at low temperatures by a standard Si based growth process. The results demonstrate the potential photonic applications of 3C-SiC and its heterogeneous integration into the Si industry.

  2. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    Science.gov (United States)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  3. Synthesis of long T silicon nanoparticles for hyperpolarized Si magnetic resonance imaging

    DEFF Research Database (Denmark)

    Atkins, T.M.; Ganguly, S.; Kauzlarich, S.M.

    2013-01-01

    silicide (Na Si) and silicon tetrachloride (SiCl) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted Si spin-lattice relaxation (T) times (>600 s), which are retained after hyperpolarization by low...

  4. A buffer-layer/a-SiO{sub x}:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo; Dao, Vinh Ai [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Minbum; Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College West Campus, Ulsan 680-749 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiO{sub x}:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiO{sub x}:H(p) window-layer heterointerface, we have used buffer-layer/a-SiO{sub x}:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiO{sub x}:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (V{sub bi}) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiO{sub x}:H(p), in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. The enhancement of both V{sub bi} and blue response is observed, by increasing the value of ξ. The improvement of V{sub bi} and blue response can be ascribed to the enlargement of the optical gap of a-SiO{sub x}:H(p) films in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiO{sub x}:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiO{sub x}:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (V{sub oc}). • High band gap is beneficial for short-circuit current density (J{sub sc}). • Boron doped microcrystalline silicon is a suitable buffer-layer for

  5. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.

    1996-01-01

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl 4 ), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl 4 in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author)

  6. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.

    Science.gov (United States)

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2014-05-23

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.

  7. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    Science.gov (United States)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  8. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  9. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  10. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  11. Multi-mode interference revealed by two photon absorption in silicon rich SiO2 waveguides

    International Nuclear Information System (INIS)

    Manna, S.; Ramiro-Manzano, F.; Mancinelli, M.; Turri, F.; Pavesi, L.; Ghulinyan, M.; Pucker, G.

    2015-01-01

    Photoluminescence (PL) from Si nanocrystals (NCs) excited by two-photon absorption (TPA) has been observed in Si nanocrystal-based waveguides fabricated by plasma enhanced chemical vapor deposition. The TPA excited photoluminescence emission resembles the one-photon excited photoluminescence arising from inter-band transitions in the quantum confined Si nanocrystals. By measuring the non-linear transmission of waveguides, a large TPA coefficient of β up to 10 −8  cm/W has been measured at 1550 nm. These values of β depend on the Si NCs size and are two orders of magnitude larger than the bulk silicon value. Here, we propose to use the TPA excited visible PL emission as a tool to map the spatial intensity profile of the 1550 nm propagating optical modes in multimode waveguides. In this way, multimode interference has been revealed experimentally and confirmed through a finite element simulation

  12. Structure of new Al-Si based RQ systems with potentially enhanced stiffness

    International Nuclear Information System (INIS)

    Zigo, J.; Svec, P.; Janickovic, D.; Janotova, I.; Matko, I.; Svec, P. Sr.

    2014-01-01

    Amorphous and nanocrystalline metallic systems prepared by rapid quenching of melt are interesting for many unique properties. Mechanical properties are among the most important ones. Rapid quenching of metallic melt can enhance mechanical properties of material, compared to metal alloys prepared by conventional metallurgy. Aluminium as one of most accessible light-weight metals has wide range of applications as construction material. Alloying aluminium with another element can significantly improve mechanical properties. Reasonable choice for alloying element in terms of sustaining light-weight nature of the material is silicon. Dissolving silicon in aluminium can be achieved, even with the aid of rapid quenching, only up to few weight percent. Increasing the content of dissolved silicon is possible by adding other alloying components. Candidates with respect to low specific mass are transition elements of 4"t"h period (from scandium to zinc). In our experimental study, we have chosen alloying of Al-Si with transition elements (T) iron, cobalt and nickel. Composition of the investigated systems was Al_8_0_-_xT_xSi_2_0 where T = Fe, Co, Ni and x = 0, 5 and 10. (authors)

  13. Mechanical and tribological properties of silicon nitride films synthesized by ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Chen Yuanru; Li Shizhuo; Zhang Xushou; Liu Hong; Yang Genqing; Qu Baochun

    1991-01-01

    This article describes preliminary investigations of mechanical and tribological properties of silicon nitride film formed by ion beam enhanced deposition (IBED) on GH37 (Ni-based alloys) steel. The films were synthesized by silicon vapor deposition with a rate of 1 A/s and by 40 keV nitrogen ion bombardment simultaneously. The thickness of the film was about 5000 A. X-ray photoelectron spectroscopy and infrared absorption spectroscopy revealed that a stoichiometric Si 3 N 4 film was formed. The observation of TEM showed that the IBED Si 3 N 4 film normally had an amorphous structure. However, electron diffraction patterns revealed a certain crystallinity. The mechanical and tribological properties of the films were investigated with a scratch tester, microhardness meter, and a ball-on-disc tribometer respectively. Results show that the adhesive strength between film and substrate is about 51 N, the Vickers microhardness with a load of 0.2 N is 980, the friction coefficient measured for steel against silicon nitride film ranges from 0.1 to 0.15, and the wear rate of coatings is about 6.8x10 -5 mm 3 /(mN). Finally, the relationship among thermal annealing, crystallinity and tribological characteristics of the Si 3 N 4 film is discussed. (orig.)

  14. Enhancement of porous silicon photoluminescence by electroless deposition of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Amdouni, S. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Zaïbi, M.-A [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Ecole Nationale Supérieure des Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Oueslati, M. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia)

    2015-01-15

    Nickel-porous silicon nanocomposites (PS/Ni) are elaborated by an electroless deposition method using NiCl{sub 2} aqueous solution. The presence of nickel ions in the porous layer is confirmed by Fourier Transformed InfraRed spectroscopy (FTIR) and Raman spectroscopy. The photoluminescence (PL) spectra of PS/Ni, prepared at different electroless durations (t{sub edp}), are analyzed. A remarkable enhancement in the integrated PL intensity of PS containing nickel was observed. The lower t{sub edp} favor the deposition of nickel in PS, hence the silicon dangling bonds at the porous surface are quenched and this was increased the PL intensity. However, for the longer t{sub edp}, the PL intensity has been considerably decreased due to the destruction of some Si nanocrystallites. The PL spectra of PS/Ni, for t{sub edp} less than 8 min, show a multiband profile indicating the creation of new luminescent centers by Ni elements which induces a strong modification in the emission mechanisms. - Highlights: • Deposition of Ni ions into porous silicon (PS) layer using the electroless method. • Formation of Ni–O bonds on the porous layer. • The photoluminescence (PL) intensity of PS is enhanced after Ni deposition. • The increase of the PL is due to the contribution of radiative centers related to Ni.

  15. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  16. Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings

    International Nuclear Information System (INIS)

    Pilloud, D.; Pierson, J.F.; Pichon, L.

    2006-01-01

    Zr-Si-N films were deposited on silicon and X38CrMoV5 steel substrates by sputtering composite Zr-Si targets in reactive Ar-N 2 mixture. The silicon concentration in the deposited films was adjusted by the variation of the number of Si chips located on the target erosion zone. As a function of the silicon content, the films exhibited the following structures: insertion of Si into the ZrN lattice, nanocomposite (nc-ZrN/a-SiN x ) and an amorphous-like structure. Addition of silicon into ZrN-based coatings induced a lost of the golden aspect due to the decrease of the metallic behaviour. This result was confirmed by ellipsometric measurements. The films refractive index increased with the silicon concentration. On the other hand, a continuous decrease of the extinction coefficient was noticed. The effect of the silicon content on the optical properties of Zr-Si-N films was discussed as a function of the films structure and the occurrence of new optical absorptions due to the silicon chemical bonds. Finally, the evolution of the films electrical resistivity was discussed in connection to the films structure changes

  17. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO{sub 2} core/shell self-organized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Filippo; Rossi, Francesca; Attolini, Giovanni; Salviati, Giancarlo; Iannotta, Salvatore [IMEM-CNR Institute, Viale Usberti 37/A, I-43124 Parma (Italy); Aversa, Lucrezia; Verucchi, Roberto; Nardi, Marco [IFN-CNR Institute, Via alla Cascata 56/C-Povo, I-38123 Trento (Italy); Fukata, Naoki [International Center for Materials Nanoarchitectonics, National Institute for Materials Science and PRESTO JST, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Dierre, Benjamin; Sekiguchi, Takashi [Nano Device Characterization Group, Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-08-27

    We report the influence of the native amorphous SiO{sub 2} shell on the cathodoluminescence emission of 3C-SiC/SiO{sub 2} core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO{sub 2} and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO{sub 2}-SiC interface properties is also reported.

  18. IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts

    NARCIS (Netherlands)

    Yang, G.; Ingenito, A.; Isabella, O.; Zeman, M.

    2016-01-01

    Ion-implanted poly-crystalline silicon (poly-Si), in combination with a tunnel oxide layer, is investigated as a carrier-selective passivating contact in c-Si solar cells based on an interdigitated back contact (IBC) architecture. The optimized poly-Si passivating contacts enable low interface

  19. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  20. Influence of silicon concentration on linear contraction process of Al-Si binary alloy

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2008-12-01

    Full Text Available Investigations of shrinkage phenomena during solidification and cooling of aluminium and aluminium-silicon alloys (AlSi5, AlSi7, AlSi9, AlSi11, AlSi12.5, AlSi18, AlSi21 have been conducted. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. By constant cross-section a test channel mould was parted and allowed a constrained contraction to examine. No parted test channel mould was tapered and allowed an unconstrained contraction to investigate. In the experiments the dimensions changes of solidifying test bar and the test mould have been registered, what has allowed to explain a mechanism of pre-shrinkage extension of solidifying metals and alloys. Registered time dependence of the test bar and the test mould dimension changes have shown, that so-called pre-shrinkage extension has been by mould thermal extension caused. The investigation results have also shown that time- and temperature dependences of shrinkage of Al-Si alloys have been on silicon concentration depended.

  1. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    Science.gov (United States)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  2. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z. M., E-mail: zaki.saleh@aauj.edu, E-mail: zakimsaleh@yahoo.com; Nasser, H.; Özkol, E.; Günöven, M.; Abak, K. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey); Canli, S. [Middle East Technical University, Central Laboratory (Turkey); Bek, A.; Turan, R. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey)

    2015-10-15

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

  3. Formation of SiC using low energy CO2 ion implantation in silicon

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorbani, S.; Dorranian, D.; Azadfar, P.; Hojabri, A.R.; Ghoranneviss, M.

    2008-01-01

    Carbon dioxide ions with 29 keV energy were implanted into (4 0 0) high-purity p-type silicon wafers at nearly room temperature and doses in the range between 1 x 10 16 and 3 x 10 18 ions/cm 2 . X-ray diffraction analysis (XRD) was used to characterize the formation of SiC in implanted Si substrate. The formation of SiC and its crystalline structure obtained from above mentioned technique. Topographical changes induced on silicon surface, grains and evaluation of them at different doses observed by atomic force microscopy (AFM). Infrared reflectance (IR) and Raman scattering measurements were used to reconfirm the formation of SiC in implanted Si substrate. The electrical properties of implanted samples measured by four point probe technique. The results show that implantation of carbon dioxide ions directly leads to formation of 15R-SiC. By increasing the implantation dose a significant changes were also observed on roughness and sheet resistivity properties.

  4. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  5. Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ruinan Sun

    2017-01-01

    Full Text Available Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells.

  6. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  7. Effect of oxygen on the processes of ion beam synthesis of buried SiC layers in silicon

    International Nuclear Information System (INIS)

    Artamonov, V.V.; Valakh, M.Ya.; Klyuj, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of Si-structures with buried silicon carbide (SiC) layers created by high dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. Effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layers are more effectively formed in Cz-Si or in Si subjected to additional oxygen implantation. Thus, oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed

  8. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    NARCIS (Netherlands)

    Macco, B.; Melskens, J.; Podraza, N.J.; Arts, K.; Pugh, C.; Thomas, O.; Kessels, W.M.M.

    2017-01-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (<50 °C) to provide crystalline silicon (c-Si) surface passivation. Despite the limited nanostructural quality of the a-Si:H bulk, a surprisingly high minority carrier

  9. PtSi Clustering in Silicon Probed by Transport Spectroscopy

    Directory of Open Access Journals (Sweden)

    Massimo Mongillo

    2013-12-01

    Full Text Available Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.

  10. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    Science.gov (United States)

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  11. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  12. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    Science.gov (United States)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  13. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  14. SiN sub x passivation of silicon surfaces

    Science.gov (United States)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  15. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    International Nuclear Information System (INIS)

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-01-01

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 μm is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  16. Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI

    Directory of Open Access Journals (Sweden)

    John E. Cunningham

    2012-04-01

    Full Text Available We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics.

  17. Charge Losses in Silicon Sensors and Electric-Field Studies at the Si-SiO$_2$ Interface

    CERN Document Server

    Poehlsen, Thomas

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs ($eh$ pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate $eh$ pairs along the whole sensor depth, a few $\\mu$m below the surface and very close to the surface, respectively. Segmented p$^+$n silicon strip sensors are used to study the electric field below the SiO$_2$ separating the strip implants. The sensors are investigated before and after irradiation with 12 keV x-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO$_2$ interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the...

  18. Twenty-fold plasmon-induced enhancement of radiative emission rate in silicon nanocrystals embedded in silicon dioxide

    International Nuclear Information System (INIS)

    Gardelis, S; Gianneta, V.; Nassiopoulou, A.G

    2016-01-01

    We report on a 20-fold enhancement of the integrated photoluminescence (PL) emission of silicon nanocrystals, embedded in a matrix of silicon dioxide, induced by excited surface plasmons from silver nanoparticles, which are located in the vicinity of the silicon nanocrystals and separated from them by a silicon dioxide layer of a few nanometers. The electric field enhancement provided by the excited surface plasmons increases the absorption cross section and the emission rate of the nearby silicon nanocrystals, resulting in the observed enhancement of the photoluminescence, mainly attributed to a 20-fold enhancement in the emission rate of the silicon nanocrystals. The observed remarkable improvement of the PL emission makes silicon nanocrystals very useful material for photonic, sensor and solar cell applications.

  19. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-12-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  20. Exploring SiSn as a performance enhancing semiconductor: A theoretical and experimental approach

    KAUST Repository

    Hussain, Aftab M.

    2014-12-14

    We present a novel semiconducting alloy, silicon-tin (SiSn), as channel material for complementary metal oxide semiconductor (CMOS) circuit applications. The material has been studied theoretically using first principles analysis as well as experimentally by fabricating MOSFETs. Our study suggests that the alloy offers interesting possibilities in the realm of silicon band gap tuning. We have explored diffusion of tin (Sn) into the industry\\'s most widely used substrate, silicon (100), as it is the most cost effective, scalable and CMOS compatible way of obtaining SiSn. Our theoretical model predicts a higher mobility for p-channel SiSn MOSFETs, due to a lower effective mass of the holes, which has been experimentally validated using the fabricated MOSFETs. We report an increase of 13.6% in the average field effect hole mobility for SiSn devices compared to silicon control devices.

  1. The investigation of influence of accelerated electrons on SiO2 used in silicon solar cells

    International Nuclear Information System (INIS)

    Abdullaev, G.B.; Bakirov, M.Ya; Akhmedov, G.M.; Safarov, N.A.; Safarova, F.D.

    1994-01-01

    The process of radiation defects production in enlightened SiO 2 layers coated on silicon solar cells was studied. During irradiation the silicon solar cells with enlightened layers radiation defects are formed both in silicon and SiO 2 thus making worse photo energetic parameters of cells. For investigation of radiation effects formed under irradiation by electrons with 5 MeV energy and cobalt-60 gamma-rays photoluminescence, absorption spectra and electron spin resonance methods were used. It is supposed that main radiation defects in silicon dioxide are E'-centers and oxygen vacancies. (A.D. Avezov). 10 refs.; 2 figs

  2. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  3. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  4. Energy Conversion Properties of ZnSiP2, a Lattice-Matched Material for Silicon-Based Tandem Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Krishna, Lakshmi; Kuciauskas, Darius; Dippo, Patricia C.; Ortiz, Brenden R.; Stradins, Paul; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.

    2016-11-21

    ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.

  5. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells

    Science.gov (United States)

    Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun

    2018-04-01

    Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

  6. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  7. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  8. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  10. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma; Propiedades del a-Si:H depositado utilizando un plasma de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J A

    1997-12-31

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl{sub 4}), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl{sub 4} in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author).

  11. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode

    Science.gov (United States)

    Yu, Yanhao; Zhang, Zheng; Yin, Xin; Kvit, Alexander; Liao, Qingliang; Kang, Zhuo; Yan, Xiaoqin; Zhang, Yue; Wang, Xudong

    2017-06-01

    Black silicon (b-Si) is a surface-nanostructured Si with extremely efficient light absorption capability and is therefore of interest for solar energy conversion. However, intense charge recombination and low electrochemical stability limit the use of b-Si in photoelectrochemical solar-fuel production. Here we report that a conformal, ultrathin, amorphous TiO2 film deposited by low-temperature atomic layer deposition (ALD) on top of b-Si can simultaneously address both of these issues. Combined with a Co(OH)2 thin film as the oxygen evolution catalyst, this b-Si/TiO2/Co(OH)2 heterostructured photoanode was able to produce a saturated photocurrent density of 32.3 mA cm-2 at an external potential of 1.48 V versus reversible reference electrode (RHE) in 1 M NaOH electrolyte. The enhanced photocurrent relative to planar Si and unprotected b-Si photoelectrodes was attributed to the enhanced charge separation efficiency as a result of the effective passivation of defective sites on the b-Si surface. The 8-nm ALD TiO2 layer extends the operational lifetime of b-Si from less than half an hour to four hours.

  12. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  13. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.

    2014-01-13

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows that incorporation of tin reduces the band gap of Si(Sn). We fabricated our device with SiSn channel material using a low cost and scalable thermal diffusion process of tin into silicon. Our high-κ/metal gate based multi-gate-field-effect-transistors using SiSn as channel material show performance enhancement, which is in accordance with the theoretical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Annealing behavior of oxygen in-diffusion from SiO2 film to silicon substrate

    International Nuclear Information System (INIS)

    Abe, T.; Yamada-Kaneta, H.

    2004-01-01

    Diffusion behavior of oxygen at (near) the Si/SiO 2 interface was investigated. We first oxidized the floating-zone-grown silicon substrates, and then annealed the SiO 2 -covered substrates in an argon ambient. We examined two different conditions for oxidation: wet and dry oxidation. By the secondary-ion-mass spectrometry, we measured the depth profiles of the oxygen in-diffusion of these heat-treated silicon substrates: We found that the energy of dissolution (in-diffusion) of an oxygen atom that dominates the oxygen concentration at the Si/SiO 2 interface depends on the oxidation condition: 2.0 and 1.7 eV for wet and dry oxidation, respectively. We also found that the barrier heights for the oxygen diffusion in argon anneal were significantly different for different ambients adopted for the SiO 2 formation: 3.3 and 1.8 eV for wet and dry oxidation, respectively. These findings suggest that the microscopic behavior of the oxygen atoms at the Si/SiO 2 interface during the argon anneal depends on the ambient adopted for the SiO 2 formation

  15. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  16. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Science.gov (United States)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  17. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Institute of Scientific and Technical Information of China (English)

    Qin YANG; Yingying DU; Yifan WANG; Zhiying WANG; Jun MA; Jianglin WANG; Shengmin ZHANG

    2017-01-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites.Here we firstly synthesized a series of hybrid bone composites,silicon-hydroxyapatites/silk fibroin/collagen,based on a specific molecular assembled strategy.Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice.In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs),extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite.More interestingly,we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors.In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect.Consequently,our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system,but also paves a new way for constructing multi-functional composite materials in the future.

  18. Electronic structures and thermochemical properties of the small silicon-doped boron clusters B(n)Si (n=1-7) and their anions.

    Science.gov (United States)

    Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-11-18

    We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    Science.gov (United States)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

  20. Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Daldosso, N.; Dalba, G.; Fornasini, P.; Grisenti, R.; Pavesi, L.; Luppi, M.; Magri, R.; Ossicini, S.; Degoli, E.; Rocca, F.; Boninelli, S.; Priolo, F.; Spinella, C.; Iacona, F.

    2003-01-01

    Light-emitting silicon nanocrystals embedded in SiO 2 have been investigated by x-ray absorption measurements in total electron and photoluminescence yields, by energy filtered transmission electron microscopy and by ab initio total energy calculations. Both experimental and theoretical results show that the interface between the silicon nanocrystals and the surrounding SiO 2 is not sharp: an intermediate region of amorphous nature and variable composition links the crystalline Si with the amorphous stoichiometric SiO 2 . This region plays an active role in the light-emission process

  1. Adhesion enhancement for liquid silicone rubber and different ...

    Indian Academy of Sciences (India)

    Keywords. Adhesion property; platinum catalyst; liquid silicone rubber; vinyltrimethoxysilane. ... 2003), elastomeric housing materials of composite insula- .... formula given below: ... surface was cured to generate Al–O–Si covalent bond on the.

  2. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  4. Correction: Electronic structure of the boron fullerene B14 and its silicon derivatives B13Si+, B13Si- and B12Si2: a rationalization using a cylinder model.

    Science.gov (United States)

    Van Duong, Long; Nguyen, Minh Tho

    2016-08-28

    Correction for 'Electronic structure of the boron fullerene B 14 and its silicon derivatives B 13 Si + , B 13 Si - and B 12 Si 2 : a rationalization using a cylinder model' by Long Van Duong et al., Phys. Chem. Chem. Phys., 2016, 18, 17619-17626.

  5. Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Jiancheng Wang

    2014-01-01

    Full Text Available A series of manganese salts (Mn(NO32, MnCl2, MnSO4, and Mn(Ac2 and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, and scanning electron microscopy (SEM were employed to characterize the structure and morphology of the solid products. It was found that MnO2, Mn2O3, and Mn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes. The roles of both anions of manganese salts and silicon species in the formation of manganese silicon complexes were discussed. The inorganic manganese salt with the oxyacid radical could be easily decomposed to produce MnO2/SiO2 and Mn2O3/SiO2. It is interesting to found that Mn(Ac2 can react with various types of silicon to produce Mn2SiO4. The hydroxyl groups of the SiO2 surface from different silicon sources enhance the reactivity of SiO2.

  6. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  7. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks

    KAUST Repository

    Cao, Anping

    2018-03-09

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  8. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    Science.gov (United States)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  9. Electroluminescence efficiencies of erbium in silicon-based hosts

    Energy Technology Data Exchange (ETDEWEB)

    Cueff, Sébastien, E-mail: sebastien-cueff@brown.edu, E-mail: christophe.labbe@ensicaen.fr [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France); School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas [MIND-IN2UB, Department Electrònica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028 (Spain); Kurvits, Jonathan A.; Zia, Rashid [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Rizk, Richard; Labbé, Christophe, E-mail: sebastien-cueff@brown.edu, E-mail: christophe.labbe@ensicaen.fr [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France)

    2013-11-04

    We report on room-temperature 1.5 μm electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  10. Stressing effects on the charge trapping of silicon oxynitride prepared by thermal oxidation of LPCVD Si-rich silicon nitride

    International Nuclear Information System (INIS)

    Choi, H.Y.; Wong, H.; Filip, V.; Sen, B.; Kok, C.W.; Chan, M.; Poon, M.C.

    2006-01-01

    It was recently found that the silicon oxynitride prepared by oxidation of silicon-rich silicon nitride (SRN) has several important features. The high nitrogen and extremely low hydrogen content of this material allows it to have a high dielectric constant and a low trap density. The present work investigates in further detail the electrical reliability of this kind of gate dielectric films by studying the charge trapping and interface state generation induced by constant current stressing. Capacitance-voltage (C-V) measurements indicate that for oxidation temperatures of 850 and 950 deg. C, the interface trap generation is minimal because of the high nitrogen content at the interface. At a higher oxidation temperature of 1050 deg. C, a large flatband shift is found for constant current stressing. This observation can be explained by the significant reduction of the nitrogen content and the phase separation effect at this temperature as found by X-ray photoelectron spectroscopy study. In addition to the high nitrogen content, the Si atoms at the interface exist in the form of random bonding to oxygen and nitrogen atoms for samples oxidized at 850 and 950 deg. C. This structure reduces the interface bonding constraint and results in the low interface trap density. For heavily oxidized samples the trace amount of interface nitrogen atoms exist in the form of a highly constraint SiN 4 phase and the interface oxynitride layer is a random mixture of SiO 4 and SiN 4 phases, which consequently reduces the reliability against high energy electron stressing

  11. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  12. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  13. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu (China)

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed a reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.

  14. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Aparajita [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kole, Arindam, E-mail: erak@iacs.res.in [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dasgupta, Arup [Microscopy and Thermophysical Property Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chaudhuri, Partha [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-11-30

    Highlights: • Low temperature columnar growth of regular sized Si-quantum dots (Si-QDs) within a-SiC:H/μc-SiC:H multilayer structure by tuning the a-SiC:H layer thickness. • Thickness optimization of the a-SiC:H layers resulted in a sharp increase of the transverse current and a decrease of the trap concentrations. • The arrangements of the Si-QDs favor percolation paths for the transverse current. - Abstract: Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel–Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  15. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  16. Silicon content design of CrSiN films for good anti-corrosion and anti-wear performances in NaOH solution

    Science.gov (United States)

    Wang, Haixin; Ye, Yuwei; Wang, Chunting; Zhang, Guangan; Liu, Wei

    2018-06-01

    The CrSiN films with different silicon contents were fabricated by medium frequency magnetron sputtering. The 304L stainless steel and Si (1 0 0) wafer were used for substrate specimens. Film plasticity, corrosion and tribological behaviors in 0.1 M NaOH solution were systematically investigated. Results show that the plasticity of CrN film could be improved by the addition of silicon. During the corrosion test, with the increase of silicon content, the corrosion current density exhibited a descending trend and impedance presented a rising trend. The COF and wear rate of as-prepared CrSiN film initially decreased and then increased as the silicon content increased. The CrSiN film with 12.7 at.% Si exhibited the lowest COF of 0.04 and a wear rate of 6.746  ×  10‑8 mm3 Nm‑1 in 0.1 M NaOH solution.

  17. Investigation of high mobility pseudomorphic SiGe p-channels in Si MOSFETS at low and high electric fields

    International Nuclear Information System (INIS)

    Palmer, Martin John

    2001-01-01

    Silicon Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) for high speed, high current applications are rapidly approaching the physical and financial limits of the technology. This opens opportunities for the incorporation of materials with intrinsically better transport characteristics. An alloy of silicon and germanium is one such material that is gaining much recognition as the active component of MOSFETs and as the secondary structures (such as the gate electrode). This work examines a batch of buried channel Si 0.64 Ge 0.36 p-MOSFETs, with a minimum effective length of 0.35 μm, under different bias conditions and at different temperatures. High current and transconductance enhancements are apparent at long gate lengths. The carrier mobility is up to a factor of 2.5 times that of silicon at room temperature and 7.5 times at 4 K. A clear trend of decreasing peak mobility with decreasing silicon cap thickness is evident. Simulations show that scattering caused by the roughness of the SiO 2 /Si interface dominates, rather than alloy scattering or Si/SiGe roughness, even for a buried channel. This scattering increases with the proximity of the carriers to the interface. An increase of interface trap density with decreasing cap thickness, demonstrates that segregated germanium exists some distance into the cap and interferes with the oxidation process. This will increase scattering through increased SiO 2 /Si roughness and increased trapped charge. The short channel, high field results are comparable or slightly worse than those of silicon due to lower saturation drift velocity. However, fitting to a drift-diffusion model shows an apparent increase in saturation velocity for short channels, especially at low temperatures. This effect correlates with the low field mobility and is greater for devices containing SiGe. This is an indication of velocity overshoot, which may enhance the performance of SiGe MOSFETs at deep submicron gate lengths. (author)

  18. Specific features of the current–voltage characteristics of SiO{sub 2}/4H-SiC MIS structures with phosphorus implanted into silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylova, A. I., E-mail: m.aleksey.spb@gmail.com; Afanasyev, A. V.; Ilyin, V. A.; Luchinin, V. V. [St. Petersburg State Electrotechnical University LETI (Russian Federation); Sledziewski, T. [Friedrich–Alexander–Universität Erlangen–Nürnberg (Germany); Reshanov, S. A.; Schöner, A. [Ascatron AB (Sweden); Krieger, M. [Friedrich–Alexander–Universität Erlangen–Nürnberg (Germany)

    2016-01-15

    The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.

  19. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  20. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  1. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  2. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    International Nuclear Information System (INIS)

    Joo, Jinmyoung; Defforge, Thomas; Gautier, Gael; Loni, Armando; Kim, Dokyoung; Sailor, Michael J.; Li, Z. Y.; Canham, Leigh T.

    2016-01-01

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals ( 32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.

  3. The kinetics of dewetting ultra-thin Si layers from silicon dioxide

    International Nuclear Information System (INIS)

    Aouassa, M; Favre, L; Ronda, A; Berbezier, I; Maaref, H

    2012-01-01

    In this study, we investigate the kinetically driven dewetting of ultra-thin silicon films on silicon oxide substrate under ultra-high vacuum, at temperatures where oxide desorption and silicon lost could be ruled out. We show that in ultra-clean experimental conditions, the three different regimes of dewetting, namely (i) nucleation of holes, (ii) film retraction and (iii) coalescence of holes, can be quantitatively measured as a function of temperature, time and thickness. For a nominal flat clean sample these three regimes co-exist during the film retraction until complete dewetting. To discriminate their roles in the kinetics of dewetting, we have compared the dewetting evolution of flat unpatterned crystalline silicon layers (homogeneous dewetting), patterned crystalline silicon layers (heterogeneous dewetting) and amorphous silicon layers (crystallization-induced dewetting). The first regime (nucleation) is described by a breaking time which follows an exponential evolution with temperature with an activation energy E H ∼ 3.2 eV. The second regime (retraction) is controlled by surface diffusion of matter from the edges of the holes. It involves a very fast redistribution of matter onto the flat Si layer, which prevents the formation of a rim on the edges of the holes during both heterogeneous and homogeneous dewetting. The time evolution of the linear dewetting front measured during heterogeneous dewetting follows a characteristic power law x ∼ t 0.45 consistent with a surface diffusion-limited mechanism. It also evolves as x ∼ h -1 as expected from mass conservation in the absence of thickened rim. When the surface energy is isotropic (during dewetting of amorphous Si) the dynamics of dewetting is considerably modified: firstly, there is no measurable breaking time; secondly, the speed of dewetting is two orders of magnitude larger than for crystalline Si; and thirdly, the activation energy of dewetting is much smaller due to the different driving

  4. Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells

    Science.gov (United States)

    Ben Rabha, M.; Hajji, M.; Belhadj Mohamed, S.; Hajjaji, A.; Gaidi, M.; Ezzaouia, H.; Bessais, B.

    2012-02-01

    In this paper, we study the optical, optoelectronic and photoluminescence properties of stain-etched porous silicon nanostructures obtained with different etching times. Special attention is given to the use of the stain-etched PS as an antireflection coating as well as for surface passivating capabilities. The surface morphology has been analyzed by scanning electron microscopy. The evolution of the Si-O and Si-H absorption bands was analyzed by Fourier transform infrared spectrometry before and after PS treatment. Results show that stain etching of the silicon surface drops the total reflectivity to about 7% in the 400-1100 nm wavelength range and the minority carrier lifetime enhances to about 48 μs.

  5. Magnetostriction-strain-induced enhancement and modulation of photovoltaic performance in Si-p-n/TbxDy1-xFe2 composite

    International Nuclear Information System (INIS)

    Wu, Zheng; Zhang, Yihe; Fang, Cong; Ma, Ke; Lin, He; Jia, Yanmin; Chen, Jianrong; Wang, Yu; Chan, Helen Lai Wa

    2014-01-01

    High photovoltaic efficiency is a key index in the application of silicon (Si) solar cells. In this study, a composite of a photovoltaic Si p-n junction solar cell and a magnetostrictive Tb x Dy 1-x Fe 2 alloy was fabricated. By utilizing the magnetostrictive strain to modulate the energy bandgap of Si, the open-circuit voltage and the maximum photovoltaic output power of the Si p-n junction solar cell could be enhanced by ∝12% and 9.1% under a dc magnetic field of ∝250 mT, respectively. The significantly enhanced photovoltaic performance and the simple fabrication process make the Si-p-n/Tb x Dy 1-x Fe 2 composite a promising material for high-efficiency solar cell devices. The structure of the proposed Si-p-n/Tb x Dy 1-x Fe 2 laminated composite. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Suppression effect of silicon (Si on Er3+ 1.54μm excitation in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2016-08-01

    Full Text Available We have investigated the photoluminescence (PL characteristics of ZnO:Er thin films on Si (100 single crystal and SiO2-on-silicon (SiO2 substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS, X-ray diffraction (XRD and atomic force microscope (AFM were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS. Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT, PL (1.54μm intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC. Both made the PL (1.54μm intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  7. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  8. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes.

    Directory of Open Access Journals (Sweden)

    Alexander T Fleck

    Full Text Available We studied the effect of Silicon (Si on Casparian band (CB development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS and flame ionization detector (GC-FID. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.

  9. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics.

    Science.gov (United States)

    Fegadolli, William S; Kim, Se-Heon; Postigo, Pablo Aitor; Scherer, Axel

    2013-11-15

    We report on a hybrid InP/Si photonic crystal nanobeam laser emitting at 1578 nm with a low threshold power of ~14.7 μW. Laser gain is provided from a single InAsP quantum well embedded in a 155 nm InP layer bonded on a standard silicon-on-insulator wafer. This miniaturized nanolaser, with an extremely small modal volume of 0.375(λ/n)(3), is a promising and efficient light source for silicon photonics.

  10. Compositional analysis of silicon nitride films on Si and GaAs by backscattering spectrometry and nuclear resonance reaction analysis

    International Nuclear Information System (INIS)

    Kumar, Sanjiv; Raju, V.S.

    2004-01-01

    This paper describes the application of proton and α-backscattering spectrometry for the determination of atomic ratio of Si to N in 1100-5000 A silicon nitride films on Si and GaAs. The conventional α-Rutherford backscattering spectrometry is suitable for the analysis of films on Si; it is rather inadequate for films on GaAs due to higher background from the substrate. It is shown that these films can be analysed by 14 N(α,α) 14 N scattering with 3.5 MeV α-particles. Proton elastic scattering with enhanced cross sections for 28 Si(p,p) 28 Si and 14 N(p,p) 14 N scatterings, is also suitable for analysing films on GaAs. However, the analysis of films on Si by this technique is difficult due to interferences between the signals of Si from the film and the substrate. In addition, the hydrogen content in films is determined by 1 H( 19 F,αγ) 16 O nuclear reaction analysis using the resonance at 6.4 MeV. The combination of backscattering spectrometry with nuclear reaction analysis provides compositional analysis of ternary Si 1-(x+y) N x H y films

  11. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC/graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Joseph; Chen, Di; Wang, Jing; Shao, Lin, E-mail: lshao@tamu.edu

    2013-07-15

    Silicon carbide composites have been investigated for their use as structural materials for advanced nuclear reactor designs. Although the composites have significantly enhanced mechanical properties and structure integrity, there is little known about the behavior of defects in the presence of a graphite-silicon carbide interface. In this study, molecular dynamics simulations have been used to model defect creation and clustering in a composite containing a SiC/graphite interface. Evolution of displacements as a function of time were studied and compared to bulk SiC. The results show that the first a few SiC atomic layers closest to the interface are easily damaged. However, beyond these first few atomic layers the system appears to be unaffected by the SiC interface.

  12. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, L., E-mail: lsg09_phy089@student.usm.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new kind of substrate (porous silicon) was used. Black-Right-Pointing-Pointer Also this research introduces an easy and safe method to grow high quality GaN NWs. Black-Right-Pointing-Pointer This is a new growth process to decrease the cost, complexity of growth of GaN NWs. Black-Right-Pointing-Pointer It is a controllable method to synthesize GaN NWs by thermal evaporation. - Abstract: Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  13. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  14. End-functional silicone coupling agent modified PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte DSSC

    International Nuclear Information System (INIS)

    Zhang Jing; Yang Ying; Wu Sujuan; Xu Sheng; Zhou Conghua; Hu Hao; Chen Bolei; Xiong Xiaodong; Sebo, Bobby; Han Hongwei; Zhao Xingzhong

    2008-01-01

    The end-functional silicone coupling agent (dodecyl-trimethoxysilane, DTMS for short) was used to modify the PEO/P(VDF-HFP)/SiO 2 nanocomposite polymer electrolyte (CPE) and the different amounts of DTMS modification effects were studied. The experiments showed the silicone coupling agent with hydrophobic alkyl chains (-C 12 H 25 ) chemically engineered on the SiO 2 nanoparticles, and formed a Si-O-Si cross-linked network in the new nanocomposite polymer electrolyte. Proper content of DTMS modified CPE exhibited improved ionic conductivity and the connection with the photoanode and counter electrode. However, much higher content of the DTMS modification changed the conformation of the polymer network and reduced the ionic movement. Compared with the performance (3.84%) of the original DSSC, the DSSC with functional silicone coupling agent modified CPE (DTMS:SiO 2 = 2:1, mol ratio) exhibited improved J sc (7.94 mA cm -2 ), V oc (0.624 V) and optimal efficiency (5.2%) (measured at AM1.5, light intensity of 58.4 mW cm -2 ). The V oc of the silicone coupling agent modified polymer electrolyte DSSC is obviously improved, which is mainly due to that the hydrophobic alkyl chain end groups formed an insulating layer that retarded the electron recombination at the TiO 2 nanoporous photoanode/polymer electrolyte interface. The DTMS:SiO 2 = 2:1 modified CPE type DSSC exhibited a performance of 6.42% at a light intensity of 32.1 mW cm -2 and 4.94% at 99.2 mW cm -2

  15. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals

    International Nuclear Information System (INIS)

    Camargo, S.S.; Gomes, J.R.; Carrapichano, J.M.; Silva, R.F.; Achete, C.A.

    2005-01-01

    Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si 3 N 4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 to 55 N and sliding velocities from 0.2 to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si-coated rings, on the other hand, presented for loads up to 10 N a steady-state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N, the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N, a catastrophic behavior is observed. Typically, wear rates below 5x10 -6 and 2x10 -7 mm 3 /N m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer

  16. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  17. Strain distribution analysis in Si/SiGe line structures for CMOS technology using Raman spectroscopy

    International Nuclear Information System (INIS)

    Hecker, M; Roelke, M; Hermann, P; Zschech, E; Vartanian, V

    2010-01-01

    Strained silicon underneath the field-effect transistor gate increases significantly the charge carrier mobility and thus improves the performance of leading-edge Complementary Metal Oxide Semiconductor (CMOS) devices. For better understanding of the structure-strain relationship on the nanoscale and for optimization of device structures, the measurement of the local strain state has become essential. Raman spectroscopy is used in the present investigation to analyze the strain distribution in and close to silicon/embedded silicon-germanium (SiGe) line structures in conjunction with strain modeling applying finite element analysis. Both experimental results and modeling indicate the impact of geometry on the stress state. An increase of compressive stress within the Si lines is obtained for increasing SiGe line widths and decreasing Si line widths. The stress state within the Si lines is shown to be a mixed one deviating from a pure uniaxial state. Underneath the SiGe cavities, the presence of a tensile stress was observed. To investigate a procedure to scale down the spatial resolution of the Raman measurements, tip-enhanced Raman scattering experiments have been performed on free-standing SiGe lines with 100nm line width and line distance. The results show superior resolution and strain information not attainable in conventional Raman scans.

  18. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    The Anh, Le; Lam, Pham Tien; Manoharan, Muruganathan; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam; Tien Cuong, Nguyen; Mizuta, Hiroshi

    2016-01-01

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies

  19. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  20. Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance

    International Nuclear Information System (INIS)

    Sun, Wei; Hu, Renzong; Liu, Hui; Zhang, Hanying; Liu, Jiangwen; Yang, Lichun; Wang, Haihui; Zhu, Min

    2016-01-01

    Highlights: • Two-step ball milling was used to produce an amorphous-Si/WC@Graphene(SW@G) composite. • Concrete-like core-shell structure with high stability was designed. • Multiscale WC particle strengthen the inside structure. • Graphene coating outside much enhanced the cycling stability and conductivity. • The SW@G anode exhibited long cycle life and superior volumetric capacity. - Abstract: Improving the electron conductivity and lithiated structure stability for Si anodes can result in high stable capacity in cells. A Silicon/Wolfram Carbide@Graphene (SW@G) composite anode is designed and produced by a simple two-step ball milling the mixture of coarse-grained Si with good conductive wolfram carbide (WC) and graphite. The SW@G composite consists of multiple-scale WC particles, which are uniformly distributed in amorphous Si matrices, and wrapped by graphene nanosheets (GNs) on the outside. Owing to the unique concrete-like core-shell structure, the wrapping of GNs on the Si improves the conductivity and structural stability of the composite. The inner WC particles which tightly connect the Si and graphene act as the cornerstone to resist large volumetric expansion of Si during charge/discharge, and in particular serve as the high-speed channels of electrons as well as provide more interface paths for Li + to accelerate their transfer inside the Si. These contribute to the excellent electrochemical properties of SW@G composite anode, including high volumetric capacity (three times higher than that of graphite), superior rate capability, and long-life stable cycleability. The synthetic method developed in this work paves the way for large-scale manufacturing of high performance Li storage anodes using commercially available materials and technologies.

  1. Annealing effects on photoluminescence of SiNx films grown by PECVD

    International Nuclear Information System (INIS)

    Komarov, F.F.; Parkhomenko, I.N.; Vlasukova, L.A.; Milchanin, O.V.; Togambayeva, A.K.; Kovalchuk, N.S.

    2013-01-01

    Si-rich and N-rich silicon nitride films were deposited at low temperature 300 °C by using plasma-enhanced chemical vapor deposition (PECVD). The optical and structural properties of these films have been investigated by ellipsometry, Rutherford backscattering (RBS), transmission electron microscopy (TEM), Raman spectroscopy (RS) and photoluminescence (PL). The formation of silicon clusters in both Si-rich and N-rich silicon nitride films after annealing at 900 °C and 1000 °C for hour in N 2 ambient has been revealed by TEM. Dependency of PL spectra on stoichiometry and post-annealing temperature was analyzed. The contribution of Si and N-related defects in emitting properties of Si-rich and N-rich SiN x has been discussed. (authors)

  2. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  3. Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design

    Institute of Scientific and Technical Information of China (English)

    Seh-Yoon Lim; Sudong Chae; Su-Ho Jung; Yuhwan Hyeon; Wonseok Jang; Won-Sub Yoon; Jae-Young Choi; Dongmok Whang

    2017-01-01

    Silicon nanowires (SiNWs) encapsulated with graphene-like carbon sheath (GS) having a void space in between (SiNW@V@GS) are demonstrated for the improved electrochemical performance of Si anode in lithium ion battery.The SiNW@V@GS structure was synthesized by a scalable fabrication method including four successive reactions:metal-catalyzed CVD growth of SiNWs,controlled thermal oxidation,and deposition of the graphitic layer,to form SiNW@SiO2@GS and additional chemical etching of sacrificial SiO2 layer between SiNWs and carbon sheath.During the synthetic process,the thickness of the void spacing was controlled by adjusting the oxidation-dependent process.The well-controlled void space and crystalline graphitic carbon sheath of the SiNW@V@GS structure enable good reversible capacity of 1444 mAhg-1 and cycling stability of 85% over 150 cycles.

  4. The role of extra-atomic relaxation in determining Si2p binding energy shifts at silicon/silicon oxide interfaces

    International Nuclear Information System (INIS)

    Zhang, K.Z.; Greeley, J.N.; Banaszak Holl, M.M.; McFeely, F.R.

    1997-01-01

    The observed binding energy shift for silicon oxide films grown on crystalline silicon varies as a function of film thickness. The physical basis of this shift has previously been ascribed to a variety of initial state effects (Si endash O ring size, strain, stoichiometry, and crystallinity), final state effects (a variety of screening mechanisms), and extrinsic effects (charging). By constructing a structurally homogeneous silicon oxide film on silicon, initial state effects have been minimized and the magnitude of final state stabilization as a function of film thickness has been directly measured. In addition, questions regarding the charging of thin silicon oxide films on silicon have been addressed. From these studies, it is concluded that initial state effects play a negligible role in the thickness-dependent binding energy shift. For the first ∼30 Angstrom of oxide film, the thickness-dependent binding energy shift can be attributed to final state effects in the form of image charge induced stabilization. Beyond about 30 Angstrom, charging of the film occurs. copyright 1997 American Institute of Physics

  5. Si-O compound formation by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Hensel, E.; Wollschlaeger, K.; Kreissig, U.; Skorupa, W.; Schulze, D.; Finster, J.

    1985-01-01

    High dose oxygen ion implantation into silicon at 30 keV was performed to produce understoichiometric and stoichiometric surface oxide layers of approx. 160 nm thickness. The oxygen depth profile and oxide stoichiometry was determined by RBS and XPS. Si-O compound formation was found by IR spectroscopy and XPS in the unannealed samples as well as after target heating, furnace or flash lamp annealing. As implanted understoichiometric layers consist of random bonding like SiOsub(x) (O 2 after annealing. Unannealed stoichiometric layers are bond strained SiO 2 . The activation energies of demixing and of the annealing of bond strains are determined to 0.19 and 0.13 eV, respectively. The removing of bond strains occurs at temperatures >= 800 C in a time shorter than 1 s. The SiO 2 /Si transition region of unannealed stoichiometric layers consists of SiOsub(x) with an extent of about 10 nm. After annealing this extent diminishes to 0.8 to 1 nm in consequence of oxidation by excess oxygen from the overstoichiometric oxide region. This thickness is comparable with that of thermal oxide. (author)

  6. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  7. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran [School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100 (China); Ma, Changdong [Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250100 (China)

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  8. Enhanced lateral heat dissipation packaging structure for GaN HEMTs on Si substrate

    International Nuclear Information System (INIS)

    Cheng, Stone; Chou, Po-Chien; Chieng, Wei-Hua; Chang, E.Y.

    2013-01-01

    This work presents a technology for packaging AlGaN/GaN high electron mobility transistors (HEMTs) on a Si substrate. The GaN HEMTs are attached to a V-groove copper base and mounted on a TO-3P leadframe. The various thermal paths from the GaN gate junction to the case are carried out for heat dissipation by spreading to protective coating; transferring through the bond wires; spreading in the lateral device structure through the adhesive layer, and vertical heat spreading of silicon chip bottom. Thermal characterization showed a thermal resistance of 13.72 °C/W from the device to the TO-3P package. Experimental tests of a 30 mm gate-periphery single chip packaged in a 5 × 3 mm V-groove Cu base with a 100 V drain bias showed power dissipation of 22 W. -- Highlights: ► An enhanced packaging structure designed for AlGaN/GaN HEMTs on an Si substrate. ► The V-groove copper base is designed on the device periphery surface heat conduction for enhancing Si substrate thermal dissipation. ► The proposed device shows a lower thermal resistance and upgrade in thermal conductivity capability. ► This work provides useful thermal IR imagery information to aid in designing high efficiency package for GaN HEMTs on Si

  9. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si

    Directory of Open Access Journals (Sweden)

    Andrey V. Nomoev

    2014-12-01

    Full Text Available Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, selective area electron diffraction (SAED, and energy dispersive X-ray fluorescence (EDX analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed.

  10. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    Science.gov (United States)

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  11. Thermal description of hypoeutectic Al-Si-Cu alloys using silicon equivalency

    Directory of Open Access Journals (Sweden)

    Mile B. Đurđević

    2012-01-01

    Full Text Available The modeling of casting processes has remained a topic of active interest for several decades, and availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer a multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system. The new Silicon Equivalency (SiEQ algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an 'equivalent' amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This lends the model the ability to make predictions of solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate characteristic solidification temperatures of the multi-component hypoeutectic Al-Si-Cu alloys as well as their latent heats. SA statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations.

  12. Synthesis and properties of silicon nanowire devices

    Science.gov (United States)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  13. Enhancement of microelectronic device performances by photothermal annealing under SiCl4 ambient

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Ezzaouia, H.

    2006-01-01

    The use of low cost silicon wafers seems to be very attractive for photovoltaic and microelectronic devices. However, this material is widely contaminated by different impurities particularly transitions metals, which deteriorate the lifetimes and the bulk diffusion lengths of the minority charge carriers. One possible way to overcome this undesirable behavior is to include an efficient purification technique in the process of device fabrication. In this work, we present the effect of photothermal treatments of monocrystalline Czochralski silicon substrates under SiCl 4 /N 2 atmosphere using a thin sacrificial porous silicon layer. The main results show a decrease of the resistivity over 40 μm depth. The Hall mobility of the majority charge carriers is improved from 300 to 1417 cm 2 V -1 s -1 . The capacitance-voltage (C-V) characteristics of metal/SiO 2 /Si (MIS) structures indicate a decrease of carrier concentration which confirms the results obtained by Hall Effect and Van Der Pauw method. The reduction of boron concentration in Czochralski silicon may reduce boron- and oxygen related metastable defect centers

  14. Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    Xiaogang Jian

    2013-03-01

    Full Text Available The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zone I, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zone II about 15 to 20 祄 from the ultrasonic probe/radiator. The bulk of the ingot is in zone III and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 祄 in zone I, 25 to 35 祄 in zone II, and 25 to 55 祄 in zone III. The morphology of the primary ?Al phase is also changed from dendritic (in untreated samples to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described.

  15. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  16. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  17. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    International Nuclear Information System (INIS)

    Bychto, Leszek; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia

    2008-01-01

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 Ωcm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  18. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Bychto, Leszek, E-mail: leszek.bychto@tu.koszalin.pl; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia, E-mail: eumat@upvnet.upv.e [Technical University of Valencia, Nanophotonics Technology Center (Spain)

    2008-12-15

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 {Omega}cm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  19. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    Science.gov (United States)

    Bychto, Leszek; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia

    2008-12-01

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 Ωcm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  20. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Science.gov (United States)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  1. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake

    Science.gov (United States)

    Mitani-Ueno, Namiki; Yamaji, Naoki

    2011-01-01

    The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake. PMID:21617377

  2. Correlation between the physical parameters of the i-nc-Si absorber layer grown by 27.12 MHz plasma with the nc-Si solar cell parameters

    Science.gov (United States)

    Das, Debajyoti; Mondal, Praloy

    2017-09-01

    Growth of highly conducting nanocrystalline silicon (nc-Si) thin films of optimum crystalline volume fraction, involving dominant crystallographic preferred orientation with simultaneous low fraction of microstructures at a low substrate temperature and high growth rate, is a challenging task for its promising utilization in nc-Si solar cells. Utilizing enhanced electron density and superior ion flux densities of the high frequency (∼27.12 MHz) SiH4 plasma, improved nc-Si films have been produced by simple optimization of H2-dilution, controlling the ion damage and enhancing supply of atomic-hydrogen onto the growing surface. Single junction nc-Si p-i-n solar cells have been prepared with i-nc-Si absorber layer and optimized. The physical parameters of the absorber layer have been systematically correlated to variations of the solar cell parameters. The preferred alignment of crystallites, its contribution to the low recombination losses for conduction of charge carriers along the vertical direction, its spectroscopic correlation with the dominant growth of ultra-nanocrystalline silicon (unc-Si) component and corresponding longer wavelength absorption, especially in the neighborhood of i/n-interface region recognize scientific and technological key issues that pave the ground for imminent advancement of multi-junction silicon solar cells.

  3. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  4. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  5. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films

    Science.gov (United States)

    Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.

    2018-04-01

    By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.

  6. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    Science.gov (United States)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  7. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  8. Plasma diagnostics and device properties of AlGaN/GaN HEMT passivated with SiN deposited by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M F; Sanz, M M; Munoz, E [ISOM-Universidad Politecnica de Madrid (UPM). ETSIT, Madrid (Spain); Tanarro, I [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Jimenez, A, E-mail: itanarro@iem.cfmac.csic.e [Departamento Electronica, Escuela Politecnica Superior, Universidad de Alcala, Alcala de Henares, Madrid (Spain)

    2010-12-15

    In this work, silicon nitride thin films have been deposited by plasma enhanced chemical vapour deposition on both silicon samples and AlGaN/GaN high electron mobility transistors (HEMT) grown on sapphire substrates. Commercial parallel-plate RF plasma equipment has been used. During depositions, the dissociation rates of SiH{sub 4} and NH{sub 3} precursors and the formation of H{sub 2} and N{sub 2} have been analysed by mass spectrometry as a function of the NH{sub 3}/SiH{sub 4} flow ratio and the RF power applied to the plasma reactor. Afterwards, the properties of the films and the HEMT electrical characteristics have been studied. Plasma composition has been correlated with the SiN deposition rate, refractive index, H content and the final electric characteristics of the passivated transistors.

  9. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  10. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  11. SiO{sub 2} on silicon: behavior under heavy ion irradiation; SiO{sub 2} sur silicium: comportement sous irradiation avec des ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, C

    2004-03-15

    Heavy ion irradiation was performed on a-SiO{sub 2} layers deposited on Si. Damage of the surface was studied by means of Atomic Force Microscopy. Hillocks appear for an electronic stopping power higher than 16 keV/nm. The height of the hillocks decreases with the thickness of the oxide layer. Infrared Spectroscopy studies show that the damage threshold for a-SiO{sub 2} is at an electronic stopping power of 2 keV/nm. Therefore it is probable that the origin of the hillocks comes from the silicon layer. This could be explain within the frame of thermal spike model. The theoretical thresholds are 8 keV/nm and 1.8 keV/nm for silicon and a-SiO{sub 2} respectively. Chemical etching after irradiation gives a technical possibility to create nano-pits, whose size and shape can be controlled. Additionally, these structures allowed to determine the AFM tip radius. (author)

  12. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO{sub 2} interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-12-30

    Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  13. The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings

    Science.gov (United States)

    Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.

    2018-03-01

    Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.

  14. Characteristics of a prototype matrix of Silicon PhotoMultipliers (SiPM)

    International Nuclear Information System (INIS)

    Dinu, N; Barrillon, P; Bazin, C; Bondil-Blin, S; Chaumat, V; Taille, C De La; Puill, V; Vagnucci, J F; Belcari, N; Bisogni, M G; Guerra, A Del; Llosa, G; Marcatili, S; Boscardin, M; Melchiorri, M; Piemonte, C; Tarolli, A; Zorzi, N; Collazuol, G

    2009-01-01

    This work reports on the electrical (static and dynamic) as well as on the optical characteristics of a prototype matrix of Silicon Photomultipliers (SiPM). The prototype matrix consists of 4 x 4 SiPM's on the same substrat fabricated at FBK-irst (Trento, Italy). Each SiPM of the matrix has an area of 1 x 1mm 2 and it is composed of 625 microcells connected in parallel. Each microcell of the SiPM is a GM-APD (n + /p junction on P+ substrate) with an area of 40 x 40 μm 2 connected in series with its integrated polysilicon quenching resistance. The static characteristics as breakdown voltage, quenching resistance, post-breakdown dark current as well as the dynamic characteristics as gain and dark count rate have been analysed. The photon detection efficiency as a function of wavelength and operation voltage has been also estimated.

  15. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  16. Spatially Controlled Fabrication of Brightly Fluorescent Nanodiamond-Array with Enhanced Far-Red Si-V Luminescence

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2014-01-01

    We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286

  17. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si......), and post-deposition annealing temperature were investigated. We have observed that that SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si. TiO2 thin film passivation layers alone result in lower effective carrier lifetime. Further annealing at 200  ̊C in N2 gas enhances the surface...

  18. A deep-level transient spectroscopy study of gamma-ray irradiation on the passivation properties of silicon nitride layer on silicon

    Science.gov (United States)

    Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian

    2017-08-01

    Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.

  19. The silicon neighborhood across the a-Si:H to {mu}c-Si transition by X-ray absorption spectroscopy (XAS)

    Energy Technology Data Exchange (ETDEWEB)

    Tessler, Leandro R.; Wang Qi; Branz, Howard M

    2003-04-22

    We report a synchrotron X-ray absorption spectroscopy study of the average neighborhood of Si near the transition from a-Si:H to {mu}c-Si on wedge-shaped samples prepared by hot-wire CVD in a chamber using a movable shutter. The thickness of the wedge varies from 30 to 160 nm. Nucleation of {mu}c-Si occurs at a critical thickness of approximately 100 nm. X-Ray absorption was measured at the Si K-edge (1.84 keV) by total electron photoemission yield. The absorption oscillations in the EXAFS region are very similar to all along the wedge. Analysis indicates an average tetrahedral first neighbor shell with radial disorder decreasing with crystallization. In the near-edge (XANES) region multiple scattering effects appear at the onset of crystallinity. Unlike single crystal silicon, these effects involve only double scattering within the first neighbor shell, indicating an ill-formed second shell in {mu}c-Si.

  20. Biofunctionalization on Alkylated Silicon Substrate Surfaces via “Click” Chemistry

    OpenAIRE

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J.; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-01-01

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the non-oxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3...

  1. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Mitra, Suchismita; Ghosh, Hemanta; Mukherjee, Sampad; Banerjee, Chandan; Saha, Hiranmoy; Barua, A. K.

    2017-12-01

    The advantages of the amorphous silicon (a-Si)/crystalline silicon (c-Si) hetero junction technology are low temperature (oxide (ITO) nanoparticles embedded in amorphous silicon material at the rear side of the crystalline wafer. The nanoparticles were embedded in silicon to have higher scattering efficiency, as has been established by simulation studies. It has been shown that significant photocurrent enhancements (32.8 mA cm-2 to 35.1 mA cm-2) are achieved because of high scattering and coupling efficiency of the embedded nanoparticles into the silicon device, leading to an increase in efficiency from 13.74% to 15.22%. In addition, we have observed a small increase in open circuit voltage. This may be due to the surface passivation during the ITO nanoparticle formation with hydrogen plasma treatment. We also support our experimental results by simulation, with the help of a commercial finite-difference time-domain (FDTD) software solution.

  2. High-performance silicon nanowire bipolar phototransistors

    Science.gov (United States)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  3. Rare earth concentration in the primary Si crystal in rare earth added Al-21 wt. % Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.Y.; Kim, G.H. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Moon, I.G.; Choi, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Metallurgical Engineering

    1998-07-03

    Al-Si alloys containing more than about 12 wt. % Si exhibit a hypereutectic microstructure, normally consisting of a primary silicon phase in an eutectic matrix. The primary silicon in normal hypereutectic alloys is usually very coarse and thus leads to poor properties to these alloys. Therefore, alloys with a predominantly coarse primary silicon crystal must be modified to ensure adequate mechanical strength and ductility. Further improvement of mechanical properties of these alloys can be achieved by the modification of eutectic microstructure. Therefore, development of a modifier or refiner that can produce both fine primary and eutectic Si is a major factor which can lead to significant enhancement of mechanical properties in hypereutectic Al-Si alloys. Refinement of primary silicon is usually achieved by the addition of phosphor to the melt. On the other hand, it is reported that the rare earth (RE) elements are capable of modifying the eutectic structure of cast Al-Si alloys. According to the literature, Phosphor acts as a heterogeneous nucleation site of Si crystal by forming AlP intermetallic particles at high temperature, i.e., above liquidus temperature of Al-Si alloy. Unlike phosphor, RE was not known to form a stable compound with Al that can act as a nucleation site at high temperature. Therefore, the role of RE as a refiner should be considered by examining the behavior of RE as a solute in the melt. The distribution of RE within the primary Si and in the matrix of the alloy will provide a clue to the role of RE on the modification of primary Si during solidification.

  4. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Köhler, Malte; Pomaska, Manuel; Lentz, Florian; Finger, Friedhelm; Rau, Uwe; Ding, Kaining

    2018-05-02

    Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (μc-SiC:H(n)), silicon tunnel oxide (SiO 2 ) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the μc-SiC:H(n)/SiO 2 /c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO 2 , in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO 2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm 2 were achieved using μc-SiC:H(n)/SiO 2 /c-Si as transparent passivated contacts.

  5. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    International Nuclear Information System (INIS)

    Keim, E.G.; Aite, K.

    1989-01-01

    Thin silicon nitride films (100-210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar + sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results. (orig.)

  6. Tin (Sn) - An Unlikely Ally to Extend Moore's Law for Silicon CMOS?

    KAUST Repository

    Hussain, Aftab M.

    2012-12-01

    There has been an exponential increase in the performance of silicon based semiconductor devices in the past few decades. This improvement has mainly been due to dimensional scaling of the MOSFET. However, physical constraints limit the continued growth in device performance. To overcome this problem, novel channel materials are being developed to enhance carrier mobility and hence increase device performance. This work explores a novel semiconducting alloy - Silicon-tin (SiSn) as a channel material for CMOS applications. For the first time ever, MOS devices using SiSn as channel material have been demonstrated. A low cost, scalable and manufacturable process for obtaining SiSn by diffusion of Sn into silicon has also been explored. The channel material thus obtained is electrically characterized by fabricating MOSCAPs and Mesa-shaped MOSFETs. The SiSn devices have been compared to similar devices fabricated using silicon as channel material.

  7. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  8. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  9. Comparison of confinement characters between porous silicon and silicon nanowires

    International Nuclear Information System (INIS)

    Tit, Nacir; Yamani, Zain H.; Pizzi, Giovanni; Virgilio, Michele

    2011-01-01

    Confinement character and its effects on photoluminescence (PL) properties are theoretically investigated and compared between porous silicon (p-Si) and silicon nanowires (Si-NWs). The method is based on the application of the tight-binding technique using the minimal sp 3 -basis set, including the second-nearest-neighbor interactions. The results show that the quantum confinement (QC) is not entirely controlled by the porosity, rather it is mainly affected by the average distance between pores (d). The p-Si is found to exhibit weaker confinement character than Si-NWs. The confinement energy of charge carriers decays against d exponentially for p-Si and via a power-law for Si-NWs. This latter type of QC is much stronger and is somewhat similar to the case of a single particle in a quantum box. The excellent fit to the PL data demonstrates that the experimental samples of p-Si do exhibit strong QC character and thus reveals the possibility of silicon clustering into nano-crystals and/or nanowires. Furthermore, the results show that the passivation of the surface dangling bonds by the hydrogen atoms plays an essential role in preventing the appearance of gap states and consequently enhances the optical qualities of the produced structures. The oscillator strength (OS) is found to increase exponentially with energy in Si-NWs confirming the strong confinement character of carriers. Our theoretical findings suggest the existence of Si nanocrystals (Si-NCs) of sizes 1-3 nm and/or Si-NWs of cross-sectional sizes in the 1-3 nm range inside the experimental p-Si samples. The experimentally-observed strong photoluminescence from p-Si should be in favor of an exhibition of 3D-confinement character. The favorable comparison of our theoretical results with the experimental data consolidates our above claims. -- Highlights: → Tight-binding is used to study quantum-confinement (QC) effects in p-Si and Si-NWs. → QC is not entirely controlled by the porosity but also by the d

  10. Characteristics of a prototype matrix of Silicon PhotoMultipliers (SiPM)

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N; Barrillon, P; Bazin, C; Bondil-Blin, S; Chaumat, V; Taille, C De La; Puill, V; Vagnucci, J F [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N; Bisogni, M G; Guerra, A Del; Llosa, G; Marcatili, S [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Boscardin, M; Melchiorri, M; Piemonte, C; Tarolli, A; Zorzi, N [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Collazuol, G [Scuola Normale Superiore (SNS), 56127 Pisa (Italy)], E-mail: dinu@lal.in2p3.fr

    2009-03-15

    This work reports on the electrical (static and dynamic) as well as on the optical characteristics of a prototype matrix of Silicon Photomultipliers (SiPM). The prototype matrix consists of 4 x 4 SiPM's on the same substrat fabricated at FBK-irst (Trento, Italy). Each SiPM of the matrix has an area of 1 x 1mm{sup 2} and it is composed of 625 microcells connected in parallel. Each microcell of the SiPM is a GM-APD (n{sup +}/p junction on P+ substrate) with an area of 40 x 40 {mu}m{sup 2} connected in series with its integrated polysilicon quenching resistance. The static characteristics as breakdown voltage, quenching resistance, post-breakdown dark current as well as the dynamic characteristics as gain and dark count rate have been analysed. The photon detection efficiency as a function of wavelength and operation voltage has been also estimated.

  11. Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing

    Science.gov (United States)

    Jannat, Azmira; Li, Zhen Yu; Akhter, M. Shaheer; Yang, O.-Bong

    2017-11-01

    This study showed the effects of annealing on a sol-gel-derived SiC-SiO2 composite antireflection (AR) layer and investigated the optical and photovoltaic properties of crystalline silicon (Si) solar cells. The SiC-SiO2 composite AR coating showed a considerable decrease in reflectance from 7.18% to 3.23% at varying annealing temperatures of 450-800°C. The refractive indices of the SiC-SiO2 composite AR layer were tuned from 2.06 to 2.45 with the increase in annealing temperature. The analysis of the current density-voltage characteristics indicated that the energy conversion efficiencies of the fabricated Si solar cells gradually increased from 16.99% to 17.73% with increasing annealing temperatures of 450-800°C. The annealing of the SiC-SiO2 composite AR layer in Si solar cells was crucial to improving the optical, morphological, and photovoltaic properties.

  12. Strained silicon/silicon germanium heterojunction n-channel metal oxide semiconductor field effect transistors

    International Nuclear Information System (INIS)

    Olsen, Sarah H.

    2002-01-01

    Investigations into the performance of strained silicon/silicon-germanium (Si/SiGe) n-channel metal-oxide-semiconductor field effect transistors (MOSFETs) have been carried out. Theoretical predictions suggest that use of a strained Si/SiGe material system with advanced material properties compared with conventional silicon allows enhanced MOSFET device performance. This study has therefore investigated the practical feasibility of obtaining superior electrical performance using a Si/SiGe material system. The MOSFET devices consisted of a strained Si surface channel and were fabricated on relaxed SiGe material using a reduced thermal budget process in order to preserve the strain. Two batches of strained Si/SiGe devices fabricated on material grown by differing methods have been analysed and both showed good transistor action. A correlation of electrical and physical device data established that the electrical device behaviour was closely related to the SiGe material quality, which differed depending on growth technique. The cross-wafer variation in the electrical performance of the strained Si/SiGe devices was found to be a function of material quality, thus the viability of Si/SiGe MOSFET technology for commercial applications has been addressed. Of particular importance was the finding that large-scale 'cross-hatching' roughness associated with relaxed SiGe alloys led to degradation in the small-scale roughness at the gate oxide interface, which affects electrical device performance. The fabrication of strained Si MOSFET devices on high quality SiGe material thus enabled significant performance gains to be realised compared with conventional Si control devices. In contrast, the performance of devices fabricated on material with severe cross-hatching roughness was found to be diminished by the nanoscale oxide interface roughness. The effect of device processing on SiGe material with differing as-grown roughness has been carried out and compared with the reactions

  13. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca; Wood, Barry

    2014-01-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  14. Resistivity and morphology of TiSi2 formed on Xe+-implanted polycrystalline silicon

    International Nuclear Information System (INIS)

    Kuwano, H.; Phillips, J.R.; Mayer, J.W.

    1990-01-01

    Xe ion irradiation of polycrystalline silicon before Ti deposition is found to affect subsequent silicide formation. Silicide films were prepared by implanting 60, 100, or 240 keV Xe + ions into 500-nm-thick undoped polycrystalline silicon before depositing Ti and annealing in vacuum. Preimplantation altered the subsequent silicide resistivity, x-ray diffraction patterns, and morphology as compared to films prepared on unimplanted polycrystalline Si substrates. We found that minimal TiSi 2 resistivities were achieved at lower temperatures with preimplantation, indicating that the Xe-implanted substrate promotes a lower temperature transition from the metastable C49 phase to the low-resistivity equilibrium C54 phase of TiSi 2 . X-ray diffraction results confirmed the lower temperature formation of the C54 phase with preimplantation. Low-temperature annealing (650 degree C, 30 min) of 6x10 16 cm -2 , 240 keV Xe + -implanted samples yielded low-resistivity (∼22 μΩ cm) silicide films, while simultaneously annealed samples without preimplantation had resistivity five times higher. Lower doses were effective at lower implant energies, with low resistivity achieved after 725 degree C, 30 min annealing for 2x10 15 cm -2 , 60 keV Xe + preimplantation

  15. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon

    International Nuclear Information System (INIS)

    Park, Jung-Bae; Lee, Kwan-Hee; Jeon, Young-Jun; Lim, Sung-Hwan; Lee, Sung-Man

    2014-01-01

    The synthesis of Si nanoparticles by ultrasonication processing of porous Si powder and a novel method for preparing a high-capacity Si/C composite using this technique is reported. The porous Si powder is prepared by selectively etching the silicide phase of a Ti 24 Si 76 alloy consisting of Si and silicide phases. The particle size of the nanocrystalline Si is determined by the crystallite size of the Si and silicide phases in the alloy powder. Ultrasonication of the porous Si obtained from the mechanically alloyed Ti 24 Si 76 alloy generates nanocrystalline Si particles of size about 5 nm. Growth of the Si and silicide phases in the alloy is induced by annealing of the mechanically alloyed sample, with a consequent increase in the size of the Si particles obtained after ultrasonication. Application of the ultrasonication process to the fabrication of Si/C composite anode materials generates nanometer-scale Si particles in situ that are distributed in the matrix. Analysis of the phases obtained and evaluation of the distribution of the nanometer-scale Si particles in the composites via XRD/TEM measurements show that the nanometer-scale Si particles are effectively synthesized and uniformly distributed in the carbon matrix, leading to enhanced electrochemical performance of the Si/C composites

  16. Research of morphology and structure of 3C–SiC thin films on silicon by electron microscopy and X-ray diffractometry

    Directory of Open Access Journals (Sweden)

    Alexander S. Gusev

    2015-12-01

    Full Text Available Thin films of silicon carbide possessing unique properties attract increasing attention of researchers both in the field of semiconductor physics and in the technology of new semiconductor devices for high power, RF and optoelectronics. The growth of the production of silicon carbide based devices promotes the search for more resource saving and safe SiC layer synthesis technologies. Potential method is pulse laser deposition (PLD in vacuum. This technology does not require the use of chemically aggressive and explosive gases and allows forming thin and continuous coatings with thicknesses of from several nanometers at relatively low substrate temperatures. Submicron thickness silicon carbide films have been grown on single crystal silicon by vacuum laser ablation of a ceramic target. The physical and technological parameters of silicon carbide thin film low temperature synthesis by PLD have been studied and, in particular, the effect of temperature and substrate crystalline orientation on the composition, structural properties and morphology of the surface of the experimental specimens has been analyzed. At above 500 °C the crystalline β-SiC phase forms on Si (100 and (111. At a substrate temperature of 950 °C the formation of textured heteroepitaxial 3C–SiC films was observed.

  17. Self-assembled infrared-luminescent Er-Si-O crystallites on silicon

    International Nuclear Information System (INIS)

    Isshiki, H.; Dood, M.J.A. de; Polman, A.; Kimura, T.

    2004-01-01

    Optically active and electrically excitable erbium complexes on silicon are made by wet-chemical synthesis. The single-crystalline Er-Si-O compound is formed by coating a Si(100) substrate with an ErCl 3 /ethanol solution, followed by rapid thermal oxidation and annealing. Room-temperature Er-related 1.53 μm photoluminescence is observed with a peak linewidth as small as 4 meV. The complexes can be excited directly into the Er intra-4f states, or indirectly, through photocarriers. Er concentrations as high as 14 at. % are achieved, incorporated in a crystalline lattice with a 0.9 nm periodicity. Thermal quenching at room temperature is only a factor 5, and the lifetime at 1.535 μm is 200 μs

  18. A convenient way of manufacturing silicon nanotubes on a silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Changchang; Cheng, Heming; Liu, Xiang, E-mail: liuxiang@ahut.edu.cn

    2016-07-01

    A convenient approach of preparing silicon nanotubes (SiNTs) on a silicon substrate is described in this work in detail. Firstly, a porous silicon (PSi) slice is prepared by a galvanic displacement reaction. Then it is put into aqueous solutions of 20% (w%) ammonium fluoride and 2.5 mM cobalt nitrate for a predetermined time. The cobalt ions are reduced and the resulted cobalt particles are deposited on the PSi slice. After the cobalt particles are removed with 5 M nitric acid a plenty of SiNTs come out and exhibit disorderly on the silicon substrate, which are illustrated by scanning electron microscopy (SEM). The compositions of the SiNTs are examined by energy-dispersive X-ray spectroscopy. Based on the SEM images, a suggested mechanism is put forward to explain the generation of the SiNTs on the PSi substrate. - Highlights: • A facile approach of preparing silicon nano tubes was invented. • The experimental results demonstrated the strong reducibility of Si-H{sub x} species. • It provided a new way of manufacturing silicon-contained hybrids.

  19. Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica

    International Nuclear Information System (INIS)

    Barba, D; Martin, F; Ross, G G

    2008-01-01

    Silicon nanocrystals (Si-nc) and amorphous silicon (α-Si) produced by silicon implantation in fused silica have been studied by micro-Raman spectroscopy. Information regarding the Raman signature of the α-Si phonon excitation was extracted from Raman depth-probing measurements using the phenomenological phonon confinement model. The spectral deconvolution of the Raman measurements recorded at different laser focusing depths takes into account both the Si-nc size variation and the Si-nc spatial distribution within the sample. The phonon peak associated with α-Si around 470 cm -1 is greatest for in-sample laser focusing, indicating that the formation of amorphous silicon is more important in the region containing a high concentration of silicon excess, where large Si-nc are located. As also observed for Si-nc systems prepared by SiO x layer deposition, this result demonstrates the presence of α-Si in high excess Si implanted Si-nc systems

  20. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  1. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  2. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  3. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  4. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2010-03-15

    Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 {mu}m after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm{sup 2}). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface. (author)

  5. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  6. Magnetostriction-strain-induced enhancement and modulation of photovoltaic performance in Si-p-n/Tb{sub x}Dy{sub 1-x}Fe{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng [School of Materials Science and Technology, China University of Geosciences, Beijing (China); Department of Physics and College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua (China); Zhang, Yihe [School of Materials Science and Technology, China University of Geosciences, Beijing (China); Fang, Cong; Ma, Ke; Lin, He; Jia, Yanmin; Chen, Jianrong [Department of Physics and College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua (China); Wang, Yu; Chan, Helen Lai Wa [Department of Applied Physics, The Hong Kong Polytechnic University (China)

    2014-03-15

    High photovoltaic efficiency is a key index in the application of silicon (Si) solar cells. In this study, a composite of a photovoltaic Si p-n junction solar cell and a magnetostrictive Tb{sub x}Dy{sub 1-x}Fe{sub 2} alloy was fabricated. By utilizing the magnetostrictive strain to modulate the energy bandgap of Si, the open-circuit voltage and the maximum photovoltaic output power of the Si p-n junction solar cell could be enhanced by ∝12% and 9.1% under a dc magnetic field of ∝250 mT, respectively. The significantly enhanced photovoltaic performance and the simple fabrication process make the Si-p-n/Tb{sub x}Dy{sub 1-x}Fe{sub 2} composite a promising material for high-efficiency solar cell devices. The structure of the proposed Si-p-n/Tb{sub x}Dy{sub 1-x}Fe{sub 2} laminated composite. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  8. Locally-enhanced light scattering by a monocrystalline silicon wafer

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-03-01

    Full Text Available We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  9. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Science.gov (United States)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  10. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  11. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  12. Imaging with SiPMs in noble-gas detectors

    International Nuclear Information System (INIS)

    Yahlali, N; González, K; Fernandes, L M P; Garcia, A N C; Soriano, A

    2013-01-01

    Silicon photomultipliers (SiPMs) are photosensors widely used for imaging in a variety of high energy and nuclear physics experiments. In noble-gas detectors for double-beta decay and dark matter experiments, SiPMs are attractive photosensors for imaging. However they are insensitive to the VUV scintillation emitted by the noble gases (xenon and argon). This difficulty is overcome in the NEXT experiment by coating the SiPMs with tetraphenyl butadiene (TPB) to convert the VUV light into visible light. TPB requires stringent storage and operational conditions to prevent its degradation by environmental agents. The development of UV sensitive SiPMs is thus of utmost interest for experiments using electroluminescence of noble-gas detectors. It is in particular an important issue for a robust and background free ββ0ν experiment with xenon gas aimed by NEXT. The photon detection efficiency (PDE) of UV-enhanced SiPMs provided by Hamamatsu was determined for light in the range 250–500 nm. The PDE of standard SiPMs of the same model (S10362-33-50C), coated and non-coated with TPB, was also determined for comparison. In the UV range 250–350 nm, the PDE of the standard SiPM is shown to decrease strongly, down to about 3%. The UV-enhanced SiPM without window is shown to have the maximum PDE of 44% at 325 nm and 30% at 250 nm. The PDE of the UV-enhanced SiPM with silicon resin window has a similar trend in the UV range, although it is about 30% lower. The TPB-coated SiPM has shown to have about 6 times higher PDE than the non-coated SiPM in the range 250–315 nm. This is however below the performance of the UV-enhanced prototypes in the same wavelength range. Imaging in noble-gas detectors using UV-enhanced SiPMs is discussed.

  13. Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO_2 multilayers

    International Nuclear Information System (INIS)

    Mavilla, Narasimha Rao; Chavan, Vinayak; Solanki, Chetan Singh; Vasi, Juzer

    2016-01-01

    Silicon-nanocrystals (Si-NCs) realized by SiO_x _ 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO_2 films. We then present the conduction in ML samples. For multilayer samples with SiO_2 sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO_2 sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO_2 sublayer thickness dependence. - Highlights: • Electrical conduction in SiO_2 film & Si-nanocrystal layers (Si-NCs) is reported. • SiO_2/SiO_x multilayer based Si-NCs were realized by Inductively Coupled plasma CVD. • For SiO_2 film, Fowler–Nordheim tunneling & Generalized Poole–Frenkel are observed. • For Si-NCs with thin SiO_2 sublayers (< 2.5 nm) Direct Tunneling is dominant. • For Si-NCs with 3.5 nm SiO_2 sublayers Space Charge Limited Conduction is dominant.

  14. The ALU+ concept: n-type silicon solar cells with surface passivated screen-printed aluminum-alloyed rear emitter

    NARCIS (Netherlands)

    Bock, R.; Schmidt, J.; Mau, S.; Hoex, B.; Kessels, W.M.M.; Brendel, R.

    2009-01-01

    Aluminum-doped p-type (Al-p+) silicon emitters fabricated by means of screen-printing and firing are effectively passivated by plasma-enhanced chemicalvapor deposited (PECVD) amorphous silicon (a-Si) and atomic-layer-deposited (ALD) aluminum oxide (Al2O3) as well as Al2O3/SiNx stacks, where the

  15. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  16. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    International Nuclear Information System (INIS)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-01-01

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: → SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. → The dopped MCM-41 materials show a wormhole-like mesoporous structure. → The thermal stability of the dopped materials have an increment of almost 100 o C compared with the pure MCM-41. → The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N 2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 o C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  17. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (0silicon, silicon oxide, and photoresist was determined at different etching temperatures, ICP and RF powers, and SF6 to O2 ratios. The study demonstrates that the etching selectivity of the SiGe mask for silicon depends strongly on three factors: Ge content; boron concentration; and etching temperature. Compared to conventional SiO2 and SiN masks, the proposed SiGe masking material exhibited several advantages, including high etching selectivity to silicon (>1:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  18. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  19. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  20. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    Science.gov (United States)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  1. Formation of silicon nanocrystals in multilayer nanoperiodic a-SiO{sub x}/insulator structures from the results of synchrotron investigations

    Energy Technology Data Exchange (ETDEWEB)

    Turishchev, S. Yu., E-mail: tsu@phys.vsu.ru; Terekhov, V. A.; Koyuda, D. A. [Voronezh State University (Russian Federation); Ershov, A. V.; Mashin, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Parinova, E. V.; Nesterov, D. N. [Voronezh State University (Russian Federation); Grachev, D. A.; Karabanova, I. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Domashevskaya, E. P. [Voronezh State University (Russian Federation)

    2017-03-15

    The problem of the efficiency of the controllable formation of arrays of silicon nanoparticles is studied on the basis of detailed investigations of the electronic structure of multilayer nanoperiodic a-SiO{sub x}/SiO{sub 2}, a-SiO{sub x}/Al{sub 2}O{sub 3}, and a-SiO{sub x}/ZrO{sub 2} compounds. Using synchrotron radiation and the X-ray absorption near edge structure (XANES) spectroscopy technique, a modification is revealed for the investigated structures under the effect of high-temperature annealing at the highest temperature of 1100°C; this modification is attributed to the formation of silicon nanocrystals in the layers of photoluminescent multilayer structures.

  2. Influence of carbon on structure stability, mechanical and tribological properties of β-Si3(Cx,N1‑x)4 silicon carbonitride

    Science.gov (United States)

    Zhong, Jing; Hua, Guomin; Chen, Linbo; Li, Changsheng; Yang, Jianhong; Cheng, Xiaonong

    2018-05-01

    In this study, β-Si3(Cx,N1‑x)4 Silicon Carbonitride was prepared by Self-Propagation High-Temperature Synthesis (SHS). And the influence of carbon on structure stability, mechanical and tribological properties of β-Si3(Cx,N1‑x)4 were investigated. The results showed that the solubility of carbon in β-Si3(Cx,N1‑x)4 was about 10 wt%, beyond which cubic-SiC segregated out of β-Si3(Cx,N1‑x)4 to form β-Si3N4/cubic-SiC composite. Regarding influences of carbon concentration on mechanical properties, the hardness of β-Si3(Cx,N1‑x)4 decreased from 1400 Hv to 1200 Hv with the increase of carbon concentration. Whereas, the fracture toughness of β-Si3(Cx,N1‑x)4 increased from 6.5 MPa · m0.5 to 7.6 MPa · m0.5 with the increase of carbon concentration. The tribological property studies revealed the anti-wear performance of β-Si3(Cx,N1‑x)4 was enhanced by the increase of carbon concentration. The dominated wear mechanism could be attributed to the abrasive wear by fracture.

  3. Using silicon nanostructures for the improvement of silicon solar cells' efficiency

    International Nuclear Information System (INIS)

    Torre, J. de la; Bremond, G.; Lemiti, M.; Guillot, G.; Mur, P.; Buffet, N.

    2006-01-01

    Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using their luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. In this work, we report on the morphological and optical studies of non-stoichiometric silica (SiO x ) and silicon nitride (SiN x ) layers containing silicon nanostructures (ns-Si) in view of their application for solar cell's efficiency improvement. The morphological studies of the samples performed by transmission electron microscopy (TEM) unambiguously show the presence of ns-Si in a crystalline form for high temperature-annealed SiO x layers and for low temperature deposition of SiN x layers. The photoluminescence emission (PL) shows a rather high efficiency in both kind of layers with an intensity of only a factor ∼ 100 lower than that of porous silicon (pi-Si). The photocurrent spectroscopy (PC) shows a significant increase of absorption at high photon energy excitation most probably related to photon absorption within ns-Si quantized states. Moreover, the absorption characteristics obtained from PC spectra show a good agreement with the PL emission states unambiguously demonstrating a same origin, related to Q-confined excitons within ns-Si. Finally, the major asset of this material is the possibility to incorporate it to solar cells manufacturing processing for an insignificant cost

  4. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  5. Quantitative analyses of impurity silicon-carbide (SiC) and high-purity-titanium by neutron activation analyses based on k0-standardization method. Development of irradiation silicon technology in productivity using research reactor (Joint research)

    International Nuclear Information System (INIS)

    Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro; Kawasaki, Kozo; Onizawa, Koji; Isshiki, Masahiko

    2009-07-01

    JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process, which is a method to produce a high quality semiconductor. The domestic supply of NTD-Si is insufficient for the demand, and the market of NTD-Si is significantly growing at present. It is very important to increase achieve the production. To fulfill the requirement, we have been investigating a neutron filter, which is made of high-purity-titanium, for uniform doping. Silicon-carbide (SiC) semiconductor doped with NTD technology is considered suitable for high power devices with superior performances to conventional Si-based devices. We are very interested in the SiC as well. This report presents the results obtained after the impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k 0 -standardization method. There were 6 and 9 impurity elements detected from the high-purity-titanium and SiC, respectively. Among those Sc from the high-purity-titanium and Fe from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials. (author)

  6. Development of high performance readout ASICs for silicon photomultipliers (SiPMs)

    International Nuclear Information System (INIS)

    Shen, Wei

    2012-01-01

    Silicon Photomultipliers (SiPMs) are novel kind of solid state photon detectors with extremely high photon detection resolution. They are composed of hundreds or thousands of avalanche photon diode pixels connected in parallel. These avalanche photon diodes are operated in Geiger Mode. SiPMs have the same magnitude of multiplication gain compared to the conventional photomultipliers (PMTs). Moreover, they have a lot of advantages such as compactness, relatively low bias voltage and magnetic field immunity etc. Special readout electronics are required to preserve the high performance of the detector. KLauS and STiC are two CMOS ASIC chips designed in particular for SiPMs. KLauS is used for SiPM charge readout applications. Since SiPMs have a much larger detector capacitance compared to other solid state photon detectors such as PIN diodes and APDs, a few special techniques are used inside the chip to make sure a descent signal to noise ratio for pixel charge signal can be obtained. STiC is a chip dedicated to SiPM time-of-flight applications. High bandwidth and low jitter design schemes are mandatory for such applications where time jitter less than tens of picoseconds is required. Design schemes and error analysis as well as measurement results are presented in the thesis.

  7. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  8. Interface properties of the amorphous silicon/crystalline silicon heterojunction photovoltaic cell

    Science.gov (United States)

    Halliop, Basia

    Amorphous-crystalline silicon (a-Si:H/c-Si) heterojunctions have the potential of being a very high efficiency silicon photovoltaic platform technology with accompanying cost and energy budget reductions. In this research a heterojunction cell structure based on a-Si:H deposited using a DC saddle field plasma enhanced vapour deposition (DCSF PECVD) technique is studied, and the a-Si:H/c-Si and indium tin oxide/a-Si:H interfaces are examined using several characterization methods. Photocarrier radiometry (PCR) is used for the first time to probe the a-Si:H/c-Si junction. PCR is demonstrated as a carrier lifetime measurement technique -- specifically, confirming carrier lifetimes above 1 ms for 1-5 Ocm phosphorous-doped c-Si wafers passivated on both sides with 30 nm of i-a-Si:H. PCR is also used to determine surface recombination velocity and mobility, and to probe recombination at the a-Si:H/c-Si interface, distinguishing interface recombination from recombination within the a-Si:H layer or at the a-Si:H surface. A complementary technique, lateral conductivity is applied over a temperature range of 140 K to 430 K to construct energy band diagrams of a-Si:H/c-Si junctions. Boron doped a-Si:H films on glass are shown to have activation energies of 0.3 to 0.35 eV, tuneable by adjusting the diborane to silane gas ratio during deposition. Heterojunction samples show evidence of a strong hole inversion layer and a valence band offset of approximately 0.4 eV; carrier concentration in the inversion layer is reduced in p-a-Si:H/i-a-Si:H/ c-Si structures as intrinsic layer thickness increases, while carrier lifetime is increased. The indium tin oxide/amorphous silicon interface is also examined. Optimal ITO films were prepared with a sheet resistance of 17.3 O/[special character omitted] and AM1.5 averaged transmittance of 92.1%., for a film thickness of approximately 85 nm, using temperatures below 200°C. Two different heat treatments are found to cause crystallization of

  9. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  10. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  11. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  12. Freestanding silicon quantum dots: origin of red and blue luminescence.

    Science.gov (United States)

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  13. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  14. Structural, optical and electrical properties of silicon nanocrystals embedded in SixC1−x/SiC multilayer systems for photovoltaic applications

    International Nuclear Information System (INIS)

    López-Vidrier, J.; Hernández, S.; Samà, J.; Canino, M.; Allegrezza, M.; Bellettato, M.; Shukla, R.; Schnabel, M.; Löper, P.; López-Conesa, L.; Estradé, S.; Peiró, F.; Janz, S.; Garrido, B.

    2013-01-01

    Highlights: ► We study the structural, optical and electrical properties of Si x C 1−x /SiC multilayers with different Si excess. ► Multilayer structure is destroyed after annealing at 1100 °C. ► Energy filtered TEM confirmed the Si NC formation. ► Sample thickness values from optical simulations are in agreement with TEM observations. ► The crystallization degree of the NCs was evaluated by Raman scattering and R and T techniques. ► The system conductivity depends on the NC size. ► The presence of a defective oxycarbide layer on top did not allow for obtaining useful electrical information. -- Abstract: In this work we present a structural, optical and electrical characterization of Si x C 1−x /SiC multilayer systems with different silicon content. After the deposition process, an annealing treatment was carried out in order to induce the silicon nanocrystals formation. By means of energy-filtered transmission electron microscopy (EFTEM) we observed the structural morphology of the multilayers and the presence of crystallized silicon nanoprecipitates for samples annealed up to 1100 °C. We discuss the suitability of optical techniques such as Raman scattering and reflectance and transmittance (R and T) for the evaluation of the crystalline fraction of our samples at different silicon excess ranges. In addition, the combination of R and T measurements with simulation has proved to be a useful instrument to confirm the structural properties observed by EFTEM. Finally, we explore the origin of the extremely high current density revealed by electrical measurements, probably due to the presence of an undesired defective SiC y O z ternary compound layer, already supported by the structural and optical results. Nevertheless, the variation of the electrical measurements with the silicon amount indicates a small but significant contribution from the multilayers

  15. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg_2Si thin film

    International Nuclear Information System (INIS)

    Chernev, I. M.; Shevlyagin, A. V.; Galkin, K. N.; Stuchlik, J.; Remes, Z.; Fajgar, R.; Galkin, N. G.

    2016-01-01

    Mg_2Si thin film was embedded in amorphous silicon matrix by solid phase epitaxy. The structure and optical properties were investigated by electron energy loss, X-ray photoelectron, Raman, and photo thermal deflection spectroscopy measurements. It was found that in the photon energy range of 0.8–1.7 eV, the light absorption of the structure with magnesium silicide (Mg_2Si) film embedded in a-Si(i) matrix is 1.5 times higher than that for the same structure without Mg_2Si.

  16. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  17. Positron annihilation studies of silicon-rich SiO2 produced by high dose ion implantation

    International Nuclear Information System (INIS)

    Ghislotti, G.; Nielsen, B.; Asoka-Kumar, P.; Lynn, K.G.; Di Mauro, L.F.; Corni, F.; Tonini, R.

    1997-01-01

    Positron annihilation spectroscopy (PAS) is used to study Si-rich SiO 2 samples prepared by implantation of Si (160 keV) ions at doses in the range 3x10 16 endash 3x10 17 cm -2 and subsequent thermal annealing at high temperature (up to 1100 degree C). Samples implanted at doses higher than 5x10 16 cm -2 and annealed above 1000 degree C showed a PAS spectrum with an annihilation peak broader than the unimplanted sample. We discuss how these results are related to the process of silicon precipitation inside SiO 2 . copyright 1997 American Institute of Physics

  18. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  19. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  20. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  1. Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon

    International Nuclear Information System (INIS)

    Dhoubhadel, Mangal S.; Lakshantha, Wickramaarachchige J.; Rout, Bibhudutta; McDaniel, Floyd D.; Lightbourne, Sherard; D’Souza, Francis

    2015-01-01

    The quest for increased efficiency of solar cells has driven the research in synthesizing photovoltaic cells involving Si based materials. The efficiency of solar cells involving crystalline Si is stalled around 25% for the last decade. Recently Shi et al. had shown that light trapping can be enhanced by fabricating double layers of Ag nanoparticles in silicon based materials. The light trapping is critically important in a photo devices such as solar cells in order to increase light absorption and efficiency. In the present work, we report enhancement in the absorption of light in Ag ion implanted Si substrates. Multiple low energies Ag ions, ranging from ∼80 keV to ∼30 keV, with different fluences ranging from ∼1 × 10 16 to ∼1 × 10 17 atoms/cm 2 were sequentially implanted into commercially available Si (100) substrates followed by post-thermal annealing to create different sizes of Ag nanoclusters (NC) at different depths in the top 100 nm of the Si. The absorbance of light is increased in Ag implanted Si with a significant increase in the current collection in I-V (current-voltage) photo switching measurements. The experimental photovoltaic cells fabricated with the Ag-implanted Si samples were optically characterized under AM (air mass) 1.5 solar radiation conditions (∼1.0 kW/m 2 ). An enhancement in the charge collection were measured in the annealed samples, where prominent Ag NCs were formed in the Si matrix compared to the as-implanted samples with amorphous layers. We believe the enhancement of the photo-current density from the samples with Ag NC is due to the improvement of efficiency of charge collection of e − -h + pairs produced by the incident light

  2. Impact of porous SiC-doped PVA based LDS layer on electrical parameters of Si solar cells

    Science.gov (United States)

    Kaci, S.; Rahmoune, R.; Kezzoula, F.; Boudiaf, Y.; Keffous, A.; Manseri, A.; Menari, H.; Cheraga, H.; Guerbous, L.; Belkacem, Y.; Chalal, R.; Bozetine, I.; Boukezzata, A.; Talbi, L.; Benfadel, K.; Ouadfel, M.-A.; Ouadah, Y.

    2018-06-01

    Nowadays, the advanced photon management is regarded as an area of intensive research investment. Ever since the most widely used commercial photovoltaic cells are fabricated with single gap semiconductors like silicon, photon management has offered opportunities to make better use of the photons, both inside and outside the single junction window. In this study, the impact of new down shifting layer on the photoelectrical parameters of silicon based solar cell was studied. An effort to enhance the photovoltaic performance of textured silicon solar cells through the application of porous SiC particles-doped polyvinyl alcohol (PVA) layers using the spin-coating technique, is reported. Current-voltage curves under artificial illumination were used to confirm the contribution of LDS (SiC-PVA) thin layers. Experiment results revealed that LDS based on SiC particles which were etched in HF/K2S2O8 solution at T = 80 °C under UV light of 254 nm exhibited the best solar cell photoelectrical parameters due to its strong photoluminescence.

  3. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  4. Porous silicon confers bioactivity to polycaprolactone composites in vitro.

    Science.gov (United States)

    Henstock, J R; Ruktanonchai, U R; Canham, L T; Anderson, S I

    2014-04-01

    Silicon is an essential element for healthy bone development and supplementation with its bioavailable form (silicic acid) leads to enhancement of osteogenesis both in vivo and in vitro. Porous silicon (pSi) is a novel material with emerging applications in opto-electronics and drug delivery which dissolves to yield silicic acid as the sole degradation product, allowing the specific importance of soluble silicates for biomaterials to be investigated in isolation without the elution of other ionic species. Using polycaprolactone as a bioresorbable carrier for porous silicon microparticles, we found that composites containing pSi yielded more than twice the amount of bioavailable silicic acid than composites containing the same mass of 45S5 Bioglass. When incubated in a simulated body fluid, the addition of pSi to polycaprolactone significantly increased the deposition of calcium phosphate. Interestingly, the apatites formed had a Ca:P ratio directly proportional to the silicic acid concentration, indicating that silicon-substituted hydroxyapatites were being spontaneously formed as a first order reaction. Primary human osteoblasts cultured on the surface of the composite exhibited peak alkaline phosphatase activity at day 14, with a proportional relationship between pSi content and both osteoblast proliferation and collagen production over 4 weeks. Culturing the composite with J744A.1 murine macrophages demonstrated that porous silicon does not elicit an immune response and may even inhibit it. Porous silicon may therefore be an important next generation biomaterial with unique properties for applications in orthopaedic tissue engineering.

  5. Fabrication of a novel silicon single electron transistor for Si:P quantum computer devices

    International Nuclear Information System (INIS)

    Angus, S.J.; Smith, C.E.A.; Gauja, E.; Dzurak, A.S.; Clark, R.G.; Snider, G.L.

    2004-01-01

    Full text: Quantum computation relies on the successful measurement of quantum states. Single electron transistors (SETs) are known to be able to perform fast and sensitive charge measurements of solid state qubits. However, due to their sensitivity, SETs are also very susceptible to random charge fluctuations in a solid-state materials environment. In previous dc transport measurements, silicon-based SETs have demonstrated greater charge stability than A1/A1 2 O 3 SETs. We have designed and fabricated a novel silicon SET architecture for a comparison of the noise characteristics of silicon and aluminium based devices. The silicon SET described here is designed for controllable and reproducible low temperature operation. It is fabricated using a novel dual gate structure on a silicon-on-insulator substrate. A silicon quantum wire is formed in a 100nm thick high-resistivity superficial silicon layer using reactive ion etching. Carriers are induced in the silicon wire by a back gate in the silicon substrate. The tunnel barriers are created electrostatically, using lithographically defined metallic electrodes (∼40nm width). These tunnel barriers surround the surface of the quantum wire, thus producing excellent electrostatic confinement. This architecture provides independent control of tunnel barrier height and island occupancy, thus promising better control of Coulomb blockade oscillations than in previously investigated silicon SETs. The use of a near intrinsic silicon substrate offers compatibility with Si:P qubits in the longer term

  6. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    Science.gov (United States)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  7. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-07-18

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  8. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    International Nuclear Information System (INIS)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-01-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  9. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    Science.gov (United States)

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  10. Development of Hydrogenated Microcrystalline Silicon-Germanium Alloys for Improving Long-Wavelength Absorption in Si-Based Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2014-01-01

    Full Text Available Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H alloys were developed for application in Si-based thin-film solar cells. The effects of the germane concentration (RGeH4 and the hydrogen ratio (RH2 on the μc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H and μc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed in μc-Si1-xGex:H. Moreover, a higher RH2 significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected by RH2 in μc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasing RGeH4, the accompanied increase in Ge content of μc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization of RH2 and RGeH4, the single-junction μc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared to μc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.

  11. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence.

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A

    2014-01-31

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.

  12. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  13. Silicon nanowires enhanced proliferation and neuronal differentiation of neural stem cell with vertically surface microenvironment.

    Science.gov (United States)

    Yan, Qiuting; Fang, Lipao; Wei, Jiyu; Xiao, Guipeng; Lv, Meihong; Ma, Quanhong; Liu, Chunfeng; Wang, Wang

    2017-09-01

    Owing to its biocompatibility, noncytotoxicity, biodegradability and three-dimensional structure, vertically silicon nanowires (SiNWs) arrays are a promising scaffold material for tissue engineering, regenerative medicine and relevant medical applications. Recently, its osteogenic differentiation effects, reorganization of cytoskeleton and regulation of the fate on stem cells have been demonstrated. However, it still remains unknown whether SiNWs arrays could affect the proliferation and neuronal differentiation of neural stem cells (NSCs) or not. In the present study, we have employed vertically aligned SiNWs arrays as culture systems for NSCs and proved that the scaffold material could promote the proliferation and neuronal differentiation of NSCs while maintaining excellent cell viability and stemness. Immunofluorescence imaging analysis, Western blot and RT-PCR results reveal that NSCs proliferation and neuronal differentiation efficiency on SiNWs arrays are significant greater than that on silicon wafers. These results implicate SiNWs arrays could offer a powerful platform for NSCs research and NSCs-based therapy in the field of neural tissue engineering.

  14. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    International Nuclear Information System (INIS)

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato

    2014-01-01

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers

  15. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    Science.gov (United States)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  16. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    Science.gov (United States)

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance. © 2015 John Wiley & Sons Ltd.

  17. Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baek Hyun, E-mail: bhkim@andrew.cmu.ed [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Davis, Robert F. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Park, Seong-Ju [Nanophotonic Semiconductors Laboratory, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712 (Korea, Republic of)

    2010-01-01

    We present the effects on the thermal annealing of silicon quantum dots (Si QDs) embedded in silicon nitride. The improved photoluminescence (PL) intensities and the red-shifted PL spectra were obtained with annealing treatment in the range of 700 to 1000 {sup o}C. The shifts of PL spectra were attributed to the increase in the size of Si QDs. The improvement of the PL intensities was also attributed to the reduction of point defects at Si QD/silicon nitride interface and in the silicon nitride due to hydrogen passivation effects.

  18. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    International Nuclear Information System (INIS)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-01-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN x /SiN y multilayers with high on/off ratio of 10 9 . High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  19. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    Science.gov (United States)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  20. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  1. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  2. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  3. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  4. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  5. Simulating characteristics of Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2015-12-01

    Full Text Available In spite of many efforts to propose new semiconductor materials and sophisticated constructions of solar cells, crystalline silicone remains the main photovoltaic material widely used up to now. There are various methods to enhance the efficiency of silicone solar cells. One of them is to combine silicone with an additional semiconductor material with the different bandgap to form a tandem construction. For example, the germanium sub-cell used as the bottom cascade for the silicone sub-cell in the tandem monolithic solar cell makes it possible to utilize the "red" sub-band of solar spectra increasing overall solar cell efficiency. The problem of the 4.2% mismatch in lattice constant between Si and Ge can be resolved in such a case by the use of SiGe buffer layer. In the paper the results of the computer simulation for Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer are presented. In the solar cell under consideration, the step graded Si1-xGex buffer layer is located between the top silicone and the bottom germanium cascades to reduce the threading dislocation density in mismatched materials. The cascades are commutated by the use of the germanium tunnel diode between the bottom sub-cell and the buffer layer. For the solar cell modeling, the physically-based device simulator ATLAS of Silvaco TCAD software is employed to predict the electrical behavior of the semiconductor structure and to provide a deep insight into the internal physical processes. The voltage-current characteristic, photovoltaic parameters and the distribution of basic physical values are obtained for the investigated tandem solar cell. The influence of layer thicknesses on the photovoltaic parameters is studied. The calculated efficiency of the tandem solar cell reaches 13% which is a quarter more than the efficiency of a simple silicone solar cell with the same constructive parameters and under the same illumination conditions.

  6. XPS studies of SiO/sub 2/ surface layers formed by oxygen ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D.; Finster, J. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Chemie); Hensel, E.; Skorupa, W.; Kreissig, U. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1983-03-16

    SiO/sub 2/ surface layers of 160 nm thickness formed by /sup 16/O/sup +/ ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO/sub 2/. There is no evidence for Si or SiO/sub x/ (0SiO/sub x/ transition region between SiO/sub 2/ and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide.

  7. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  8. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg{sub 2}Si thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chernev, I. M., E-mail: igor-chernev7@mail.ru; Shevlyagin, A. V.; Galkin, K. N. [Institute of Automation and Control Processes of FEB RAS, Radio St. 5, 690041 Vladivostok (Russian Federation); Stuchlik, J. [Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10/112, 162 00 Praha 6 (Czech Republic); Remes, Z. [Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10/112, 162 00 Praha 6 (Czech Republic); FBE CTU, Nam. Sitna 3105, 272 01 Kladno (Czech Republic); Fajgar, R. [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojová 135, 165 02 Praha 6 (Czech Republic); Galkin, N. G. [Institute of Automation and Control Processes of FEB RAS, Radio St. 5, 690041 Vladivostok (Russian Federation); Far Eastern Federal University, School of Natural Sciences, Sukhanova St. 8, 690950 Vladivostok (Russian Federation)

    2016-07-25

    Mg{sub 2}Si thin film was embedded in amorphous silicon matrix by solid phase epitaxy. The structure and optical properties were investigated by electron energy loss, X-ray photoelectron, Raman, and photo thermal deflection spectroscopy measurements. It was found that in the photon energy range of 0.8–1.7 eV, the light absorption of the structure with magnesium silicide (Mg{sub 2}Si) film embedded in a-Si(i) matrix is 1.5 times higher than that for the same structure without Mg{sub 2}Si.

  9. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  10. Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers.

    Science.gov (United States)

    Favors, Zachary; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Ionescu, Robert; Ye, Rachel; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-02-06

    The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g(-1) after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.

  11. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  12. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  13. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  14. Electrical resistivity and thermal conductivity of SiC/Si ecoceramics prepared from sapele wood biocarbon

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Mucha, J.; Jezowski, A.; Gutierrez-Pardo, A.; Ramirez-Rico, J.

    2012-10-01

    Samples of β-SiC/Si ecoceramics with a silicon concentration of ˜21 vol % have been prepared using a series of consecutive procedures (carbonization of sapele wood biocarbon, synthesis of high-porosity biocarbon with channel-type pores, infiltration of molten silicon into empty channels of the biocarbon, formation of β-SiC, and retention of residual silicon in channels of β-SiC). The electrical resistivity ρ and thermal conductivity κ of the β-SiC/Si ecoceramic samples have been measured in the temperature range 5-300 K. The values of ρ{Si/chan}( T) and κ{Si/chan}( T) have been determined for silicon Sichan located in β-SiC channels of the synthesized β-SiC/Si ecoceramics. Based on the performed analysis of the obtained results, the concentration of charge carriers (holes) in Sichan has been estimated as p ˜ 1019 cm-3. The factors that can be responsible for such a high value of p have been discussed. The prospects for practical application of β-SiC/Si ecoceramics have been considered.

  15. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  16. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  17. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  18. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  19. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Lee, S.H. [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Woo, S.P. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Kim, H.S. [Department of Mechanical Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Yoon, Y.S., E-mail: benedicto@gachon.ac.kr [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of)

    2014-08-01

    In this study, a combination of silicon and carbon as the anode material for an all-solid-state battery has been investigated to overcome their individual deficiencies. The capacity of silicon thin films with an input power of 60 W shows dramatic failure after 38 cycles due to serious volume expansion. In contrast, C thin films at 60 W show high stability of cyclic performance and capacity retention. The amorphous silicon and carbon composite reduced the volume expansion of silicon during long term cycles and enhanced the low specific capacity of the carbon. This resistance of the volume expansion might be expected from the cushion effect caused by the carbon, which was confirmed by scanning electron microscope images after a 100 cycle test. These results indicate that amorphous silicon and carbon composite thin films have a high possibility as the stable anode material for an all-solid-state battery. - Highlights: • Amorphous Si/C nanocomposite thin films have been prepared by co-sputtering. • Carbon can act as a cushion effect to prevent volume expansion of Si. • Amorphous Si/C nanocomposite thin films show structure stability at 100 cycles. • Capacity of the amorphous Si/C nanocomposite thin films was enhanced considerably.

  20. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    Science.gov (United States)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  1. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  2. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  3. Investigation of functionalized silicon nanowires by self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Hemed, Nofar Mintz [Dept. of Physical Electronics, Eng. Faculty, and the University Res. Inst. for Nano Science and Nano-Technologies, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Convertino, Annalisa [Istituto per la Microelettronica e i Microsistemi C.N.R.-Area della Ricerca di Roma, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Shacham-Diamand, Yosi [Dept. of Physical Electronics, Eng. Faculty, and the University Res. Inst. for Nano Science and Nano-Technologies, Tel-Aviv University, Ramat-Aviv 69978 (Israel); The Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2016-03-30

    Graphical abstract: - Highlights: • We characterize and verify the existence of self-assembled monolayer (SAM) on silicon nanowires and α-Si:H. • We define the term “electrical coverage” and find the formula for both cases. • The SAM's electrical coverage on silicon nanowires is found to be ∼63%. • The SAM's electrical coverage on α-Si:H is found to be ∼65 ± 3%. • The amount of SAM on the SiNWs is sufficient and it can serve as a linker to biological molecules. - Abstract: The functionalization using self assembled monolayer (SAM) of silicon nanowires (SiNW) fabricated by plasma enhanced chemical vapor deposition (PECVD) is reported here. The SAM is being utilized as the first building block in the functionalization process. The morphology of the SiNW comprises a polycrystalline core wrapped by an hydrogenated amorphous silicon (α-Si:H) shell. Since most of the available methods for SAM verification and characterization are suitable only for flat substrates; therefore, in addition to the SiNW α-Si:H on flat samples were produced in the same system as the SiNWs. First we confirmed the SAM's presence on the flat α-Si:H samples using the following methods: contact angle measurement to determine the change in surface energy; atomic force microscopy (AFM) to determine uniformity and molecular coverage. Spectroscopic ellipsometry and X-ray reflectivity (XRR) were performed to measure SAM layer thickness and density. X-ray photoelectron spectroscopy (XPS) was applied to study the chemical states of the surface. Next, SiNW/SAM were tested by electrochemical impedance spectroscopy (EIS), and the results were compared to α-Si:H/SAM. The SAM electrical coverage on SiNW and α-Si:H was found to be ∼37% and ∼65 ± 3%, respectively. A model, based on transmission line theory for the nanowires is presented to explain the disparity in results between the nanowires and flat surface of the same materials.

  4. One-dimensional silicon nanolines in the Si(001):H surface

    International Nuclear Information System (INIS)

    Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.

    2013-01-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality

  5. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  6. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    Science.gov (United States)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  7. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    Science.gov (United States)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  8. Charge losses in silicon sensors and electric-field studies at the Si-SiO2 interface

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2013-07-01

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs (eh pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate eh pairs along the whole sensor depth, a few μm below the surface and very close to the surface, respectively. Segmented p + n silicon strip sensors are used to study the electric field below the SiO 2 separating the strip implants. The sensors are investigated before and after irradiation with 12 keV X-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO 2 interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the electrostatic potential for different boundary conditions at the surface. Depending on the biasing history incomplete collection of electrons, full charge collection or incomplete collection of holes is observed. After the bias voltage is changed, the amount of observed charge losses is time dependent with time constants being a function of humidity. For the irradiated sensors an increased effective oxide charge density and more electron losses are observed compared to the non-irradiated sensors. Due to positive oxide charges which are always present at the Si-SiO 2 interface an electronaccumulation layer forms, if the oxide charge is not compensated by charges on top of the passivation. If negative charges overcompensate the oxide charge, a hole-accumulation layer forms. In both cases the number of accumulated charges can be temporarily increased by incomplete charge collection of either electrons or holes. How many additional charge carriers can be added to the

  9. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  10. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    Science.gov (United States)

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  11. Si(LMM) Auger electron emission from Si alloys by keV Ar/sup +/ ion bombardment, new effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A; Kim, S; Imura, T; Iwami, M [Osaka Univ., Suita (Japan). Faculty of Engineering

    1979-09-01

    Si(LMM) Auger spectra excited by keV ion bombardment were studied in Si alloyed with several elements (Au, Cu, Pd, Ni, C, and H). The spectra differed completely from those of pure Si. The main characteristics are (1) the spectra are composed of two well-separated peaks (88 and 92 eV) called the atomic-like peak (88 eV) and the bulk-like peak (92 eV); and (2) the atomic-like peak is enhanced with respect to the bulk-like peak, and this enhancement becomes more obvious as the concentration of partner elements of the alloys are increased. The possible application of the present phenomena is proposed as a technique for detecting the homogeneity of Si alloy films in the three-dimensional sense - as an example, the three-dimensional distribution of hydrogen in hydrogenated amorphous silicon (a-Si-H).

  12. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors.

    Science.gov (United States)

    Ho, Wen-Jeng; You, Bang-Jin; Liu, Jheng-Jie; Bai, Wen-Bin; Syu, Hong-Jhang; Lin, Ching-Fuh

    2018-05-18

    This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS) layer comprising three species of europium (Eu)-doped phosphors mixed within a silicate film (SiO₂) using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %). The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A), 551 nm (specie-B), and 609 nm (specie-C). We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%), 1:1:1 (19.67%), 1.5:1:0.5 (16.81%), compared to the control with a layer of pure SiO₂ (13.80%).

  13. Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.; Bokor, Jeffrey; Schenkel, Thomas

    2009-06-10

    We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

  14. Interface charge trapping induced flatband voltage shift during plasma-enhanced atomic layer deposition in through silicon via

    Science.gov (United States)

    Li, Yunlong; Suhard, Samuel; Van Huylenbroeck, Stefaan; Meersschaut, Johan; Van Besien, Els; Stucchi, Michele; Croes, Kristof; Beyer, Gerald; Beyne, Eric

    2017-12-01

    A Through Silicon Via (TSV) is a key component for 3D integrated circuit stacking technology, and the diameter of a TSV keeps scaling down to reduce the footprint in silicon. The TSV aspect ratio, defined as the TSV depth/diameter, tends to increase consequently. Starting from the aspect ratio of 10, to improve the TSV sidewall coverage and reduce the process thermal budget, the TSV dielectric liner deposition process has evolved from sub-atmospheric chemical vapour deposition to plasma-enhanced atomic layer deposition (PE-ALD). However, with this change, a strong negative shift in the flatband voltage is observed in the capacitance-voltage characteristic of the vertical metal-oxide-semiconductor (MOS) parasitic capacitor formed between the TSV copper metal and the p-Si substrate. And, no shift is present in planar MOS capacitors manufactured with the same PE-ALD oxide. By comparing the integration process of these two MOS capacitor structures, and by using Elastic Recoil Detection to study the elemental composition of our films, it is found that the origin of the negative flatband voltage shift is the positive charge trapping at the Si/SiO2 interface, due to the positive PE-ALD reactants confined to the narrow cavity of high aspect ratio TSVs. This interface charge trapping effect can be effectively mitigated by high temperature annealing. However, this is limited in the real process due to the high thermal budget. Further investigation on liner oxide process optimization is needed.

  15. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros

    2011-01-01

    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  16. Electronic structure of the boron fullerene B14 and its silicon derivatives B13Si(+), B13Si(-) and B12Si2: a rationalization using a cylinder model.

    Science.gov (United States)

    Van Duong, Long; Nguyen, Minh Tho

    2016-06-29

    Geometric and electronic structures of the boron cluster B14 and its silicon derivatives B13Si(+), B13Si(-), and B12Si2 were determined using DFT calculations (TPSSh/6-311+G(d)). The B12Si2 fullerene, which is formed by substituting two B atoms at two apex positions of the B14 fullerene by two Si atoms, was also found as the global minimum structure. We demonstrated that the electronic structure and orbital configuration of these small fullerenes can be predicted by the wavefunctions of a particle on a cylinder. The early appearance of high angular node MOs in B14 and B12Si2 can be understood by this simple model. Replacement of one B atom at a top position of B14 by one Si atom, followed by the addition or removal of one electron does not lead to a global minimum fullerene structure for the anion B13Si(-) and cation B13Si(+). The early appearance of the 5σ1 orbital in B13Si(+) causes a lower stability for the fullerene-type structure.

  17. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    International Nuclear Information System (INIS)

    Atyaoui, Malek; Dimassi, Wissem; Atyaoui, Atef; Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem

    2013-01-01

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n + emitter of silicon n + /p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties

  18. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atyaoui, Malek, E-mail: atyaoui.malek@yahoo.fr [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95, Hammam Lif 2050 (Tunisia); Dimassi, Wissem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia); Atyaoui, Atef [Laboratoire de traitement des eaux usées, Centre de recherches et des technologies des eaux, technopole de Borj-Cédria, PB: 273, Soliman 8020 (Tunisia); Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia)

    2013-09-15

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n{sup +} emitter of silicon n{sup +}/p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties.

  19. Silicon vacancy-related centers in non-irradiated 6H-SiC nanostructur

    Czech Academy of Sciences Publication Activity Database

    Bagraev, N.T.; Danilovskii, E.Yu.; Gets, D.S.; Kalabukhova, E.N.; Klyachkin, L.E.; Koudryavtsev, A.A.; Malyarenko, A.M.; Mashkov, V.A.; Savchenko, Dariia; Shanina, B.D.

    2015-01-01

    Roč. 49, č. 5 (2015), 649-657 ISSN 1063-7826 R&D Projects: GA ČR GP13-06697P; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * 6H-SiC nanostructures * silicon vacancy related centers * NV centers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.701, year: 2015

  20. Slag Treatment Followed by Acid Leaching as a Route to Solar-Grade Silicon

    NARCIS (Netherlands)

    Meteleva-Fischer, Y.V.; Yang, Y.; Boom, R.; Kraaijveld, B.; Kuntzel, H.

    2012-01-01

    Refining of metallurgical-grade silicon was studied using a process sequence of slag treatment, controlled cooling, and acid leaching. A slag of the Na2O-CaO-SiO2 system was used. The microstructure of grain boundaries in the treated silicon showed enhanced segregation of impurities, and the

  1. Enhanced thermal conductivity of nano-SiC dispersed water based ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) nanoparticle dispersed water based nanofluids were prepared using up to 0.1 vol% of nanoparticles. Use of suitable stirring routine ensured uniformity and stability of dispersion. Thermal conductivity ratio of nanofluid measured using transient hot wire device shows a significant increase of up to 12% ...

  2. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.

    Science.gov (United States)

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-10-05

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.

  3. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. EPR of the lattice damage from energetic Si in silicon at 40K

    International Nuclear Information System (INIS)

    Brower, K.L.

    1976-01-01

    An EPR study of the lattice damage produced by 14.2-MeV neutrons in p-type silicon at 4 0 K is presented. The EPR measurements were made at 5 0 K without any intermediate warmup of the sample. The EPR spectra indicate that each damage region, which is produced by a Si recoil of energy less than or equal to 1.89 MeV, is characterized by a high density of localized defects. A significant fraction of the lattice damage consists of distorted (110) 4-vacancies (Si-P3) embedded in a quasi-crystalline environment. Although a search for isolated vacancies was made, none was found. Even though the defects are complex and overlap, there is no evidence that a less than or equal to 1.89-MeV Si recoil produces amorphous regions at 4 0 K. Upon annealing the lattice damage to 50 0 K, a trace of the Si-G6 spectrum due to (V + V) + was observed. After annealing to 500 0 K, the Si-B3 center, which has recently been identified as a [001] Si split interstitial, emerged

  5. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Lee, Jae Chun; Rhee, Chang Kyu; Lee, Ho Jin; Park, Soon Dong

    1990-02-01

    Important process factors of carbothermic process for the growth of SiC whiskers were investigated. The crystalline form of silicon dioxide, amount of carbon addition, graphite, silicon, catalysts, additive and reaction temperature were chosen as the main factors. Morphology of the resultant products was grouped into 3 different types; whisker,noodle and power types. The addition of catalyst affected in most the formation of SiC whiskers. Effects of catalyst and additive additions and reaction atmospheres on the morphology anf growth of SiC whiskers were investigated, silicon monoxide power and carbon monoxide gas were used as the raw materials. The addition of an iron containing catalyst resulted in a very long thread-like growth of the whiskers, while that of sodium chloride helical curlings. Addition of hydrogen to the non-oxidizing atmosphere enhanced the whisker formations. Crystallization of amorphous silicon monoxide raw powder was investigated at high temperatures up to 1500 deg C in Ar atmosphere using graphite crucible. Up to 900 deg C no crystallization occurred, while at 1100 - 1300 deg C silicon formation, and at 1500 deg C silicon dioxide and silicon carbide formations were detected. A slight weight loss began 1300 deg C, and the weight loss became about 33 % at 1500 deg C. After the formation reaction of SiC whiskers, the reaction products were leached by hydrofluoric acids. The optimum concentration of the hydrofluoric acid was 2 %. (author)

  6. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  7. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.C.; Dahle, A.K.; StJohn, D.H.; Hutt, J.E.C. [Queensland Univ., Brisbane (Australia). Dept. of Mining, Minerals and Mater. Eng.

    1999-01-15

    The effect of increasing the amount of added grain refiner on grain size and morphology has been investigated for a range of hypoeutectic Al-Si alloys. The results show a transition in grain size at a silicon concentration of about 3 wt% in unrefined alloys; the grain size decreasing with silicon content before the transition, and increasing beyond the transition point. A change in morphology also occurs with increased silicon content. The addition of grain refiner leads to greater refinement for silicon contents below the transition point than for those contents above the transition point, while the transition point seems to remain unchanged. The slope of the grain size versus silicon content curve after the transition seems to be unaffected by the degree of grain refinement. The results are related to the competitive processes of nucleation and constitutional effects during growth and their impact on nucleation kinetics. (orig.) 13 refs.

  8. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  9. A study of luminescence from silicon-rich silica fabricated by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Trwoga, P.F.

    1998-01-01

    Silicon is the most studied electronic material known to man and dominates the electronics industry in its use as a semiconductors for nearly all integrated electronics. However, optoelectronics is almost entirely based on III-V materials. This technology is used because silicon is a very inefficient light source, whereas the III-V band structure can lend itself to efficient light emission by electron injection. However, due to the overwhelming dominance of silicon based electronics it is still a highly desirable goal to generate light efficiently from silicon based materials. Recently, studies have demonstrated that efficient visible luminescence can be obtained from certain novel forms of silicon. These materials include porous silicon, hydrogenated amorphous silicon, and silicon-rich silica (SiO x x x is studied in detail; in addition, electroluminescence and rare-earth doping of silicon-rich silica is also addressed. (author)

  10. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence

    International Nuclear Information System (INIS)

    Singh, Sonal; Thomas, Vinoy; Kharlampieva, Eugenia; Catledge, Shane A; Martyshkin, Dmitry; Kozlovskaya, Veronika

    2014-01-01

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe ‘dip-pen’ nanolithography technique using electrostatically driven transfer of nanodiamonds from ‘inked’ cantilevers to a UV-treated hydrophilic SiO 2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (∼738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications. (paper)

  12. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    OpenAIRE

    Zahra Ostadmahmoodi Do; Tahereh Fanaei Sheikholeslami; Hassan Azarkish

    2016-01-01

    Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method fo...

  13. Parameters optimization, microstructure and micro-hardness of silicon carbide laser deposited on titanium alloy

    CSIR Research Space (South Africa)

    Adebiyia, DI

    2016-06-01

    Full Text Available Silicon carbide (SiC), has excellent mechanical properties such as high hardness and good wear resistance, and would have been a suitable laser-coating material for titanium alloy to enhance the poor surface hardness of the alloy. However, SiC has...

  14. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    Science.gov (United States)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  15. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases

    International Nuclear Information System (INIS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-01-01

    Highlights: ► Superior combination of flexural strength and fracture toughness of the 3D SiC/SiC composite was achieved by interface tailoring. ► Resulted composite possesses a much higher flexural strength and fracture toughness than its counterparts in literatures. ► Mechanisms that PyC/SiC multilayer coatings improve the mechanical properties were illustrated. -- Abstract: In order to tailor the fiber–matrix interface of continuous silicon carbide fiber reinforced silicon carbide (SiC f /SiC) composites for improved fracture toughness, alternating pyrolytic carbon/silicon carbide (PyC/SiC) multilayer coatings were applied to the KD-I SiC fibers using chemical vapor deposition (CVD) method. Three dimensional (3D) KD-I SiC f /SiC composites reinforced by these coated fibers were fabricated using a precursor infiltration and pyrolysis (PIP) process. The interfacial characteristics were determined by the fiber push-out test and microstructural examination using scanning electron microscopy (SEM). The effect of interface coatings on composite mechanical properties was evaluated by single-edge notched beam (SENB) test and three-point bending test. The results indicate that the PyC/SiC multilayer coatings led to an optimum interfacial bonding between fibers and matrix and greatly improved the fracture toughness of the composites.

  16. Electronic and local atomistic structure of MgSiO3 glass under pressure: a study of X-ray Raman scattering at the silicon and magnesium L-edges

    Science.gov (United States)

    Fukui, Hiroshi; Hiraoka, Nozomu

    2018-02-01

    We applied X-ray Raman scattering technique to MgSiO3 glass, a precursor to magnesium silicate melts, with respect to magnesium and silicon under high-pressure conditions as well as some polycrystalline phases of MgSiO3 at ambient conditions. We also performed ab initio calculations to interpret the X-ray Raman spectra. Experimentally obtained silicon L-edge spectra indicate that the local environment around silicon started changing at pressure above 10 GPa, where the electronic structure of oxygen is known to change. In contrast, the shape of the magnesium L-edge spectrum changed below 10 GPa. This indicates that the magnesium sites in MgSiO3 glass first distort and that the local structure around magnesium shows a wide variation under pressure. The framework structure consisting of silicon and oxygen changed above 10 GPa, where the coordination number of silicon was more than four. Our results imply that 6-oxygen-coordinated silicon was formed above 20 GPa.

  17. Defect formation and recrystallization in the silicon on sapphire films under Si{sup +} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shemukhin, A.A., E-mail: shemuhin@gmail.com [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Nazarov, A.V.; Balakshin, Yu. V. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Chernysh, V.S. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-07-01

    Silicon-on-sapphire (SOS) is one of the most promising silicon-on-insulator (SOI) technologies. SOS structures are widely used in microelectronics, but to meet modern requirements the silicon layer should be 100 nm thick or less. The problem is in amount of damage in the interface layer, which decreases the quality of the produced devices. In order to improve the crystalline structure quality SOS samples with 300 nm silicon layers were implanted with Si{sup +} ions with energies in the range from 180 up to 230 keV with fluences in the range from 10{sup 14} up to 5 × 10{sup 15} cm{sup −2} at 0 °C. The crystalline structure of the samples was studied with RBS and the interface layer was studied with SIMS after subsequent annealing. It has been found out that to obtain silicon films with high lattice quality it is necessary to damage the sapphire lattice near the silicon–sapphire interface. Complete destruction of the strongly defected area and subsequent recrystallization depends on the energy of implanted ions and the substrate temperature. No significant mixing in the interface layer was observed with the SIMS.

  18. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  19. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Science.gov (United States)

    Gelloz, B.; Sano, H.; Boukherroub, R.; Wayner, D. D. M.; Lockwood, D. J.; Koshida, N.

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 °C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreatred devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device.

  20. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  1. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  2. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

    Science.gov (United States)

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-07-01

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  3. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  4. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  5. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  6. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Y.F.Zhang; Y.F.Wang; N.Chen; Y.Y.Wang; Y.Z.Zhang; Z.H.Zhou; L.M.Wei

    2010-01-01

    Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm-2, an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

  7. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes.

    Science.gov (United States)

    Meraz, Ismail M; Hearnden, Claire H; Liu, Xuewu; Yang, Marie; Williams, Laura; Savage, David J; Gu, Jianhua; Rhudy, Jessica R; Yokoi, Kenji; Lavelle, Ed C; Serda, Rita E

    2014-01-01

    Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1β levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophages.

  8. A thermochemical approach to enhance hydrophobicity of SiC/SiO{sub 2} powder using γ-methacryloxypropyl trimethoxy silane and octylphenol polyoxyethylene ether (7)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunxue; Feng, Dandan; Wang, Xiangke; Li, Zhihong; Zhu, Yumei, E-mail: zhuyumei@tju.edu.cn

    2016-01-01

    Graphical abstract: Through the exploration of modification mechanism, the hydrophilic properties of SiC/SiO{sub 2}-KH570-OP-7 were far superior to SiC/SiO{sub 2}-KH570. - Highlights: • A novel universal method is performed to enhance hydrophobicity of SiC/SiO{sub 2} powder. • Through pyrolysis of KH570 and OP-7, hydrophilic groups is grafted. • The hydrophobicity of SiC/SiO{sub 2}-KH570-OP-7 was far superior to SiC/SiO{sub 2}-KH570. • A possible formation mechanism of hydrophilic surface was proposed. • Surface changes on SiC/SiO{sub 2}-KH570-OP-7 powder were analyzed via SEM, FTIR, XPS. - Abstract: A thermochemical synthetic methodology for silicon carbide/silica (SiC/SiO{sub 2}) powder modified by integrating γ-methacryloxypropyl trimethoxy silane (KH570) and octylphenol polyoxyethylene ether (7) (OP-7) with hydrophilic SiC/SiO{sub 2} particles is described. On account of weak hydrophobicity of SiC/SiO{sub 2} powder modified by KH570 (SiC/SiO{sub 2}-KH570), the study focuses on the improvement of hydrophobicity utilizing alkylation reaction between OP-7 and KH570 at high temperature. Compared with using KH570 alone, SiC/SiO{sub 2} powder modified by KH570 and OP-7 (SiC/SiO{sub 2}-KH570-OP-7) shows better water resistance, and also an increased contact angle from 73.8° to 136.4°, resulting thus an improved hydrophobicity. Fourier transform infrared spectroscopy (FTIR), as well as X-ray photoelectron spectroscopy (XPS), was utilized to characterize these surfaces, and the results indicated that KH570 and OP-7 can be covalently bonded on the surface of SiC/SiO{sub 2} powder. Furthermore, it has been deeply investigated in the paper not only the possible modes of non-oxidative thermal degradation of OP-7 and KH570, but also the formation mechanism of more hydrophobic SiC/SiO{sub 2}-KH570-OP-7 powder, which probably will have a potential utility for other inorganic materials.

  9. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  10. Development of amorphous silicon based EUV hardmasks through physical vapor deposition

    Science.gov (United States)

    De Silva, Anuja; Mignot, Yann; Meli, Luciana; DeVries, Scott; Xu, Yongan; Seshadri, Indira; Felix, Nelson M.; Zeng, Wilson; Cao, Yong; Phan, Khoi; Dai, Huixiong; Ngai, Christopher S.; Stolfi, Michael; Diehl, Daniel L.

    2017-10-01

    Extending extreme ultraviolet (EUV) single exposure patterning to its limits requires more than photoresist development. The hardmask film is a key contributor in the patterning stack that offers opportunities to enhance lithographic process window, increase pattern transfer efficiency, and decrease defectivity when utilizing very thin film stacks. This paper introduces the development of amorphous silicon (a-Si) deposited through physical vapor deposited (PVD) as an alternative to a silicon ARC (SiARC) or silicon-oxide-type EUV hardmasks in a typical trilayer patterning scheme. PVD offers benefits such as lower deposition temperature, and higher purity, compared to conventional chemical vapor deposition (CVD) techniques. In this work, sub-36nm pitch line-space features were resolved with a positive-tone organic chemically-amplified resist directly patterned on PVD a-Si, without an adhesion promotion layer and without pattern collapse. Pattern transfer into the underlying hardmask stack was demonstrated, allowing an evaluation of patterning metrics related to resolution, pattern transfer fidelity, and film defectivity for PVD a-Si compared to a conventional tri-layer patterning scheme. Etch selectivity and the scalability of PVD a-Si to reduce the aspect ratio of the patterning stack will also be discussed.

  11. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  12. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  13. Sensing performance of plasma-enhanced chemical vapor deposition SiC-SiO2-SiC horizontal slot waveguides

    NARCIS (Netherlands)

    Pandraud, G.; Margallo-Balbas, E.; Sarro, P.M.

    2012-01-01

    We have studied, for the first time, the sensing capabilities of plasma-enhanced chemical vapor deposition (PECVD) SiC-SiO2-SiC horizontal slot waveguides. Optical propagation losses were measured to be 23.9 dB?cm for the quasi-transverse magnetic mode. To assess the potential of this device as a

  14. RBS using {sup 28}Si beams

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); Mitchell, I.V. [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1996-12-31

    Measurements of RBS using {sup 28}Si beams have been made to evaluate the enhancement of sensitivity that should obtain from kinematic suppression of silicon substrate scattering. Two detection methods were tried. Aside from a surface barrier detector, a magnetic spectrometer, instrumented with a multi-electrode gas focal plane detector, was used to indicate the resolution attainable with low energy {sup 28}Si ions. The results confirm that kinematically suppressed RBS does provide greatly improved sensitivity. 5 refs., 2 figs.

  15. RBS using {sup 28}Si beams

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T R [Australian National Univ., Canberra, ACT (Australia); Mitchell, I V [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1997-12-31

    Measurements of RBS using {sup 28}Si beams have been made to evaluate the enhancement of sensitivity that should obtain from kinematic suppression of silicon substrate scattering. Two detection methods were tried. Aside from a surface barrier detector, a magnetic spectrometer, instrumented with a multi-electrode gas focal plane detector, was used to indicate the resolution attainable with low energy {sup 28}Si ions. The results confirm that kinematically suppressed RBS does provide greatly improved sensitivity. 5 refs., 2 figs.

  16. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  17. Features of carrier tunneling between the silicon valence band and metal in devices based on the Al/high-K oxide/SiO_2/Si structure

    International Nuclear Information System (INIS)

    Vexler, M. I.; Grekhov, I. V.

    2016-01-01

    The features of electron tunneling from or into the silicon valence band in a metal–insulator–semiconductor system with the HfO_2(ZrO_2)/SiO_2 double-layer insulator are theoretically analyzed for different modes. It is demonstrated that the valence-band current plays a less important role in structures with HfO_2(ZrO_2)/SiO_2 than in structures containing only silicon dioxide. In the case of a very wide-gap high-K oxide ZrO_2, nonmonotonic behavior related to tunneling through the upper barrier is predicted for the valence-band–metal current component. The use of an insulator stack can offer certain advantages for some devices, including diodes, bipolar tunnel-emitter transistors, and resonant-tunneling diodes, along with the traditional use of high-K insulators in a field-effect transistor.

  18. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiN{sub x}/SiN{sub y} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaofan; Ma, Zhongyuan, E-mail: zyma@nju.edu.cn; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan [National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-09-28

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  19. Optical absorptions in ZnO/a-Si distributed Bragg reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aqing, E-mail: aqchen@hdu.edu.cn; Chen, Zhian [Hangzhou Dianzi University, College of Materials & Environmental Engineering (China); Zhu, Kaigui [Beihang University, Department of physics (China); Ji, Zhenguo [Hangzhou Dianzi University, College of Materials & Environmental Engineering (China)

    2017-01-15

    The distributed Bragg reflectors (DBRs) consisting of alternating layers of ZnO and heavy doped amorphous silicon (a-Si) have been fabricated by magnetron sputtering. It is novel to find that the optical absorptions exist in the stopband of the DBRs, and that many discrete strong optical absorption peaks exist in the wavelength range of visible to near-infrared. The calculated results by FDTD show that the absorptions in the stopband mainly exist in the first a-Si layer, and that the light absorbed by other a-Si layers inside contributes to the two absorption peaks in near-infrared range. The strong absorptions ranged from visible to infrared open new possibilities to the enhancement of the performance of amorphous silicon solar cells.

  20. Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell

    Science.gov (United States)

    Pandey, Rahul; Chaujar, Rishu

    2016-12-01

    In this work, a novel four-terminal perovskite/SiC-based rear contact silicon tandem solar cell device has been proposed and simulated to achieve 27.6% power conversion efficiency (PCE) under single AM1.5 illumination. 20.9% efficient semitransparent perovskite top subcell has been used for perovskite/silicon tandem architecture. The tandem structure of perovskite-silicon solar cells is a promising method to achieve efficient solar energy conversion at low cost. In the four-terminal tandem configuration, the cells are connected independently and hence avoids the need for current matching between top and bottom subcell, thus giving greater design flexibility. The simulation analysis shows, PCE of 27.6% and 22.4% with 300 μm and 10 μm thick rear contact Si bottom subcell, respectively. This is a substantial improvement comparing to transparent perovskite solar cell and c-Si solar cell operated individually. The impact of perovskite layer thickness, monomolecular, bimolecular, and trimolecular recombination have also been obtained on the performance of perovskite top subcell. Reported PCEs of 27.6% and 22.4% are 1.25 times and 1.42 times higher as compared to experimentally available efficiencies of 22.1% and 15.7% in 300 μm and 10 μm thick stand-alone silicon solar cell devices, respectively. The presence of SiC significantly suppressed the interface recombination in bottom silicon subcell. Detailed realistic technology computer aided design (TCAD) analysis has been performed to predict the behaviour of the device.

  1. A pulse synthesis of beta-FeSi sub 2 layers on silicon implanted with Fe sup + ions

    CERN Document Server

    Batalov, R I; Terukov, E I; Kudoyarova, V K; Weiser, G; Kuehne, H

    2001-01-01

    The synthesis of thin beta-FeSi sub 2 films was performed by means of the Fe sup + ion implantation into Si (100) and the following nanosecond pulsed ion treatment of implanted layer. Using the beta-FeSi sub 2 beta-FeSi sub 2 e X-ray diffraction it is shown that the pulsed ion treatment results in the generation of the mixture of two phases: FeSi and beta-FeSi sub 2 with stressed crystal lattices. The following short-time annealing leads to the total transformation of the FeSi phase into the beta-FeSi sub 2 one. The Raman scattering data prove the generation of the beta-FeSi sub 2 at the high degree of the silicon crystallinity. The experimental results of the optical absorption testify to the formation of beta-FeSi sub 2 layers and precipitates with the straight-band structure. The photoluminescence signal at lambda approx = 1.56 mu m observes up to 210 K

  2. Oxidation Properties of Nitrogen-Doped Silicon Films Deposited from Si2H6 and NH3

    Science.gov (United States)

    Scheid, Emmanuel; Boyer, Pierre; Samitier, Josep; Hassani, Ahmed

    1994-03-01

    Si2H6/NH3 gas mixture was employed to obtain, by low-pressure chemical vapor deposition (LPCVD) at low temperature, nitrogen-doped silicon (NIDOS) films with various N/Si ratios. Thermal oxide was grown in dry oxygen at 900°C and 1100°C on NIDOS films. The result indicates that the nitrogen content of NIDOS films, assessed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), greatly influences their oxidation rate.

  3. Formation of hexagonal silicon carbide by high energy ion beam irradiation on Si (1 0 0) substrate

    International Nuclear Information System (INIS)

    Bhuyan, H; Favre, M; Valderrama, E; Avaria, G; Chuaqui, H; Mitchell, I; Wyndham, E; Saavedra, R; Paulraj, M

    2007-01-01

    We report the investigation of high energy ion beam irradiation on Si (1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The unexposed and ion exposed substrates were characterized by x-ray diffraction, scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive x-ray analysis and atomic force microscopy (AFM) and the results are reported. The interaction of the pulsed PF ion beams, with characteristic energy in the 60-450 keV range, with the Si surface, results in the formation of a surface layer of hexagonal silicon carbide. The SEM and AFM analyses indicate clear step bunching on the silicon carbide surface with an average step height of 50 nm and a terrace width of 800 nm

  4. Nanostructured silicon ferromagnet collected by a permanent neodymium magnet.

    Science.gov (United States)

    Okuno, Takahisa; Thürmer, Stephan; Kanoh, Hirofumi

    2017-11-30

    Nanostructured silicon (N-Si) was prepared by anodic electroetching of p-type silicon wafers. The obtained magnetic particles were separated by a permanent neodymium magnet as a magnetic nanostructured silicon (mN-Si). The N-Si and mN-Si exhibited different magnetic properties: the N-Si exhibited ferromagnetic-like behaviour, whereas the mN-Si exhibited superparamagnetic-like behaviour.

  5. Charge losses in silicon sensors and electric-field studies at the Si-SiO{sub 2} interface

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2013-07-15

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs (eh pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate eh pairs along the whole sensor depth, a few {mu}m below the surface and very close to the surface, respectively. Segmented p{sup +}n silicon strip sensors are used to study the electric field below the SiO{sub 2} separating the strip implants. The sensors are investigated before and after irradiation with 12 keV X-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO{sub 2} interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the electrostatic potential for different boundary conditions at the surface. Depending on the biasing history incomplete collection of electrons, full charge collection or incomplete collection of holes is observed. After the bias voltage is changed, the amount of observed charge losses is time dependent with time constants being a function of humidity. For the irradiated sensors an increased effective oxide charge density and more electron losses are observed compared to the non-irradiated sensors. Due to positive oxide charges which are always present at the Si-SiO{sub 2} interface an electronaccumulation layer forms, if the oxide charge is not compensated by charges on top of the passivation. If negative charges overcompensate the oxide charge, a hole-accumulation layer forms. In both cases the number of accumulated charges can be temporarily increased by incomplete charge collection of either electrons or holes. How many additional charge carriers can be

  6. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  7. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiwei; Deng, Changkai [International Center of Quantum and Molecular Structures, Materials Genome Institute, and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444 China (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China (China); Yang, Kang; Chen, Haiyan, E-mail: chenhy@sari.ac.cn; Li, Dongdong; Chen, Xiaoyuan [Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China (China); Ren, Wei, E-mail: renwei@shu.edu.cn [International Center of Quantum and Molecular Structures, Materials Genome Institute, and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444 China (China)

    2016-05-15

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO{sub 2}. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

  8. Rapid determination of main components by means of flame-atomic-absorption spectrometry for chromium, silicon and tungsten in CrSiW materials

    International Nuclear Information System (INIS)

    Mueller, E.; Stahlberg, R.

    1985-01-01

    The application of Flame-Atomic-Absorption Spectrometry (FAAS) for determining chromium, silicon and tungsten in CrSiW materials is described. The FAAS determinations of the main components are shown under optimum conditions. Sufficient precision and reliability have been achieved for routine analysis. The application of a mixture of acids for preparing CrSiW solutions is proposed. The preparation of samples is discussed in detail. Optimum conditions are recommended for determining chromium, silicon and tungsten using one solution only. (orig.) [de

  9. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  10. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  11. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  12. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  13. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  14. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  15. Ge nanocrystals embedded in ultrathin Si3N4 multilayers with SiO2 barriers

    Science.gov (United States)

    Bahariqushchi, R.; Gundogdu, Sinan; Aydinli, A.

    2017-04-01

    Multilayers of germanium nanocrystals (NCs) embedded in thin films of silicon nitride matrix separated with SiO2 barriers have been fabricated using plasma enhanced chemical vapor deposition (PECVD). SiGeN/SiO2 alternating bilayers have been grown on quartz and Si substrates followed by post annealing in Ar ambient from 600 to 900 °C. High resolution transmission electron microscopy (HRTEM) as well as Raman spectroscopy show good crystallinity of Ge confined to SiGeN layers in samples annealed at 900 °C. Strong compressive stress for SiGeN/SiO2 structures were observed through Raman spectroscopy. Size, as well as NC-NC distance were controlled along the growth direction for multilayer samples by varying the thickness of bilayers. Visible photoluminescence (PL) at 2.3 and 3.1 eV with NC size dependent intensity is observed and possible origin of PL is discussed.

  16. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  17. Exploring SiSn as a performance enhancing semiconductor: A theoretical and experimental approach

    KAUST Repository

    Hussain, Aftab M.; Singh, Nirpendra; Fahad, Hossain M.; Rader, Kelly; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2014-01-01

    We present a novel semiconducting alloy, silicon-tin (SiSn), as channel material for complementary metal oxide semiconductor (CMOS) circuit applications. The material has been studied theoretically using first principles analysis as well

  18. The analysis of structural and electronic environments of silicon network in HWCVD deposited a-SiC:H films

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2007-01-01

    Hydrogenated amorphous silicon carbon alloys (a-SiC:H) films were deposited by hot wire chemical vapour deposition (HWCVD) using SiH 4 and C 2 H 2 as precursor gases. a-SiC:H films were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Solid-state plasmon of Si network shifts from 19.2 to 20.5 eV by varying C 2 H 2 flow rate from 2 to 10 sccm. Incorporation of carbon content changes the valence band structure and s orbital is more dominant than sp and p orbital with carbon incorporation

  19. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bianco, Giuseppe V.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy)

    2009-10-15

    Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of {proportional_to}1.3 x 10{sup 11} cm{sup -2} of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, J{sub SC}, 25% in the power output, P{sub max} and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current-voltage (I-V) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance. (author)

  20. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    Science.gov (United States)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  1. Silicon-carbon fullerenelike nanostructures: An ab initio study on the stability of Si60C2n (n=1, 2) clusters

    International Nuclear Information System (INIS)

    Srinivasan, A.; Huda, M. N.; Ray, A. K.

    2005-01-01

    Fullerenelike nanostructures of silicon with two and four carbon atoms substituted on the surface of Si 60 cages, as well as inside the cage at various symmetry orientations, have been studied within the generalized-gradient approximation to density-functional theory. Full geometry optimizations have been performed without any symmetry constraints using the GAUSSIAN 03 suite of programs and the Los Alamos National Laboratory 2 double-ζ basis set. For the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning-Huzinaga double-ζ basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerenelike cages have increased stability compared to the bare Si 60 cage and the stability depends on the number and orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms

  2. Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: Role of excess silicon interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.; Monakhov, Edouard [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo (Norway); Schumann, Thomas; Hübner, Renè; Skorupa, Wolfgang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 510119, 01314 Dresden (Germany)

    2015-07-13

    Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction between the spin-on diffusant film and the silicon wafer.

  3. Calculation of the driving force for the radiation induced precipitation of Ni3Si in nickel-silicon alloys

    International Nuclear Information System (INIS)

    Miodownik, A.P.; Watkin, J.S.

    1979-01-01

    The appearance of precipitates which have been identified as Ni 3 Si in irradiated stainless steels and nickel rich alloys such as Inconel is of considerable interest in relation to the swelling behaviour of such materials. Work on binary nickel-silicon alloys has shown that Ni 3 Si can be induced to precipitate in alloys whose silicon content is well below the accepted solubility limit, and it has also been shown that such precipitates redissolve when heat-treatment is continued at the same temperature in the absence of irradiation. Such effects imply an irradiation induced shift of chemical potential, and cannot be explained by merely involving accelerated diffusion. This paper represents an attempt to calculate the shift in chemical potential required to precipitate Ni 3 Si in alloys containing 1-10% Si (at%) over a range of temperatures (300-1000K), and then proceeds to relate this calculated chemical potential with available information concerning the dose rates required to induce such precipitates at various temperatures. Presentation of the results is modelled on the well established methods for handling the Time-Temperature-Transformation behaviour of ordinary alloy systems, with dose rate being substituted for the time axis. Analogous calculations are presented for nickel-germanium alloys, in order to check whether the numerical values deduced from the nickel silicon system have more general applicability, and also to see whether there are any significant differences in a system where the size factor of the solute is of the opposite sign. (orig.) [de

  4. Amorphous silicon as high index photonic material

    Science.gov (United States)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  5. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes

    KAUST Repository

    Hu, Liangbing

    2011-01-01

    We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire growth entails. © 2011 The Royal Society of Chemistry.

  6. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  7. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  8. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2018-05-01

    Full Text Available This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS layer comprising three species of europium (Eu-doped phosphors mixed within a silicate film (SiO2 using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %. The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A, 551 nm (specie-B, and 609 nm (specie-C. We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%, 1:1:1 (19.67%, 1.5:1:0.5 (16.81%, compared to the control with a layer of pure SiO2 (13.80%.

  9. Effect of initial porosity on mechanical properties of C/SiC composites fabricated by silicon melt infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, D.S.; Son, D.Y. [Dept. of Materials and Metallurgical Eng., Dong-Eui Univ., Busan (Korea); Lee, S.P. [Dept. of Mechanical Eng., Dong-Eui Univ., Busan (Korea); Park, H.S.; Kim, K.S. [Dreaming and Challenging Co., Changwon (Korea); Jeon, J.H. [Korea Inst. of Machinery and Materials, Changwon (Korea)

    2004-07-01

    Four kinds of raw C/C composites with a density between 1.25{proportional_to}1.66 g/cm{sup 3} were used in order to investigate the effect of the initial porosity of C/C composites on mechanical properties of liquid silicon infiltrated C/SiC composites. The microstructure observation, image analysis and flexural strength test of the composites were performed. The density and microstructural changes with the variation of the initial porosity was discussed in the terms of the infiltration behavior of liquid silicon and the reaction between liquid silicon and matrix carbon. (orig.)

  10. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  11. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  12. X-ray irradiation effects of interface traps and trapped-oxide charge at the Si-SiO{sub 2} interface of segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Schwandt, Joern [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    The surface radiation damage of SiO{sub 2} grown on high-ohmic Si, as used for the fabrication of segmented silicon sensors, has been investigated. Circular p- and n-MOSFETs, biased in accumulation and inversion at a field in the SiO{sub 2} of about 500 kV/cm, have been irradiated by X-rays up to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation, the gate voltage has been cycled from inversion to accumulation conditions and back, and from the dependence of the drain-source current, on gate voltage, the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface determined. From the threshold voltage, the effective oxide-charge density is calculated. Using the subthreshold-current technique the contribution of interface traps, in the lower and the upper part of the energy Si bandgap, and of fixed oxide-charge to the effective oxide-charge density has been estimated. Results on the dose dependence of the above quantities, the charging-up and discharging of border traps when changing the gate voltage, and the hole and electron mobilities at the Si-SiO{sub 2} interface are presented.

  13. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  14. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  15. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  16. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Directory of Open Access Journals (Sweden)

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  17. Optical characterization of nanocrystals in silicon rich oxide superlattices and porous silicon

    International Nuclear Information System (INIS)

    Agocs, E.; Petrik, P.; Milita, S.; Vanzetti, L.; Gardelis, S.; Nassiopoulou, A.G.; Pucker, G.; Balboni, R.; Fried, M.

    2011-01-01

    We propose to analyze ellipsometry data by using effective medium approximation (EMA) models. Thanks to EMA, having nanocrystalline reference dielectric functions and generalized critical point (GCP) model the physical parameters of two series of samples containing silicon nanocrystals, i.e. silicon rich oxide (SRO) superlattices and porous silicon layers (PSL), have been determined. The superlattices, consisting of ten SRO/SiO 2 layer pairs, have been prepared using plasma enhanced chemical vapor deposition. The porous silicon layers have been prepared using short monopulses of anodization current in the transition regime between porous silicon formation and electropolishing, in a mixture of hydrofluoric acid and ethanol. The optical modeling of both structures is similar. The effective dielectric function of the layer is calculated by EMA using nanocrystalline components (nc-Si and GCP) in a dielectric matrix (SRO) or voids (PSL). We discuss the two major problems occurring when modeling such structures: (1) the modeling of the vertically non-uniform layer structures (including the interface properties like nanoroughness at the layer boundaries) and (2) the parameterization of the dielectric function of nanocrystals. We used several techniques to reduce the large number of fit parameters of the GCP models. The obtained results are in good agreement with those obtained by X-ray diffraction and electron microscopy. We investigated the correlation of the broadening parameter and characteristic EMA components with the nanocrystal size and the sample preparation conditions, such as the annealing temperatures of the SRO superlattices and the anodization current density of the porous silicon samples. We found that the broadening parameter is a sensitive measure of the nanocrystallinity of the samples, even in cases, where the nanocrystals are too small to be visible for X-ray scattering. Major processes like sintering, phase separation, and intermixing have been

  18. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  19. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  20. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose

  1. Assessing the potential roles of silicon and germanium phthalocyanines in planar heterojunction organic photovoltaic devices and how pentafluoro phenoxylation can enhance π-π interactions and device performance.

    Science.gov (United States)

    Lessard, Benoît H; White, Robin T; Al-Amar, Mohammad; Plint, Trevor; Castrucci, Jeffrey S; Josey, David S; Lu, Zheng-Hong; Bender, Timothy P

    2015-03-11

    In this study, we have assessed the potential application of dichloro silicon phthalocyanine (Cl2-SiPc) and dichloro germanium phthalocyanine (Cl2-GePc) in modern planar heterojunction organic photovoltaic (PHJ OPV) devices. We have determined that Cl2-SiPc can act as an electron donating material when paired with C60 and that Cl2-SiPc or Cl2-GePc can also act as an electron acceptor material when paired with pentacene. These two materials enabled the harvesting of triplet energy resulting from the singlet fission process in pentacene. However, contributions to the generation of photocurrent were observed for Cl2-SiPc with no evidence of photocurrent contribution from Cl2-GePc. The result of our initial assessment established the potential for the application of SiPc and GePc in PHJ OPV devices. Thereafter, bis(pentafluoro phenoxy) silicon phthalocyanine (F10-SiPc) and bis(pentafluoro phenoxy) germanium phthalocyanine (F10-GePc) were synthesized and characterized. During thermal processing, it was discovered that F10-SiPc and F10-GePc underwent a reaction forming small amounts of difluoro SiPc (F2-SiPc) and difluoro GePc (F2-GePc). This undesirable reaction could be circumvented for F10-SiPc but not for F10-GePc. Using single crystal X-ray diffraction, it was determined that F10-SiPc has significantly enhanced π-π interactions compared with that of Cl2-SiPc, which had little to none. Unoptimized PHJ OPV devices based on F10-SiPc were fabricated and directly compared to those constructed from Cl2-SiPc, and in all cases, PHJ OPV devices based on F10-SiPc had significantly improved device characteristics compared to Cl2-SiPc.

  2. Development of gamma spectrometer using silicon photomultiplier (SiPM)

    International Nuclear Information System (INIS)

    Kim, Chan Kyu

    2011-02-01

    Gamma spectroscopy is used to determine the identity and quantity of gamma-emitters in nuclear physics, geochemistry and astrophysics. The scintillation detectors are being used as a gamma spectrometer generally, because of their higher gamma-ray detection efficiency and cheaper price than germanium semi-conductor detectors. A typical scintillation detector is composed of a scintillator, a window, and a photodetector. The photomultiplier (PM) tube has been the most widely used as a photodetector because of its advantages like high sensitivity, high signal-to-noise ratio, and wide dynamic range. Recently, the Silicon Photomultiplier (SiPM) is being studied as a substitute of PM tube. The SiPM has almost same performance compared to PM tube but it has additional advantages; low operating voltage, small volume, and cheap production cost. In this research, the gamma spectrometer using SiPM instead of PM tube is developed. The use of SiPM as a photodetector makes the gamma spectrometer smaller, cheaper, easier to use. For photon transport and collection from the large area scintillator to the small area SiPM, a light guide is applied in this gamma spectrometer system. Before fabrication of light guide, DETECT simulation is performed to study and prospect characteristics of light guide structure. And actual light guides are fabricated on the basis of this simulation result. Poly(methyl methacrylate) (PMMA) is chosen as material of light guide, 5 sample light guides are fabricated in different lengths and coatings. As a scintillator crystal, same NaI(Tl) crystal is chosen. For measurement and analysis of gamma spectrometer system, 3 gamma spectrometer systems are composed: PM tube-based system, PM tube-based system with the light guide, SiPM-based system with the light guide. Through comparison between the results of each gamma spectrometer, the performances of gamma spectrometer system are analyzed by each component. Measurement results of the second system is well

  3. Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane)

    Energy Technology Data Exchange (ETDEWEB)

    Czosnek, C.; Janik, J.F.; Olejniczak, Z. [Stanislaw Staszic University of Mining & Meterology, AGH, Krakow (Poland)

    2002-12-01

    Poly(carbosilane) or PCS, (-CH{sub 2}-SiH(CH{sub 3})-){sub n}, is used as a Si-bearing precursor in combination with a coal tar pitch to study thermally induced transformations toward SiC-modified carbon composites. Following mixing of the components in the molten pitch at 160{sup o}C, the mixture is heated under argon atmosphere at 500{sup o}C yielding a solid carbonizate that is further subjected to separate pyrolysis experiments at 1300{sup o}C or 1650{sup o}C. At temperatures up to 500{sup o}C, the PCS reacts with suitable pitch components as well as undergoing decomposition reactions. At higher temperatures, clusters of prevailingly nanocrystalline beta-SiC are confirmed after the 1650{sup o}C pyrolysis step with indications that the formation of the compound starts at 1300{sup o}C. Si-29 MAS NMR, XRD, FT-IR, XPS, and elemental analysis are used to characterize each pyrolysis step, especially, from the viewpoint of transformation of silicon species to silicon carbide in the carbon matrix evolved from the pitch.

  4. HRTEM analysis of the nanostructure of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2006-01-01

    The nanometric structure of porous silicon makes this material to be very suitable for its use in many different fields, including optoelectronics and biological applications. In the present work, the structure of porous silicon was investigated in detail by means of cross-sectional high-resolution transmission electron microscopy and digital image processing, together with electron energy loss spectroscopy. The structure of the Si/porous silicon interface and that of the silicon nanocrystals that compose porous silicon have been analyzed in detail. A strong strain contrast in the Si/porous silicon interface caused by high stresses was observed. Accordingly, dislocation pairs are found to be a possible mechanism of lattice matching between porous silicon and the Si substrate. Finally, high relative concentration of oxygen in the porous silicon layer was observed, together with low relative electron concentration in the conduction band when compared to Si

  5. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  6. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    International Nuclear Information System (INIS)

    Ozdemir, Baris; Unalan, Husnu Emrah; Kulakci, Mustafa; Turan, Rasit

    2011-01-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 μm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  7. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    Science.gov (United States)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  8. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    Science.gov (United States)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  9. A biomedical application of 32Si using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Di Tada, M.L.; Fifield, L.K.; Liu, K.; Cresswell, R.G.; Day, J.L.; Oldham, C.L.; Popplewell, J.; Carling, R.

    1998-01-01

    As a first application of the 32 Si tracer to a biomedical project, the first measurement of silicon uptake by a human subject has been carried out. The motivation for this study aroused from the supposition that silicate may be important in human physiology in protecting against aluminium toxicity. Indeed, in an earlier study of aluminium uptake, using the isotopic tracer, 26 Al, it had been shown that blood-Al levels following Al dosing were lower when the dose was accompanied by dissolved silicate than when it was not. An experiment was set out to determine directly the fraction absorbed from the gastrointestinal tract, and to quantify the kinetics of renal elimination, using the silicon isotopic tracer, 32 Si. A gas-filled magnet technique was developed for measuring 32 Si by AMS which allows a spatial separation of 32 S from 32 Si and hence a reduction in the counting rate entering the detector by a factor of 10 6 . The results for silicon absorption are consistent with those from earlier studies, indicating that the simultaneous ingestion of Al and silicate enhances the rate of aluminium excretion for a period of 12-24 hours

  10. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  11. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    International Nuclear Information System (INIS)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2016-01-01

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  12. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, B.; Sano, H.; Koshida, N. [Dept. Elec. and Elec. Eng., Tokyo Univ. of A and T, Koganei, Tokyo 184-8588 (Japan); Boukherroub, R. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France); Wayner, D.D.M.; Lockwood, D.J. [National Research Council, Ottawa (Canada)

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreated devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  14. Ultrathin HfON/SiO2 dual tunneling layer for improving the electrical properties of metal–oxide–nitride–oxide–silicon memory

    International Nuclear Information System (INIS)

    Liu, L.; Xu, J.P.; Chen, J.X.; Ji, F.; Huang, X.D.; Lai, P.T.

    2012-01-01

    A high-k gate stack structure with ultrathin HfON/SiO 2 as dual tunneling layer (DTL), AlN as charge storage layer (CSL) and HfAlO as blocking layer (BL) is proposed to make a charge-trapping-type metal–oxide–nitride–oxide–silicon non-volatile memory device by employing in-situ sputtering method. The validity of the structure is examined and confirmed by transmission electron microscopy. The memory window, program/erase, endurance and retention properties are investigated and compared with similar gate stack structure with Si 3 N 4 /SiO 2 as DTL, HfO 2 as CSL and Al 2 O 3 as BL. Results show that a large memory window of 3.55 V at a program/erase (P/E) voltage of + 8 V/− 15 V, high P/E speed, and good endurance and retention characteristic can be achieved using the Au/ HfAlO/AlN/(HfON/SiO 2 )/Si gate stack structure. The main mechanisms lie in the enhanced electron injection through the ultrathin high-k HfON/SiO 2 DTL with suitable band offset, high trapping efficiency of the high-k AlN material, and effective blocking role of the high-k HfAlO BL. - Highlights: ► An Au/HfAlO/AlN/(HfON/SiO 2 )/Si high-k gate stack structure is proposed. ► A band-engineered dual tunneling layer (HfON/SiO 2 ) is proposed and prepared. ► A good trade-off among the memory characteristics is obtained. ► In-situ sputtering method is employed to fabricate the gate stack structure.

  15. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    Nano-textured silicon, known as black silicon (bSi), is attractive with excellent photon trapping properties. bSi can be produced using simple one-step fabrication reactive ion etching (RIE) technique. However, in order to use bSi in photovoltaics doping process should be developed. Due to high s...

  16. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  17. Microscopic models of impurities in silicon

    International Nuclear Information System (INIS)

    Assali, L.V.C.

    1985-01-01

    The study of electronic structure of insulated and complex puntual impurities in silicon responsible by the appearing of deep energy levels in the forbiden band of semiconductor, is presented. The molecular cluster model with the treatment of surface orbitals by Watson sphere within the formalism of Xα multiple scattering method, was used. The electronic structures of three clusters representative of perfect silicon crystal, which were used for the impurity studies, are presented. The method was applied to analyse insulated impurities of substitutional and interstitial hydrogen (Si:H and Si:H i ), subtitutional and interstitial iron in neutral and positive charge states (Si:Fe 0 , + , Si:Fe 0 , + ) and substitutional gold in three charge states(Si,Au - , 0 , + ). The thetraedic interstitial defect of silicon (Si:Si i ) was also studied. The complex impurities: neighbour iron pair in the lattice (Si:Fe 2 ), substitutional gold-interstitial iron pair (Si:Au s Fe) and substitutional boron-interstitial hydrogen pair (Si:B s H i ), were analysed. (M.C.K.) [pt

  18. SiCloud

    DEFF Research Database (Denmark)

    Jiang, Cathy Y.; Devore, Peter T.S.; Lonappan, Cejo Konuparamban

    2017-01-01

    The silicon photonics industry is projected to be a multibillion dollar industry driven by the growth of data centers. In this work, we present an interactive online tool for silicon photonics. Silicon Photonics Cloud (SiCCloud.org) is an easy to use instructional tool for optical properties...

  19. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Science.gov (United States)

    Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  20. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2015-01-01

    Full Text Available Silicon (Si is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation.