WorldWideScience

Sample records for silicon influx transporters

  1. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia.

    Science.gov (United States)

    Wiley, J S; Jones, S P; Sawyer, W H; Paterson, A R

    1982-02-01

    Although cytosine arabinoside (araC) can induce a remission in a majority of patients presenting with acute myeloblastic leukemia (AML), a minority fail to respond and moreover the drug has less effect in acute lymphoblastic leukemia (ALL). The carrier-mediated influx of araC into purified blasts from patients with AML, ALL, and acute undifferentiated leukemia (AUL) has been compared to that of normal lymphocytes and polymorphs. Blasts showed a larger mediated influx of araC than mature cells, since mean influxes for myeloblasts and lymphoblasts were 6- and 2.3-fold greater than polymorphs and lymphocytes, respectively. Also, the mean influx for myeloblasts was fourfold greater than the mean for lymphoblasts. The number of nucleoside transport sites was estimated for each cell type by measuring the equilibrium binding of [(3)H]nitrobenzylthioinosine (NBMPR), which inhibits nucleoside fluxes by binding with high affinity to specific sites on the transport mechanism. The mean binding site numbers for myeloblasts and lymphoblasts were 5- and 2.8-fold greater, respectively, than for the mature cells of the same maturation series. The mean number of NBMPR binding sites for myeloblasts was fourfold greater than for lymphoblasts. Patients with AUL were heterogeneous since blasts from some gave values within the myeloblastic range and others within the lymphoblastic range. The araC influx correlated closely with the number of NBMPR binding sites measured in the same cells on the same day. Transport parameters were measured on blasts from 15 patients with AML or AUL who were then treated with standard induction therapy containing araC. Eight patients entered complete remission, while seven failed therapy, among whom were the three patients with the lowest araC influx (myeloblasts have both higher araC transport rates and more nucleoside transport sites than lymphoblasts and this factor may contribute to the greater sensitivity of AML to this drug. AraC transport varied >10

  2. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake

    Science.gov (United States)

    Mitani-Ueno, Namiki; Yamaji, Naoki

    2011-01-01

    The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake. PMID:21617377

  3. Induction of nitrate transport in maize roots, and kinetics of influx, measured with nitrogen-13

    International Nuclear Information System (INIS)

    Hole, D.J.; Drew, M.C.; Emran, A.M.; Fares, Y.

    1990-01-01

    Unlike phosphate or potassium transport, uptake of nitrate by roots is induced, in part, by contact with the substrate ion. Plasmalemma influx of 13 N-labeled nitrate in maize roots was studied in relation to induction of the uptake system, and the influence of short-term N starvation. Maize (Zea mays) roots not previously exposed to nitrate had a constitutive transport system (state 1), but influx increased 250% during six hours of contact with 100 micromolar nitrate, by which time the transport mechanism appeared to be fully synthesized (state 2). A three-day period of N starvation prior to induction and measurement of nitrate influx resulted in a greater capacity to transport nitrate than in unstarved controls, but this was fully expressed only if roots were kept in contact with nitrate for the six hours needed for full induction (state 2E). A kinetic analysis indicated a 160% increase in maximum influx in N-starved, induced roots with a small decrease in K m . The inducible component to nitrate influx was induced only by contact with nitrate. Full expression of the nitrate inducible transport system was dependent upon mRNA synthesis. An inhibitor of cytoplasmic protein synthesis (cycloheximide) eliminated the formation of the transport system while inhibition by chloramphenicol of mitochondrial- or plastid-coded protein synthesis had no effect. Poisoning of membrane-bound proteins effectively disabled both the constitutive and induced transport systems

  4. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  5. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  6. Estrone-1-sulphate (E1S) has impact on the kinetics parameters of transporter mediated taurine and glutamate influx in Caco-2 cells

    DEFF Research Database (Denmark)

    Steffansen, Bente; El-Sayed, F

    Previously, we have suggested estrone-1-sulfate (E1S) to be intercalated into the phospholipid membrane 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC). The overall hypothesis of the present study was that E1S intercalation in the cell membrane of Caco-2 cells may changes the functionality...... of membrane transporters. The aim was therefore to investigate if addition of E1S to the growth medium of Caco-2 cells before but not during the influx study, change the kinetic parameters of transporter-mediated influx of taurine and glutamate by respective TAUT and EAAT transporters. The results show that 4...

  7. The influx of amino acids into the heart of the rat

    International Nuclear Information System (INIS)

    Banos, G.; Moorhouse, S.R.; Pratt, O.E.; Wilson, P.A.; Daniel, P.M.

    1978-01-01

    The influx of nineteen amino acids into the heart of the living rat was studied by a method specially devised for experiments under controlled conditions in vivo. When, in separate experiments, the concentration of each amino acid in turn was artificially raised in the circulation, the influx of that amino acid into the heart increased. The data indicate that at least ten of these amino acids enter the heart in vivo by means of saturable carrier-mediated transport systems. The transport rates conform, at least approximately, to Michaelis kinetics and the transport systems are clearly, in the case of many amino acids, active, i.e. energy-dependent. The amino acids which were studied had rates of influx into the heart which differed from each other over a range of more than 10 to 1, even when allowances were made for the differences in their concentration in the circulating blood. These differences in influx were not related to such factors as the molecular size of the individual amino acids. The amino acids which have a high influx into the heart are mainly those which are needed either to re-synthesize contractile protein or as oxidizable substrates. (author)

  8. Cytosine Arabinoside Influx and Nucleoside Transport Sites in Acute Leukemia

    OpenAIRE

    Wiley, J. S.; Jones, S. P.; Sawyer, W. H.; Paterson, A. R. P.

    1982-01-01

    Although cytosine arabinoside (araC) can induce a remission in a majority of patients presenting with acute myeloblastic leukemia (AML), a minority fail to respond and moreover the drug has less effect in acute lymphoblastic leukemia (ALL). The carrier-mediated influx of araC into purified blasts from patients with AML, ALL, and acute undifferentiated leukemia (AUL) has been compared to that of normal lymphocytes and polymorphs. Blasts showed a larger mediated influx of araC than mature cells...

  9. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  10. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñoz, Enrique

    2017-01-24

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green\\'s function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.

  11. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  12. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  13. Lifetime-Enhanced Transport in Silicon due to Spin and Valley Blockade

    NARCIS (Netherlands)

    Lansbergen, G.P.; Rahman, R.; Verduijn, J.; Tettamanzi, G.C.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    We report the observation of lifetime-enhanced transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition

  14. Identification of a mammalian silicon transporter

    NARCIS (Netherlands)

    Ratcliffe, Sarah; Jugdaohsingh, Ravin; Vivancos, Julien; Marron, Alan; Deshmukh, Rupesh; Ma, Jian Feng; Mitani-Ueno, Namiki; Robertson, Jack; Wills, John; Boekschoten, Mark V.; Müller, Michael; Mawhinney, Robert C.; Kinrade, Stephen D.; Isenring, Paul; Bélanger, Richard R.; Powell, Jonathan J.

    2017-01-01

    Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals,

  15. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2017-01-01

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green's function method. The influence of the surface termination

  16. Photoconductivity relaxation and electron transport in macroporous silicon structures

    Directory of Open Access Journals (Sweden)

    L.A. Karachevtseva

    2017-12-01

    Full Text Available Kinetics and temperature dependence of photoconductivity were measured in macroporous silicon at 80…300 K after light illumination with the wavelength 0.9 μm. The influence of mechanisms of the charge carrier transport through the macropore surface barrier on the kinetics of photoconductivity at various temperatures was investigated. The kinetics of photoconductivity distribution in macroporous silicon and Si substrate has been calculated using the finite-difference time-domain method. The maximum of photoconductivity has been found both in the layer of macroporous silicon and in the monocrystalline substrate. The kinetics of photoconductivity distribution in macroporous silicon showed rapid relaxation of the photoconductivity maximum in the layer of macroporous silicon and slow relaxation of it in the monocrystalline substrate.

  17. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate......, a mutant in Si influx transporter BdLsi1 was identified. BdLsi1 belongs to the major intrinsic protein family. The mutant BdLsi1 protein had an amino acid change from proline to serine in the highly conserved NPA motif. The mutation caused a defect in channeling of Si as well as other substrates...... such as germanium and arsenite. The Si concentration in the mutant plant was significantly reduced by more than 80 %. Rice mutants defective in Si transporters OsLsi1 and OsLsi2 also showed significantly lower straw Si concentration. It is concluded that the quality of straw biomass for bioenergy purposes can...

  18. Ketamine inhibits 45Ca influx and catecholamine secretion by inhibiting 22Na influx in cultured bovine adrenal medullary cells

    International Nuclear Information System (INIS)

    Takara, Hiroshi; Wada, Akihiko; Arita, Masahide; Izumi, Futoshi; Sumikawa, Koji

    1986-01-01

    The effects of ketamine, an intravenous anesthetic, on 22 Na influx, 45 Ca influx and catecholamine secretion were investigated in cultured bovine adrenal medullary cells. Ketamine inhibited carbachol-induced 45 Ca influx and catecholamine secretion in a concentration-dependent manner with a similar potency. Ketamine also reduced veratridine-induced 45 Ca influx and catecholamine secretion. The influx of 22 Na caused by carbachol or by veratridine was suppressed by ketamine with a concentration-inhibition curve similar to that of 45 Ca influx and catecholamine secretion. Inhibition by ketamine of the carbachol-induced influx of 22 Na, 45 Ca and secretion of catecholamines was not reversed by the increased concentrations of carbachol. These observations indicate that ketamine, at clinical concentrations, can inhibit nicotinic receptor-associated ionic channels and that the inhibition of Na influx via the receptor-associated ionic channels is responsible for the inhibition of carbachol-induced Ca influx and catecholamine secretion. (Auth.)

  19. Chloroquine transport in Plasmodium falciparum. 1. Influx and efflux kinetics for live trophozoite parasites using a novel fluorescent chloroquine probe.

    Science.gov (United States)

    Cabrera, Mynthia; Natarajan, Jayakumar; Paguio, Michelle F; Wolf, Christian; Urbach, Jeffrey S; Roepe, Paul D

    2009-10-13

    Several models for how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Distinguishing between these models requires detailed analysis of high-resolution CQ transport data that is unfortunately impossible to obtain with traditional radio-tracer methods. Thus, we have designed and synthesized fluorescent CQ analogues for drug transport studies. One probe places a NBD (6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic acid) group at the tertiary aliphatic N of CQ, via a flexible 6 C amide linker. This probe localizes to the malarial parasite digestive vacuole (DV) during initial perfusion under physiologic conditions and exhibits similar pharmacology relative to CQ, vs both CQ-sensitive (CQS) and CQ-resistant (CQR) parasites. Using live, synchronized intraerythrocytic parasites under continuous perfusion, we define NBD-CQ influx and efflux kinetics for CQS vs CQR parasites. Since this fluorescence approach provides data at much higher kinetic resolution relative to fast-filtration methods using (3)H-CQ, rate constants vs linear initial rates for CQ probe flux can be analyzed in detail. Importantly, we find that CQR parasites have a decreased rate constant for CQ influx into the DV and that this is due to mutation of PfCRT. Analysis of zero trans efflux for CQS and CQR parasites suggests that distinguishing between bound vs free pools of intra-DV drug probe is essential for proper kinetic analysis of efflux. The accompanying paper (DOI 10.1021/bi901035j ) further probes efflux kinetics for proteoliposomes containing purified, reconstituted PfCRT.

  20. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  1. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  2. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine.

    Science.gov (United States)

    Zhang, Cui; Lin, Jun; Wei, Fang; Song, Jian; Chen, Wenyue; Shan, Lidong; Xue, Rong; Wang, Guoqing; Tao, Jin; Zhang, Guoxing; Xu, Guang-Yin; Wang, Linhui

    2018-05-15

    Accumulating evidence supports that cerebrospinal fluid (CSF) in the subarachnoid space (SAS) could reenter the brain parenchyma via the glymphatic influx. The present study was designed to characterize the detailed pathway of subarachnoid CSF influx by using a novel CSF tracer. Fluorescently conjugated cadaverine (A488-ca), for the first time, was employed to investigate CSF movement in the brain. Following intracisternal infusion of CSF tracers, mice brain was sliced and prepared for fluorescence imaging. Some brain sections were immunostained in order to observe tracer distribution and cellular uptake. A488-ca moved into the brain parenchyma rapidly, and the influx was time and region dependent. A488-ca entered the mice brain more readily and spread more widely than another commonly used CSF tracer-fluorescently conjugated ovalbumin (OA-45). Furthermore, A488-ca could enter the brain parenchyma either along the paravascular space or across the pial surface. Suppression of glymphatic transport by administration with acetazolamide strikingly reduced the influx of A488-ca. More importantly, relative to OA-45 largely remained in the extracellular space, A488-ca exhibited obvious cellular uptake by astrocytes surrounding the blood vessels and neurons in the cerebral cortex. Subarachnoid CSF could flow into the brain parenchyma via the glymphatic influx, in which the transcellular pathway was faithfully traced by intracisternal infusion with fluorescently conjugated cadaverine. These observations extend our comprehension on the glymphatic influx pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. TFTR L mode energy confinement related to deuterium influx

    International Nuclear Information System (INIS)

    Strachan, J.D.

    1999-01-01

    Tokamak energy confinement scaling in TFTR L mode and supershot regimes is discussed. The main result is that TFTR L mode plasmas fit the supershot scaling law for energy confinement. In both regimes, plasma transport coefficients increased with increased edge deuterium influx. The common L mode confinement scaling law on TFTR is also inversely proportional to the volume of wall material that is heated to a high temperature, possibly the temperature at which the deuterium sorbed in the material becomes detrapped and highly mobile. The deuterium influx is increased by: (a) increased beam power due to a deeper heated depth in the edge components and (b) decreased plasma current due to an increased wetted area as governed by the empirically observed dependence of the SOL width upon plasma current. (author). Letter-to-the-editor

  4. Transport in silicon-germanium heterostructures

    International Nuclear Information System (INIS)

    Chrastina, Daniel

    2001-01-01

    The work presented here describes the electrical characterization of n- and p-type strained silicon-germanium systems. Theories of quantum transport m low magnetic fields at low temperature are discussed m terms of weak-localization: the traditional theory is shown not to account for the dephasing in a 2-dimensional hole gas behaving in a metallic manner and emergent alternative theories, while promising, require refinement. The mobility as a function of sheet density is measured in a p-type pseudomorphic Si 0.5 Ge 0.5 across the temperature range 350mK-282K; it is shown that calculations of the mobility based on semi-classical scattering mechanisms fail below 10K where quantum transport effects become relevant. A room temperature Hall scattering factor has been extracted. A new functional form has been presented to fit the resistivity as a function of temperature, below 20K: traditional theories of screening and weak localization appear not to be applicable. It is also demonstrated that simple protection circuitry is essential if commercial-scale devices are to be meaningfully investigated. Mobility spectrum analysis is performed on an n-type strained-silicon device. Established analysis methods are discussed and a new method is presented based on the Bryan's Algorithm approach to maximum entropy. The breakdown of the QHE is also investigated: the critical current density compares well to that predicted by an existing theory. Finally, devices in which both electron and hole gases can be induced are investigated. However, it is shown that the two cannier species never co-exist. Design rules are presented which may allow more successful structures to be created. Results are presented which demonstrate the success and the utility of implanted contacts which selectively reach different regions of the structure. (author)

  5. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  6. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  7. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    International Nuclear Information System (INIS)

    Sheng, Chan Kok; Mahmood Mat Yunus, W.; Yunus, Wan Md. Zin Wan; Abidin Talib, Zainal; Kassim, Anuar

    2008-01-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity

  8. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Kužel, Petr; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-01-01

    Roč. 91, č. 19 (2015), "195443-1"-"195443-10" ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : silicon nanocrystals * charge transport * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  10. ULTRATHIN SILICON MEMBRANES TO STUDY SUPERCURRENT TRANSPORT IN CRYSTALLINE SEMICONDUCTORS

    NARCIS (Netherlands)

    VANHUFFELEN, WM; DEBOER, MJ; KLAPWIJK, TM

    1991-01-01

    We have developed a two-step anisotropic etching process to fabricate thin silicon membranes, used to study supercurrent transport in semiconductor coupled weak links. The process uses a shallow BF2+ implantation, and permits easy control of membrane thickness less-than-or-equal-to 100 nm.

  11. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Science.gov (United States)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  12. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Aparajita [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kole, Arindam, E-mail: erak@iacs.res.in [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dasgupta, Arup [Microscopy and Thermophysical Property Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chaudhuri, Partha [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-11-30

    Highlights: • Low temperature columnar growth of regular sized Si-quantum dots (Si-QDs) within a-SiC:H/μc-SiC:H multilayer structure by tuning the a-SiC:H layer thickness. • Thickness optimization of the a-SiC:H layers resulted in a sharp increase of the transverse current and a decrease of the trap concentrations. • The arrangements of the Si-QDs favor percolation paths for the transverse current. - Abstract: Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel–Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  13. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  14. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  15. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  16. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  17. Propranolol transport across the inner blood-retinal barrier: potential involvement of a novel organic cation transporter.

    Science.gov (United States)

    Kubo, Yoshiyuki; Shimizu, Yoshimi; Kusagawa, Yusuke; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-09-01

    The influx transport of propranolol across the inner blood-retinal barrier (BRB) was investigated. In the in vivo analysis of carotid artery single-injection method, [(3) H]propranolol uptake by the retina was greater than that of an internal reference compound, and was reduced by several organic cations. In the in vitro uptake study, TR-iBRB2 cells, an in vitro model of the inner BRB, showed a time-, concentration-, pH- and temperature-dependent [(3) H]propranolol uptake, suggesting the involvement of a carrier-mediated transport process in the influx of propranolol across the inner BRB. In the inhibition study, various organic cations, including drugs and candidates for the treatment of the retinal diseases, inhibited the [(3) H]propranolol uptake by TR-iBRB2 cells with no significant effects by the substrates and inhibitors of well-characterized organic cation transporters, suggesting that the influx transport of propranolol is performed by a novel transporter at the inner BRB. An analysis of the relationship between the inhibitory effect and the lipophilicity of inhibitors suggests a lipophilicity-dependent inhibitory effect of amines on the [(3) H]propranolol uptake by TR-iBRB2 cells. These results showed that influx transport of propranolol across the inner BRB is performed by a carrier-mediated transport process, suggesting the involvement of a novel organic cation transporter. Copyright © 2013 Wiley Periodicals, Inc.

  18. 86Rb(K) influx and [3H]ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    International Nuclear Information System (INIS)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P.

    1989-01-01

    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), 86 Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific [ 3 H]ouabain binding by the human platelet. This 86 Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active 86 Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active 86 Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets

  19. A Ca2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant

    International Nuclear Information System (INIS)

    Kerboeuf, D.; Cohen, J.

    1990-01-01

    A Paramecium possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 microM aminoethyl dextran as a vital secretagogue, we analyzed the movements of calcium (Ca 2+ ) during the discharge of trichocysts. We showed that (a) external Ca 2+ , at least at 3 X 10(-7) M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca 2+ as measured from 45 Ca uptake is induced by AED; (c) this influx is independent of the well-characterized voltage-operated Ca 2+ channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, nd12. We propose that the Ca 2+ influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca 2+ channel or the activation of other Ca 2+ transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca 2+ concentration would in turn induce membrane fusion. The mutation nd12 would affect a gene product involved in the control of plasma membrane permeability to Ca 2+ , specifically related to membrane fusion

  20. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  1. Silicon based nanogap device for investigating electronic transport through 12 nm long oligomers

    DEFF Research Database (Denmark)

    Strobel, S.; Albert, E.; Csaba, G.

    2009-01-01

    We have fabricated vertical nanogap electrode devices based on Silicon-on-Insulator (SOI) substrates for investigating the electronic transport properties of long, conjugated molecular wires. Our nanogap electrode devices comprise smooth metallic contact pairs situated at the sidewall of an SOI s...

  2. sup 86 Rb(K) influx and ( sup 3 H)ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P. (Royal Free Hospital and School of Medicine, London (England))

    1989-08-01

    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), {sup 86}Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific ({sup 3}H)ouabain binding by the human platelet. This {sup 86}Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active {sup 86}Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active {sup 86}Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets.

  3. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  4. Electron transport in silicon nanowires having different cross-sections

    Directory of Open Access Journals (Sweden)

    Muscato Orazio

    2016-06-01

    Full Text Available Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

  5. Measurement of calcium influx in tethered rings of rabbit aorta under tension

    International Nuclear Information System (INIS)

    Gleason, M.M.; Ratz, P.H.; Flaim, S.F.

    1985-01-01

    Calcium (Ca) influx in vascular smooth muscle is routinely measured in untethered preparations not under passive stretch, and Ca influx data are correlated with data for steady-state isometric tension obtained under parallel conditions from tethered preparations under passive stretch. The validity of this method was tested by simultaneous measurement of Ca influx and tension in tethered rings of rabbit thoracic aorta. Ca influx ( 45 Ca 3-min pulse) and tension were measured at 3 and 30 min after norepinephrine (NE) or KCl and under control (no agonist) conditions. Active tension was significantly altered by variations in passive tension. Ca influx was unaffected by passive tension under control, NE, or KCl conditions, and results were similar at 3 and 30 min. The results confirm the validity of correlating Ca influx data from untethered rings with steady-state contractile response data obtained from tethered rings under similar experimental conditions

  6. Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project

    Science.gov (United States)

    Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.

    2012-04-01

    Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and

  7. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  8. Transport spectroscopy of coupled donors in silicon nano-transistors

    Science.gov (United States)

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  9. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Smith, R. S.; Pešek, Bedřich; Kubeš, Martin; Zažímalová, Eva; Petrášek, Jan; Hoyerová, Klára

    2010-01-01

    Roč. 61, č. 13 (2010), s. 3589-3598 ISSN 0022-0957 R&D Projects: GA AV ČR KJB600380702; GA MŠk(CZ) LC06034 Grant - others:_(CZ) CZ.2.16/3.1.00/21159 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin efflux carrier * auxin influx carrier * auxin transport Subject RIV: EF - Botanics Impact factor: 4.818, year: 2010

  10. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  11. Tunable electronic transport properties of silicon-fullerene-linked nanowires: Semiconductor, conducting wire, and tunnel diode

    OpenAIRE

    Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro

    2010-01-01

    We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum ...

  12. Electronic transport through organophosphonate monolayers on silicon/silicon dioxide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Achyut; Pathak, Anshuma; Tornow, Marc [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Liao, Kung-Ching; Schwartz, Jeffrey [Department of Chemistry, Princeton University, NJ (United States); Cattani-Scholz, Anna; Abstreiter, Gerhard [Walter Schottky Institut, TU Muenchen (Germany)

    2011-07-01

    Understanding the electronic transport through layered systems of organic functional layers on semiconductor surfaces is of major importance for future applications in nanoelectronics, photovoltaics and sensors. We have prepared self-assembled monolayers (SAMs) of 9,10-diphenyl-2,6-diphosphono-anthracene and 11-hydroxyundecyl phosphonic acid precursors on highly p-doped silicon surfaces coated with a 1 nm SiO{sub 2} layer. Contact angle, AFM and ellipsometry evidenced the homogeneity of the formed SAMs, and their thickness was determined to be 0.82{+-}0.07 nm and 1.13{+-}0.09 nm, respectively. We provided large area electrical contacts on top of the SAMs by a hanging Hg drop electrode. The measured I-V characteristics revealed an enhanced conductance of the aromatic vs. the aliphatic compounds, with current densities of the order of 10 A/m{sup 2} and 0.01 A/m{sup 2}, at 0.5 V, respectively. We analyzed the data in terms of non-resonant tunneling through the combined oxide-SAM barrier and found good qualitative agreement up to 0.2 V bias. Preliminary measurements on organized bilayers of anthracene bisphosphonates that were grown using techniques of coordination chemistry are discussed, too.

  13. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  14. Study of porous silicon morphologies for electron transport

    International Nuclear Information System (INIS)

    Pang, Y.; Demroff, H.P.; Elliott, T.S.; Lee, B.; Lu, J.; Madduri, V.B.; Mazumdar, T.K.; McIntyre, P.M.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Field emitter devices are being developed for the gigatron, a high-efficiency, high frequency and high power microwave source. One approach being investigated is porous silicon, where a dense matrix of nanoscopic pores are galvanically etched into a silicon surface. In the present paper pore morphologies were used to characterize these materials. Using of Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images of both N-type and P-type porous layers, it is found that pores propagate along the crystallographic direction, perpendicular to the surface of (100) silicon. Distinct morphologies were observed systematically near the surface, in the main bulk and near the bottom of N-type (100) silicon lift-off samples. It is seen that the pores are not cylindrical but exhibit more or less approximately square cross sections. X-ray diffraction spectra and electron diffraction patterns verified that bulk porous silicon is still a single crystal. In addition, a Scanning Tunnelling Microscope (STM) and an Atomic Force Microscope (AFM) were successfully applied to image the 40 angstrom gold film structure which was coated upon a cooled porous silicon layer. By associating the morphology study with the measured emitting current density of the Oxidized Porous Silicon Field Emission Triode (OPSFET), techniques for the surface treatment of porous silicon will be optimized

  15. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    International Nuclear Information System (INIS)

    Strobel, Sebastian; Hernandez, Rocio Murcia; Hansen, Allan G; Tornow, Marc

    2008-01-01

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10 -18 farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology

  16. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian; Hernandez, Rocio Murcia [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Hansen, Allan G; Tornow, Marc [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)], E-mail: m.tornow@tu-bs.de

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10{sup -18} farad and asymmetric resistances of 30 and 300 M{omega}, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  17. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.

    Science.gov (United States)

    Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc

    2008-09-17

    We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.

  18. Calcium influx determines the muscular response to electrotransfer

    DEFF Research Database (Denmark)

    Møller, Pernille Højman; Brolin, Camilla; Gissel, Hanne

    2012-01-01

    expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA...... low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene...

  19. Interaction of Drug or Food with Drug Transporters in Intestine and Liver.

    Science.gov (United States)

    Nakanishi, Takeo; Tamai, Ikumi

    2015-01-01

    Oral bioavailability (F) is determined as fraction of the drug dose absorbed through the gastrointestinal membranes (Fa), the unmetabolized fraction of the absorbed dose that passes through the gut into the portal blood (Fg), and the hepatic first pass availability (Fh), namely F is expressed as the product of Fa, Fg and Fh (F = Fa.Fg.Fh). Current evidence suggests that transporter proteins play a role in intestinal absorption and hepatobiliary clearance of drugs. Among those transporters, this review will focus on PEPT1 and OATP2B1 as influx transporter and p-glycoprotein (P-gp) and BCRP as efflux transporter in intestinal epithelial cells, and on OATP1B1 and 1B3 as influx transporter and MRP2 as efflux transporter in hepatocytes, respectively, because drug-drug (DDI) and -food (DFI) interactions on these transporter are considered to affect bioavailability of their substrate drugs. DDI and DFI may reduce systemic exposure to drug by blocking influx transporters in intestine, but increase it by modulating influx and efflux transporters in liver and efflux transporters in intestines. Namely, drug disposition and efficacy are likely affected by DDI and DFI, resulting in treatment failures or increase in adverse effect. Therefore, it is of significantly importance to understand precise mechanism of DDI and DFI. This review will present information about transporter-based DDI and DFI in the processes of intestinal absorption and hepatic clearance of drugs, and discuss about their clinical implication.

  20. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  1. Radiation entropy influx as a measure of planetary dissipative processes

    International Nuclear Information System (INIS)

    Izakov, M.N.

    1989-01-01

    Dissipative processes including high flows of matter and energy occur at the planets. Radiation negentropy influx, resulting from difference of entropy fluxes of incoming solar and outgoing thermal radiation of the planet, is a measure of all these processes. Large share of radiation negentropy influx is spent in the vertical thermal fluxes which keep the planet temperature conditions. Next share of radiation negentropy consumption at the Earth is water evaporation. It's rest part is used for the dynamics, which is explained by the efficiency insignificant amount of heat engine, which generates movements in the atmosphere and ocean. Essentially higher share of radiation negentropy influx, than at the Earth, is spent at the Venus, where there are practically no water

  2. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  3. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  4. PtSi Clustering in Silicon Probed by Transport Spectroscopy

    Directory of Open Access Journals (Sweden)

    Massimo Mongillo

    2013-12-01

    Full Text Available Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.

  5. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  6. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  7. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  8. Luminescence in amorphous silicon p-i-n diodes under double-injection dispersive-transport-controlled recombination

    International Nuclear Information System (INIS)

    Han, D.; Wang, K.; Yeh, C.; Yang, L.; Deng, X.; Von Roedern, B.

    1997-01-01

    The temperature and electric-field dependence of the forward bias current and the electroluminescence (EL) in hydrogenated amorphous silicon (a-Si:H) p-i-n and n-i-p diodes have been studied. Both the current and the EL efficiency temperature dependence show three regions depending on either hopping-controlled or multiple-trapping or ballistic transport mechanisms. Comparing the thermalization-controlled geminate recombination processes of photoluminescence to the features of EL, the differences can be explained by transport-controlled nongeminate recombination in trap-rich materials. copyright 1997 The American Physical Society

  9. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  10. TeBG- and CBG-bound steroid hormones in rabbits are available for influx into uterus in vivo

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Steingold, K.A.; Pardridge, W.M.; Judd, H.L.

    1988-01-01

    The metabolic clearance rate (MCR) of gonadal or adrenal steroid hormones in rabbits often does not bear the expected inverse relationship with hormone binding to testosterone-binding globulin (TeBG) or corticosteroid-binding globulin (CBG). This suggests TeBG or CBG may not impede steroid hormone delivery to tissues. The effects of rabbit plasma proteins on the influxes of 3 H-labeled steroids from the circulation into the rabbit uterus were measured in vivo using a tissue sampling single-injection technique. In the absence of plasma proteins, estradiol (E 2 ) and testosterone (T) were freely diffusible through the uterine microvasculature (i.e., extraction >80%). The extractions of dihydrostestosterone (DHT) and corticosterone (B) ranged from 60 to 72%, while that of cortisol (F) was reduced at 40%. Rabbit serum exerted no inhibition of the influxes of the steroids tested. The influxes of T and B greatly exceeded the rates that would be expected if only the free and albumin-bound fractions estimated in vitro were diffusible in vivo. However, the extraction of [ 3 H]corticosteroid-binding globulin or bovine [ 3 H]albumin were low, consistent with little, if any, extravascular uptake of the plasma proteins. The results indicate both albumin-bound and globulin-bound steroid hormone are available for transport into the uterus in the rabbit in vivo without significant exodus of the plasma protein, per se

  11. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clément, N., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr; Han, X. L. [Institute of Electronics, Microelectronics and Nanotechnology, CNRS, Avenue Poincaré, 59652 Villeneuve d' Ascq (France); Larrieu, G., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr [Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Universite de Toulouse, 7 Avenue Colonel Roche, 31077 Toulouse (France)

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  12. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  13. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong, E-mail: xdwang@semi.ac.cn; Ji, An; Yang, Fuhua [Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China)

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  14. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Science.gov (United States)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua

    2014-03-01

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  15. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  16. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  17. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  18. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence.

    Science.gov (United States)

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-10-22

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required--later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.

  19. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  20. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine

    Directory of Open Access Journals (Sweden)

    Ada Duka

    2014-06-01

    Full Text Available Glucose is transported in crustacean hepatopancreas and intestine by Na+-dependent co-transport, while Na+-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus hepatopancreas brush border membrane vesicles (BBMV were used to characterize, in detail, the cation-dependency of both D-[3H]-glucose and D-[3H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0–100 mM, both [3H]-glucose and [3H]-fructose influxes (0.1 mM; 1 min uptakes by hepatopancreatic BBMV were hyperbolic functions of [Na+]. [3H]-glucose and [3H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15–100 mM were hyperbolic functions of [K+]. Both sugars displayed significant (p<0.01 Na+/K+-dependent and cation-independent uptake processes. Transepithelial 25 µM [3H]-glucose and [3H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0–50 mM and 5–100 mM, respectively, were hyperbolic functions of luminal [Na+] and [K+]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01 Na+/K+-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the “preferred”, high affinity, cation for both sugars in the hepatopancreas, and potassium being the “preferred”, high affinity, cation for both sugars in the intestine.

  1. Charge transport in non-irradiated and irradiated silicon detectors

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.L.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    A model describing the transport of the charge carriers generated in n-type silicon detectors by ionizing particles is presented. In order to reproduce the experimental current pulse responses induced by α and β particles in non-irradiated and irradiated detectors up to fluences (PHI) much beyond the n to p-type inversion, an n-type region 15 μm deep is introduced on the p + side of the diode. This model also gives mobilities which decrease linearly up to fluences of around 5x10 13 particles/cm 2 and beyond, converging to saturation values of about 1000 and 450 cm 2 /V s for electrons and holes, respectively. The charge carrier lifetime degradation with increased fluence, due to trapping, is responsible for a predicted charge collection deficit for β particles and for α particles which is found to agree with direct CCE measurements. (author)

  2. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  3. INMS measures an influx of molecules from Saturn's rings

    Science.gov (United States)

    Perry, M. E.

    2017-12-01

    In 1984, Connerney and Waite proposed water influx from Saturn's rings to explain the low electron densities measured during Pioneer and Voyager radio occultation experiments. Charge exchange with this minor species depleted the H+ ions and provided a faster path to electron recombination. With ice the primary constituent of the rings, water was the most likely in-falling molecule. During the Grand Finale orbits, Cassini's Ion and Neutral Mass Spectrometer (INMS) detected and quantified an influx from the rings. Unexpectedly, the primary influx molecules are CH4 and a heavier carbon-bearing species. Water was detected, but quantities were factors of ten lower than these other species. Distribution in both altitude and latitude are consistent with a ring influx. The concentration of the minor species in Saturn's atmosphere shows that they enter Saturn's atmosphere from the top. Both molecules have their highest concentrations at the highest altitudes, with concentrations >0.4% at 3,500 km altitude and only 0.02% at 2,700 km. Molecules from the rings deorbit to Saturn's atmosphere at altitudes near 4,000 km, consistent with the INMS measurements. The latitudinal dependence of the minor species indicates that their source is near the equatorial plane. At high altitudes, the minor species were observed primarily at zero latitude, where the 28u species was six times more concentrated than at 5° latitude. At lower altitudes, the peaking ratio was 1, indicating that the species had diffused and was fully mixed into Saturn's H2 atmosphere. The lighter molecule, CH4, diffuses more rapidly than the 28u species. INMS also detected both of these species during the earlier F-ring passes, finding that the neutrals were centered at the ring plane and extended 3,000 km (half width, half max) north and south.

  4. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Yangyang Qi

    2014-02-01

    Full Text Available The electron transport characteristics of silicon nanowires (SiNWs fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  5. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  6. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx

    NARCIS (Netherlands)

    Ellerbroek, PM; Schoemaker, RG; van Veghel, R; Hoepelman, AIM; Coenjaerts, FEJ

    Background The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of

  7. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus

    International Nuclear Information System (INIS)

    Ortega, P.; Custódio, M.R.; Zanotto, F.P.

    2014-01-01

    Highlights: • Cd 2+ gill cell transport, a non-essential toxic metal, was characterized in a hypo-hyper-regulating mangrove crab Ucides cordatus. • Cd 2+ enter gill cells through Ca 2+ channels and is dependent of intracellular Ca 2+ levels. • Route of entry in gill cells also involves a Cd 2+ /Ca 2+ (2Na) exchanger. • Cd transport depends on Na + /K + -ATPase and gill cell electrochemical gradient. • Vanadate inhibits gill Cd 2+ transport and ouabain increase gill Cd 2+ transport. - Abstract: Membrane pathway for intracellular cadmium (Cd 2+ ) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd 2+ transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd 2+ concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd 2+ transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl 2 and different inhibitors. Addition of extracellular calcium (Ca 2+ ) to the cells affected little the fluorescence of FluoZin, confirming that Cd 2+ was the main ion increasing intracellular fluorescence. Ca 2+ channels blockers (nimodipine and verapamil) decreased Cd 2+ influx as well as vanadate, a Ca 2+ -ATPase blocker. Chelating intracellular Ca 2+ (BAPTA) decreased Cd 2+ influx in gill cells, while increasing intracellular Ca 2+ (caffeine) augmented Cd influx. Cd 2+ and ATP added at different temporal conditions were not effective at increasing intracellular Cd 2+ accumulation. Ouabain (Na + /K + -ATPase inhibitor) increased Cd 2+ influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd 2+ influx, a non-essential metal, through the gill cell plasma membrane of crabs are suggested

  8. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  9. Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons

    International Nuclear Information System (INIS)

    Ticku, M.K.; Lowrimore, P.; Lehoullier, P.

    1986-01-01

    Ethanol has a pharmacological profile similar to other centrally acting drugs, which facilitate GABAergic transmission. GABA is known to produce its effects by increasing the conductance to Cl- ions. In this study, we have examined the effect of ethanol on GABA-induced 36Cl-influx in primary spinal cord cultured neurons. GABA produces a concentration-dependent, and saturable effect on 36Cl-influx in these neurons. Ethanol potentiates the effect of GABA on 36Cl-influx in these neurons. GABA (20 microM) increased the 36Cl-influx by 75% over the basal value, and in the presence of 50 mM ethanol, the observed increase was 142%. Eadie-Hoffstee analysis of the saturation curves indicated that ethanol decreases the Km value of GABA (10.6 microM to 4.2 microM), and also increases the Vmax. Besides potentiating the effect of GABA, ethanol also appears to have a direct effect in the absence of added GABA. These results suggest that ethanol enhances GABA-induced 36Cl-influx and indicate a role of GABAergic system in the actions of ethanol. These results also support the behavioral and electrophysiological studies, which have implicated GABA systems in the actions of ethanol. The potential mechanism(s) and the role of direct effect of ethanol is not clear at this time, but is currently being investigated

  10. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    International Nuclear Information System (INIS)

    Yashima, N.; Wada, A.; Izumi, F.

    1986-01-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of 45 Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of 45 Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of 45 Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the 45 Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the 45 Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of 45 Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of 45 Ca. Based on these findings, the authors suggest that inhibition of the 45 Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels

  11. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  12. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros

    2011-01-01

    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  13. The Indianapolis Flux Experiment (INFLUX: A test-bed for developing urban greenhouse gas emission measurements

    Directory of Open Access Journals (Sweden)

    Kenneth J. Davis

    2017-05-01

    Full Text Available The objective of the Indianapolis Flux Experiment (INFLUX is to develop, evaluate and improve methods for measuring greenhouse gas (GHG emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

  14. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  15. Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.; Bokor, Jeffrey; Schenkel, Thomas

    2009-06-10

    We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

  16. Two-point model for electron transport in EBT

    International Nuclear Information System (INIS)

    Chiu, S.C.; Guest, G.E.

    1980-01-01

    The electron transport in EBT is simulated by a two-point model corresponding to the central plasma and the edge. The central plasma is assumed to obey neoclassical collisionless transport. The edge plasma is assumed turbulent and modeled by Bohm diffusion. The steady-state temperatures and densities in both regions are obtained as functions of neutral influx and microwave power. It is found that as the neutral influx decreases and power increases, the edge density decreases while the core density increases. We conclude that if ring instability is responsible for the T-M mode transition, and if stability is correlated with cold electron density at the edge, it will depend sensitively on ambient gas pressure and microwave power

  17. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    International Nuclear Information System (INIS)

    Zhang, Y.; Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.; Zhu, R.

    2015-01-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters

  18. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    Science.gov (United States)

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  19. P type porous silicon resistivity and carrier transport

    International Nuclear Information System (INIS)

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-01-01

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P % ) was found to be the major contributor to the PS resistivity (ρ PS ). ρ PS increases exponentially with P % . Values of ρ PS as high as 1 × 10 9 Ω cm at room temperature were obtained once P % exceeds 60%. ρ PS was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ PS . Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P % lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P % overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices

  20. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  1. The influence of diffusion of fluorine compounds for silicon lateral etching

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick; Goodyear, Alec; Braithwaite, Nicholas St.John

    2004-07-01

    In an earlier study, it was proposed that long-range surface transport of fluorine atoms could precede the eventual binding to a silicon atom. The rate of binding increases if the silicon is bombarded with high energy ions. In this study, the lateral etching of a silicon layer, sandwiched between two silicon dioxide layers, was studied in order to investigate and extend these hypotheses. The under etching of the silicon layer was higher for wafers which suffered ion bombardment, showing that this mechanism is important even for horizontal etching. At the same time, the thickness of the silicon layer was varied. In all cases, the thinner silicon layer etched much faster then the thicker layer, indicating that fluorine surface transport is much more important than re-emission for these processes. The etch rate increase with ion bombardment can be explained by the fact that part of the energy of the incoming ions is transferred to the fluorine compounds which are on the horizontal surfaces and that ion bombardment enhances the fluorine surface transport.

  2. Enhanced carbon influx into TFTR supershots

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Bush, C.E.; Dylla, H.F.; Owens, D.K.; Pitcher, C.S.; Ulrickson, M.A.

    1991-01-01

    Under some conditions, a very large influx of carbon into TFTR occurs during neutral beam injection into low recycling plasmas (the supershot regime). These carbon ''blooms'' result in serious degradation of plasma parameters. The sources of this carbon have been identified as hot spots on the TFTR bumper limiter at or near the last closed flux surface. Two separate temperature thresholds have been identified. One threshold, at about 1650 deg. C, is consistent with radiation enhanced sublimation (RES). The other, at about 2300 deg. C, appears to be thermal sublimation of carbon from the limiter. The carbon influx can be quantitatively accounted for by taking laboratory values for RES rates, making reasonable assumptions about the extent of the blooming area and assuming unity carbon recycling at the limiter. Such high carbon recycling is expected, and it is shown that, in target plasmas at least, it is observed on TFTR. The sources of the carbon blooms are sites which have either loosely attached fragments of limiter material (caused by damage) or surfaces that are nearly perpendicular to the magnetic field lines. Such surfaces may have local power depositions two orders of magnitude higher than usual. The TFTR team modified the limiter during the opening of winter 1989-1990. The modifications greatly reduced the number and magnitude of the blooms, so that they are no longer a problem. (author). 27 refs, 9 figs

  3. Alteration of alpha 1 Na+,K(+)-ATPase 86Rb+ influx by a single amino acid substitution

    International Nuclear Information System (INIS)

    Herrera, V.L.; Ruiz-Opazo, N.

    1990-01-01

    The sodium- and potassium-dependent adenosine triphosphatase (Na+,K(+)-ATPase) maintains the transmembrane Na+ gradient to which is coupled all active cellular transport systems. The R and S alleles of the gene encoding the Na+,K(+)-ATPase alpha 1 subunit isoform were identified in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats, respectively. Characterization of the S allele-specific Na+,K(+)-ATPase alpha 1 complementary DNA identified a leucine substitution of glutamine at position 276. This mutation alters the hydropathy profile of a region in proximity to T3(Na), the trypsin-sensitive site that is only detected in the presence of Na+. This mutation causes a decrease in the rubidium-86 influx of S allele-specific sodium pumps, thus marking a domain in the Na+,K(+)-ATPase alpha subunit important for K+ transport, and supporting the hypothesis of a putative role of these pumps in hypertension

  4. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    Science.gov (United States)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.

  5. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, P.; Custódio, M.R. [Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP (Brazil); Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo 04044-020 (Brazil)

    2014-12-15

    Highlights: • Cd{sup 2+} gill cell transport, a non-essential toxic metal, was characterized in a hypo-hyper-regulating mangrove crab Ucides cordatus. • Cd{sup 2+} enter gill cells through Ca{sup 2+} channels and is dependent of intracellular Ca{sup 2+} levels. • Route of entry in gill cells also involves a Cd{sup 2+}/Ca{sup 2+} (2Na) exchanger. • Cd transport depends on Na{sup +}/K{sup +}-ATPase and gill cell electrochemical gradient. • Vanadate inhibits gill Cd{sup 2+} transport and ouabain increase gill Cd{sup 2+} transport. - Abstract: Membrane pathway for intracellular cadmium (Cd{sup 2+}) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd{sup 2+} transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd{sup 2+} concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd{sup 2+} transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl{sub 2} and different inhibitors. Addition of extracellular calcium (Ca{sup 2+}) to the cells affected little the fluorescence of FluoZin, confirming that Cd{sup 2+} was the main ion increasing intracellular fluorescence. Ca{sup 2+} channels blockers (nimodipine and verapamil) decreased Cd{sup 2+} influx as well as vanadate, a Ca{sup 2+}-ATPase blocker. Chelating intracellular Ca{sup 2+} (BAPTA) decreased Cd{sup 2+} influx in gill cells, while increasing intracellular Ca{sup 2+} (caffeine) augmented Cd influx. Cd{sup 2+} and ATP added at different temporal conditions were not effective at increasing intracellular Cd{sup 2+} accumulation. Ouabain (Na{sup +}/K{sup +}-ATPase inhibitor) increased Cd{sup 2+} influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd{sup 2+} influx, a non-essential metal, through the

  6. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA

    Science.gov (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep

    2017-09-01

    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  7. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport.

    Science.gov (United States)

    Szczerba, Mark W; Britto, Dev T; Balkos, Konstantine D; Kronzucker, Herbert J

    2008-01-01

    Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.

  8. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    Science.gov (United States)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  9. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  10. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Søndergaard, Lise

    1994-01-01

    The authors present an in vivo method for measuring the unidirectional influx constant (Ki) for gadolinium diethylenetriaminepentaacetic acid (DTPA) diffusion across the capillary membrane in the human myocardium with magnetic resonance imaging. Ki is related to the extraction fraction (E......) and the perfusion (F) by the equation Ki = E.F.Ki was obtained by using the longitudinal relaxation rate (R1) as a measure of the myocardial concentration of Gd-DTPA in the mathematical model for transcapillary transport across capillary membranes. Myocardial enhancement after Gd-DTPA injection was followed...

  11. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.

    Directory of Open Access Journals (Sweden)

    Narjes Javaheri

    2014-06-01

    Full Text Available Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV. Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT. Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search, together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics

  12. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, B.; Axelrod, E.; Sa' ar, A. [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2007-05-15

    Dielectric spectroscopy accompanied by infrared (IR) and photoluminescence (PL) spectroscopy have been utilized to reveal the correlation between transport, optical and structural properties of oxidized porous silicon (PS). Three relaxation processes at low-, mid- and high-temperatures were observed, including dc-conductivity at high-temperatures. Both the low-T relaxation and the dc conductivity were found to be thermally activated processes that involve tunneling and hopping in between the nanocrystals in oxidized PS. We have found that the dc-conductivity is limited by geometrical constrictions along the transport channels, which are not effected by the oxidation process and are characterized by activation energies of about {proportional_to}0.85 eV. The low-T relaxation process involves thermal activation followed by tunneling in between neighbor nanocrystals, with somewhat lower activation energies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Influx: A Tool and Framework for Reasoning under Uncertainty

    Science.gov (United States)

    2015-09-01

    document provides a high-level description of Influx1 from the reasoning perspective. The organisation of the document is given below. Section 2 presents a...exhibits behaviour similar to that of the proposed alternatives while maintaining mathematical simplicity and possessing highly-desirable

  14. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  15. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  16. A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Valentín, L. A.; Betancourt, J.; Fonseca, L. F., E-mail: luis.fonseca@upr.edu [Department of Physics University of Puerto Rico, Rio Piedras (Puerto Rico); Pettes, M. T.; Shi, L. [Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712 (United States); Soszyński, M.; Huczko, A. [Department of Chemistry, Warsaw University, Pasteur 1 Str., 02-093 Warsaw (Poland)

    2013-11-14

    The temperature dependence of the Seebeck coefficient, the electrical and thermal conductivities of individual β-silicon carbide nanowires produced by combustion in a calorimetric bomb were studied using a suspended micro-resistance thermometry device that allows four-point probe measurements to be conducted on each nanowire. Additionally, crystal structure and growth direction for each measured nanowire was directly obtained by transmission electron microscopy analysis. The Fermi level, the carrier concentration, and mobility of each nanostructure were determined using a combination of Seebeck coefficient and electrical conductivity measurements, energy band structure and transport theory calculations. The temperature dependence of the thermal and electrical conductivities of the nanowires was explained in terms of contributions from boundary, impurity, and defect scattering.

  17. The dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials

    International Nuclear Information System (INIS)

    Ba Weizhen; Wu Qingzhi; He Chengfa; Chen Chaoyang

    1996-01-01

    The depth dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials, such as gold, have been studied. The dose distributions have been compared with equilibrium doses in the homogeneous silicon material, and considerable dose gradient distributions were obtained. In the case of silicon adjacent to high atomic numbered material, dose enhancement effects have been observed in and near the interfaces. The dose gradient distributions were explained by photoelectron effect, Auger effect and secondary electron transport mechanism of the low energy scattering photons

  18. Inhibiting the Ca2+ Influx Induced by Human CSF

    Directory of Open Access Journals (Sweden)

    Anna Drews

    2017-12-01

    Full Text Available One potential therapeutic strategy for Alzheimer’s disease (AD is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ; and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.

  19. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow–force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    Science.gov (United States)

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820

  20. Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W.A.; Kastin, A.J.; Michals, E.A.; Barrera, C.M. (Veterans Affairs Medical Center, New Orleans, LA (USA))

    1990-10-01

    Previous studies have suggested that peptide transport system-1 (PTS-1), the saturable system that transports Tyr-MIF-1, the enkephalins, and related peptides out of the central nervous system (CNS), exhibits stereospecificity. In the present studies, we showed that {sup 125}I-L-Tyr-MIF-1, but not {sup 131}I-D-Tyr-MIF-1, was cleared from the CNS more rapidly than could be accounted for by nonspecific mechanisms. Such clearance was inhibited by a 1.0 nmol dose of L-Tyr-MIF-1, but not by D-Tyr-MIF-1. Neither L- nor D-Tyr-MIF-1 altered the much lower clearance of I-D-Tyr-MIF-1 from the brain. Radioactivity recovered from the vascular space after the injection of {sup 125}I-Tyr-MIF-1 into the lateral ventricle of the brain eluted by HPLC primarily as intact peptide, demonstrating that most of the Tyr-MIF-1 was not degraded during transport. By contrast, the nonsaturable unidirectional influx of Tyr-MIF-1 into the CNS did not distinguish between the isomers. These studies confirm and extend the observations that Tyr-MIF-1 is transported out of the CNS by a saturable, stereospecific transport system as an intact peptide while the influx into the CNS is by a nonsaturable mechanism that does not distinguish between the isomers.

  1. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    Science.gov (United States)

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  2. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jingtian, E-mail: jingtian.fang@utdallas.edu; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  3. Current-voltage characteristics of porous-silicon structures

    International Nuclear Information System (INIS)

    Diligenti, A.; Nannini, A.; Pennelli, G.; Pieri, F.; Fuso, F.; Allegrini, M.

    1996-01-01

    I-V DC characteristics have been measured on metal/porous-silicon structures. In particular, the measurements on metal/free-standing porous-silicon film/metal devices confirmed the result, already obtained, that the metal/porous-silicon interface plays a crucial role in the transport of any device. Four-contacts measurements on free-standing layers showed that the current linearly depends on the voltage and that the conduction process is thermally activated, the activation energy depending on the porous silicon film production parameters. Finally, annealing experiments performed in order to improve the conduction of rectifying contacts, are described

  4. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  5. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  6. Alteration of alpha 1 Na+,K(+)-ATPase sup 86 Rb sup + influx by a single amino acid substitution

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V.L.; Ruiz-Opazo, N. (Boston Univ. School of Medicine, MA (USA))

    1990-08-31

    The sodium- and potassium-dependent adenosine triphosphatase (Na+,K(+)-ATPase) maintains the transmembrane Na+ gradient to which is coupled all active cellular transport systems. The R and S alleles of the gene encoding the Na+,K(+)-ATPase alpha 1 subunit isoform were identified in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats, respectively. Characterization of the S allele-specific Na+,K(+)-ATPase alpha 1 complementary DNA identified a leucine substitution of glutamine at position 276. This mutation alters the hydropathy profile of a region in proximity to T3(Na), the trypsin-sensitive site that is only detected in the presence of Na+. This mutation causes a decrease in the rubidium-86 influx of S allele-specific sodium pumps, thus marking a domain in the Na+,K(+)-ATPase alpha subunit important for K+ transport, and supporting the hypothesis of a putative role of these pumps in hypertension.

  7. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  8. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).

    Science.gov (United States)

    Fincham, D A; Ellory, J C; Young, J D

    1992-08-01

    In thoroughbred horses, red blood cell amino acid transport activity is Na(+)-independent and controlled by three codominant genetic alleles (h, l, s), coding for high-affinity system asc1 (L-alanine apparent Km for influx at 37 degrees C congruent to 0.35 mM), low-affinity system asc2 (L-alanine Km congruent to 14 mM), and transport deficiency, respectively. The present study investigated amino acid transport mechanisms in red cells from four wild species: Przewalski's horse (Equus przewalskii), Hartmann's zebra (Zebra hartmannae), Grevy's zebra (Zebra grevyi), and onager (Equus hemonius). Red blood cell samples from different Przewalski's horses exhibited uniformly high rates of L-alanine uptake, mediated by a high-affinity asc1-type transport system. Mean apparent Km and Vmax values (+/- SE) for L-alanine influx at 37 degrees C in red cells from 10 individual animals were 0.373 +/- 0.068 mM and 2.27 +/- 0.11 mmol (L cells.h), respectively. As in thoroughbreds, the Przewalski's horse transporter interacted with dibasic as well as neutral amino acids. However, the Przewalski asc1 isoform transported L-lysine with a substantially (6.4-fold) higher apparent affinity than its thoroughbred counterpart (Km for influx 1.4 mM at 37 degrees C) and was also less prone to trans-stimulation effects. The novel high apparent affinity of the Przewalski's horse transporter for L-lysine provides additional key evidence of functional and possible structural similarities between asc and the classical Na(+)-dependent system ASC and between these systems and the Na(+)-independent dibasic amino acid transport system y+. Unlike Przewalski's horse, zebra red cells were polymorphic with respect to L-alanine transport activity, showing high-affinity or low-affinity saturable mechanisms of L-alanine uptake. Onager red cells transported this amino acid with intermediate affinity (apparent Km for influx 3.0 mM at 37 degrees C). Radiation inactivation analysis was used to estimate the target

  9. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)

    2015-12-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  10. Aberrations in preliminary design of ITER divertor impurity influx monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki; Katsunuma, Atsushi; Kitazawa, Daisuke; Ohmori, Keisuke

    2015-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  11. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  12. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  13. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  14. Influxed insects as Vectors for Campylobacter jejuni and Campylobacter coll in Danish Broiler Houses

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Pedersen, Karl

    2008-01-01

    ,816 flies captured from farm surroundings. Each individual fly was macerated, preenriched in Bolton broth for 24 h at 42 degrees C, streaked onto modified Campylobater blood-free selective agar and incubated under microaerobic conditions for 48 h at 42 degrees C. Second, the influx of insects to broiler...... houses was estimated by trapping of insects (n = 5,936) in ventilation vents. In total, 31 flies (28 of which were of the Muscidae family) caught in farm surroundings were Campylobacter spp.-positive (C. jejuni, n = 7; C. coli, n = 23; other Campylobacter spp., n = 1). Musca domestica (L) (house fly...... without other livestock, the prevalence was constantly below 1.0%. The average influx of insects per broiler rotation was estimated to be 30,728 +/- 2,443 SE (range 2,233 to 180,300), of which 21.4% were flies. The influx of insects correlated with the flow (m(3)/h) of ventilation air (P

  15. Superconductivity observed in platinum-silicon interface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  16. The Kinetics of Ouabain Inhibition and the Partition of Rubidium Influx in Human Red Blood Cells

    Science.gov (United States)

    Beauge, L. A.; Adragna, Norma

    1971-01-01

    In the development of ouabain inhibition of rubidium influx in human red blood cells a time lag can be detected which is a function of at least three variables: the concentrations of external sodium, rubidium, and ouabain. The inhibition is antagonized by rubidium and favored by sodium. Similar considerations could be applied to the binding of ouabain to membrane sites. The total influx of rubidium as a function of external rubidium concentration can be separated into two components: (a) a linear uptake not affected by external sodium or ouabain and not requiring an energy supply, and (b) a saturable component. The latter component, on the basis of the different effects of the aforementioned factors, can be divided into three fractions. The first is ouabain-sensitive, inhibited by external sodium at low rubidium, and requires an energy supply; this represents about 70–80% of the total uptake and is related to the active sodium extrusion mechanism. The second is ouabain-insensitive, activated by external sodium over the entire range of rubidium concentrations studied, and dependent on internal ATP; this represents about 15% of the total influx; it could be coupled to an active sodium extrusion or belong to a rubidium-potassium exchange. The third, which can be called residual influx, is ouabain-insensitive, unaffected by external sodium, and independent of internal ATP; this represents about 10–20% of the total influx. PMID:5553102

  17. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  18. THE EFFECTS OF SICKLING ON ION TRANSPORT

    Science.gov (United States)

    Tosteson, D. C.; Carlsen, E.; Dunham, E. T.

    1955-01-01

    The conversion of red cells of patients with sickle cell anemia (S-S) from biconcave disk to sickle shape by removal of oxygen was found to increase the fraction of medium trapped in cells packed by centrifugation from 0.036 (S.E. 0.003) to 0.106 (S.E. 0.004). The fraction of water in the cells (corrected for trapped medium) was not affected by this shape transformation. Cation transport, however, was changed profoundly. S-S cells incubated in N2 rather than O2 showed net K loss with acceleration of both influx and outflux. That this change in K transport was due to the process of sickling was indicated by (1) the persistence of the effect in the absence of plasma, (2) the absence of the effect in hypoxic S-S cells in which sickling was inhibited by alkali or carbon monoxide, (3) the reversal of the effect when sickling was reversed by exposure to O2, and (4) the independence of the effect from such potentially important factors as age of the cell population. The acceleration of K transport by sickling is probably mediated by modification of the cell surface rather than the cell interior since concentrated sickle hemoglobin solutions in O2 or N2 did not show selective affinity for K. In molecular terms, the effect of sickling on K transport can be explained by presuming that the shape change (1) opens pathways for the free diffusion of K, and (2) accelerates K transport by a non-diffusion carrier process. The evidence for the former mechanism included (a) dependence of K influx into sickled cells on the concentration of K in the medium, and (b) increase in the total cation content of sickled cells with increasing pH. Observations suggestive of a carrier process included (a) the failure of sickled cell K concentration to become equal to external K concentration even after 48 hours, (b) the deviation of the flux ratio from that characteristic of diffusion, and (c) the dependence of K influx on glycolysis. PMID:13252234

  19. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    Science.gov (United States)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  20. Polish Perceptions on the Immigration Influx: a Critical Analysis

    Directory of Open Access Journals (Sweden)

    Kinga Hódor

    2017-02-01

    Full Text Available The article addresses the issue of Poles’ attitude to the problem of the influx of migrants to Poland in the context of the migration crisis, which Europe has to face today. The issues discussed in the present paper are aimed to illustrate the characteristic features specific to Poles’ attitudes in favor of or against the process of influx of migrants to the E.U. Member States or Poland. The analysis covers both positive and negative aspects of migration to Poland, which have been most often indicated by Poles with respects to migrants. On the one hand, they include fears with regard to national security, potential conflicts of cultural and religious background, fear of the alleged loss of jobs to migrants and their preying on the country’s social security system. All of the above result in anti-migration demonstrations and the language of hatred. On the other hand, positive aspects of the migration influx are believed to consist in cultural enrichment, benefits for the labor market resulting from the inflow of both qualified professionals and laborers with lower pay expectations in comparison to Polish workers and believing that migrants might be the chance of minimize the negative effects of the demographic crisis. The supporters of helping migrants also point out the issue of solidarity and sympathy for the victims and the fact that in the past it was the Poles who received support from other countries in Poland’s difficult moments. Thus, extending such help to others may prove to be beneficial in the future. The present paper is based on academic articles, internet sources and statistical data, which all reveal a division into two camps: supporters and opponents of receiving migrants in Poland, which prevents determining Poland’s definitive stance on this issue. All the aspects of the problem discussed in the paper are undoubtedly a basis for further analysis.

  1. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  2. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    International Nuclear Information System (INIS)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina; Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E.; Pastor, Catherine M.

    2017-01-01

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  3. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo

    2018-04-19

    Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.

  4. Silicon micromachined hollow microneedles for transdermal liquid transport

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Lüttge, Regina; Berenschot, Johan W.; de Boer, Meint J.; Yeshurun, Shuki Y.; Hefetz, Meir; van 't Oever, Ronny; van den Berg, Albert

    2003-01-01

    This paper presents a novel process for the fabrication of out-of-plane hollow microneedles in silicon. The fabrication method consists of a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition, and allows needle shapes with different,

  5. Silicon micromachined hollow microneedles for transdermal liquid transport

    NARCIS (Netherlands)

    Gardeniers, J.G.E.; Luttge, R.; Berenschot, J.W.; Boer, de M.J.; Yeshurun, S.Y.; Hefetz, M.; Oever, van't R.; Berg, van den A.

    2003-01-01

    This paper presents a novel process for the fabrication of out-of-plane hollow micro needles in silicon. The fabrication method consists of a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition, and allows needle shapes with different,

  6. An alternative method to predict the S-shaped curve for logistic characteristics of phonon transport in silicon thin film

    International Nuclear Information System (INIS)

    Awad, M.M.

    2014-01-01

    The S-shaped curve was observed by Yilbas and Bin Mansoor (2013). In this study, an alternative method to predict the S-shaped curve for logistic characteristics of phonon transport in silicon thin film is presented by using an analytical prediction method. This analytical prediction method was introduced by Bejan and Lorente in 2011 and 2012. The Bejan and Lorente method is based on two-mechanism flow of fast “invasion” by convection and slow “consolidation” by diffusion.

  7. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  8. Activity-Dependent Regulation of Surface Glucose Transporter-3

    OpenAIRE

    Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.

    2011-01-01

    Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...

  9. Towards nanometer-spaced silicon contacts to proteins

    Science.gov (United States)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  10. Towards nanometer-spaced silicon contacts to proteins

    International Nuclear Information System (INIS)

    Schukfeh, Muhammed I; Behr, Pascal; Tornow, Marc; Sepunaru, Lior; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2016-01-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO_2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p"+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current–voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si–protein–Si configuration. (paper)

  11. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  12. Ca(2+) influx and neurotransmitter release at ribbon synapses.

    Science.gov (United States)

    Cho, Soyoun; von Gersdorff, Henrique

    2012-01-01

    Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characteristic of Extracellular Zn2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP.

    Science.gov (United States)

    Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna

    2018-03-01

    An increased influx of extracellular Zn 2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn 2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn 2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K + into the dentate gyrus, but not in young rats. Simultaneously, high K + -induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator. Intracellular Zn 2+ in dentate granule cells was also increased in middle-aged slices with high K + , in which the increase in extracellular Zn 2+ was the same as young slices with high K + , suggesting that ability of extracellular Zn 2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn 2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.

  14. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Composition for limiting water influx into a well

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, A.Sh.; Budarina, L.A.; Kuznetsov, Ye.V.; Zhdanov, N.F.

    1982-01-01

    A composition is proposed for restricting water influx into a well. It contains acrylamide, ammonium persulfate, sodium hyposulfite, water and additive. It is distinguished by the fact that in order to improve water resistance of the copolymer formed in the bed and to preserve permeability of the bed for oil, it contains as an additive polymethacylic acid with the following ratio of components (% by weight): acrylamide 2.0-5.6; polymethacrylic acid 3.08.0; ammonium persulfate 0.020-0.072; sodium hyposulfite 0.018-0.068; water--the rest.

  16. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    Full Text Available Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.

  17. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    International Nuclear Information System (INIS)

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  18. Impact ionization dynamics in silicon by MV/cm THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Hirori, Hideki; Tanaka, Koichiro

    2017-01-01

    We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high-intensity terah......We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high......-intensity terahertz pulses to show that IMI is significantly more efficient at lower than at higher initial carrier densities. Specifically, in the case of silicon with an intrinsic carrier concentration (∼1010 cm−3), the carrier multiplication process can generate more than 108 electrons from just a single free...

  19. Monte Carlo modelling of impurity ion transport for a limiter source/sink

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Farrell, C.; Hoskins, S.; Wood, L.

    1988-01-01

    In relating the impurity influx Φ I (0) (atoms per second) into a plasma from the edge to the central impurity ion density n I (0) (ions·m -3 ), it is necessary to know the value of τ I SOL , the average dwell time of impurity ions in the scrape-off layer. It is usually assumed that τ I SOL =L c /c s , the hydrogenic dwell time, where L c is the limiter connection length and c s is the hydrogenic ion acoustic speed. Monte Carlo ion transport results are reported here which show that, for a wall (uniform) influx, τ I SOL is longer than L c /c s , while for a limiter influx it is shorter. Thus for a limiter influx n I (0) is predicted to be smaller than the reference value. Impurities released from the limiter form ever large 'clouds' of successively higher ionization stages. These are reproduced by the Monte Carlo code as are the cloud shapes for a localized impurity injection far from the limiter. (author). 23 refs, 18 figs, 6 tabs

  20. Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications

    International Nuclear Information System (INIS)

    Schnabel, Manuel

    2015-01-01

    Tandem solar cells consist of multiple individual solar cells stacked in order of increasing bandgap, with the cell with highest bandgap towards the incident light. This allows photons to be absorbed in the cell that will convert them to electricity with the greatest efficiency, and is the only solar cell concept to surpass the theoretical efficiency limit of a conventional solar cell so far. This work is concerned with the development of silicon nanocrystals (Si NCs) embedded in silicon carbide, which are expected to have a higher bandgap than bulk Si due to quantum confinement, for use in the top cell of a two-junction tandem cell. Charge carrier transport and recombination were investigated as a function of various parameters. Distortion of luminescence spectra by optical interference was highlighted and a robust model to describe transport of majority carriers was developed. Furthermore, a range of processing steps required to produce a Si NC-based tandem cell were studied, culminating in the preparation of the first Si NC-based tandem cells. The resulting cells exhibited open-circuit voltages of 900 mV, demonstrating tandem cell functionality.

  1. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ concentration. A single injection of Aβ (25 pmol into the dentate gyrus affected dentate gyrus long-term potentiation (LTP 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  2. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Science.gov (United States)

    Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna

    2014-01-01

    We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  3. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars

    Science.gov (United States)

    Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties. PMID:28191468

  4. Screening and Expression of a Silicon Transporter Gene (Lsi1 in Wild-Type Indica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2017-01-01

    Full Text Available Silicon (Si is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  5. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; Rafii, M Y; Azizi, Parisa; Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  6. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  7. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  8. Transport of the alpha-amino-mono-carboxylic acid L-alanine by the beta-alanine carrier of the rabbit ileum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G

    1987-01-01

    The proposal that the beta-alanine carrier of the rabbit ileum is a high affinity carrier of the neutral amino acids was examined by means of measurements of influx across the brush border membrane of the intact epithelium using L-alanine as a representative of the neutral amino acids. Confirming...... the proposal, evidence was provided for mutual competitive inhibition between beta-alanine and L-alanine; and it was also demonstrated that a process contributes to the influx of L-alanine, which is characterized by a maximum rate of transport equal to that of beta-alanine and a Kt, which is equal to the Ki...... of L-alanine against the influx of beta-alanine. In the concentration range 0.01 to 0.125 mM the influx of L-alanine was found to be linearly related to the concentration indicating a significant unstirred layer influence on present and previous estimates of the Kt values for influx of amino acids...

  9. Effect of GAPDH-derived antimicrobial peptides on sensitive yeasts cells: membrane permeability, intracellular pH and H+-influx/-efflux rates.

    Science.gov (United States)

    Branco, Patrícia; Albergaria, Helena; Arneborg, Nils; Prista, Catarina

    2018-05-01

    Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.

  10. Inhibition of Glutathione Synthesis Induced by Exhaustive Running Exercise via the Decreased Influx Rate of L-Cysteine in Rat Erythrocytes.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Yu, Zhenhai; Zhao, Dongmei; Wang, Zhiqiang; Li, Yuling; Yan, Jingtong; Cai, Yu; Zhang, Wenqian

    2016-01-01

    The main purpose of this study was to investigate the effect of exhaustive exercise on L-cysteine uptake and its effect on erythrocyte glutathione (GSH) synthesis and metabolism. Rats were divided into three groups: sedentary control (C), exhaustive running exercise (ERE) and moderate running exercise (MRE) (n=12 rats/group). We determined the L-cysteine efflux and influx in vitro in rat erythrocytes and its relationship with GSH synthesis. Total anti-oxidant potential of plasma was measured in terms of the ferric reducing ability of plasma (FRAP) values for each exercise group. In addition, the glucose metabolism enzyme activity of erythrocytes was also measured under in vitro incubation conditions. Biochemical studies confirmed that exhaustive running exercise significantly increased oxidative damage parameters in thiobarbituric acid reactive substances (TBARS) and methemoglobin levels. Pearson correlation analysis suggested that L-cysteine influx was positively correlated with erythrocyte GSH synthesis and FRAP values in both the control and exercise groups. In vitro oxidation incubation significantly decreased the level of glucose metabolism enzyme activity in the control group. We presented evidence of the exhaustive exercise-induced inhibition of GSH synthesis due to a dysfunction in L-cysteine transport. In addition, oxidative stress-induced changes in glucose metabolism were the driving force underlying decreased L-cysteine uptake in the exhaustive exercise group. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. Carrier mobilities in microcrystalline silicon films

    International Nuclear Information System (INIS)

    Bronger, T.; Carius, R.

    2007-01-01

    For a better understanding of electronic transport mechanisms in thin-film silicon solar cell quality films, we have investigated the Hall mobility for electrons in microcrystalline/amorphous silicon over a range of crystallinities and doping concentrations. We find that Hall mobility increases with increasing doping concentration in accordance with earlier measurements. With increasing amorphous fraction, the measured mobility decreases suggesting a negative influence of the additional disorder. The results suggest a differential mobility model in which mobility depends on the energy level of the carriers that contribute to the electrical current

  12. L-lactate transport in Ehrlich ascites-tumour cells.

    Science.gov (United States)

    Spencer, T L; Lehninger, A L

    1976-01-01

    Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids. PMID:7237

  13. Photochemistry Saturn's Atmosphere. 2; Effects of an Influx of External Oxygen

    Science.gov (United States)

    Moses, Julianne I.; Lellouch, Emmanuel; Bezard, Bruno; Gladstone, G. Randall; Allen, Mark

    2000-01-01

    We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3 +/- 1) x 10(exp 14) and (1.4 +/- 0.4) x 10(exp 15)/ square cm, respectively; our models indicate that a globally averaged oxygen influx of (4+/-2) x 10(exp 6) O atoms /sq cm/s is required to explain these observations. Models with a locally enhanced influx of H20 operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3 +/- 2) x 10(exp -16) g/square cm/s of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon-oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen-oxygen bonded material is converted to carbon-oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-micron CO observations of Noll and Larson and determine that the CO

  14. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  15. Mechanism for hydrogen diffusion in amorphous silicon

    International Nuclear Information System (INIS)

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si endash Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si endash Si bonds, and can play a crucial role in hydrogen diffusion. copyright 1998 The American Physical Society

  16. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  17. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Science.gov (United States)

    Hijazi, Karolin; Cuppone, Anna M; Smith, Kieron; Stincarelli, Maria A; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L; Shattock, Robin; Kelly, Charles G; Pozzi, Gianni; Iannelli, Francesco

    2015-01-01

    Anti-retroviral (ARV) -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug

  18. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  19. Transport study of self-supporting porous silicon

    Science.gov (United States)

    Fejfar, A.; Pelant, I.; Šípek, E.; Kočka, J.; Juška, G.; Matsumoto, T.; Kanemitsu, Y.

    1995-02-01

    We have measured dark DC conductivity and time-of-flight (TOF) of carriers in self-supporting porous silicon films in the temperature range 298-480 K. The dark I-V curves show superlinear behavior with activation energies of 0.38-0.67 eV. The TOF measurements allowed us to evaluate the drift-length of non-equilibrium carriers and revealed a significant decrease of the collected charge with increasing delay (tdel≥1 ms) of the exciting 3 ns laser pulse after the voltage application, probably due to field redistribution in the Si crystallites.

  20. Porous silicon advances in drug delivery and immunotherapy.

    Science.gov (United States)

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells

    DEFF Research Database (Denmark)

    Valembois, Sophie Annick N; Krall, Jacob; Frølund, Bente

    2017-01-01

    therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABAAR ligands...... by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (Km = 27.7 ± 2.2 μM and Jmax = 24.2 ± 0.......6 pmol/cm2·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar Ki values of 644.2 μM and 658.6 μM, respectively. Moreover...

  2. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  3. Increased 22Na+-influx in lymphocytes from offspring of essential hypertensive patients

    DEFF Research Database (Denmark)

    Nielsen, J R; Pedersen, K E; Klitgaard, N A

    1989-01-01

    Lymphocytes were used as a cellular model for the in vitro measurements of 22Na+-influx during sodium pump inhibition by ouabain. The measurements were made using lymphocytes from young men at increased risk of developing essential hypertension in order to assess any changes and to analyse whether...

  4. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  5. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  6. The Lebanese–Syrian crisis: impact of influx of Syrian refugees to an already weak state

    Science.gov (United States)

    Cherri, Zeinab; Arcos González, Pedro; Castro Delgado, Rafael

    2016-01-01

    Background Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR)-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese–Syrian borders since 2011 as “displaced”, emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Methods Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. Results The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Conclusion Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives. The two major recommendations for future interventions are to ensure continuous and effective monitoring and sustainability in order to alleviate current and future suffering in Lebanon. PMID:27471417

  7. The Lebanese-Syrian crisis: impact of influx of Syrian refugees to an already weak state.

    Science.gov (United States)

    Cherri, Zeinab; Arcos González, Pedro; Castro Delgado, Rafael

    2016-01-01

    Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR)-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese-Syrian borders since 2011 as "displaced", emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives. The two major recommendations for future interventions are to ensure continuous and effective monitoring and sustainability in order to alleviate current and future suffering in Lebanon.

  8. Quantum confinement and disorder in porous silicon: effects on the optical and transport properties

    International Nuclear Information System (INIS)

    Amato, G.; Boarino, L.; Brunetto, N.; Rossi, A.M.

    1996-01-01

    In this report the authors report new optical data showing that disorder in porous silicon leads to strong carrier localisation. Light emission in PS (porous silicon) is suggested to occur through transitions involving localized states

  9. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The competitive advantage of a dual-transporter system.

    Science.gov (United States)

    Levy, Sagi; Kafri, Moshe; Carmi, Miri; Barkai, Naama

    2011-12-09

    Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.

  11. HCO3(-)-coupled Na+ influx is a major determinant of Na+ turnover and Na+/K+ pump activity in rat hepatocytes

    International Nuclear Information System (INIS)

    Fitz, J.G.; Lidofsky, S.D.; Weisiger, R.A.; Xie, M.H.; Cochran, M.; Grotmol, T.; Scharschmidt, B.F.

    1991-01-01

    Recent studies in hepatocytes indicate that Na(+)-coupled HCO3- transport contributes importantly to regulation of intracellular pH and membrane HCO3- transport. However, the direction of net coupled Na+ and HCO3- movement and the effect of HCO3- on Na+ turnover and Na+/K+ pump activity are not known. In these studies, the effect of HCO3- on Na+ influx and turnover were measured in primary rat hepatocyte cultures with 22Na+, and [Na+]i was measured in single hepatocytes using the Na(+)-sensitive fluorochrome SBFI. Na+/K+ pump activity was measured in intact perfused rat liver and hepatocyte monolayers as Na(+)-dependent or ouabain-suppressible 86Rb uptake, and was measured in single hepatocytes as the effect of transient pump inhibition by removal of extracellular K+ on membrane potential difference (PD) and [Na+]i. In hepatocyte monolayers, HCO3- increased 22Na+ entry and turnover rates by 50-65%, without measurably altering 22Na+ pool size or cell volume, and HCO3- also increased Na+/K+ pump activity by 70%. In single cells, exposure to HCO3- produced an abrupt and sustained rise in [Na+]i from approximately 8 to 12 mM. Na+/K+ pump activity assessed in single cells by PD excursions during transient K+ removal increased congruent to 2.5-fold in the presence of HCO3-, and the rise in [Na+]i produced by inhibition of the Na+/K+ pump was similarly increased congruent to 2.5-fold in the presence of HCO3-. In intact perfused rat liver, HCO3- increased both Na+/K+ pump activity and O2 consumption. These findings indicate that, in hepatocytes, net coupled Na+ and HCO3- movement is inward and represents a major determinant of Na+ influx and Na+/K+ pump activity. About half of hepatic Na+/K+ pump activity appears dedicated to recycling Na+ entering in conjunction with HCO3- to maintain [Na+]i within the physiologic range

  12. [On the origin, course and influx-vessels of the V. basalis and the V. cerebri interna (author's transl)].

    Science.gov (United States)

    Lang, J; Köth, R; Reiss, G

    1981-01-01

    Origin, course and influx-vessels of the basal vein are investigated on 100 brains. An anterior formation of the basal vein (textbook) was found in 41%, a posterior formation in 34%. The different possibilities of drainage are examined procentually at the different types. Course and number of the different variations of the influx-vessels are taken into account: Vv. thalamostriata inferiores, gyri olfactorii, ventricularis inferior, peduncularis, cerebri interna, thalamostriata superioris, (terminalis), septi pellucidi anterior, septi pellucidi posterior, atrii medialis, atrii lateralis, nuclei caudati.

  13. Soft chemical synthesis of silicon nanosheets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hideyuki; Ikuno, Takashi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-12-15

    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  14. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  15. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  16. L-aspartic acid transport by cat erythrocytes

    International Nuclear Information System (INIS)

    Chen, C.W.; Preston, R.L.

    1986-01-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of 3 H-L-asp (typically 2μM) was measured in washed RBCs incubated for 60 s at 37 0 C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl 2 , 15 mM MOPS pH 7.4, 5 mM glucose, and 14 C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000μM, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 μM and 148.8 +/- 7.2 μmol 1. cell -1 h -1 respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4 + M L-asp, 40 + M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues

  17. The Lebanese–Syrian crisis: impact of influx of Syrian refugees to an already weak state

    Directory of Open Access Journals (Sweden)

    Cherri Z

    2016-07-01

    Full Text Available Zeinab Cherri, Pedro Arcos González, Rafael Castro Delgado Unit for Research in Emergency and Disaster, Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain Background: Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese–Syrian borders since 2011 as “displaced”, emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Methods: Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. Results: The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Conclusion: Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives

  18. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M

    2000-01-01

    . This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na......This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...... was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume...

  19. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    Science.gov (United States)

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Proline transport by brush-border membrane vesicles of lobster antennal glands

    International Nuclear Information System (INIS)

    Behnke, R.D.; Wong, R.K.; Huse, S.M.; Reshkin, S.J.; Ahearn, G.A.

    1990-01-01

    Purified brush-border membrane vesicles (BBMV) of lobster antennal gland labyrinth and bladder were separately formed by a magnesium precipitation technique. L-[3H]proline uptake was stimulated by a transmembrane NaCl gradient [outside (o) greater than inside (i)] to a greater extent in BBMV from labyrinth than those from the bladder. Detailed study of the labyrinth proline-transport processes revealed a specific dependence on NaCl, with negligible stimulatory effects by NaSCN, Na-gluconate, or KCl. A transmembrane proton gradient (o greater than i) was without stimulatory effect on proline transport. A transmembrane potential difference alone, in the presence of equilibrated NaCl and L-[3H]proline, led to net influx of the labeled amino acid, suggesting that the uptake process was electrogenic and capable of bringing about the net transfer of positive charge to the vesicle interior. Although a transmembrane Na gradient alone, in the presence of equilibrated Cl and L-[3H]proline, was able to bring about the net influx of the amino acid, a transmembrane Cl gradient alone under Na- and L-[3H]proline-equilibrated conditions was not, suggesting that only the Na gradient could energize the carrier process through cotransport, while the anion served an essential activating role. Proline influx by these vesicles occurred by the combination of at least one saturable Michaelis-Menten carrier system (apparent Kt = 0.37 mM; apparent JM = 1.19 nmol.mg protein-1.10 s-1) and apparent diffusion (P = 0.33 nmol.mg protein-1.10 s-1.mM-1). Static head analysis of the transport process suggested a cotransport stoichiometry of 2 Na:1 proline with essential activation by Cl ion

  1. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium

    International Nuclear Information System (INIS)

    Kutty, R.K.; Singh, Y.; Santostasi, G.; Krishna, G.

    1989-01-01

    Maitotoxin, one of the most potent marine toxins known, produced cell death in cultures of rat hepatocytes with a TD50 of 80 pM at 24 hr. The cell death, as indicated by a dose- and time-dependent leakage of lactate dehydrogenase (LDH), was also associated with the leakage of [14C]adenine nucleotides from hepatocytes prelabeled with [14C]-adenine. The toxic effect of maitotoxin was completely abolished by the omission of calcium from the culture medium. The cell death induced by maitotoxin increased with increasing concentrations of calcium in the medium. Treatment of hepatocytes with low concentrations of the toxin (less than 0.5 ng/ml) resulted in increases in 45Ca influx into the cells. At higher concentrations of maitotoxin (greater than 1ng/ml), the initial increase in 45Ca influx was followed by the release of the 45Ca from the cells into the medium. Since the 45Ca release paralleled the LDH leakage, the release of calcium was due to cell death. The 45Ca influx, [14C]adenine nucleotide leakage, and LDH leakage were effectively inhibited by verapamil, a calcium channel blocker. Maitotoxin also induced a time- and dose-dependent loss of ATP from hepatocytes, which preceded the [14C]adenine nucleotide and LDH leakage. Thus, it appears that the cell death resulting from maitotoxin treatment is caused by the elevated intracellular calcium, which in turn inhibits mitochondrial oxidative phosphorylation causing depletion of cell ATP. Loss of cell ATP may be the causative event in the maitotoxin-induced cell death

  2. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx

    International Nuclear Information System (INIS)

    Stender, S.; Zilversmit, D.B.

    1981-01-01

    The arterial influx of esterified and free cholesterol from low density lipoproteins and very low density lipoproteins in 20 hypercholesterolemic rabbits was measured simultaneously by the use of lipoproteins labeled in vivo with [ 3 H]- and [ 14 C]-cholesterol. The simultaneous arterial influx of either [ 3 H]-leucine-labeled very low density lipoproteins, low density lipoproteins, high density lipoproteins, or plasma proteins was also measured in each rabbit. The arterial influx was calculated as intimal clearance, i.e., the influx of a given fraction divided by its plasma concentration. The intimal clearance of low density lipoprotein esterified cholesterol was equal to that for the apolipoproteins of that fraction, which is compatible with an arterial influx of intact low density lipoprotein molecules. The intimal clearance of very low density apolipoprotein or cholesteryl ester was less than that for low density lipoprotein, whereas high density lipoprotein and albumin clearances exceeded low density lipoprotein clearance by 1.5- to 3-fold. The intimal clearances of plasma proteins, high density, low density, and very low density lipoproteins decreased linearly with the logarithm of the macromolecular diameter. This indicates that the arterial influx of three plasma lipoprotein fractions and of plasma proteins proceeds by similar mechanisms. Apparently the relative intimal clearances of lipoproteins are more dependent on their size relative to pores or vesicular diameters at the plasma-artery interface than on specific interactions between lipoproteins and the arterial intimal surface

  3. Electrical transport of SiNWs array after covalent attachment of new organic functionalities

    Directory of Open Access Journals (Sweden)

    Marianna Ambrico

    2012-05-01

    Full Text Available Modification of the electrical transport of a random network of silicon nanowires assembled on n‐ silicon support, after silicon nanowires functionalization by chlorination/alkylation procedure , is here described and discussed. We show that the organic functionalities induce charge transfer at single SiNW and produce doping‐like effect that is kept in the random network too. The\tSiNWs\tnetwork\talso\tpresents\ta\tsurface recombination velocity lower than that of bulk silicon. Interestingly, the functionalized silicon nanowires/n‐Si junctions display photo‐yield and open circuit voltages higher than those including oxidized silicon nanowire networks. Electrical properties stability in time of junctions embedding propenyl terminated silicon nanowires network and transport modification after secondary functionalization is also shown. These results suggest a possible route for the integration of functionalized\tSi\tnanowires,\talthough\trandomly distributed, in stable large area photovoltaic or molecule sensitive based devices.

  4. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  5. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco

    International Nuclear Information System (INIS)

    Atkinson, M.M.; Keppler, L.D.; Orlandi, E.W.; Baker, C.J.; Mischke, C.F.

    1990-01-01

    An early event in the hypersensitive response of tobacco to Pseudomonas syringae pv syringae is the initiation of a K + /H + response characterized by specific plasma membrane K + efflux, extracellular alkalinization, and intracellular acidification. We investigated the role of calcium in induction of these host responses. Suspension-cultured tobacco cells exhibited a baseline Ca 2+ influx of 0.02 to 0.06 micromole per gram per hour as determined from 45 Ca 2+ uptake. Following bacterial inoculation, uptake rates began to increase coincidently with onset of the K + /H + response. Rates increased steadily for 2 to 3 hours, reaching 0.5 to 1 micromole per gram per hour. This increased Ca 2+ influx was prevented by EGTA and calcium channel blockers such as La 3+ , Co 2+ , and Cd 2+ but not by verapamil and nifedipine. Lanthanum, cobalt, cadmium, and EGTA inhibited the K + /H + response in both suspension-cultured cells and leaf discs and prevented hypersensitive cell death in leaf discs. We conclude that increase plasmalemma Ca 2+ influx is required for the K + /H + and hypersensitive responses in tobacco

  6. Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming

    Directory of Open Access Journals (Sweden)

    Masironi Britt

    2008-09-01

    Full Text Available Abstract Background Prolonged pregnancies are associated with increased rate of maternal and fetal complications. Post term women could be divided into at least two subgroups, one where parturition is possible to induce by prostaglandins and one where it is not. Our aim was to study parameters in cervical biopsies in women with spontaneous delivery at term (controls and compare to those that are successfully induced post term (responders, and those that are not induced (non-responders, by local prostaglandin treatment. Methods Stromal parameters examined in this study were the accumulation of leukocytes (CD45, CD68, mRNAs and/or proteins for the extracellular matrix degrading enzymes (matrix metalloproteinase (MMP-2, MMP-8 and MMP-9, their inhibitors (tissue inhibitor of MMP (TIMP-1 and TIMP-2, interleukin-8 (IL-8, the platelet activating factor-receptor (PAF-R, syndecan-1 and estrogen binding receptors (estrogen receptor (ERα, ERβ and G-coupled protein receptor (GPR 30 as well as the proliferation marker Ki-67. Results The influx of leukocytes as assessed by CD45 was strongest in the responders, thereafter in the controls and significantly lower in the non-responders. IL-8, PAF-R and MMP-9, all predominantly expressed in leukocytes, showed significantly reduced immunostaining in the group of non-responders, while ERα and GPR30 were more abundant in the non-responders, as compared to the controls. Conclusion The impaired leukocyte influx, as reflected by the reduced number of CD45 positive cells as well as decreased immunostaining of IL-8, PAF-R and MMP-9 in the non-responders, could be one explanation of the failed ripening of the cervix in post term women. If the decreased leukocyte influx is a primary explanation to absent ripening or secondary, as a result of other factors, is yet to be established.

  7. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    International Nuclear Information System (INIS)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca 2+ ) channels (ROCs and PSCs, respectively) were derived via measurements of 45 Ca 2+ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K + ) in the individual or combined presence of organic Ca 2+ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La 3+ ), and agents that increase intracellular levels of cyclic AMP

  8. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  9. Control of the Gas Flow in an Industrial Directional Solidification Furnace for Production of High Purity Multicrystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Lijun Liu

    2015-01-01

    Full Text Available A crucible cover was designed as gas guidance to control the gas flow in an industrial directional solidification furnace for producing high purity multicrystalline silicon. Three cover designs were compared to investigate their effect on impurity transport in the furnace and contamination of the silicon melt. Global simulations of coupled oxygen (O and carbon (C transport were carried out to predict the SiO and CO gases in the furnace as well as the O and C distributions in the silicon melt. Cases with and without chemical reaction on the cover surfaces were investigated. It was found that the cover design has little effect on the O concentration in the silicon melt; however, it significantly influences CO gas transport in the furnace chamber and C contamination in the melt. For covers made of metal or with a coating on their surfaces, an optimal cover design can produce a silicon melt free of C contamination. Even for a graphite cover without a coating, the carbon concentration in the silicon melt can be reduced by one order of magnitude. The simulation results demonstrate a method to control the contamination of C impurities in an industrial directional solidification furnace by crucible cover design.

  10. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  11. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  12. Differential potassium influx influences growth of two cotton varieties in hydroponics

    International Nuclear Information System (INIS)

    Ali, L.; Maqsood, M.A.; Kanwal, S.; Aziz, T.

    2010-01-01

    Potassium uptake rate of two cotton (Gossypium hirsutum L.) varieties viz., NIBGE-2 and MNH-786 was investigated in nutrient solution culture having deficient K at the rate 0.3 mM and deficient K+ Na at the rate 0.3 +2.7 mM. Depletion of K from solution was monitored over a period of 24 h at regular time intervals after 0, 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 8, 10, 12 and 24 h to estimate K uptake kinetics of the roots i.e. maximum influx, I/sub max/ and the Michaelis-Menten constant, Km. NIBGE-2 had about 2-fold higher (2.0 mg g rdw-1 hr-1) I/sub max/ value for K uptake rate at deficient K+Na than that (1.207 mg g rdw-1 hr-1) for MNH-786. Higher, Michaelis-Menten constant, Km (12.82 ppm) for K uptake rate was observed in both cultivars NIBGE-2 and MNH-786 at deficient K+Na than that at deficient K. Main effects of treatments and varieties had significant (p< 0.05) effect on shoot dry matter, root dry matter, total dry matter and leaf area per plant. Maximum K influx in NIBGE-2 at deficient K and deficient K +Na was attributed to enhanced growth response as compared to that in MNH-786. (author)

  13. Study of charge transport in silicon detectors: Non-irradiated and irradiated

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    The electrical characteristics of silicon detectors (standard planar float zone and MESA detectors) as a function of the particle fluence can be extracted by the application of a model describing the transport of charge carriers generated in the detectors by ionizing particles. The current pulse response induced by α and β particles in non-irradiated detectors and detectors irradiated up to fluences PHI ∼ 3 · 10 14 particles/cm 2 is reproduced via this model: i) by adding a small n-type region 15 μm deep on the p + side for the detectors at fluences beyond the n to p-type inversion and ii) for the MESA detectors, by considering one additional dead layer of 14 μm (observed experimentally) on each side of the detector, and introducing a second (delayed) component to the current pulse response. For both types of detectors, the model gives mobilities decreasing linearily up to fluences of about 5·10 13 particles/cm 2 and converging, beyond, to saturation values of about 1050 cm 2 /Vs and 450 cm 2 /Vs for electrons and holes, respectively. At a fluence PHI ∼ 10 14 particles/cm 2 (corresponding to about ten years of operation at the CERN-LHC), charge collection deficits of about 14% for β particles, 25% for α particles incident on the front and 35% for α particles incident on the back of the detector are found for both type of detectors

  14. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  15. The processing and potential applications of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Syyuan Shieh.

    1992-07-01

    Stability of a cylindrical pore under the influence of surface energy is important for porous silicon (PS) processing in the integrated circuit industry. Once the zig-zag cylindrical pores of porous silicon or oxidized porous silicon (OPS) are unstable and breakup into rows of isolated spherical pores, oxidation of PS and densification/nitridation of OPS become difficult. Swing to difficulty transport of reactant gas (O{sub 2}, NH{sub 3}) or the trapped gas (for densification of OPS). A first order analysis of the stability of a cylindrical pore or cylinder is considered first. Growth of small sinusoidal perturbations by viscous flow or evaporation/condensation result in dependence of perturbation growth rate on perturbation wavelength. Rapid thermal oxidation (RTO) of porous silicon is proposed as an alternative for the tedious two-step 300 and 800C oxidation process. Transmission electron microscopy, energy dispersive spectroscopy ESCA are used for quality control. Also, rapid thermal nitridation of oxidized porous silicon in ammonia is proposed to enhance OPS resistance to HF solution. Pores breakup of OPS results in a trapped gas problem during densification. Wet helium is proposed as OPS densification ambient gas to shorten densification time. Finally, PS is proposed to be an extrinsic gettering center in silicon wafers. The suppression of oxidation-induced stacking faults is used to demonstrate the gettering ability. Possible mechanism is discussed.

  16. The processing and potential applications of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Syyuan [Univ. of California, Berkeley, CA (United States)

    1992-07-01

    Stability of a cylindrical pore under the influence of surface energy is important for porous silicon (PS) processing in the integrated circuit industry. Once the zig-zag cylindrical pores of porous silicon or oxidized porous silicon (OPS) are unstable and breakup into rows of isolated spherical pores, oxidation of PS and densification/nitridation of OPS become difficult. Swing to difficulty transport of reactant gas (O2, NH3) or the trapped gas (for densification of OPS). A first order analysis of the stability of a cylindrical pore or cylinder is considered first. Growth of small sinusoidal perturbations by viscous flow or evaporation/condensation result in dependence of perturbation growth rate on perturbation wavelength. Rapid thermal oxidation (RTO) of porous silicon is proposed as an alternative for the tedious two-step 300 and 800C oxidation process. Transmission electron microscopy, energy dispersive spectroscopy ESCA are used for quality control. Also, rapid thermal nitridation of oxidized porous silicon in ammonia is proposed to enhance OPS resistance to HF solution. Pores breakup of OPS results in a trapped gas problem during densification. Wet helium is proposed as OPS densification ambient gas to shorten densification time. Finally, PS is proposed to be an extrinsic gettering center in silicon wafers. The suppression of oxidation-induced stacking faults is used to demonstrate the gettering ability. Possible mechanism is discussed.

  17. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Zheng, Cheng; Grigoropoulos, Costas P; In, Jung Bin; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim

    2015-01-01

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures. (paper)

  18. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.

    Science.gov (United States)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P

    2015-04-24

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  19. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.

    Science.gov (United States)

    Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A

    2010-08-16

    The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.

  20. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    Science.gov (United States)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  1. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  2. Ca2+ influx and efflux in animal cells in the presence of panax notoginseng extracts: investigated by using 45Ca as a radioactive tracer

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Liao Jiali; Xu Falun

    2010-01-01

    In this paper, the influence of extracts of Panax notoginseng on Ca 2+ influx and efflux in isolated rat visceral organs was investigated by using 45 Ca as a radioactive tracer. The results indicated that both extracts, the total flavonoids and total saponins of Panax notoginseng had significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in those organs it could markedly block 45 Ca entering into cell and could facilitate efflux of intracellular Ca 2+ . Compared with the total flavonoids, total saponins had stronger role in the regulation of Ca 2+ influx and efflux. Also, regulation effects of Ca 2+ influx and efflux of the total saponins were compared with positive drug Verapamil, or even better. This implies that the total flavonoids and total saponins of Panax notoginseng have calcium antagonistic effect, and both may be the active ingredients in Panax notoginseng for coronary heart disease treatment. (authors)

  3. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    Science.gov (United States)

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Broadband dielectric spectroscopy of oxidized porous silicon

    International Nuclear Information System (INIS)

    Axelrod, Ekaterina; Urbach, Benayahu; Sa'ar, Amir; Feldman, Yuri

    2006-01-01

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals

  5. Broadband dielectric spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, Ekaterina [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Urbach, Benayahu [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Sa' ar, Amir [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Feldman, Yuri [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel)

    2006-04-07

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals.

  6. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  7. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    Science.gov (United States)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  8. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  9. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem; Seif, Johannes Peter; Riesen, Yannick; Tomasi, Andrea; Jeangros, Quentin; Wyrsch, Nicolas; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  10. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  11. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.

    2016-08-15

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  12. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Ali, H.

    2016-01-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  13. Sulfate influx on band 3 protein of equine erythrocyte membrane (Equus caballus) using different experimental temperatures and buffer solutions.

    Science.gov (United States)

    Casella, S; Piccione, D; Ielati, S; Bocchino, E G; Piccione, G

    2013-06-01

    The aim of this study was to assess the anion transport in equine erythrocytes through the measurement of the sulfate uptake operating from band 3 using different experimental temperatures and buffer solutions. Blood samples of six clinically healthy horses were collected via jugular vein puncture, and an emochrome-citometric examination was performed. The blood was divided into four aliquots and by centrifugation and aspiration the plasma and buffy coat were carefully discarded. The red blood cells were washed with an isosmotic medium and centrifuged. The obtained cell suspensions were incubated with two different experimental buffer solutions (buffer A: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM glucose; and buffer B: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM MgCl2) in a water bath for 1 h at 25 °C and 37 °C. Normal erythrocytes, suspended at 3% hematocrit, were used to measure the SO4= influx by absorption spectrophotometry at 425 nm wavelength. Unpaired Student's t-test showed a statistically significant decrease (P buffer solutions. Comparing the buffer A with buffer B unpaired Student's t-test showed statistically lower values (P < 0.0001) for A solution versus B solution both at 25 °C and at 37 °C. The greater inhibition of SO4 (=) influx measured in equine erythrocytes indicates the increased formation of the sulfydryl bonds in band 3 and the modulation of the sulfydryl groups, culminating in the conformational changes in band 3. Copyright © 2012 John Wiley & Sons, Ltd.

  14. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from...... and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases......, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters...

  15. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Limitation of the influx of formation water into oil wells. Ogranichenie pritoka plastovykh vod v neftyanye skvazhiny

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R.T.; Gazizov, A.Sh.; Gabdullin, R.G.; Yusupov, I.G.

    1976-01-01

    The problems of limiting the influx of water into oil wells are examined. On the basis of studies, systemization, and generalization of the reasons for the premature flooding of wells, the improvement of strata by polymer-cement solutions with consolidating liquid phases is considered. A detailed description is given of the technology and results of cementing well using solutions based on plugging cement and water-soluble phenol-formaldehyde resins of the TSD-9 type. Results are reported on the study of the properties of selective water-insulating substances based on acrylamide monomers and hydrolyzed polyacrylonitriles. Industrial testing of these materials is generalized. An economic evaluation is made of the efficiency of measures undertaken to prevent water influx into oil wells.

  18. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  19. Experimental Study of Silicon Oil Effect on Two-Phase Closed Thermosyphon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Yeong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Two-phase closed thermosyphon (TPCT) is vertically oriented wickless heat pipe that has working fluid in the interior. The TPCT transports a large amount of heat from evaporator to condenser by phase change of working fluid, and the working fluid passively returns to evaporator by gravity. Due to these advantages of the TPCT, the TPCT is considered as method of PRHR (Passive Residual Heat Removal) system in nuclear system. Parametric studies have done to investigate the heat transfer characteristics of the TPCT. Different working fluids such as water, ethanol, methanol and acetone were used at various filling ratios and at different operating temperatures to find maximum heat transport capabilities of TPCT. Effect of heat transfer rate, filling ratio and aspect ratio were investigated. Inclined angle effect was investigated at several filling ratios and working fluids. This study is interested in silicon oil effect on the TPCT. To carry out the experiment, experimental apparatus is designed and manufactured. In design process, the TPCT operation limit is considered This study is interested in silicon oil effect on the TPCT. Experiments were carried out at three oil weight percent with three input power. Effect of oil on the TPCT is evaluated by inner wall temperature distribution and thermal resistance. In this study, silicon oil effect on TPCT was investigated. The TPCT was operated with several oil weight percent and input power. From experiment, overall, the silicon oil reduced evaporator thermal performance, but enhanced condenser thermal performance. However, the TPCT total thermal performance was reduced by 100 c St silicon oil.

  20. Experimental Study of Silicon Oil Effect on Two-Phase Closed Thermosyphon

    International Nuclear Information System (INIS)

    Jung, Jun Yeong; Jeong, Yong Hoon

    2015-01-01

    Two-phase closed thermosyphon (TPCT) is vertically oriented wickless heat pipe that has working fluid in the interior. The TPCT transports a large amount of heat from evaporator to condenser by phase change of working fluid, and the working fluid passively returns to evaporator by gravity. Due to these advantages of the TPCT, the TPCT is considered as method of PRHR (Passive Residual Heat Removal) system in nuclear system. Parametric studies have done to investigate the heat transfer characteristics of the TPCT. Different working fluids such as water, ethanol, methanol and acetone were used at various filling ratios and at different operating temperatures to find maximum heat transport capabilities of TPCT. Effect of heat transfer rate, filling ratio and aspect ratio were investigated. Inclined angle effect was investigated at several filling ratios and working fluids. This study is interested in silicon oil effect on the TPCT. To carry out the experiment, experimental apparatus is designed and manufactured. In design process, the TPCT operation limit is considered This study is interested in silicon oil effect on the TPCT. Experiments were carried out at three oil weight percent with three input power. Effect of oil on the TPCT is evaluated by inner wall temperature distribution and thermal resistance. In this study, silicon oil effect on TPCT was investigated. The TPCT was operated with several oil weight percent and input power. From experiment, overall, the silicon oil reduced evaporator thermal performance, but enhanced condenser thermal performance. However, the TPCT total thermal performance was reduced by 100 c St silicon oil

  1. Analysis of the plasma impurity influx from alkali-metal coatings for fusion-reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission as compared to those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion

  2. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  3. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  4. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  5. Comparisons of physical and chemical sputtering in high density divertor plasmas with the Monte Carlo Impurity (MCI) transport model

    International Nuclear Information System (INIS)

    Evans, T.E.; Loh, Y.S.; West, W.P.; Finkenthal, D.F.

    1997-11-01

    The MCI transport model was used to compare chemical and physical sputtering for a DIII-D divertor plasma near detachment. With physical sputtering alone the integrated carbon influx was 8.4 x 10 19 neutral/s while physical plus chemical sputtering produced an integrated carbon influx of 1.7 x 10 21 neutrals/s. The average carbon concentration in the computational volume increased from 0.012% with only physical sputtering to 0.182% with both chemical and physical sputtering. This increase in the carbon inventory produced more radiated power which is in better agreement with experimental measurements

  6. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death.

    Science.gov (United States)

    Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J

    2017-08-01

    We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.

  7. Deep-sea spherules from Pacific clay - Mass distribution and influx rate. [extraterrestrial origins from optical and electron microscopy

    Science.gov (United States)

    Murrell, M. T.; Davis, P. A., Jr.; Nishiizumi, K.; Millard, H. T., Jr.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 microns were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of optical and electron microscopy and atomic absorption elemental analysis. An expression for the integral number of stony particles from this sediment in the mass range 20-300 micrograms was derived. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but no conclusions could be made.

  8. CARRIER TRANSPORT IN MESOSCOPIC SILICON-COUPLED SUPERCONDUCTING JUNCTIONS

    NARCIS (Netherlands)

    VANHUFFELEN, WM; KLAPWIJK, TM; HESLINGA, DR; DEBOER, MJ; VANDERPOST, N

    1993-01-01

    An overview is presented of experimental results on supercurrent flow and transport at finite voltages in a well-characterized, sandwich-type superconductor-semiconductor-superconductor junction. Carrier transport through the structure is found to be dominated by the interfaces. At low temperatures,

  9. [Kinetic properties of the fructose influx across the brush border of the rat jejunum. Effects of a diet rich in fructose].

    Science.gov (United States)

    Crouzoulon, G

    1978-10-01

    The unidirectional influx (i.e. initial rate of uptake) of D-fructose across the brush border of rat jejunum is a saturable function of concentration, with a Kt of 125 mM, which implicates a carrier mechanism. This mechanism appears to be very specific for fructose in view of the lack of influx inhibition observed in the presence of large concentrations of the sugars or polyols, D-glucose, D-galactose, D-mannose, D-xylose, L-sorbose, D-tagatose, sorbitol or mannitol. D-Fructose uptake is inhibited by incubation, preceded by a 30-min preincubation in the same inhibitory conditions, in the absence of Na, or in the presence of metabolic poisons, NaF, 2,4-dinitrophenol, monoiodoacetate. Phloridzin (10-3 M), with or without preincubation, has no effect on uptake. D-Fructose influx is stimulated by fructose feeding, mainly because the augmentation of the number of active sites of transfer: Jmax is increased two-fold, Kt is more weakly affected.

  10. Polyamines as mediators of insulin's action on pyruvate dehydrogenase, 45Ca2+ fluxes, and membrane transport

    International Nuclear Information System (INIS)

    Goldstone, A.D.; Koenig, H.; Lu, C.Y.

    1986-01-01

    Insulin (IN) induces a rapid stimulation of Ca 2+ fluxes and membrane transport in mouse kidney cortex which involves rapid polyamine synthesis. 1.3 nM (IN) induced an early ( 45 Ca 2+ influx and efflux peaked at 1-2 min and returned to basal levels by 5-10 min. The ODC inhibitor α-difluoromethylornithine (DFMO, 5 mM) abolished IN stimulation of PDH, 45 Ca 2+ fluxes and membrane transport, and putrescine (.5 mM) nullified DFMO inhibition. IN (50 mUnits/kg) in rats induced an early ( 2+ fluxes, and membrane transport

  11. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  12. Enhanced carbon influx into TFTR supershots

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Bush, C.E.; Dylla, H.F.; Owens, D.K.; Pitcher, C.S.; Ulrickson, M.

    1990-12-01

    Under some conditions, a very large influx of carbon into TFTR occurs during beam injection into low recycling plasmas (the Supershot regime). These carbon ''blooms'' result in serious degradation of plasma parameters. The sources of this carbon have been identified as hot spots on the TFTR bumper limiter at or near the last closed flux surface. Two separate temperature thresholds have been identified. One, at about 1650 degree C, is consistent with radiation enhanced sublimation. The other, at about 2300 degree C, appears to be thermal sublimation of carbon from the limiter. To account for the increased density caused by the blooms, near unity recycling of the carbon at the limiter by physical sputtering is required; this effect is expected from laboratory measurements, and we believe we are seeing it on TFTR. The sources of the carbon blooms are sites which have either loosely attached fragments of limiter material (caused by damage) or surfaces nearly perpendicular to the magnetic field lines. Such surfaces may have local power depositions two orders of magnitude higher than usual. The TFTR team modified the limiter during the opening of Winter 1989--90. The modifications greatly reduced the number and magnitude of the blooms, so that they are no longer a problem

  13. Silicon spintronics: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sverdlov, Viktor; Selberherr, Siegfried, E-mail: Selberherr@TUWien.ac.at

    2015-07-14

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  14. Silicon spintronics: Progress and challenges

    International Nuclear Information System (INIS)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-01-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized

  15. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  16. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  17. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  18. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  19. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Transendothelial Transport and Its Role in Therapeutics

    Science.gov (United States)

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037

  1. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  2. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  3. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications.

    Directory of Open Access Journals (Sweden)

    Steven Kim

    Full Text Available Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD. However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.

  4. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    Science.gov (United States)

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  5. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  6. Synthesis and corrosion properties of silicon nitride films by ion beam assisted deposition

    Science.gov (United States)

    Baba, K.; Hatada, R.; Emmerich, R.; Enders, B.; Wolf, G. K.

    1995-12-01

    Silicon nitride films SiN x were deposited on 316L austenitic stainless steel substrates by silicon evaporation and simultaneous nitrogen ion irradiation with an acceleration voltage of 2 kV. In order to study the influence of the nitrogen content on changes in stoichiometry, structure, morphology, thermal oxidation behaviour and corrosion behaviour, the atom to ion transport ratio was systematically varied. The changes of binding states and the stoichiometry were evaluated with XPS and AES analysis. A maximum nitrogen content was reached with a {Si}/{N} transport ratio lower than 2. The films are chemically inert when exposed to laboratory atmosphere up to a temperature of more than 1000°C. XRD and SEM measurements show amorphous and featureless films for transport ratios {Si}/{N} from 1 up to 10. The variation of the corrosion behaviour of coated stainless steel substrates in sulphuric acid and hydrochloric acid shows a minimum at medium transport ratios. This goes parallel with changes in porosity and adhesion. Additional investigations showed that titanium implantation as an intermediate step improves the corrosion resistance considerably.

  7. Performance of silicon drift detectors in a magnetic field

    International Nuclear Information System (INIS)

    Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P.

    1997-01-01

    A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle α relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.)

  8. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  9. Tunnel current through virus particles between columnar structures in mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vashpanov, Yuriy; Jung, Jae-Il; Dal Kwack, Kae [Electrical Engineering and Computer Science Division of Hanyang Institute of Technology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, 133-791 Seoul (Korea, Republic of)

    2011-07-15

    Earlier we reported on a tunnel charge transport mechanism in mesoporous silicon with columnar structures under adsorption of plant nematode-transmitted polyhedral (NEPO) viruses at room temperature. Additional experiments are performed in this paper to establish that this observed tunnel current is connected to a conduction path through virus particles. The plant NEPO viruses have an orbicular shape with a diameter of around 25-30 nm. This size is matched well to the porous size distribution in manufactured samples. The tunnel charge transport in semiconductor structures was not observed on loading protein macromolecules of smaller sizes. A physical mechanism of the observed phenomena can be interpreted to be the result of a shunting effect through virus particles between the two closely located columnar silicon structures. This effect is likely to result from double points at virus adsorption under the condition of matching of pore and virus sizes. The magnitudes of the tunnel barrier heights depend on the type of loaded plant viruses. The investigated columnar structures of mesoporous silicon can be used for research on the electrical properties of different viruses with corresponding sizes in the range of 20-30 nm. The existence of a tunnel current between columnar structures in mesoporous silicon under virus adsorption can be used as a simple method for their detection in the environment. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Influence of culture medium pH on charasome development and chloride transport in Chara corallina

    International Nuclear Information System (INIS)

    Lucas, W.J.; Keifer, D.W.; Pesacreta, T.C.

    1986-01-01

    Internodal cells of Chara, grown in culture either at pH 5.7,6.5 or 7.5, were studied to determine their chloride influx capability, the quantitative aspects of charasome morphology and the degree to which these two parameters could be correlated. In cells grown at pH 5.7 the charasomes were relatively small, were widely spaced on the plasma membrane, and contributed only at 0.6% increase to the surface area of the plasma membrane in the acid region of the cell. In contrast, the charasome membrane surface area of cells grown at pH 7.5 had increased x 19, the density of charasomes on the cell surface increased x 42, thus producing a x 3.57 increase in the acid region plasma membrane surface area. Chloride influx in cells grown at pH 7.5 was x 8.7-12.7 greater than in cells grown at pH 5.7. Cells that had been starved of chloride exhibited a x 2.4 average increase in the rate of chloride influx. Our observations establish the existence of a positive correlation between the rate of chloride influx and the increase in membran surface area due to charasomes, although other factors, such as the effect of pH on transport-related enzymes, and the effect of charasome structure on chemical equilibria, may also be of importance. (Author)

  11. An analysis of the plasma impurity influx from alkali-metal coatings for fusion reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission compared with those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion. (orig.)

  12. Role of transporters in placental transfer of drugs

    International Nuclear Information System (INIS)

    Ganapathy, Vadivel; Prasad, Puttur D.

    2005-01-01

    Human placenta functions as an important transport organ that mediates the exchange of nutrients and metabolites between maternal and fetal circulations. This function is made possible because of the expression of a multitude of transport proteins in the placental syncytiotrophoblast with differential localization in the maternal-facing brush border membrane versus the fetal-facing basal membrane. Even though the physiological role of most of these transport proteins is to handle nutrients, many of them interact with xenobiotics and pharmacological agents. These transport proteins therefore play a critical role in the disposition of drugs across the maternal-fetal interface, with some transporters facilitating the entry of drugs from maternal circulation into fetal circulation whereas others preventing such entry by actively eliminating drugs from the placenta back into maternal circulation. The net result as to whether the placenta enhances the exposure of the developing fetus to drugs and xenobiotics or functions as a barrier to protect the fetus from such agents depends on the types of transporters expressed in the brush border membrane and basal membrane of the syncytiotrophoblast and on the functional mode of these transporters (influx versus efflux)

  13. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  14. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  15. Electrical behaviour of a silicone elastomer under simulated space environment

    International Nuclear Information System (INIS)

    Roggero, A; Dantras, E; Paulmier, T; Rejsek-Riba, V; Tonon, C; Dagras, S; Balcon, N; Payan, D

    2015-01-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around T g in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon. (paper)

  16. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  17. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2017-08-01

    Full Text Available Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K or silicon (Si in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP. We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

  18. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  19. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  20. Fabrication of a novel silicon single electron transistor for Si:P quantum computer devices

    International Nuclear Information System (INIS)

    Angus, S.J.; Smith, C.E.A.; Gauja, E.; Dzurak, A.S.; Clark, R.G.; Snider, G.L.

    2004-01-01

    Full text: Quantum computation relies on the successful measurement of quantum states. Single electron transistors (SETs) are known to be able to perform fast and sensitive charge measurements of solid state qubits. However, due to their sensitivity, SETs are also very susceptible to random charge fluctuations in a solid-state materials environment. In previous dc transport measurements, silicon-based SETs have demonstrated greater charge stability than A1/A1 2 O 3 SETs. We have designed and fabricated a novel silicon SET architecture for a comparison of the noise characteristics of silicon and aluminium based devices. The silicon SET described here is designed for controllable and reproducible low temperature operation. It is fabricated using a novel dual gate structure on a silicon-on-insulator substrate. A silicon quantum wire is formed in a 100nm thick high-resistivity superficial silicon layer using reactive ion etching. Carriers are induced in the silicon wire by a back gate in the silicon substrate. The tunnel barriers are created electrostatically, using lithographically defined metallic electrodes (∼40nm width). These tunnel barriers surround the surface of the quantum wire, thus producing excellent electrostatic confinement. This architecture provides independent control of tunnel barrier height and island occupancy, thus promising better control of Coulomb blockade oscillations than in previously investigated silicon SETs. The use of a near intrinsic silicon substrate offers compatibility with Si:P qubits in the longer term

  1. Studies of cesium permeability of potassium transporter from Arabidopsis

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Yamagami, Mutsumi; Hisamatsu, Shun'ichi; Inaba, Jiro; Uozumi, Nobuyuki; Hazama, Akihiro

    2007-01-01

    Cs-137 is an important radionuclide for safety assessment of nuclear facilities, and its transfer via plants is an important route from the environment to humans. Studies of Cs uptake mechanisms by plants are essential for understanding 137 Cs movement in soil-to-plant systems and in plants. Since uptake of Cs is considered to be mediated by K transport protein, we investigated Cs + permeability of two Arabidopsis K + transporters, AKT2 and AtHKT1, by using Xenopus oocytes expression systems and two-electrode voltage-clamp technique under various pH conditions. The data showed AKT2 and AtHKT1 did not transport Cs + at external pH in the 5.5-7.5 range. These results indicated that AKT2 and AtHKT1 did not contribute to Cs + influx into cells under physiological conditions in plants. (author)

  2. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  3. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  4. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rohil, N.; Jennings, M.L.

    1989-07-01

    In this study the volume-dependent or N-ethylmaleimide (NEM)-stimulated, ouabain-insensitive K+ influx and efflux were measured with the tracer 86Rb+ in rabbit red blood cells. The purpose of the work was to examine the rabbit as a potential model for cell volume regulation in human SS red blood cells and also to investigate the relationship between the NEM-reactive sulfhydryl group(s) and the signal by which cell swelling activates the transport. Ouabain-resistant K+ efflux and influx increase nearly threefold in cells swollen hypotonically by 15%. Pretreatment with 2 mM NEM stimulates efflux 5-fold and influx 10-fold (each measured in an isotonic medium). The ouabain-resistant K+ efflux was dependent on the major anion in the medium. The anion dependence of K+ efflux in swollen or NEM-stimulated cells was as follows: Br- greater than Cl- much greater than NO3- = acetate. The magnitudes of both the swelling- and the NEM-stimulated fluxes are much higher in young cells (density separated but excluding reticulocytes) than in older cells. Swelling- or NEM-stimulated K+ efflux in rabbit red blood cells was inhibited 50% by 1 mM furosemide, and the inhibitory potency of furosemide was enhanced by extracellular K+, as is known to be true for human AA and low-K+ sheep red blood cells. The swelling-stimulated flux in both rabbit and human SS cells has a pH optimum at approximately 7.4. We conclude that rabbit red blood cells are a good model for swelling-stimulated K+ transport in human SS cells.

  5. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  6. Process model for carbothermic production of silicon metal

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, B.

    1995-09-12

    This thesis discusses an advanced dynamical two-dimensional cylinder symmetric model for the high temperature part of the carbothermic silicon metal process, and its computer encoding. The situation close to that which is believed to exist around one of three electrodes in full-scale industrial furnaces is modelled. This area comprises a gas filled cavity surrounding the lower tip of the electrode, the metal pool underneath and the lower parts of the materials above. The most important phenomena included are: Heterogeneous chemical reactions taking place in the high-temperature zone (above 1860 {sup o}C), Evaporation and condensation of silicon, Transport of materials by dripping, Turbulent or laminar fluid flow, DC electric arcs, Heat transport by convection, conduction and radiation. The results from the calculations, such as production rates, gas- and temperature distributions, furnace- and particle geometries, fluid flow fields etc, are presented graphically. In its present state the model is a prototype. The process is very complex, and the calculations are time consuming. The governing equations are coded into a Fortran 77 computer code applying the commercial 3D code FLUENT as a basis. 64 refs., 110 figs., 11 tabs.

  7. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    International Nuclear Information System (INIS)

    La Rocca, P.; Billotta, S.; Blancato, A.A.; Bonanno, D.; Bonanno, G.; Fallica, G.; Garozzo, S.; Lo Presti, D.; Marano, D.; Pugliatti, C.; Riggi, F.; Romeo, G.; Santagati, G.; Valvo, G.

    2015-01-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers

  8. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    Energy Technology Data Exchange (ETDEWEB)

    La Rocca, P., E-mail: paola.larocca@ct.infn.it [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Billotta, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Blancato, A.A.; Bonanno, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Fallica, G. [STMicroelectronics - Catania (Italy); Garozzo, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Lo Presti, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Pugliatti, C.; Riggi, F. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Valvo, G. [STMicroelectronics - Catania (Italy)

    2015-07-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers.

  9. Observation of correlation effects in the hopping transport in amorphous silicon

    International Nuclear Information System (INIS)

    Voegele, V.; Kalbitzer, S.; Boehringer, K.

    1985-01-01

    Amorphous silicon films have been modified by the implantation of Au or Si ions. The d.c. conductivity, measured between 300 and 15 K, was found to exhibit hopping exponents m which increase with decreasing temperature. Depending on the varied defect densities, m ranges between the limits of 1/4 and 1. These results can be explained by variable-range-hopping theory, if a Coulomb correlation term is included. (author)

  10. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  11. Impaired transport of thyroid hormones into livers of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1988-01-01

    Obese (ob/ob) mice exhibit impaired hepatic thyroid hormone action that is mediated, at least in part, by a reduced nuclear 3,5,3'-triiodothyronine (T 3 ) receptor occupancy. The possibility that lowered occupancy in obese mice may be caused by decreased transport of T 3 across the hepatic plasma membrane was examined by measuring the unidirectional influx of [ 125 I]T 3 into livers of 8- to 10-wk-old obese and lean mice using a tissue-sampling portal vein-injection technique. Influx of [ 125 I]thyroxine (T 4 ), a substrate for T 4 5'-deiodinase, was also measured. Unidirectional clearance of T 3 and T 4 was 64 and 80% lower, respectively, in obese mice than in lean mice. Hepatic T 3 and T 4 uptake was nonsaturable in both lean and obese mice, suggesting that transport occurs by lipid-mediated free diffusion. Clearance of another lipid-soluble hormone, hydrocortisone, was also lower in obese mice than in lean mice. Decreased membrane permeability to the above hormones in obese mice may result from reported changes in membrane lipid composition. In conclusion, decreased hepatic thyroid hormone uptake may contribute to impaired thyroid hormone action and T 3 production in livers of obese mice

  12. Extracellular Zn2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Morioka, Hiroki; Takeda, Atsushi

    2018-04-29

    Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn 2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn 2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn 2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn 2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn 2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn 2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn 2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn 2+ but not in intracellular Ca 2+ . These results suggest that the rapid influx of extracellular Zn 2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.

  13. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Science.gov (United States)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  14. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  15. Characterization of vertical strain silicon MOSFET incorporating dielectric pocket (SDP-VMOSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Napiah, Z. A. F. M., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Makhtar, N., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Othman, M. A., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Idris, M. I., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Arith, F., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Yasin, N. Y. M., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com; Taib, S. N., E-mail: zulatfyi@utem.edu.my, E-mail: nazirah6969@gmail.com, E-mail: azlishah@utem.edu.my, E-mail: idzdihar@utem.edu.my, E-mail: faiz.arith@utem.edu.my, E-mail: yashidar@yahoo.com, E-mail: sitinabilahtaib@gmail.com [Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2014-02-24

    The vertical Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) leads to a double channel width that can increase the packaging density. The strained silicon MOSFET was introduced to modify the carrier transport properties of silicon in order to enhance transport of both electrons and holes within strained layer. Dielectric pocket was act to control encroachment of the drain doping into the channel and reduce short channel effects (SCE). SDP-VMOSFET which was a combination of those advantages was proposed to overcome the SCE in term of leakage current, threshold voltage roll-off also Drain Induce Barrier Lowering (DIBL). As a result, SDP-VMOSFET produces a better threshold voltage and DIBL compared to related structures. Meanwhile, it gives slightly increased for leakage current compared to Vertical MOSFET Incorporating Dielectric Pocket. The characteristics of the SDP-VMOSFET are analyzed in order to optimize the performance of the device and leading to the next generation of IC technology.

  16. Characterization of vertical strain silicon MOSFET incorporating dielectric pocket (SDP-VMOSFET)

    International Nuclear Information System (INIS)

    Napiah, Z. A. F. M.; Makhtar, N.; Othman, M. A.; Idris, M. I.; Arith, F.; Yasin, N. Y. M.; Taib, S. N.

    2014-01-01

    The vertical Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) leads to a double channel width that can increase the packaging density. The strained silicon MOSFET was introduced to modify the carrier transport properties of silicon in order to enhance transport of both electrons and holes within strained layer. Dielectric pocket was act to control encroachment of the drain doping into the channel and reduce short channel effects (SCE). SDP-VMOSFET which was a combination of those advantages was proposed to overcome the SCE in term of leakage current, threshold voltage roll-off also Drain Induce Barrier Lowering (DIBL). As a result, SDP-VMOSFET produces a better threshold voltage and DIBL compared to related structures. Meanwhile, it gives slightly increased for leakage current compared to Vertical MOSFET Incorporating Dielectric Pocket. The characteristics of the SDP-VMOSFET are analyzed in order to optimize the performance of the device and leading to the next generation of IC technology

  17. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  18. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2016-02-23

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.

  19. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan [Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2002 Neuchâtel (Switzerland); Menda, Deneb; Özdemir, Orhan [Department of Physics, Yıldız Technical University, Davutpasa Campus, TR-34210 Esenler, Istanbul (Turkey); Descoeudres, Antoine; Barraud, Loris [CSEM, PV-Center, Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland)

    2016-08-07

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  20. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    Science.gov (United States)

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  1. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  2. Electron drift time in silicon drift detectors: A technique for high precision measurement of electron drift mobility

    International Nuclear Information System (INIS)

    Castoldi, A.; Rehak, P.

    1995-01-01

    This paper presents a precise absolute measurement of the drift velocity and mobility of electrons in high resistivity silicon at room temperature. The electron velocity is obtained from the differential measurement of the drift time of an electron cloud in a silicon drift detector. The main features of the transport scheme of this class of detectors are: the high uniformity of the electron motion, the transport of the signal electrons entirely contained in the high-purity bulk, the low noise timing due to the very small anode capacitance (typical value 100 fF), and the possibility to measure different drift distances, up to the wafer diameter, in the same semiconductor sample. These features make the silicon drift detector an optimal device for high precision measurements of carrier drift properties. The electron drift velocity and mobility in a 10 kΩ cm NTD n-type silicon wafer have been measured as a function of the electric field in the range of possible operation of a typical drift detector (167--633 V/cm). The electron ohmic mobility is found to be 1394 cm 2 /V s. The measurement precision is better than 1%. copyright 1995 American Institute of Physics

  3. Investigation of the Full Spectrum Phonon Lifetime in Thin Silicon Films from the Bulk Spectral Phonon Mean-Free-Path Distribution by Using Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)

    2017-03-15

    Phonon dynamics in nanostructure is critically important to thermoelectric and optoelectronic devices because it determines the transport and other crucial properties. However, accurately evaluating the phonon lifetimes is extremely difficult. This study reports on the development of a new semi-empirical method to estimate the full-spectrum phonon lifetimes in thin silicon films at room temperature based on the experimental data on the phonon mean-free-path spectrum in bulk silicon and a phenomenological consideration of phonon transport in thin films. The bulk of this work describes the theory and the validation; then, we discuss the trend of the phonon lifetimes in thin silicon films when their thicknesses decrease.

  4. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  5. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  6. Synthesis of silicon nanocomposite for printable photovoltaic devices on flexible substrate

    Science.gov (United States)

    Odo, E. A.; Faremi, A. A.

    2017-06-01

    Renewed interest has been established in the preparation of silicon nanoparticles for electronic device applications. In this work, we report on the production of silicon powders using a simple ball mill and of silicon nanocomposite ink for screen-printable photovoltaic device on a flexible substrate. Bulk single crystalline silicon was milled for 25 h in the ball mill. The structural properties of the produced silicon nanoparticles were investigated using X-ray diffraction (XRD) and transmission electron microscopy. The results show that the particles remained highly crystalline, though transformed from their original single crystalline state to polycrystalline. The elemental composition using energy dispersive X-ray florescence spectroscopy (EDXRF) revealed that contamination from iron (Fe) and chromium (Cr) of the milling media and oxygen from the atmosphere were insignificant. The size distribution of the nanoparticles follows a lognormal pattern that ranges from 60 nm to about 1.2 μm and a mean particle size of about 103 nm. Electrical characterization of screen-printed PN structures of the nanocomposite formed by embedding the powder into a suitable water-soluble polymer on Kapton sheet reveals an enhanced photocurrent transport resulting from photo-induced carrier generation in the depletion region with energy greater that the Schottky barrier height at the metal-composite interface.

  7. Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions

    Science.gov (United States)

    Chiodi, F.; Duvauchelle, J.-E.; Marcenat, C.; Débarre, D.; Lefloch, F.

    2017-07-01

    We have realized laser-doped all-silicon superconducting (S)/normal metal (N) bilayers of tunable thickness and dopant concentration. We observed a strong reduction of the bilayers' critical temperature when increasing the normal metal thickness, a signature of the highly transparent S/N interface associated to the epitaxial sharp laser doping profile. We extracted the interface resistance by fitting with the linearized Usadel equations, demonstrating a reduction of 1 order of magnitude from previous superconductor/doped Si interfaces. In this well-controlled crystalline system we exploited the low-resistance S/N interfaces to elaborate all-silicon lateral SNS junctions with long-range proximity effect. Their dc transport properties, such as the critical and retrapping currents, could be well understood in the diffusive regime. Furthermore, this work led to the estimation of important parameters in ultradoped superconducting Si, such as the Fermi velocity, the coherence length, or the electron-phonon coupling constant, fundamental to conceive all-silicon superconducting electronics.

  8. Electronic spectrum of a deterministic single-donor device in silicon

    International Nuclear Information System (INIS)

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  9. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  10. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  11. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  12. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

    KAUST Repository

    Wu, Hui

    2012-03-25

    Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage 1-5. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles 6-11. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour). © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots1[C][W

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T.; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J.

    2013-01-01

    Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions. PMID:24134887

  14. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  15. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    Science.gov (United States)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  16. Effects of vitamin D metabolites on cellular Ca2+ and on Ca transport in primary cultures of bone cells.

    Science.gov (United States)

    Eilam, Y; Szydel, N; Harell, A

    1980-09-01

    Both 1,25-dihydroxycholecalciferol (1,25(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25(OH)2D3) exerted direct effects on Ca2+ transport and accumulation in primary cultures of bone cells. The following changes were recorded. (1) A significant decrease in the amount of intracellular exchangeable Ca2+. (2) A marked increase in the rate constants of efflux from the 'slow'-turnover intracellular Ca pool. (3) A marked increase in the 'initial rate' of Ca influx into the cells. Thus, vitamin D metabolites caused an increase in the turnover of Ca2+ in bone cells and altered the steady-stae level of intracellular exchangeable Ca2+. Whereas the changes in the rate of efflux were abolished in the presence of inhibitors of protein synthesis, the increase in the rate of influx was not sensitive to these inhibitors. It is suggested that the changes in the two fluxes were mediated by different mechanisms and that the changes in influx were due to a direct effect of vitamin D metabolites on the cellular membranes.

  17. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  18. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  19. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  20. Influence of a chinese crude drug on Ca2+ influx and efflux in rat visceral organs:Investigation and evaluation by 45Ca

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Zhengji; Xie Jianping; Liao Jiali; Mo Shangwu

    2006-01-01

    The influences of a Chinese crude drug, Herba Epimedii (HE), on Ca 2+ influx and efflux in the isolated rat aorta and some visceral organs were evaluated by using 45 Ca as a radioactive tracer. Additionally, its protective effect on myocardial ischemia was investigated in live animals. The results indicated that HE has significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in that it can markedly block 45 Ca entering into cell and can facilitate efflux of intracellular Ca 2+ . However, among the three kinds of extracts from HE, the alkali extracts have the most obvious effect on calcium channels in visceral organs. Even if the alkali extracts are diluted by water for 10 times, the material still has a rather strong inhibition effect on calcium channels. Fortunately, the three kinds of extracts have favorable protective effect on myocardial ischemia induced by drugs or by the ligation of the coronary artery. This is consistent with the results about the Ca 2+ influx and efflux obtained by isotope tracer technique, and implies that the Chinese crude drug has attractive potential for the treatment of heart, cerebrovascular and other diseases

  1. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  2. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

    KAUST Repository

    Wu, Hui; Chan, Gerentt; Choi, Jang Wook; Ryu, Ill; Yao, Yan; McDowell, Matthew T.; Lee, Seok Woo; Jackson, Ariel; Yang, Yuan; Hu, Liangbing; Cui, Yi

    2012-01-01

    Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage 1-5. Silicon has a large

  3. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  5. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  6. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  7. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  8. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  9. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  10. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  11. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  12. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  13. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    International Nuclear Information System (INIS)

    Song Alin; Li Zhaojun; Zhang Jie; Xue Gaofeng; Fan Fenliang; Liang Yongchao

    2009-01-01

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L -1 Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H 2 O 2 concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  14. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from......Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate...... the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y(+)LAT2 facilitate the exchange of neutral amino...

  15. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  16. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  17. Investigation of carrier density and mobility in microcrystalline silicon alloys using Hall effect and thermopower measurements; Untersuchung der Ladungstraegerkonzentration und -beweglichkeit in mikrokristallinen Siliziumlegierungen mit Hall-Effekt und Thermokraft

    Energy Technology Data Exchange (ETDEWEB)

    Sellmer, Christian

    2012-08-31

    The electronic properties of amorphous and microcrystalline silicon layers in thin-film solar cells significantly affect the efficiency of solar cells. An important property of the individual layer is the electronic transport, which is described by the variables conductivity, photoconductivity, mobility, and carrier concentration. In the past, individual characterization methods were typically used to determine the electronic properties. Using the combination of Hall effect, conductivity, and thermoelectric power measurements additional variables can be derived, such as the effective density of states at the valence and conduction band edge, making a more detailed description of the material possible. To systematically study the electronic properties - in particular carrier mobility and carrier concentration - various series of silicon films are prepared for this work including microcrystalline silicon layers of different doping and crystallinity and a series of silicon films where the Fermi level is moved by irradiation with high energy electrons on one and the same sample. The results show that the transition from amorphous to microcrystalline transport is relatively abrupt. If the electron transport takes place in only amorphous regions, it is marked by the sign anomaly of the Hall effect. If a continuous crystalline path exists, the electronic properties are dominated by the crystalline volume fraction. The results of the measurements of silicon layers are compared with those of microcrystalline silicon carbide samples. Silicon carbide is especially interesting for future applications in thin-film solar cells due to high transparency and high conductivity. It is shown that the effective density of states at the valence and conduction band edge as a function of temperature in p- and n-type microcrystalline silicon and silicon carbide samples largely coincide with those of crystalline silicon or silicon carbide. A square root shaped profile of the density of

  18. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  19. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  20. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  1. MEP parabolic hydrodynamical model for holes in silicon semiconductors

    International Nuclear Information System (INIS)

    Mascali, G.; Romano, V.; Sellier, J. M.

    2005-01-01

    Consistent hydrodynamical models for electron transport in semi-conductors, free of any fitting parameter, have been formulated on the basis of the maximum entropy principle in Continuum Mech. Thermodyn., 11 (1999) 307, 12 (2000) 31 for silicon and in Continuum Mech. Thermodyn., 14 (2002) 405 for GaAs. In this paper we use the same approach for studying the hole transport in Si, by considering a parabolic approximation for the valence energy band. Scattering of holes with non-polar optical phonons, acoustic phonons and impurities have been taken into account. On the basis of these results, a limiting energy-transport model and an explicit expression for the low field hole mobility have been obtained. The high field mobility is also analyzed by taking into account the influence of impurities

  2. Production of technical silicon and silicon carbide from rice-husk

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2014-10-01

    Full Text Available In the article there are studied physical and chemical properties of silicon-carbonic raw material – rice-husk, thermophysical characteristics of the process of rice-husk pyrolysis in nonreactive and oxidizing environment; structure and phase composition of products of the rice-husk pyrolysis in interval of temperatures 150 – 850 °С and high temperature pyrolysis in interval of temperatures 900 – 1 500 °С. There are defined the silicon-carbon production conditions, which meet the requirements applicable to charging materials at production of technical silicon and silicon carbide.

  3. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  4. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    Science.gov (United States)

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  6. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    Science.gov (United States)

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  7. Relationship Between Accumulation and Influx of Pollutants in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    The paper discusses the long term mass balance of pollutants in highway ponds. The accumulations of five polycyclic aromatic hydrocarbons (PAHs) and six heavy metals have been measured in eight Danish detention ponds, which receive runoff from highways only. For each pollutant the accumulation has...... been compared to the long-term influx, estimated from short-term measurements of concentrations in highway runoff. The results show that a large proportion of the incoming heavy metals in short-term runoff events has accumulated in the ponds. This is not the case for the toxic organic compounds....... The results also show that the accumulation rates for the heavy metals depend significantly on the relative pond area (pond area divided by catchment area). The conclusion is that the mass balances of heavy metals and PAHs in highway ponds can be estimated with acceptable accuracy from a combination of short...

  8. γ-irradiation effect on electronic properties in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Shirafuji, J.; Nagata, S.; Shirakawa, K.

    1986-01-01

    γ-irradiation effect on electron transport and photoelectric properties in glow-discharge hydrogenated amorphous silicon is investigated mainly by means of time-of-flight measurement. Although the electron transport changes from non-dispersive to dispersive when the total dose on γ-rays is increased, the electron mobility at room temperature is affected only slightly by γ-irradiation. The γ-irradiation introduces dominantly Si dangling bonds, allowing to study the recombination characteristic as a function of dangling bond density under controllable conditions. It is found that the electron recombination lifetime is inversely proportional to the dangling bond density. (author)

  9. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  10. Sodium-22 influx into erythrocytes from diabetic hypertensive patients on maintenance hemodialysis

    International Nuclear Information System (INIS)

    Gambhir, K.K.; Mathews, J.; Parui, R.; Cruz, I.A.; Hosten, A.O.; Dillard, M.G.

    1990-01-01

    We have studied the percentage of 22Na+ uptake in cell suspensions; 0.4 to 2.0 x 10(9) erythrocytes/mL from diabetic uremic patients with secondary hypertension and from normal subjects. Suspensions from diabetic uremic patients with secondary hypertension 0.42 +/- 0.06 to 2.05 +/- 0.28; normal subjects showed a percentage uptake of 22Na+ of 0.27 +/- 0.05 to 1.28 +/- 0.22. The uptake of 22Na+ in 2.0 x 10(9) cells/mL was 60% more (P less than .05) in diabetic uremic patients than in the controls. These studies indicate that 22Na+ influx determinations may be used to distinguish secondary hypertensive patients from normal subjects

  11. Release of low molecular weight silicones and platinum from silicone breast implants.

    Science.gov (United States)

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  12. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  14. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  15. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  16. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  17. Carrier-Mediated Transport of Nicotine Across the Inner Blood-Retinal Barrier: Involvement of a Novel Organic Cation Transporter Driven by an Outward H(+) Gradient.

    Science.gov (United States)

    Tega, Yuma; Kubo, Yoshiyuki; Yuzurihara, Chihiro; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2015-09-01

    The present study was carried out to investigate the blood-to-retina transport of nicotine across the inner blood-retinal barrier (BRB). Using the in vivo vascular injection method, the blood-to-retina influx clearance of nicotine across the BRB was determined as 131 μL/(min?g retina), which is much higher than that of a nonpermeable paracellular marker, and blood-to-retina transport of nicotine was inhibited by organic cations such as pyrilamine and verapamil. The nicotine uptake by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells), an in vitro model of the inner BRB, exhibited time, temperature, and concentration dependence with a Km of 492 μM. These results suggest the involvement of a carrier-mediated transport process in nicotine transport in the inner BRB. The nicotine uptake by TR-iBRB2 cells was stimulated by an outwardly directed H(+) gradient, and the uptake was significantly inhibited by bulky and hydrophobic cationic drugs, whereas inhibitors of organic cation transporters did not show inhibitory effect. These results suggest that the novel organic cation transport system driven by an outwardly directed H(+) gradient is involved in the blood-to-retina transport of nicotine across the inner BRB. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Microcrystalline silicon, grain boundaries and role of oxygen

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Stuchlíková, The-Ha; Ledinský, Martin; Stuchlík, Jiří; Mates, Tomáš; Fejfar, Antonín

    2009-01-01

    Roč. 93, č. 8 (2009), s. 1444-1447 ISSN 0927-0248 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : microcrystalline silicon * grain boundaries * electronic transport * hydrogen * oxygen Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.858, year: 2009

  19. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  20. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  1. Methods of optimising ion beam induced charge collection of polycrystalline silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Witham, L.C.G.; Jamieson, D.N.; Bardos, R.A.

    1998-01-01

    Ion Beam Induced Charge (IBIC) is a valuable method for the mapping of charge carrier transport and recombination in silicon solar cells. However performing IBIC analysis of polycrystalline silicon solar cells is problematic in a manner unlike previous uses of IBIC on silicon-based electronic devices. Typical solar cells have a surface area of several square centimeters and a p-n junction thickness of only few microns. This means the cell has a large junction capacitance in the many nanoFarads range which leads to a large amount of noise on the preamplifier inputs which typically swamps the transient IBIC signal. The normal method of improving the signal-to-noise (S/N) ratio by biasing the junction is impractical for these cells as the low-quality silicon used leads to a large leakage current across the device. We present several experimental techniques which improve the S/N ratio which when used together should make IBIC analysis of many low crystalline quality devices a viable and reliable procedure. (authors)

  2. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  3. Report for fiscal 1998 on results of research and development of silicon-based polymeric material; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development of 'silicon-based polymeric materials' has been implemented under ten year plan since 1991 by the research and development system for industrial science and technology, with the following subjects conducted in the general accounting section of fiscal 1998. In the research and development of the synthetic technology of electrically conductive silicon-based polymeric materials, a synthetic method was established for unsaturated side-chain group polysilanes as a basic structural unit for structuring multidimensions. In the research and development of the synthetic technology of new silicon-based polymeric materials capable of plotting circuits, network-shaped polysilanes with various amino groups introduced were synthesized, for which electrical conductivity and temperature dependency were measured. In the research and development of new silicon-based polymeric materials with an electro-luminous function and the like, polymeric synthesis began developing smoothly that has hole-transporting and electron transporting properties concerning the electro-luminous function. In the research and development of silicon-based photoelectric conversion materials, examination was made on the improvement of photoelectric conversion performance by materialization technology including lamination and mixture. The general investigation and research committee contrived further advancement of the research and development. (NEDO)

  4. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  5. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  6. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  7. Axillary silicone lymphadenopathy presenting with a lump and altered sensation in the breast: a case report

    Directory of Open Access Journals (Sweden)

    Adams Simon T

    2009-03-01

    Full Text Available Abstract Introduction Silicone lymphadenopathy is a rare but recognised complication of procedures involving the use of silicone. It has a poorly understood mechanism but is thought to occur following the transportation of silicone particles from silicone-containing prostheses to lymph nodes by macrophages. Case presentation We report of a case involving a 35-year-old woman who presented to the breast clinic with a breast lump and altered sensation below her left nipple 5 years after bilateral cosmetic breast augmentations. A small lump was detected inferior to the nipple but clinical examination and initial ultrasound investigation showed both implants to be intact. However, mammography and magnetic resonance imaging of both breasts revealed both intracapsular and extracapsular rupture of the left breast prosthesis. The patient went on to develop a flu-like illness and tender lumps in the left axilla and right mastoid regions. An excision biopsy of the left axillary lesion and replacement of the ruptured implant was performed. Subsequent histological analysis showed that the axillary lump was a lymph node containing large amounts of silicone. Conclusion The exclusion of malignancy remains the priority when dealing with lumps in the breast or axilla. Silicone lymphadenopathy should however be considered as a differential diagnosis in patients in whom silicone prostheses are present.

  8. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by thermionic vacuum arc (TVA) method

    Science.gov (United States)

    Ciupinǎ, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Vladoiu, Rodica; Mandes, Aurelia; Dinca, Virginia; Nicolescu, Virginia; Manu, Radu; Dinca, Paul; Zaharia, Agripina

    2018-02-01

    To obtain protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, was used TVA method. The initial carbon layer has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV. The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. The retention of oxygen in the protective layer of N-Si-C is due to the following phenomena: (a) The reaction between oxygen and silicon carbide resulting in silicon oxide and carbon dioxide; (b) The reaction involving oxygen, nitrogen and silicon resulting silicon oxinitride with a variable composition; (c) Nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.

  9. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET

    Science.gov (United States)

    Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh

    2017-09-01

    We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.

  10. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  11. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment

  12. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Catherine M. [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Wu, Benjamin [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Ting, Kang [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Soo, Chia, E-mail: bsoo@ucla.edu [UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic, Hospital Research Center, University of California, Los Angeles, 2641 Charles E. Young Dr. South, Los Angeles, CA 90095 (United States)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  13. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    International Nuclear Information System (INIS)

    Cowan, Catherine M.; Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole; Wu, Benjamin; Ting, Kang; Soo, Chia

    2012-01-01

    Highlights: ► NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. ► NELL-1 significantly increases intracellular inorganic phosphate levels. ► NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. ► NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  14. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  15. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, April Susan Montoya [Univ.of California, Davis, CA (United States)

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  16. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  17. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  18. Silicon-organic pigment material hybrids for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T.; Weiler, U.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstreet 23, D-64287 Darmstadt (Germany); Kelting, C.; Schlettwein, D. [Institute for Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Makarov, S.; Woehrle, D. [Institute of Organic and Macromolecular Chemistry, University Bremen, Leobener Street NW II, D-28359 Bremen (Germany); Abdallah, O.; Kunst, M. [Department Solar Energy, Hahn-Meitner-Institute, D-14109 Berlin (Germany)

    2007-12-14

    Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon ({mu}c-Si) deposition using SiH{sub 4}/H{sub 2} mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on {mu}c-Si and {mu}c-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the {mu}c-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F{sub x}ZnPc pigments with x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1 1 1) for electronic state line up determination by photoelectron spectroscopy. For x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon. (author)

  19. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli; Zhou, Jun; Zhang, Zengxing

    2015-01-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  20. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojuan [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Jun, E-mail: zhoujunzhou@tongji.edu.cn [Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Zengxing, E-mail: zhangzx@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-10-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  1. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  2. Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

    Czech Academy of Sciences Publication Activity Database

    Pushkarev, Vladimir; Ostatnický, T.; Němec, Hynek; Chlouba, T.; Trojánek, F.; Malý, P.; Zacharias, M.; Gutsch, S.; Hiller, D.; Kužel, Petr

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-9, č. článku 125424. ISSN 2469-9950 R&D Projects: GA ČR GA17-03662S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * silicon nanocrystals * linear response theory Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  3. A capillary pumping device utilizing super-hydrophobic silicon grass

    International Nuclear Information System (INIS)

    Kung, Chun-Fei; Chang, Chien-Cheng; Chu, Chin-Chou

    2011-01-01

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  4. Use of silicon microstrip detectors in medical diagnostic x-rays

    International Nuclear Information System (INIS)

    Cabal Rodriguez, Ana Ester

    2004-11-01

    This work presents the development and characterization of a single photon counting system based on silicon microstrip detectors, used in High Energy Physics experiments, and on low noise multichannel readout electronics. The thesis evaluates the feasibility of dual energy X-ray imaging with silicon microstrip detectors to be applied on medical diagnosis. Dual energy mammographic and angiographic experimental tests have been performed using the developed counting systems proto types, properly phantoms and quasi-monochromatic X ray beams, obtained on a compact dichromatic source based on a conventional X-ray tube and a mosaic crystal. A Monte Carlo simulation of the performance of the experimental setup for dual X-ray imaging has also been carried out using MCNP-4C transport code. We obtained good agreement between MCNP results and the experimental data. (Author)

  5. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  6. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  7. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  8. A convenient way of manufacturing silicon nanotubes on a silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Changchang; Cheng, Heming; Liu, Xiang, E-mail: liuxiang@ahut.edu.cn

    2016-07-01

    A convenient approach of preparing silicon nanotubes (SiNTs) on a silicon substrate is described in this work in detail. Firstly, a porous silicon (PSi) slice is prepared by a galvanic displacement reaction. Then it is put into aqueous solutions of 20% (w%) ammonium fluoride and 2.5 mM cobalt nitrate for a predetermined time. The cobalt ions are reduced and the resulted cobalt particles are deposited on the PSi slice. After the cobalt particles are removed with 5 M nitric acid a plenty of SiNTs come out and exhibit disorderly on the silicon substrate, which are illustrated by scanning electron microscopy (SEM). The compositions of the SiNTs are examined by energy-dispersive X-ray spectroscopy. Based on the SEM images, a suggested mechanism is put forward to explain the generation of the SiNTs on the PSi substrate. - Highlights: • A facile approach of preparing silicon nano tubes was invented. • The experimental results demonstrated the strong reducibility of Si-H{sub x} species. • It provided a new way of manufacturing silicon-contained hybrids.

  9. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters.

    Science.gov (United States)

    Shams, Tahiatul; Lu, Xiaoxi; Zhu, Ling; Zhou, Fanfan

    2018-02-01

    1. Human solute carrier transporters (SLCs) are important membrane proteins mediate the cellular transport of many endogenous and exogenous substances. Organic anion/cation transporters (OATs/OCTs) and organic anion transporting polypeptides (OATPs) are essential SLCs involved in drug influx. Drug-drug/herb interactions through competing for specific SLCs often lead to unsatisfied therapeutic outcomes and/or unwanted side effects. In this study, we comprehensively investigated the inhibitory effects of five clinically relevant alkaloids (dendrobine, matrine, oxymatrine, tryptanthrin and chelerythrine) on the substrate transport through several OATs/OCTs and OATPs. 2. We performed transport functional assay and kinetic analysis on the HEK-293 cells over-expressing each SLC gene. 3. Our data showed tryptanthrin significantly inhibited the transport activity of OAT3 (IC 50  = 0.93 ± 0.22 μM, K i  = 0.43 μM); chelerythrine acted as a potent inhibitor to the substrate transport mediated through OATP1A2 (IC 50  = 0.63 ± 0.43 μM, K i  = 0.60 μM), OCT1 (IC 50  = 13.60 ± 2.81 μM) and OCT2 (IC 50  =10.80 ± 1.16 μM). 4. Our study suggested tryptanthrin and chelerythrine could potently impact on the drug transport via specific OATs/OCTs. Therefore, the co-administration of these alkaloids with drugs could have clinical consequences due to drug-drug/herb interactions. Precautions should be warranted in the multi-drug therapies involving these alkaloids.

  10. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  11. Tyrosine transport in winter flounder intestine: Interaction with Na+-K+-2Cl- cotransport

    International Nuclear Information System (INIS)

    Musch, M.W.; McConnell, F.M.; Goldstein, L.; Field, M.

    1987-01-01

    Tyrosine absorption across the brush border of the intestinal epithelium of the winter flounder Pseudopleuronectes americanus was studied in Ussing chambers modified to determine early rates of uptake. At 0.1 mM tyrosine, the 4-min rate of uptake (influx) of tyrosine across the brush border averaged 37.5 nmol·cm -2 ·h -1 . Omission of Na decreased influx by 60%, indicting that tyrosine influx occurs, at least in part, by a Na-coupled process. Ouabain inhibited influx by 80%. Inhibition of brush border Na + -K + -2Cl - cotransport by bumetanide, 8-bromo-cyclic GMP, or Cl replacement stimulated tyrosine influx 2.5- to 4-fold. However, atriopeptin III, which also inhibits Na + -K + -2Cl - cotransport, did not stimulate tyrosine influx. Cyclic AMP, which does not appear to inhibit ion cotransport, did not stimulate tyrosine influx. Both cyclic GMP and bumetanide also stimulated the net mucosa-to-serosa tyrosine flux (43 and 29%, respectively) and increased the cellular concentration of tyrosine by 50%. Thus tyrosine's influx is increased to a greater extent than is its transmural flux or its cellular concentration, suggesting that the main change occurs at the brush border and represents large increases in both influx and efflux of tyrosine across this membrane

  12. K+ transport and membrane potentials in isolated rat parotid acini

    International Nuclear Information System (INIS)

    Nauntofte, B.; Dissing, S.

    1988-01-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels

  13. Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.

    Science.gov (United States)

    Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie

    2018-01-01

    The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short

  14. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle

    International Nuclear Information System (INIS)

    Clausen, T.; Flatman, J.A.

    1987-01-01

    To identify possible cause-effect relationships between changes in active Na + -K + transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in 14 C-labeled sugar transport. Ouabain, at a concentration (10 -3 M) sufficient to block active Na + -K + transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na + loading in K + -free buffer, the return to K + -containing standard buffer caused marked stimulation of active 22 Na + - 42 K + transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the 22 Na + - 42 K + pump leads to decreased intracellular 22 Na + concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na + -K + transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na + influx via the Na + /H + -exchange system

  15. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

    Directory of Open Access Journals (Sweden)

    V. А. Pilipenko

    2017-01-01

    Full Text Available Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm.Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

  16. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  17. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  18. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  19. Earth's influx of different populations of sporadic meteoroids from photographic and television data

    International Nuclear Information System (INIS)

    Ceplecha, Z.

    1988-01-01

    Precise photographic and television double- and multi-station data on 3624 sporadic meteors in the mass range from 2 x 10 -5 grams to 2 x 10 7 grams form the basis of this paper. The applied classification criteria and procedures are defined and described. A survey of 7 different populations of sporadic meteoroids known so far is presented. The total numbers and masses of meteoroids as a function of mass are given for individual groups and for all sporadic meteors. The absolute calibration of the influx to the Earth was carried out by comparison with the results of Halliday et al. (1984). The comparison with the visual and cratering data revealed good agreement in the narrow ''visual'' interval of masses, and disagreement in the extrapolated parts of the visual and cratering flux curves. The slope of the cumulative number curve for the meteorite-dropping fireballs (type I) with masses larger than 1 kg was found as -0.69 in perfect agreement with the results of Halliday et al. (1984). The final mass scale derived in this paper is situated between the scale of McCrosky and the scale of Halliday. The relative significance of the different groups of meteoroids changes with the mass quite dramatically. The total influx of sporadic meteoroids in the mass interval of 12 orders from 2 x 10 7 to 2 x 10 -5 grams resulted in 5 x 10 9 grams per year for the entire Earth's surface. Most of this mass comes in the form of larger meteoroids. Bulk densities and ablation coefficient are presented for the individual meteor groups depending on different ablation models of several authors and some extreme concepts of this problem are discussed. (author). 3 figs., 6 tabs., 38 refs

  20. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  1. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Yang, Hyundeok; Chang, Man; Baek, Sungkweon; Hwang, Hyunsang; Jeon, Sanghun; Kim, Juhyung; Kim, Chungwoo

    2005-01-01

    Silicon nitride with silicon nanocrystals formed by low-energy silicon plasma immersion ion implantation has been investigated as a charge trapping layer of a polycrystalline silicon-oxide-nitride-oxide-silicon-type nonvolatile memory device. Compared with the control sample without silicon nanocrystals, silicon nitride with silicon nanocrystals provides excellent memory characteristics, such as larger width of capacitance-voltage hysteresis, higher program/erase speed, and lower charge loss rate at elevated temperature. These improved memory characteristics are derived by incorporation of silicon nanocrystals into the charge trapping layer as additional accessible charge traps with a deeper effective trap energy level

  2. Effects of a series of acidic drugs on L-lactic acid transport by the monocarboxylate transporters MCT1 and MCT4.

    Science.gov (United States)

    Leung, Yat Hei; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2018-03-07

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong , S Chien; Ramkissoon , Yashin D; Lopez , Mauricio; Page , Kristopher; Parkin , Ivan P; Sullivan , Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  4. Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    2017-04-01

    Full Text Available Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs in transporter regulations are summarized and discussed. Both solute carrier (SLC and ATP-binding cassette (ABC drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.

  5. Transport of Cryptosporidium parvum Oocysts in a Silicon Micromodel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan; Zhang, Changyong; Hilpert, Markus; Kuhlenschmidt, Mark S.; Kuhlenschmidt, Theresa B.; Nguyen, Thanh H.

    2012-02-01

    Effective removal of Cryptosporidium parvum oocysts by granular filtration requires the knowledge of oocyst transport and deposition mechanisms, which can be obtained based on real time microscopic observation of oocyst transport in porous media. Attachment of oocysts to silica surface in a radial stagnation point flow (RSPF) cell and in a micromodel, which has 2-dimensional (2-D) microscopic pore structures consisting of an array of cylindrical collectors, was studied and compared. Real time transport of oocysts in the micromodel was recorded to determine the attached oocyst distributions in transversal and longitudinal directions. In the micromodel, oocysts attached to the forward portion of clean collectors, where the flow velocity was lowest. After initial attachment, oocysts attached onto already attached oocysts. As a result, the collectors ripened and the region available for flow was reduced. Results of attachment and detachment experiments suggest that surface charge heterogeneity allowed for oocyst attachment. In addition to experiments, Lattice-Boltzmann simulations helped understanding the slightly non-uniform flow field and explained differences in the removal efficiency in the transversal direction. However, the hydrodynamic modeling could not explain differences in attachment in the longitudinal direction.

  6. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  7. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  8. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  9. Responding to a Refugee Influx: Lessons from Lebanon

    Directory of Open Access Journals (Sweden)

    Ninette Kelley

    2017-02-01

    Full Text Available Between 2011 and 2015, Lebanon received over one million Syrian refugees. There is no country in the world that has taken in as many refugees in proportion to its size: by 2015, one in four of its residents was a refugee from Syria. Already beset, prior to the Syrian crisis, by political divisions, insecure borders, severely strained infrastructure, and over-stretched public services, the mass influx of refugees further taxed the country. That Lebanon withstood what is often characterized as an existential threat is primarily due to the remarkable resilience of the Lebanese people. It is also due to the unprecedented levels of humanitarian funding that the international community provided to support refugees and the communities that hosted them. UN, international, and national partners scaled up more than a hundred-fold to meet ever-burgeoning needs and creatively endeavored to meet challenges on the ground. And while the refugee response was not perfect, and funding fell well below needs, thousands of lives were saved, protection was extended, essential services were provided, and efforts were made to improve through education the future prospects of the close to half-a-million refugee children residing in Lebanon. This paper examines what worked well and where the refugee response stumbled, focusing on areas where improved efforts in planning, delivery, coordination, innovation, funding, and partnerships can enhance future emergency responses.

  10. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  11. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  12. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Science.gov (United States)

    Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  13. Design, development and tests of high-performance silicon vapor chamber

    International Nuclear Information System (INIS)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-01-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 10 3 kg m −3 . Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m −1  ⋅ K −1 . Under high g environment, experimental results show good liquid transport capabilities of the wick structures. (paper)

  14. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  15. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2015-01-01

    Full Text Available Silicon (Si is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation.

  16. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  17. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  18. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  19. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  20. How the intestinal peptide transporter PEPT-1 contributes to an obesity phenotype in Caenorhabditits elegans.

    Directory of Open Access Journals (Sweden)

    Britta Spanier

    Full Text Available BACKGROUND: Amino acid absorption in the form of di- and tripeptides is mediated by the intestinal proton-coupled peptide transporter PEPT-1 (formally OPT-2 in Caenorhabditits elegans. Transporter-deficient animals (pept-1(lg601 show impaired growth, slowed postembryonal development and major changes in amino acid status. PRINCIPAL FINDINGS: Here we demonstrate that abolished intestinal peptide transport also leads to major metabolic alterations that culminate in a two fold increase in total body fat content. Feeding of C. elegans with [U-(13C]-labelled E. coli revealed a decreased de novo synthesis of long-chain fatty acids in pept-1(lg601 and reduced levels of polyunsaturated fatty acids. mRNA profiling revealed increased transcript levels of enzymes/transporters needed for peroxisomal beta-oxidation and decreased levels for those required for fatty acid synthesis, elongation and desaturation. As a prime and most fundamental process that may account for the increased fat content in pept-1(lg601 we identified a highly accelerated absorption of free fatty acids from the bacterial food in the intestine. CONCLUSIONS: The influx of free fatty acids into intestinal epithelial cells is strongly dependent on alterations in intracellular pH which is regulated by the interplay of PEPT-1 and the sodium-proton exchanger NHX-2. We here provide evidence for a central mechanism by which the PEPT-1/NHX-2 system strongly influences the in vivo fat content of C. elegans. Loss of PEPT-1 decreases intestinal proton influx leading to a higher uptake of free fatty acids with fat accumulation whereas loss of NHX-2 causes intracellular acidification by the PEPT-1 mediated proton/dipeptide symport with an almost abolished uptake of fatty acids and a lean phenotype.

  1. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  2. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  5. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  6. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  7. Test beam results of Silicon Drift Detector prototypes for the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nouais, D.; Bonvicini, V.; Busso, L.; Cerello, P.; Giubellino, P.; Gregorio, A.; Hernandez-Montoya, R.; Idzik, M.; Kolojvari, A.; Mazza, G.; Montano, L. M.; Nilsen, B.S.; Petta, C.; Randazzo, N.; Rashevsky, A.; Reito, S.; Rivetti, A.; Tosello, F.; Trzaska, W.H.; Vacchi, A

    1999-08-01

    We report preliminary beam test results of linear Silicon Drift Detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a non linear response.

  8. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  9. A crosstalk between Na⁺ channels, Na⁺/K⁺ pump and mitochondrial Na⁺ transporters controls glucose-dependent cytosolic and mitochondrial Na⁺ signals.

    Science.gov (United States)

    Nita, Iulia I; Hershfinkel, Michal; Lewis, Eli C; Sekler, Israel

    2015-02-01

    Glucose-dependent cytosolic Na(+) influx in pancreatic islet β cells is mediated by TTX-sensitive Na(+) channels and is propagated into the mitochondria through the mitochondrial Na(+)/Ca(2+) exchanger, NCLX. Mitochondrial Na(+) transients are also controlled by the mitochondrial Na(+)/H(+) exchanger, NHE, while cytosolic Na(+) changes are governed by Na(+)/K(+) ATPase pump. The functional interaction between the Na(+) channels, Na(+)/K(+) ATPase pump and mitochondrial Na(+) transporters, NCLX and NHE, in mediating Na(+) signaling is poorly understood. Here, we combine fluorescent Na(+) imaging, pharmacological inhibition by TTX, ouabain and EIPA, with molecular control of NCLX expression, so as to investigate the crosstalk between Na(+) transporters on both the plasma membrane and the mitochondria. According to our results, glucose-dependent cytosolic Na(+) response was enhanced by ouabain and was followed by a rise in mitochondrial Na(+) signal. Silencing of NCLX expression using siNCLX, did not affect the glucose- or ouabain-dependent cytosolic rise in Na(+). In contrast, the ouabain-dependent rise in mitochondrial Na(+) was strongly suppressed by siNCLX. Furthermore, mitochondrial Na(+) influx rates were accelerated in cells treated with the Na(+)/H(+) exchanger inhibitor, EIPA or by combination of EIPA and ouabain. Similarly, TTX blocked the cytosolic and mitochondrial Na(+) responses, which were enhanced by ouabain or EIPA, respectively. Our results suggest that Na(+)/K(+) ATPase pump controls cytosolic glucose-dependent Na(+) rise, in a manner that is mediated by TTX-sensitive Na(+) channels and subsequent mitochondrial Na(+) uptake via NCLX. Furthermore, these results indicate that mitochondrial Na(+) influx via NCLX is antagonized by Na(+) efflux, which is mediated by the mitochondrial NHE; thus, the duration of mitochondrial Na(+) transients is set by the interplay between these pivotal transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, P; Nguyen-Tran, Th; Djeridane, Y; Abramov, A; Johnson, E; Patriarche, G

    2007-01-01

    The synthesis of silicon nanocrystals in standard radio-frequency glow discharge systems is studied with respect to two main objectives: (i) the production of devices based on quantum size effects associated with the small dimensions of silicon nanocrystals and (ii) the synthesis of polymorphous and polycrystalline silicon films in which silicon nanocrystals are the elementary building blocks. In particular we discuss results on the mechanisms of nanocrystal formation and their transport towards the substrate. We found that silicon nanocrystals can contribute to a significant fraction of deposition (50-70%) and that they can be positively charged. This has a strong influence on their deposition because positively charged nanocrystals will be accelerated towards the substrate with energy of the order of the plasma potential. However, the important parameter with respect to the deposition of charged nanocrystals is not the accelerating voltage but the energy per atom and thus a doubling of the diameter will result in a decrease in the energy per atom by a factor of 8. To leverage this geometrical advantage we propose the use of more electronegative gases, which may have a strong effect on the size and charge distribution of the nanocrystals. This is illustrated in the case of deposition from silicon tetrafluoride plasmas in which we observe low-frequency plasma fluctuations, associated with successive generations of nanocrystals. The contribution of larger nanocrystals to deposition results in a lower energy per deposited atom and thus polycrystalline films

  11. The design and investigation of hybrid ferromagnetic/silicon spin electronic devices

    International Nuclear Information System (INIS)

    Pugh, D.I.

    2001-01-01

    The focus of this study concerns the design and investigation of ferromagnetic/silicon hybrid spin electronic devices as part of a wider project to design a novel spin valve transistor. The key issue to obtain a room temperature spin electronic device is the electrical injection of a spin polarised current from a ferromagnetic contact into a semiconductor. Despite many attempts concentrating on GaAs and InAs only small (< 1%) effects have been observed, making it difficult to confirm spin injection. Lateral devices were designed and fabricated using standard device fabrication procedures to produce arrays of Co/Si/So junctions. Subsequent designs aimed to reduce the number of junctions and improve device isolation. Evidence for spin dependent MR of up to 0.56% was observed in Co/p-Si/Co junctions with silicon gaps up to 16 μm in length. The maximum MR was observed when the first Co/Si Schottky barrier was reverse biased forming a high resistance interface. Vertical devices were designed in an attempt to eliminate any alternative current paths by using a well defined, 1 μm thick silicon membrane. Despite attempts to include oxide barriers, no spin dependent MR was observed in these devices. However, a novel vertical silicon based design has been made which should facilitate further advanced studies of spin injection and transport. The spin diffusion length in n-type silicon has been calculated as a function of doping concentration and temperature by considering the spin relaxation mechanisms in the semiconductor. Discussion has been made concerning p-type silicon and comparisons made with GaAs, indicating that n-Si should show longer spin diffusion lengths. The key design criteria for designing room temperature spin electronic devices have been highlighted. These include the use of a high leakage Schottky barrier or tunnel barrier between the ferromagnet and p-Si and a contact to the silicon to enable appropriate biasing to each FM/Si interface. (author)

  12. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Cupsa, Ovidiu; Dinca, Paul; Zaharia, Agripina

    2017-08-01

    Protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, were obtained by Thermionic Vacuum Arc (TVA) method. The initial carbon layer having a thickness of 100nm has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions, each having a thickness of 40nm. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV . The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. Oxidation protection of carbon is based on the reaction between oxygen and silicon carbide, resulting in SiO2, SiO and CO2, and also by reaction involving N, O and Si, resulting in silicon oxynitride (SiNxOy) with a continuously variable composition, and on the other hand, since nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, 80% silver filled two-component epoxy-based glue ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. The experimental data show the increase of conductivity with the increase of the nitrogen content. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.

  13. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  14. Local fibroblast proliferation but not influx is responsible for synovial hyperplasia in a murine model of rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yusuke; Mizoguchi, Fumitaka; Saito, Tetsuya [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Kawahata, Kimito [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Ueha, Satoshi; Matsushima, Kouji [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Inagaki, Yutaka [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Center for Matrix Biology and Medicine, Graduate School of Medicine and the Institute of Medical Sciences, Tokai University, 143 Shimo-kasuya, Isehara, Kanagawa, 259-1193 (Japan); Miyasaka, Nobuyuki [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Kohsaka, Hitoshi, E-mail: kohsaka.rheu@tmd.ac.jp [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan)

    2016-02-12

    Synovial fibroblasts play crucial roles in inflammation and joint destruction in rheumatoid arthritis (RA). How they accumulate in the RA joints remains unclear. This study was conducted to discern whether cellular influx from the outside of the joints and local proliferation are responsible for synovial fibroblast accumulation in an animal model of RA. We found that synovial fibroblasts were identified as GFP+ cells using collagen type I alpha 2 (Col1a2)-GFP transgenic reporter mice. Then, bone marrow transplantation and parabiosis techniques were utilized to study the cellular influx. Irradiated wild-type mice were transplanted with bone marrow from Col1a2-GFP mice. Col1a2-GFP and wild-type mice were conjoined for parabiosis. The transplanted mice and the parabionts were subjected to collagen antibody-induced arthritis (CAIA). We found no GFP+ cells in the hyperplastic synovial tissues from the transplanted mice with CAIA and from the wild-type parabionts with CAIA. Furthermore, normal and CAIA synovial tissues from Col1a2-GFP mice and from fluorescent ubiquitination-based cell cycle indicator (Fucci) transgenic mice, in which cells in S/G{sub 2}/M phases of the cell cycle express Azami-Green, were studied for Ki67, a cellular proliferation marker, and vimentin, a fibroblast marker, expression. The percentages of Ki67+/GFP+ and Azami-Green+/vimentin+ cells in the CAIA synovial tissues were higher than those in the untreated synovial tissues (34% vs. 0.40% and 19% vs. 0.26%, respectively). These findings indicate that local fibroblast proliferation but not cellular influx is responsible for the synovial hyperplasia in CAIA. Suppression of proliferation of the local synovial fibroblasts should be a promising treatment for RA. - Highlights: • We studied how synovial fibroblasts accumulate in joints in a murine model of RA. • Bone marrow-derived cells did not accumulate in arthritic joints. • Synovial fibroblasts did not accumulate in arthritic joints via

  15. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca; Wood, Barry

    2014-01-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  16. Light transport through the bandedge states of Fibonacci quasicrystals

    NARCIS (Netherlands)

    Dal Negro, Luca; Oton, Claudio J.; Gaburro, Zeno; Pavesi, Lorenzo; Johnson, Patrick; Lagendijk, Aart; Righini, Roberto; Colocci, Marcello; Wiersma, Diederik S.

    2003-01-01

    The propagation of light in nonperiodic quasicrystals is studied by ultrashort pulse interferometry. Samples consist of multilayer dielectric structures of the Fibonacci type and are realized from porous silicon. We observe mode beating and strong pulse stretching in the light transport through

  17. Use of porous silicon to minimize oxidation induced stacking fault defects in silicon

    International Nuclear Information System (INIS)

    Shieh, S.Y.; Evans, J.W.

    1992-01-01

    This paper presents methods for minimizing stacking fault defects, generated during oxidation of silicon, include damaging the back of the wafer or depositing poly-silicon on the back. In either case a highly defective structure is created and this is capable of gettering either self-interstitials or impurities which promote nucleation of stacking fault defects. A novel method of minimizing these defects is to form a patch of porous silicon on the back of the wafer by electrochemical etching. Annealing under inert gas prior to oxidation may then result in the necessary gettering. Experiments were carried out in which wafers were subjected to this treatment. Subsequent to oxidation, the wafers were etched to remove oxide and reveal defects. The regions of the wafer adjacent to the porous silicon patch were defect-free, whereas remote regions had defects. Deep level transient spectroscopy has been used to examine the gettering capability of porous silicon, and the paper discusses the mechanism by which the porous silicon getters

  18. Relationship between plasma growth hormone concentration and cellular sodium transport in acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Herlitz, H.; Jonsson, O.; Bengtsson, B.-Aa. (Departments of Nephrology, Urology and Endocrinology, University of Goeteborg, Goeteborg (Sweden))

    1992-01-01

    We investigated the relationship between mean plasma growth hormone (GH) concentration and cellular sodium transport in untreated and treated acromegaly. Seventeen patients (age 55 [+-] 3 years) with active acromegaly were studied with respect to plasma GH (mean of 24 h GH profile) and erythrocyte electrolyte content as well as transmembrane sodium transport. The patients were reinvestigated two weeks after successful surgery (N = 14) and again after one year (N = 13). Erythrocyte electrolytes were analyzed by flame photometry and sodium influx and efflux rate constant determined by in vitro incubation using a modified Keyne's formula. In patients with active acromegaly there was a significant positive correlation between IGF-1 and cellular sodium transport, while GH tended to show a negative relatonship to the same parameter. After successful treatment, both IGF-1 and GH disclosed a positive relationship to cellular sodium transport. After one year, a significant increase in erythrocyte sodium content was seen in the patients compared to the preoperative situation. In conclusion, if this is a generalized phenomonen the results are compatible with a sodium-retaining effect of GH via stimulation of transmembrane sodium transport. In active acromegaly this may be counteracted by a sodium transport inhibitor giving the reverse relationship between GH and cellular sodium transport. (au).

  19. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  20. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  1. Cobalt micro-magnet integration on silicon MOS quantum dots

    Science.gov (United States)

    Camirand Lemyre, Julien; Rochette, Sophie; Anderson, John; Manginell, Ronald P.; Pluym, Tammy; Ward, Dan; Carroll, Malcom S.; Pioro-Ladrière, Michel

    Integration of cobalt micro-magnets on silicon metal-oxide-semiconductor (MOS) quantum dot devices has been investigated. The micro-magnets are fabricated in a lift-off process with e-beam lithography and deposited directly on top of an etched poly-silicon gate stack. Among the five resist stacks tested, one is found to be compatible with our MOS specific materials (Si and SiO2) . Moreover, devices with and without additional Al2O3 insulating layer show no additional gate leakage after processing. Preliminary transport data indicates electrostatic stability of our devices with integrated magnets. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  2. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  3. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  4. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  5. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  6. Synthesis and properties of silicon nanowire devices

    Science.gov (United States)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  7. Phosphorus diffusion in float zone silicon crystal growth

    DEFF Research Database (Denmark)

    Larsen, Theis Leth

    2000-01-01

    This Ph.D thesis encompasses a global numerical simulation of the needle-eye oat zone process, used to grow silicon single crystals. The numerical models includes coupled electromagnetic and free surface models and a global heat transfer model, with moving boundaries. An axisymmetric uidow model......, including centrifugal, buoyancy, thermocapillary and electromagnetic forces, is used to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite element model for calculating dopant transport, using the calculated unsteady flow field, has been developed...... within this project. This model has furthermore been expanded to two equations coupled by a non-zero right hand side, for simulating transport of point defects in the crystal during growth. Free surface shapes and induced electric surface current are calculated for t wo different 4'' congurations and a 0...

  8. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  9. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  10. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    OpenAIRE

    K?nig, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusi...

  11. Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baek Hyun, E-mail: bhkim@andrew.cmu.ed [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Davis, Robert F. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Park, Seong-Ju [Nanophotonic Semiconductors Laboratory, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712 (Korea, Republic of)

    2010-01-01

    We present the effects on the thermal annealing of silicon quantum dots (Si QDs) embedded in silicon nitride. The improved photoluminescence (PL) intensities and the red-shifted PL spectra were obtained with annealing treatment in the range of 700 to 1000 {sup o}C. The shifts of PL spectra were attributed to the increase in the size of Si QDs. The improvement of the PL intensities was also attributed to the reduction of point defects at Si QD/silicon nitride interface and in the silicon nitride due to hydrogen passivation effects.

  12. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  13. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  14. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  15. Twenty-fold plasmon-induced enhancement of radiative emission rate in silicon nanocrystals embedded in silicon dioxide

    International Nuclear Information System (INIS)

    Gardelis, S; Gianneta, V.; Nassiopoulou, A.G

    2016-01-01

    We report on a 20-fold enhancement of the integrated photoluminescence (PL) emission of silicon nanocrystals, embedded in a matrix of silicon dioxide, induced by excited surface plasmons from silver nanoparticles, which are located in the vicinity of the silicon nanocrystals and separated from them by a silicon dioxide layer of a few nanometers. The electric field enhancement provided by the excited surface plasmons increases the absorption cross section and the emission rate of the nearby silicon nanocrystals, resulting in the observed enhancement of the photoluminescence, mainly attributed to a 20-fold enhancement in the emission rate of the silicon nanocrystals. The observed remarkable improvement of the PL emission makes silicon nanocrystals very useful material for photonic, sensor and solar cell applications.

  16. Effects of dihydropyridines on tension and calcium-45 influx in isolated mesenteric resistance vessels from spontaneously hypertensive and normotensive rats

    International Nuclear Information System (INIS)

    Cauvin, C.; Hwang, O.; Yamamoto, M.; van Breemen, C.

    1987-01-01

    Contractile tension responses to norepinephrine and depolarizing potassium (80 mM K+), as well as calcium-45 influx stimulated by these agents, were studied in isolated mesenteric resistance vessels (each 100 microM internal diameter) from spontaneously hypertensive rats (SHRs) and from normotensive Wistar Kyoto rats (WKYs). Inhibitory effects of 2 dihydropyridine Ca++ antagonists, PN 200-110 (isradipine) and nisoldipine, on these parameters were also determined. Contractile responses to 80 mM K+ were inhibited by both Ca++ antagonists with the same potency and efficacy in SHR compared with WKY vessels (PN 200-110 IC50 = 2.8 +/- 1.3 X 10(-8) M in SHRs and 2.5 +/- 1.5 X 10(-8) M in WKYs; nisoldipine IC50 = 1.1 +/- 0.4 X 10(-8) M in SHRs and 1.2 +/- 0.9 X 10(-8) M in WKYs). However, contractile responses to norepinephrine (10(-4) M) were inhibited less potently by nisoldipine in SHR vessels (IC50 = 2.2 +/- 0.3 X 10(-9) M) compared with WKY vessels (IC50 = 1.6 +/- 0.6 X 10(-10) M). Similarly, PN 200-110 tended to be less (but not significantly less) potent in SHR vessels (IC50 = 3.3 +/- 1.8 X 10(-8) M) than in WKY vessels (IC50 = 3.4 +/- 0.9 X 10(-9) M); its efficacy was significantly depressed in the SHR vessels (by approximately 20%). When norepinephrine-stimulated calcium-45 influx was determined in the presence of these Ca++ antagonists, a similar profile emerged with respect to a comparison of SHR and WKY vessels. These results support a previously hypothesized alteration in receptor-activated Ca++ influx pathways in SHR mesenteric resistance vessels

  17. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.

    Science.gov (United States)

    Takeda, A; Suzuki, M; Tempaku, M; Ohashi, K; Tamano, H

    2015-09-24

    Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Test beam results of silicon drift detector prototypes for the ALICE experiment

    CERN Document Server

    Nouais, D; Busso, L; Cerello, P G; Giubellino, P; Gregorio, A; Hernández-Montoya, R; Idzik, M; Kolojvari, A A; Mazza, G; Montaño-Zetina, L M; Nilsson, B S; Petta, C; Randazzo, N; Rashevsky, A; Reito, S; Rivetti, A; Tosello, F; Trzaska, W H; Vacchi, A

    1999-01-01

    We report preliminary beam test results of linear silicon drift detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a nonlinear response. (14 refs).

  19. Direct Production of Silicones From Sand

    Energy Technology Data Exchange (ETDEWEB)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  20. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  1. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    Science.gov (United States)

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.

  2. Subwavelength silicon photonics

    International Nuclear Information System (INIS)

    Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delage, A.; Lamontagne, B.; Florjanczyk, M.; Ma, R.

    2011-01-01

    With the goal of developing photonic components that are compatible with silicon microelectronic integrated circuits, silicon photonics has been the subject of intense research activity. Silicon is an excellent material for confining and manipulating light at the submicrometer scale. Silicon optoelectronic integrated devices have the potential to be miniaturized and mass-produced at affordable cost for many applications, including telecommunications, optical interconnects, medical screening, and biological and chemical sensing. We review recent advances in silicon photonics research at the National Research Council Canada. A new type of optical waveguide is presented, exploiting subwavelength grating (SWG) effect. We demonstrate subwavelength grating waveguides made of silicon, including practical components operating at telecom wavelengths: input couplers, waveguide crossings and spectrometer chips. SWG technique avoids loss and wavelength resonances due to diffraction effects and allows for single-mode operation with direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6 - 3.5 simply by lithographic patterning. The light can be launched to these waveguides with a coupling loss as small as 0.5 dB and with minimal wavelength dependence, using coupling structures similar to that shown in Fig. 1. The subwavelength grating waveguides can cross each other with minimal loss and negligible crosstalk which allows massive photonic circuit connectivity to overcome the limits of electrical interconnects. These results suggest that the SWG waveguides could become key elements for future integrated photonic circuits. (authors)

  3. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  4. Silicon microphones - a Danish perspective

    DEFF Research Database (Denmark)

    Bouwstra, Siebe; Storgaard-Larsen, Torben; Scheeper, Patrick

    1998-01-01

    Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities of silicon, as well as the challenges and expectations......, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising....

  5. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  6. Surface effects on the thermal conductivity of silicon nanowires

    Science.gov (United States)

    Li, Hai-Peng; Zhang, Rui-Qin

    2018-03-01

    Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

  7. In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2016-04-01

    Full Text Available In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. In this paper, we report a silicon, single-walled carbon nanotube, and ordered mesoporous carbon nanocomposite synthesized by an evaporation-induced self-assembly process, in which silicon nanoparticles and single-walled carbon nanotubes were added into the phenolic resol with F-127 for co-condensation. The ordered mesoporous carbon matrix and single-walled carbon nanotubes network could effectively accommodate the volume change of silicon nanoparticles, and the ordered mesoporous structure could also provide efficient channels for the fast transport of Li-ions. As a consequence, this hybrid material exhibits a reversible capacity of 861 mAh g−1 after 150 cycles at a current density of 400 mA g−1. It achieves significant improvement in the electrochemical performance when compared with the raw materials and Si nanoparticle anodes. Keywords: Silicon, Single-walled carbon nanotube, Ordered mesoporous carbon, Lithium ion battery

  8. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  9. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  10. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  11. Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters - India)

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R; Madhu, N.V.; Jayalakshmi, K.V.; Balachandran, K.K.; Shiyas, C.C.; Martin, G.D.; Nair, K.K.C.

    -1 Impact of fresh water influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters - India) R. Jyothibabu A, B, N.V. Madhu A, K.V. Jayalakshmi A, K. K. Balachandran A, C. A. Shiyas A, G. D. Martin A and K. K. C. Nair A A... in the northeastern Atlantic Ocean. Deep Sea Research 40, 479 ? 493. Burkill, P. H., Leaky, R. J. G., Owens, N. J. P., and Mantoura, R. F. C., 1993b. Synechococcus and its importance to the microbial food web of the northwestern Indian Ocean, In: Biogeochemical...

  12. Investigation of the interface region between a porous silicon layer and a silicon substrate

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Park, Dae-Kyu; Kim, Young-You; Shin, Hyun-Joon

    2005-01-01

    Atomic force microscopy (AFM) measurement and X-ray diffraction (XRD) analysis were performed to investigate the physical and structural characteristics of the interface region between a porous silicon layer and a silicon substrate. We discovered that, when anodization time was increased under a constant current density, the Si crystallites in the interface region became larger and formed different lattice parameters than observed in the porous silicon layer. Secondary ion mass spectrometry (SIMS) analysis also revealed that the Si was more concentrated in the interface region than in the porous silicon layer. These results were interpreted by the deficiency of the HF solution in reaching to the interface through the pores during the porous silicon formation

  13. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    Science.gov (United States)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  14. Ion-beam mixing in silicon and germanium at low temperatures

    International Nuclear Information System (INIS)

    Clark, G.J.; Marwick, A.D.; Poker, D.B.

    1982-01-01

    Ion-beam mixing of thin marker layers in amorphous silicon and germanium was studied using irradiations with Xe ions at temperatures of 34k and 77k. The marker species, ion energies and doses were: in silicon, markers of Ge and Pt irradiated with 200-keV Xe up to 2.7x10 16 ions cm -2 ; and in germanium, markers of Al and Si bombarded with 295-keV Xe up to 1.63x10 16 ions cm -2 . In silicon, Pt markers were found to broaden at about the same rate at 34k and 77k; and the rate of broadening was similar to that found by other workers when expressed as an efficiency of mixing, i.e., when dependence on ion dose and deposited energy was factored out. However, a Ge marker irradiated at 34k did not broaden from its original thickness. In germanium, markers of both Al and Si were mixed by irradiation at 34k, but at 77k only the Al marker broadened; the Si marker did not. The broadening of the markers is ascribed to ballistic mixing, while the cases where no broadening occurred are explicable if diffusion by a defect mechanism transported displaced marker atoms back to traps near their original sites

  15. David Adler Lectureship Award Talk: III-V Semiconductor Nanowires on Silicon for Future Devices

    Science.gov (United States)

    Riel, Heike

    Bottom-up grown nanowires are very attractive materials for direct integration of III-V semiconductors on silicon thus opening up new possibilities for the design and fabrication of nanoscale devices for electronic, optoelectronic as well as quantum information applications. Template-Assisted Selective Epitaxy (TASE) allows the well-defined and monolithic integration of complex III-V nanostructures and devices on silicon. Achieving atomically abrupt heterointerfaces, high crystal quality and control of dimension down to 1D nanowires enabled the demonstration of FETs and tunnel devices based on In(Ga)As and GaSb. Furthermore, the strong influence of strain on nanowires as well as results on quantum transport studies of InAs nanowires with well-defined geometry will be presented.

  16. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  17. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  18. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  19. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  20. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  1. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  2. Ca2+ influx insensitive to organic Ca2+ entry blockers contributes to noradrenaline-induced contractions of the isolated guinea pig aorta

    NARCIS (Netherlands)

    Gouw, M. A.; Wilffert, B.; Wermelskirchen, D.; van Zwieten, P. A.

    1990-01-01

    We determined the contribution of intracellular Ca2+ to the noradrenaline (NA, 3 X 10(-5) mmol/l)-induced contraction of the isolated guinea pig aorta. Since only about 55% of the NA-induced contraction could be attributed to intracellular Ca2+ release, we assumed that a Ca2+ influx component

  3. Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon

    Science.gov (United States)

    Singh, M.; Behrendt, D. R.

    1992-01-01

    Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.

  4. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  5. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  6. A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung-sun; Koh, Young Ha; Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)

    2017-06-15

    The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

  7. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    Science.gov (United States)

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  8. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  9. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  10. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    1999-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≥ 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  11. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    2001-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≤30MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  12. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury.

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    Full Text Available Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA. We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.

  13. The silicon-silicon oxide multilayers utilization as intrinsic layer on pin solar cells

    International Nuclear Information System (INIS)

    Colder, H.; Marie, P.; Gourbilleau, F.

    2008-01-01

    Silicon nanostructures are promising candidate for the intrinsic layer on pin solar cells. In this work we report on new material: silicon-rich silicon oxide (SRSO) deposited by reactive magnetron sputtering of a pure silica target and an interesting structure: multilayers consisting of a stack of SRSO and pure silicon oxide layers. Two thicknesses of the SRSO sublayer, t SRSO , are studied 3 nm and 5 nm whereas the thickness of silica sublayer is maintaining at 3 nm. The presence of nanocrystallites of silicon, evidenced by X-Ray diffraction (XRD), leads to photoluminescence (PL) emission at room temperature due to the quantum confinement of the carriers. The PL peak shifts from 1.3 eV to 1.5 eV is correlated to the decreasing of t SRSO from 5 nm down to 3 nm. In the purpose of their potential utilization for i-layer, the optical properties are studied by absorption spectroscopy. The achievement a such structures at promising absorption properties. Moreover by favouring the carriers injection by the tunnel effect between silicon nanograins and silica sublayers, the multilayers seem to be interesting for solar cells

  14. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  15. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  16. Ca2+influx insensitive to organic Ca2+entry blockers contributes to noradrenaline-induced contractions of the isolated guinea pig aorta

    NARCIS (Netherlands)

    Gouw, M.A.M.; Wilffert, B.; Wermelskirchen, D.; Van Zwieten, P.A.

    1990-01-01

    We determined the contribution of intracellular Ca2+to the noradrenaline (NA, 3 x 10-5mmol/l)-induced contraction of the isolated guinea pig aorta. Since only about 55% of the NA-induced contraction could be attributed to intracellular Ca2+release, we assumed that a Ca2+influx component contributes

  17. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  18. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  19. Removal of inclusions from silicon

    Science.gov (United States)

    Ciftja, Arjan; Engh, Thorvald Abel; Tangstad, Merete; Kvithyld, Anne; Øvrelid, Eivind Johannes

    2009-11-01

    The removal of inclusions from molten silicon is necessary to satisfy the purity requirements for solar grade silicon. This paper summarizes two methods that are investigated: (i) settling of the inclusions followed by subsequent directional solidification and (infiltration by ceramic foam filters. Settling of inclusions followed by directional solidification is of industrial importance for production of low-cost solar grade silicon. Filtration is reported as the most efficient method for removal of inclusions from the top-cut silicon scrap.

  20. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking