WorldWideScience

Sample records for silicon dioxide content

  1. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

    Directory of Open Access Journals (Sweden)

    V. А. Pilipenko

    2017-01-01

    Full Text Available Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm.Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

  2. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.

    Science.gov (United States)

    Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn

    2018-01-01

    In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.

  3. Research Progress about the Relationship between Nanoparticles Silicon Dioxide and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chun DAI

    2014-10-01

    Full Text Available Nano-silicon dioxide widely distributed in plastic, rubber, ceramics, paint, adhesives, and many other fields, and it is the product of coal combustion. A growing evidence shows that nano-silicon dioxide has certain correlation with respiratory system disease. In this paper, we synthesized existing researches of domestic and abroad, summarized the lung toxicity of nanoparticles. This article are reviewed from the physical and chemical properties of nanoparticles silicon dioxide, exposure conditions and environment, and the pathogenic mechanism of nano-silicon dioxide.

  4. Twenty-fold plasmon-induced enhancement of radiative emission rate in silicon nanocrystals embedded in silicon dioxide

    International Nuclear Information System (INIS)

    Gardelis, S; Gianneta, V.; Nassiopoulou, A.G

    2016-01-01

    We report on a 20-fold enhancement of the integrated photoluminescence (PL) emission of silicon nanocrystals, embedded in a matrix of silicon dioxide, induced by excited surface plasmons from silver nanoparticles, which are located in the vicinity of the silicon nanocrystals and separated from them by a silicon dioxide layer of a few nanometers. The electric field enhancement provided by the excited surface plasmons increases the absorption cross section and the emission rate of the nearby silicon nanocrystals, resulting in the observed enhancement of the photoluminescence, mainly attributed to a 20-fold enhancement in the emission rate of the silicon nanocrystals. The observed remarkable improvement of the PL emission makes silicon nanocrystals very useful material for photonic, sensor and solar cell applications.

  5. Behavior of ion-implanted cesium in silicon dioxide films

    International Nuclear Information System (INIS)

    Fishbein, B.J.

    1988-01-01

    Charged impurities in silicon dioxide can be used to controllably shift the flatband voltage of metal-oxide-semiconductor devices independently of the substrate doping, the gate oxide thickness and the gate-electrode work function. Cesium is particularly well suited for this purpose because it is immobile in SiO 2 at normal device operating temperatures, and because it can be controllably introduced into oxide films by ion implantation. Cesium is positively charged in silicon dioxide, resulting in a negative flatband voltage shift. Possible applications for cesium technology include solar cells, devices operated at liquid nitrogen temperature, and power devices. The goal of this work has been to characterize as many aspects of cesium behavior in silicon dioxide as are required for practical applications. Accordingly, cesium-ion implantation, cesium diffusion, and cesium electrical activation in SiO 2 were studied over a broad range of processing conditions. The electrical properties of cesium-containing oxides, including current-voltage characteristics, interface trap density, and inversion-layer carrier mobility were examined, and several potential applications for cesium technology have been experimentally demonstrated

  6. 21 CFR 172.480 - Silicon dioxide.

    Science.gov (United States)

    2010-04-01

    ... alcohol in tableted foods for special dietary use, in an amount not greater than that required to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silicon dioxide. 172.480 Section 172.480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  7. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  8. HNT neurons patterned on a parylene-C/silicon dioxide interface

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Graham, E.S.; Dragunow, M.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we describe how we have successfully patterned lines of human teratocarcinoma cell line-derived (HNT) neurons on silicon chip. The silicon chips used in this study were created by depositing lines of the biomaterial Parylene-C onto a silicon dioxide substrate using photolithographic techniques. The chips were then immersed in a range of serums and the HNT neurons cultured for different periods of time. It was found that chips immersed in Foetal Bovine Serum (FBS) and then plated with 70 cells per square mm for 3 h on a Parylene-C thickness of 100 nm provided excellent patterning on the Parylene-C material with a very sharp contrast to the silicon dioxide substrate. The human HNT neuron was chosen as it provides the closest model to adult human neural tissue. The breakthrough in patterning such cells on silicon chip has widespread implication and value as a platform technology; to enable a detailed study of adult human brain circuits for a range of adult human brain pathologies. This could eventually lead to potential new treatments and lead to the development of new drug assays. (author)

  9. Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots

    Science.gov (United States)

    Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban

    2018-04-01

    Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.

  10. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Akarapu Ashok

    2014-01-01

    Full Text Available Silicon dioxide (SiO2 thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs and microelectromechanical systems (MEMS. Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics.

  11. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  12. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  13. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  14. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    International Nuclear Information System (INIS)

    Sanchez, R.; Myers, W.; Hayes, D.

    1997-01-01

    The nuclear criticality characteristics of mixtures of plutonium, silicon dioxide, and water (Part A) or plutonium, silicon dioxide, Nevada Yucca Mountain tuff, and water (Part B) have become of interest because of the appearance of recent papers on the subject. These papers postulate that if excess weapons plutonium is vitrified into a silicate log and buried underground, a self-sustaining neutron chain reaction may develop given sufficient time and interaction with the burial medium. Moreover, given specific geologic actions resulting in postulated configurations, the referenced papers state that nuclear explosions could occur with multi-kiloton yields or yields equivalent to hundreds of tons of TNT

  15. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  16. Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor

    International Nuclear Information System (INIS)

    Zhou, Youzheng; Wang, Zheyao; Wang, Chaonan; Ruan, Wenzhou; Liu, Litian

    2009-01-01

    This paper presents the design, fabrication and characterization of a silicon dioxide piezoresistive microcantilever immunosensor fabricated on silicon-on-insulator (SOI) wafers. The microcantilever consists of two strips of single crystalline silicon piezoresistors sandwiched in between two silicon dioxide layers. A theoretical model for the laminated microcantilever with a discontinuous layer is deduced using classic laminated beam theory. A two-step release method combining anisotropic and isotropic etching is developed to suspend the microcantilever, and the fabrication results show an excellent yield. The residual stress-induced free bending of the microcantilever and the stress caused by self-heating of the piezoresistors are discussed. The microcantilever sensor is characterized as an immunosensor using specific binding of antigen and antibody. These methods and some conclusions are also applicable to the development of other piezoresistive sensors that use laminated structures

  17. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Science.gov (United States)

    2010-04-01

    ...) (using 20 percent alcohol as the solvent when the type of food contains approximately 20 percent alcohol... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc-silicon dioxide matrix coatings. 175.390 Section 175.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  18. Formation and properties of the buried isolating silicon-dioxide layer in double-layer “porous silicon-on-insulator” structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Davletkildeev, N. A.; Ivlev, K. E.; Roslikov, V. E. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation)

    2017-01-15

    The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to be promising for integrated chemical micro- and nanosensors.

  19. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  20. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  1. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Aagesen, Martin

    2017-01-01

    A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL....... In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size...

  2. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  3. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    a visual indicator of the formation of gold clusters on the SiO2 . The glass would make observing a color change in the gold film easier later in the...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A fabrication process for creating a silicon dioxide ( SiO2 ) light-trapping structure as part of...even distribution of irregular agglomerates, also known as “complete islanding”. By using these gold agglomerations as a metal mask, the SiO2 can be

  4. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    Science.gov (United States)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  5. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  6. Investigations of the surface conductivity of silicon dioxide and methods to reduce it

    NARCIS (Netherlands)

    Voorthuyzen, J.A.; Keskin, K.; Bergveld, Piet

    1987-01-01

    In this paper we describe our investigations of the electrical conductivity of the silicon dioxide-air interface. It appears that this conductivity is caused by the adsorption of water vapour on the oxide surface and strongly depends on the relative humidity of the surrounding air. Considering this

  7. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Li SJ

    2017-08-01

    Full Text Available Shijie Li,1 Daqi Zhang,1 Shihou Sheng,2 Hui Sun1 1Department of Thyroid Surgery, 2Department of Gastrointestinal Colorectal and Anal Surgery, China–Japan Union Hospital of Jilin University, Chang Chun, People’s Republic of China Abstract: Currently, therapy for thyroid cancer mainly involves surgery and radioiodine therapy. However, chemotherapy can be used in advanced and aggressive thyroid cancer that cannot be treated by other options. Nevertheless, a major obstacle to the successful treatment of thyroid cancer is the delivery of drugs to the thyroid gland. Here, we present an example of the construction of silicon dioxide nanoparticles with thyroid–stimulating-hormone receptor-targeting ligand that can specifically target the thyroid cancer. Doxorubicin nanoparticles can be triggered by acid to release the drug payload for cancer therapy. These nanoparticles shrink the tumor size in vivo with less toxic side effects. This research paves the way toward effective chemotherapy for thyroid cancer. Keywords: thyroid cancer, silicon dioxide nanoparticle, doxorubicin, acid-triggered release

  8. Peripheral blood picture changes induced by chronic radone and silicon dioxide treatment (in combination or separately)

    International Nuclear Information System (INIS)

    Ivanov, Z.; Dermendzhiev, Kh.; Nikolova, M.

    1975-01-01

    Peripheral blood changes have been studied in rats after the following treatments: 4 hours daily for six months with a radon concentration of 1.10 -10 Ci/1 (group I), 1.10 -12 Ci/1 (group II) 50 mg pure silicon dioxide in 1 ml physiological solution (group III), and intratracheal incorporation of radon concentration in air of 1.10 -10 Ci/1 and silicon dioxide (group IV). Examinations during the third and sixth month after the start of experiment showed development of leukopenia in groups I, III and IV; lymphopenia was established in groups I and IV, and lymphocytosis in group III. Atypical morphological changes were observed in red blood cells. (A.B.)

  9. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  10. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  11. The Refractive Index Measurement Of Silicon Dioxide Thin Film by the Coupling Prism Method

    International Nuclear Information System (INIS)

    Budianto, Anwar; Hariyanto, Sigit; Subarkah

    1996-01-01

    Refractive index of silicon dioxide thin film that doped with phosphor (SiO 2 :P) above the pure silicon dioxide substrate has been measured by light coupling prism method. The method principle is focusing the light on coupling prism base so that the light propagates into the waveguide layer while the reflected one forms a mode in the observation plane. The SiO 2 thin film as waveguide layer has a refractive index that give the thick and refractive index relation. The He-Ne laser as light source has the wavelength λ 0,6328 μm. The refractive index measurement of the thin film with the substrate refractive index n sb = 1,47 and the thin film thick d = 2μm gives n g = 1,5534 ± 0,01136. This method can distinguish the refractive index of thin film about 6% to the refractive index of substrate

  12. A study on the effect of silicon content on mechanical properties

    International Nuclear Information System (INIS)

    Kwon, C.T.; Nam, T.W.; Lee, S.I.

    1978-01-01

    In Al-Si alloy, the variation of mechanical properties with silicon contents was investigated the silicon content being varied from 5% to 25%, and the effects of additives and refining elements were also studied. The results obtained are as follows: 1) Sodium treatment made the primary silicon crystals refined and spheroidized, and made the matrix structure intensified. The effect of P treatment on refining primary silicon crystals was greater then that of Na. 2) Tensile strength showed the maximum value at near the eutectic composition and was improved considerably by addition of Mg and treatment with Na. 3) The variation of matrix hardness with silicon contents was not perceptible and the hardness was improved by addition of Mg and treatment with Na. (author)

  13. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  14. X-ray fluorescence diffractionless analyzer for determining light element content in iron ore mixtures

    International Nuclear Information System (INIS)

    Yuksa, L.K.; Kochmola, N.M.; Bondarenko, V.P.; Bogdanov, V.K.

    1986-01-01

    Diffractionless X-ray fluorescence analyzer for detecting calcium oxide and silicon dioxide contents in dry iron ore materials has been developed. The analyzer includes a charging unit, sample-conveying device, spectrometric units for detecting calcium and silicon, computing racks and sample-removing device. Results of calcium oxide and silicon dioxide analyses in iron ore mixtures are presented. Errors are evaluated. It is shown that the analyzer provides high accuracy of one-time determinations, as well as reading constancy for a long time

  15. Optical modulation in silicon-vanadium dioxide photonic structures

    Science.gov (United States)

    Miller, Kevin J.; Hallman, Kent A.; Haglund, Richard F.; Weiss, Sharon M.

    2017-08-01

    All-optical modulators are likely to play an important role in future chip-scale information processing systems. In this work, through simulations, we investigate the potential of a recently reported vanadium dioxide (VO2) embedded silicon waveguide structure for ultrafast all-optical signal modulation. With a VO2 length of only 200 nm, finite-differencetime- domain simulations suggest broadband (200 nm) operation with a modulation greater than 12 dB and an insertion loss of less than 3 dB. Predicted performance metrics, including modulation speed, modulation depth, optical bandwidth, insertion loss, device footprint, and energy consumption of the proposed Si-VO2 all-optical modulator are benchmarked against those of current state-of-the-art all-optical modulators with in-plane optical excitation.

  16. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    Science.gov (United States)

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  17. Study of Dielectric Properties and Morphology of Epoxy Resin with Silicon Dioxide Microparticles and Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Hudec, Jiří; Neděla, Vilém

    2016-01-01

    Roč. 22, S3 (2016), s. 1896-1897 ISSN 1431-9276 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : epoxy resin ESEM * Nanoparticles * silicon dioxide * ESEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  18. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  19. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  20. The mechanism of hydrophilic and hydrophobic colloidal silicon dioxide types as glidants

    OpenAIRE

    Jonat, Stéphane

    2005-01-01

    AEROSIL® 200 is a hydrophilic highly disperse colloidal silicon dioxide (CSD) that is commonly used to improve flowability. This conventional CSD has low bulk and tapped densities and can produce dust if handled improperly. In order to improve its handling, special mechanical processes were developed for the homogeneous compaction of CSD. As a result, two new products have been recently introduced: AEROSIL® 200 VV and AEROSIL® R 972 V. AEROSIL® 200 VV is hydrophilic and chemically identical t...

  1. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  2. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    Science.gov (United States)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei

    2017-12-01

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.

  3. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide.

    Science.gov (United States)

    Villota, R; Hawkes, J G

    1986-01-01

    The chemical and physical characteristics of the different types of amorphous silicon dioxide contribute to the versatility of these compounds in a variety of commercial applications. Traditionally, silicas have had a broad spectra of product usage including such areas as viscosity control agents in inks, paints, corrosion-resistant coatings, etc. and as excipients in pharmaceuticals and cosmetics. In the food industry, the most important application has been as an anticaking agent in powdered mixes, seasonings, and coffee whiteners. However, amorphous silica has multifunctional properties that would allow it to act as a viscosity control agent, emulsion stabilizer, suspension and dispersion agent, desiccant, etc. The utilization of silicas in these potential applications, however, has not been undertaken, partially because of the limited knowledge of their physiochemical interactions with other food components and partially due to their controversial status from a toxicological point of view. The main goal of this review is to compile current information on the incorporation of amorphous silicon dioxide as a highly functional and viable additive in the food processing industry as well as to discuss the most recent toxicological investigations of silica in an attempt to present some of the potential food applications and their concomitant toxicological implications. Some of the more significant differences between various silicas and their surface chemistries are presented to elucidate some of their mechanisms of interaction with food components and other biological systems and to aid in the prediction of their rheological or toxicological behavior.

  4. Anti-pepsin activity of silicon dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hussein Kadhem Al-Hakeim

    2016-09-01

    Full Text Available SiO2NPs as an inhibitor of pepsin enzyme for treatment of gastro-esophageal reflux disease (GERD was used. Silicon dioxide nanoparticles (pepsin coated SiO2NPs are among the safest nanoparticles that can be used inside the human body. The activity of pepsin before and after the addition of certain amounts of the NPs to the reaction mixture was measured spectrophotometrically. Furthermore, these experiments were repeated at different temperatures, different weights of NPs, and different ionic strengths. The kinetic aparameters (Km & Vmax of the pepsin catalyzed reactions were calculated from the Lineweaver-Burke plots. The results showed that there is a significant reduction of pepsin activity by SiO2NPs (Vmax of free pepsin = 4.82 U and Vmax of the immobilizedpepsin = 2.90 U. The results also indicated that the presence of ionic strength causes remarkable reduction of pepsin activity. It can be concluded the best condition for inhibition of pepsin activity is by using a combination of SiO2NPs and high concentration NaCl at 37 °C.

  5. Self-assembled monolayer resists and nanoscale lithography of silicon dioxide thin films by chemically enhanced vapor etching (CEVE)

    Science.gov (United States)

    Pan, M.; Yun, M.; Kozicki, M. N.; Whidden, T. K.

    1996-10-01

    We report on the use of electron-beam exposed monolayers of undecylenic acid in the etch rate enhancement of silicon dioxide films in HF vapor for the formation of nanoscale features in the oxide. Variations of the etching characteristics with electron beam parameters are examined and the results analyzed in terms of proposed models of the etching mechanism. Apparent variations in the relative concentrations of etch initiator with the thermal history of the samples prior to etching provides support for the dominant etch initiator within this system as the carboxylic acid moiety bound at the oxide surface. Other variations in the etching characteristics are discussed in terms of differences in localized concentrations of hydrocarbon crosslinks and the effect that this has upon the etch initiation. The process has been employed in the production of features in silicon dioxide surface masks with sizes down to 50 nm.

  6. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2) particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0...

  7. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei [Tianjin University, School of Microelectronics, Tianjin (China)

    2017-12-15

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO{sub 2}) thin film and silicon dioxide (SiO{sub 2}) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO{sub 2} sphere arrays. VO{sub 2} thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO{sub 2} shell formed a continuous surface, the composition of VO{sub 2} films in the structure changed when the oxygen flow rates increased. The 2D VO{sub 2}/SiO{sub 2} composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO{sub 2} phase changes from insulator to metal. The composite nanostructure based on VO{sub 2} films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows. (orig.)

  8. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  9. Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres.

    Science.gov (United States)

    Choi, Sumin; Leong, Victor; Davydov, Valery A; Agafonov, Viatcheslav N; Cheong, Marcus W O; Kalashnikov, Dmitry A; Krivitsky, Leonid A

    2018-02-28

    Nanodidamonds containing colour centres open up many applications in quantum information processing, metrology, and quantum sensing. However, controlling the synthesis of nanodiamonds containing silicon vacancy (SiV) centres is still not well understood. Here we study nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centres. Our results show that nanodiamond growth can be controlled and optimised for different applications.

  10. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.C.; Dahle, A.K.; StJohn, D.H.; Hutt, J.E.C. [Queensland Univ., Brisbane (Australia). Dept. of Mining, Minerals and Mater. Eng.

    1999-01-15

    The effect of increasing the amount of added grain refiner on grain size and morphology has been investigated for a range of hypoeutectic Al-Si alloys. The results show a transition in grain size at a silicon concentration of about 3 wt% in unrefined alloys; the grain size decreasing with silicon content before the transition, and increasing beyond the transition point. A change in morphology also occurs with increased silicon content. The addition of grain refiner leads to greater refinement for silicon contents below the transition point than for those contents above the transition point, while the transition point seems to remain unchanged. The slope of the grain size versus silicon content curve after the transition seems to be unaffected by the degree of grain refinement. The results are related to the competitive processes of nucleation and constitutional effects during growth and their impact on nucleation kinetics. (orig.) 13 refs.

  11. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  12. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    Directory of Open Access Journals (Sweden)

    Hass Jamie L

    2012-01-01

    Full Text Available Abstract Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of

  13. Sulfur dioxide content of the air and its influence on the plant

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, G; Reckendorfer, P; Beran, F

    1929-01-01

    Clover was exposed to concentrations of sulfur dioxide ranging from 5 to 50 ppm for periods of 1 to 4 hours. The higher concentrations caused an increase in sulfur content. Single exposures did not affect the digestible protein content of the plants. 10 tables, 3 figures.

  14. Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jong-Hyun

    2003-01-01

    This paper proposes a 10 μm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500 deg. C, for 1 h at H 2 O/O 2 ) and a rapid thermal oxidation (RTO) process (1050 deg. C, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 μm was about 100-500 pA in the range of 0-50 V. The average value of breakdown field was about 3.9 MV cm -1 . From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process were confirmed to be completely oxidized and also the role of RTO process was important for the densification of porous silicon layer (PSL) oxidized at a lower temperature. For the RF-test of Si substrate with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared by a temperature of 1050 deg. C (1 h at H 2 O/O 2 ). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz, which is similar to that of CPW on OPSL prepared by high temperature

  15. Stress evaluation of chemical vapor deposited silicon dioxide films

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Itsumi, Manabu

    2002-01-01

    Film stress of chemical vapor deposited silicon dioxide films was evaluated. All of the deposited films show tensile intrinsic stresses. Oxygen partial pressure dependence of the intrinsic stress is very close to that of deposition rate. The intrinsic stress increases with increasing the deposition rate under the same deposition temperature, and decreases with increasing substrate temperature. Electron spin resonance (ESR) active defects in the films were observed when the films were deposited at 380 deg. C and 450 deg. C. The ESR signal intensity decreases drastically with increasing deposition temperature. The intrinsic stress correlates very closely to the intensity of the ESR-active defects, that is, the films with larger intrinsic stress have larger ESR-active defects. It is considered that the intrinsic stress was generated because the voids caused by local bond disorder were formed during random network formation among the SiO 4 tetrahedra. This local bond disorder also causes the ESR-active defects

  16. Soft hydrogels interpenetrating silicone – a polymer network for drug releasing medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Møller, Eva Horn

    2016-01-01

    such a sophisticated material by forming an interpenetrating polymer network (IPN) material through modification of silicone elastomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel. IPN materials with a PHEMA content in the range of 13%–38% (w/w) were synthesized by using carbon dioxide...

  17. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  18. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  19. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    Directory of Open Access Journals (Sweden)

    Li Lin

    2017-01-01

    Full Text Available A nano-patterning approach on silicon dioxide (SiO2 material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL followed by a dry etching process. Afterwards, the Si stamp was employed in nanoimprint lithography (NIL assisted with a dry etching process to produce nanoholes on the SiO2 layer. The demonstrated approach has advantages such as a high resolution in nanoscale by EBL and good reproducibility by NIL. In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size variation of the nanostructures resulting from exposure parameters in EBL, the pattern transfer during nanoimprint in NIL, and subsequent etching processes of SiO2 were also studied quantitatively. By this method, a hexagonal arranged hole array in SiO2 with a hole diameter ranging from 45 to 75 nm and a pitch of 600 nm was demonstrated on a four-inch wafer.

  20. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  1. Correlation Between Grain Size Distribution and Silicon and Oxygen Contents at Wadi Arar Sediments, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. A. M. Alghamdi

    2017-08-01

    Full Text Available Quartz is the major mineral of Wadi Arar sediments. The top two elements contents are oxygen with 63.96 wt%, followed by silicon with 16.35 wt%. There is a positive, weak to medium correlation between grain size and silicon and oxygen contents. The correlation between oxygen and grain size is four times higher than that of silicon. At grain size ranges between 0.8 and 1.0 mm, both oxygen and silicon show the maximum correlation, which decrease gradually with finer and coarser grain sizes. For each element, the correlation between the element content and grain size is a fourth degree polynomial in the grain size. Theoretically, the best two math models that represent the relation between the grain size distribution and each of individual oxygen and silicon content are y=8.84∙ln(x+39.5 and y=2.26∙ln(x+10.1 respectively, where y represents the element content percentage and x represents the corresponding grain size in mm.

  2. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  3. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    Science.gov (United States)

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China)

    2016-03-15

    The weldability of 9Cr2WVTa steels with silicon content varying from 0.30 wt.% to 1.36 wt.% was studied to meet the requirement of Generation-Ⅳ nuclear reactor. Samples of enlarged HAZs were fabricated by a thermal-mechanical simulator based on the simulation and measurement of non-equilibrium phase transformation. The content of δ-ferrite in the HAZs increased with the silicon content and the peak temperature of welding thermal cycle. The impact toughness in the HAZs decreased in different degrees when the δ-ferrite exhibits stripe (lower than 4.82%) or blocky types (higher than 4.82%). Post weld heat treatment (PWHT) has a significant role on improving the toughness. Adding silicon content increased the volume of δ-ferrite and therefore, decreased the tensile strength of the HAZs for 9Cr2WVTa steels. Silicon also as solid solution strengthening element increased the tensile strength. The 9Cr2WVTa steel has good weldability when the silicon content is lower than 0.60 wt.%. - Highlights: • The weldability of 9Cr2WVTa steel with different silicon contents was studied. • The impact toughness decreased in different degrees owing to the δ-ferrite. • PWHT has a significant role on improving the impact toughness. • The 9Cr2WVTa steel with silicon content not exceeding 0.60 wt.% has good weldability.

  5. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  6. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  7. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    OpenAIRE

    K?nig, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusi...

  8. Semiconductor-metal phase transition of vanadium dioxide nanostructures on silicon substrate: Applications for thermal control of spacecraft

    International Nuclear Information System (INIS)

    Leahu, G. L.; Li Voti, R.; Larciprete, M. C.; Belardini, A.; Mura, F.; Sibilia, C.; Bertolotti, M.; Fratoddi, I.

    2013-01-01

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO2) film deposited on silicon wafer. The VO2 phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO2 which has been explained by applying the Maxwell Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices to be applied for the thermal control of spacecraft. We have also applied the photothermal radiometry in order to study the changes in the modulated emissivity induced by laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide based structures

  9. Influence of redox condition in iron, silicon and hydrogen contents of leached glass surface

    International Nuclear Information System (INIS)

    Manara, A.; Lanza, F.; Della Mea, G.; Rossi, C.; Salvagno, G.

    1984-01-01

    Surface analysis has been conducted on samples leached in a Sochlet apparatus at 100 0 C in the presence and in the absence of air. The XPS technique was applied to analyze the content of iron and silicon while the nuclear reaction method was utilized to analyze the content of hydrogen. Samples leached in argon atmosphere have shown a smaller content of iron and silicon with respect to the samples leached in air atmosphere. The H concentration has shown the same behavior. The results are discussed in terms of possible formation of iron compounds in the different redox condition and of their different stabilities and in terms of their efficiency in reducing exchange between Na + and H + ions. 11 references, 3 figures, 1 table

  10. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  11. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  12. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  13. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.

    Science.gov (United States)

    Shen, Boxuan; Linko, Veikko; Dietz, Hendrik; Toppari, J Jussi

    2015-01-01

    DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Liquid carbon dioxide absorbents, methods of using the same, and related system

    Science.gov (United States)

    Perry, Robert James; Soloveichik, Grigorii Lev; Rubinsztajn, Malgorzata Iwona; O'Brien, Michael Joseph; Lewis, Larry Neil; Lam, Tunchiao Hubert; Kniajanski, Sergei; Hancu, Dan

    2018-05-01

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  15. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  16. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation

    Science.gov (United States)

    Scheel, Julia; Karsten, Stefan; Stelter, Norbert; Wind, Thorsten

    2013-01-01

    Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions. PMID:22548260

  17. Liquid carbon dioxide absorbents, methods of using the same, and related systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan

    2016-09-13

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  18. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-06-01

    Full Text Available This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2, indium tin oxide (ITO, and a hybrid layer of SiO2/ITO applied using Radio frequency (RF sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52% exceeded that of cells with a SiO2 antireflective coating (21.92%. Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating.

  19. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  20. Nanoshaving and Nanografting of Water Soluble Polymers on Glass and Silicon Dioxide Surfaces with Applications to DNA Localization

    Science.gov (United States)

    Davis, Brian; Conley, Hiram; Ochoa, Rosie; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Here we present a scanning probe lithography technique that allows for patterning of aqueous polymers on glass or silicon dioxide surfaces. The surfaces were functionalized by covalently bonding a silane monolayer with a known surface charge to either a glass slide or a silicon wafer. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer, passivating the functionalized surface. An Atomic Force Microscope (AFM) probe was used to remove a portion of the polymer layer, exposing the functional silane layer underneath. Employing this method we made chemically active submicron regions. These regions were backfilled with a fluorescent polymer and Lambda-DNA. Chemical differentiation was verified through tapping mode AFM and optical fluorescent microscopy. Lines with a pitch as small as 20nm were observed with AFM height and phase mode data.

  1. Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction.

    Science.gov (United States)

    Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi

    2017-08-08

    Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors.

  2. Piezoresistive Composite Silicon Dioxide Nanocantilever Surface Stress Sensor: Design and Optimization.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-05-01

    In this paper, we present the design and optimization of a rectangular piezoresistive composite silicon dioxide nanocantilever sensor. Unlike the conventional design approach, we perform the sensor optimization by not only considering its electro-mechanical response but also incorporating the impact of self-heating induced thermal drift in its terminal characteristics. Through extensive simulations first we comprehend and quantify the inaccuracies due to self-heating effect induced by the geometrical and intrinsic parameters of the piezoresistor. Then, by optimizing the ratio of electrical sensitivity to thermal sensitivity defined as the sensitivity ratio (υ) we improve the sensor performance and measurement reliability. Results show that to ensure υ ≥ 1, shorter and wider piezoresistors are better. In addition, it is observed that unlike the general belief that high doping concentration of piezoresistor reduces thermal sensitivity in piezoresistive sensors, to ensure υ ≥ 1 doping concentration (p) should be in the range: 1E18 cm-3 ≤ p ≤ 1E19 cm-3. Finally, we provide a set of design guidelines that will help NEMS engineers to optimize the performance of such sensors for chemical and biological sensing applications.

  3. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  4. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  5. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  6. Silicon content design of CrSiN films for good anti-corrosion and anti-wear performances in NaOH solution

    Science.gov (United States)

    Wang, Haixin; Ye, Yuwei; Wang, Chunting; Zhang, Guangan; Liu, Wei

    2018-06-01

    The CrSiN films with different silicon contents were fabricated by medium frequency magnetron sputtering. The 304L stainless steel and Si (1 0 0) wafer were used for substrate specimens. Film plasticity, corrosion and tribological behaviors in 0.1 M NaOH solution were systematically investigated. Results show that the plasticity of CrN film could be improved by the addition of silicon. During the corrosion test, with the increase of silicon content, the corrosion current density exhibited a descending trend and impedance presented a rising trend. The COF and wear rate of as-prepared CrSiN film initially decreased and then increased as the silicon content increased. The CrSiN film with 12.7 at.% Si exhibited the lowest COF of 0.04 and a wear rate of 6.746  ×  10‑8 mm3 Nm‑1 in 0.1 M NaOH solution.

  7. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  8. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  9. Determination of aluminium, silicon and magnesium content in water samples by nuclear physical methods using XRFA and the MT-25 microtron

    International Nuclear Information System (INIS)

    Maslov, O.D.; Gustova, M.V.; Belov, A.G.; Drobina, T.P.

    2011-01-01

    Some of element contents in the samples have been determined by nuclear physical methods (XRFA, GAA and NAA). The possibility of determining Al, Si and Mg content in water samples has been studied. The detection limits of 0.03 mg/1 for Al, 0.3 mg/1 for Si and 0.1 mg/1 for Mg in water samples have been obtained. Monitoring of the aluminium and silicon content in water is important because the high concentration of aluminium or the low content of silicon in drinking water may be risk factors for Alzheimer's disease

  10. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  11. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  12. Titanium di-oxide films using a less hygroscopic colloidal precursor

    Energy Technology Data Exchange (ETDEWEB)

    Vandana,, E-mail: vandana1@nplindia.org; Batra, Neha; Kumar, Praveen; Sharma, Pooja; Singh, P.K., E-mail: pksingh@nplindia.org

    2014-04-01

    We report the study of titanium dioxide films (TiO{sub 2}) using titanium di-isopropoxyl di-2ethyl hexanoate Ti(OC{sub 3}H{sub 7}){sub 2} (C{sub 7}H{sub 15}COO){sub 2} colloidal precursor. This compound is less hygroscopic in nature and easy to use with processes like spin or dip coating. Thin films of TiO{sub 2} are made on silicon substrates and their structural and optical properties are studied. The effect of Ti content in the precursor, sintering temperature and its duration on film thickness and refractive index are investigated. Refractive index shows an increasing trend with the rise in the sintering temperature but remains unchanged with the time. The film thickness decreases with both sintering temperature and time and increases with Ti content in the precursor. Reflectivity measurements show marked reduction in the reflection losses compared to bare silicon surface wherein the film thickness is altered by spin speed. XRD results show anatase phase in the samples sintered at lower temperature (<680 °C), however, a mix of anatase, brookite and rutile phases is seen above this temperature. In the samples sintered above 1100 °C, rutile phase is dominant. These results are supported by the X-ray photoelectron spectroscopy. Atomic force microscopy reveals larger grain size at higher sintering temperature. The titanium dioxide films of desirable thickness and refractive index could be used as an antireflection coating on solar cells. - Highlights: • TiO{sub 2} films are made using titanium di-isopropoxyl di-2ethyl hexanoate precursor. • Effect of Ti content in the precursor, sintering temperature and time is studied. • Refractive index (μ) increases with sintering temperature but is independent of time. • Films of desired thickness and μ could be used as an antireflection coating. • XRD results show that rutile phase dominates in samples sintered above 1100 °C.

  13. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  14. Direct Production of Silicones From Sand

    Energy Technology Data Exchange (ETDEWEB)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  15. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Jacques, P.; Catlin, T.; Geerlofs, N.; Kop, T.; Zwaag, S. van der; Delannay, F.

    1999-01-01

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  16. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  17. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  18. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  19. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicondioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  20. Denuded zone in Czochralski silicon wafer with high carbon content

    International Nuclear Information System (INIS)

    Chen Jiahe; Yang Deren; Ma Xiangyang; Que Duanlin

    2006-01-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 deg. C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 deg. C. Also, the DZs above 15 μm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits

  1. Denuded zone in Czochralski silicon wafer with high carbon content

    Science.gov (United States)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Que, Duanlin

    2006-12-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 °C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 °C. Also, the DZs above 15 µm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits.

  2. Silicon (100)/SiO2 by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

  3. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  4. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    Science.gov (United States)

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  5. Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

    Science.gov (United States)

    Al-Tameemi, Mohammed N. A.

    2018-03-01

    In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum particle size of about 20 nm. The effect of SiO2 films as external cavity for the random gain medium is determined by the laser-induced fluorescence of this medium, and an increase of about 200% in intensity is observed after the deposition of nanostructured SiO2 thin films on two sides of the dye cell.

  6. Biplot Analysis of Silicon Dioxide on Early Growth of Sunflower

    Directory of Open Access Journals (Sweden)

    Sabaghnia Naser

    2016-06-01

    Full Text Available Research into nanotechnology has advanced in almost all fields of technology and the aim of this study was to evaluate the role of nano-silicon dioxide (nano-SiO2 in germination performance sunflower. Germination and seedling growth are the most important stage of plant development and are critical factors to crop production and are essential to achieve optimum performance. The effects of pre-germination hydration in solutions of nano-SiO2 (0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2 mM for 8 h on germination characteristics of sunflower were investigated. The trait by treatment (TT biplot explained 93% of the total variation of the standardized data (77% and 16% for the first and second principal components, respectively. According to polygon-view of TT biplot, T2 (0.2 mM had the highest values for all of the measured traits except mean germination time and the time to 50% germination. The germination percentage was determined as the best trait and showed the high association with promptness index, energy of germination and germination rate traits. The results of the present study indicated that pre-sowing seed treatments with low concentration of nano-SiO2 had favorable effect sunflower seed germination and seedling early growth. Such a similar outcome could be applied in the future to outline other crops in response to nano-particles as well as to help define tolerance tools for recommendations in stressful conditions in the world.

  7. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    Science.gov (United States)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  8. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  9. Acid-alkaline state of the blood in chronic combined effect of silicon dioxide, radon and tobacco smoke

    International Nuclear Information System (INIS)

    Ivanov, Z.; Charykchiev, D.

    1987-01-01

    Experimental observations were carried out on rats, subjected to inhalaion of radon-222 and combination of radon-222 with intratracheally introduced free silicon dioxide and tobacco smoke. A special method was used for anaerobic and narcosis-free taking of arterial blood from the left cardiac ventricle, the animals being investigated on the 2nd and the 6th month from the start of the experiment. In all tested animals a tendency to respiratory hypercapneic acidosis was established, particularly to the end of the experiment and in the group treated only with radon-222. In these animals a marked non-respiratory alkalosis with deviation of pH to alkaline direction was added. It is assumed that above-mentioned acid-alkaline disturbances could be due to the found morphological changes in the respiratory system, the liver and kidneys

  10. The electrical and thermal properties of sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide

    International Nuclear Information System (INIS)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1986-01-01

    Sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide was prepared. The thermal and electrical properties of its phases were investigated. The Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 SiO 2 samples are similar to the Na 2 SO 4 -I phase (a high temperature phase), which is appreciably effective for Na + ionic conduction. Phase transformation was considerably suppressed by mixing. Electromotive force (EMF) was measured, using Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 -SiO 2 as a solid electrolyte, by constructing an SO 2 gas concentration cell. The measured EMF's at 823 and 773 K were in fairly good accordance with the calculated EMF's for inlet SO 2 gas concentration between 30 ppm and 1%, and 500 ppm and 0.5% respectively

  11. Bias-assisted KOH etching of macroporous silicon membranes

    International Nuclear Information System (INIS)

    Mathwig, K; Geilhufe, M; Müller, F; Gösele, U

    2011-01-01

    This paper presents an improved technique to fabricate porous membranes from macroporous silicon as a starting material. A crucial step in the fabrication process is the dissolution of silicon from the backside of the porous wafer by aqueous potassium hydroxide to open up the pores. We improved this step by biasing the silicon wafer electrically against the KOH. By monitoring the current–time characteristics a good control of the process is achieved and the yield is improved. Also, the etching can be stopped instantaneously and automatically by short-circuiting Si and KOH. Moreover, the bias-assisted etching allows for the controlled fabrication of silicon dioxide tube arrays when the silicon pore walls are oxidized and inverted pores are released.

  12. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  13. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    Science.gov (United States)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  14. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  15. Characterization of magnetic biochar amended with silicon dioxide prepared at high temperature calcination

    Directory of Open Access Journals (Sweden)

    Baig Shams Ali

    2016-09-01

    Full Text Available Calcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1 comparable to magnetic biochar. Thermogravimetric analysis (TGA revealed that both calcined samples generated higher residual mass (>96 % and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.

  16. Infrared-transmission spectra and hydrogen content of hydrogenated amorphous silicon

    Science.gov (United States)

    Hu, Yuehi; Chen, Guanghua; Wu, Yueying; Yin, Shengyi; Gao, Zhuo; Wang, Qing; Song, Xuemei; Deng, Jinxiang

    2004-05-01

    In this paper, two kinds of methods of calculating the hydrogen content of a-Si:H thin film by means of the wagging mode and the stretching modes of infrared-transmission spectra, are investigated. The reason for the difference in these two calculation results is analyzed. If the contents of SiH2 and (SiH2) n are indicated in terms of a structure factor F=(/840+/880)//2000, it is shown that the calculation results obtained from the two different methods are almost equal when the refractive index n is approximately 3.4 or the fitting thickness is between 0.71 and 0.89 μm in the case of a small F. It is shown that the ways of fabrication of thin film can influences silicon-hydrogen bonding configuration of a-Si: H film, and different ways of fabrication can lead to different contents of SiH2 and (SiH2) n . The uniformity of the thin film with a big F is bad. In this case, there is great difference between the thickness measured by the SurfCom408A surface profile apparatus and the thickness obtained by fitting the fringes; and the hydrogen contents of a-Si:H films obtained by means of the wagging mode and the stretching modes are different, too. But the fabrication of the MWECR CVD assisted by CAT CVD can effectively restrain the formation of SiH2 and (SiH2) n .

  17. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  18. Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride

    Science.gov (United States)

    Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.

    2003-06-01

    Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.

  19. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  20. The origin of high silicon content in potentially medicinal groundwater of Gran Canaria (Canary Islands, Spain. Modelling of chemical water-rock interactions

    Directory of Open Access Journals (Sweden)

    Dobrzyński, Dariusz

    2012-11-01

    Full Text Available Groundwater of Gran Canaria (Canary Island, Spain have been appreciated and used as an element of health tourism since the 19th Century. This activity was abandoned in the second half of 20th Century when springs disappeared due to groundwater drawdown. The chemistry of groundwater from 19 intakes in volcanic rocks of the north part of Gran Canaria was studied by applying geochemical modelling for quantifying processes responsible for high Si concentrations.Studied groundwater has temperature of 16.3°C–25.5°C, pH of 4.40–7.40, and usually HCO3-(Cl-Mg-Ca-Na hydrochemical types. At near-neutral pH, fresh groundwater usually has 0.1-0.3 mM of Si. In studied groundwater Si concentrations are 0.42 to 1.82 mM, and show positive correlation with ionic strength and temperature. Volcanic bedrocks consist of, generally, easily reactive silicate minerals. Weathering is not supported by low rainfall; however, it shall be intensified by high influx of salts from marine aerosols and lithogenic carbon dioxide into groundwater. Geochemical modelling has found water-mineral reactions which reflect properly diversity of bedrock mineralogy. Based on those chemical reactions, contributions of particular silicate minerals to the pool of silicon dissolved in groundwater were calculated. Understanding the processes responsible for water chemistry might help in proper management and protection of groundwater.The Si-rich waters might be found in numerous places of Gran Canaria in all volcanic rocks. Silicic acid is the only form of silicon which is biologically available, and is regarded as a component which provides balneotherapeutic benefits. Many studies have showed beneficial and essential aspects of silicon in humans. Studied groundwater from Gran Canaria has an unexploited balneotherapeutic potential, and due to very high Si contents they seem to be ideal for testing the health benefits of such waters to humans. Hydrogeochemical methods, including

  1. Photo-Electrical Characterization of Silicon Micropillar Arrays with Radial p/n Junctions Containing Passivation and Anti-Reflection Coatings

    NARCIS (Netherlands)

    Vijselaar, Wouter; Elbersen, R.; Tiggelaar, Roald M.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    In order to assess the contributions of anti-reflective and passivation effects in microstructured silicon-based solar light harvesting devices, thin layers of aluminum oxide (Al2O3), silicon dioxide (SiO2), silicon-rich silicon nitride (SiNx), and indium tin oxide (ITO), with a thickness ranging

  2. Influence of polyvinylpyrrolidone, microcrystalline cellulose and colloidal silicon dioxide on technological characteristics of a high-dose Petiveria alliacea tablet.

    Science.gov (United States)

    García-Pérez, Martha-Estrella; Lemus-Rodríguez, Zoe; Hung-Arbelo, Mario; Vistel-Vigo, Marlen

    2017-12-01

    Petiveria alliacea L. (Phytolaccaceae) is a perennial shrub used by its immunomodulatory, anticancerogenic and anti-inflammatory properties. This study determined the influence of polyvinylpyrrolidone (PVP), colloidal silicon dioxide (CSD) and microcrystalline cellulose (MC) on the technological characteristic of a high-dose P. alliacea tablet prepared by the wet granulation method. The botanical and pharmacognostic analysis of the plant material was firstly performed, followed by a 2 3 factorial design considering three factors at two levels: (a) the binder (PVP) incorporated in formulation at 10% and 15% (w/w); (b) the compacting agent (CSD) added at 10% and 15% (w/w) and; (c) the diluent (MC) included at 7.33% and 12.46% (w/w). The analysis of pharmaceutical performance and the accelerated and long-term stability of the best prototype were also completed. The binder, compacting agent and the interaction binder/diluent had a significant impact on breaking force of high-dose P. alliacea tablet. The optimum formula was found to contain 15% (w/w) of CSD, 7.33% (w/w) of MC and 10% (w/w) of PVP. At these conditions, the tablet shows a breaking force of 77.96 N, a friability of 0.39%, a total phenol content of 1.30 mg/tablet and a maximum disintegration time of 6 min. The use of adequate amounts of PVP, MC and CSD as per the factorial design allowed the preparation of a tablet suitable for administration, despite the inappropriate flow and compressibility properties of the P. alliacea powder.

  3. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  4. Novel silicone elastomer formulations for DEAPs

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Vudayagiri, Sindhu; Benslimane, Mohamed

    2013-01-01

    We demonstrate that the force output and work density of polydimethylsiloxane (PDMS) based dielectric elastomer transducers can be significantly enhanced by the addition of high permittivity titanium dioxide nanoparticles which was also shown by Stoyanov et al[1] for pre-stretched elastomers...... and by Carpi et al for RTV silicones[2]. Furthermore the elastomer matrix is optimized to give very high breakdown strengths. We obtain an increase in the dielectric permittivity of a factor of approximately 2 with a loading of 12% TiO2 particles compared to the pure modified silicone elastomer with breakdown...

  5. Kinetics of the Coupled Gas-Iron Reactions Involving Silicon and ...

    African Journals Online (AJOL)

    The kinetic study of coupled gas-iron reactions at 15600 has been carried out for the system involving liquid iron containing carbon and silicon and a gas phase consisting carbon monoxide, silicon monoxide and carbon dioxide. The coupled reactions are: (1) 200(g) = CO2 + C. (2) SiO (g) + CO (g) = Si ¸ CO (g). (3) SiO (g) + ...

  6. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    International Nuclear Information System (INIS)

    Poudel, P.R.; Poudel, P.P.; Paramo, J.A.; Strzhemechny, Y.M.; Rout, B.; McDaniel, F.D.

    2015-01-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C - ) at a fluence of 3 x 10 17 atoms/cm 2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H 2 + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  8. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, P.R. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); Intel Corporation, Rio Rancho, NM (United States); Poudel, P.P. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Paramo, J.A.; Strzhemechny, Y.M. [Texas Christian University, Department of Physics and Astronomy, Fort Worth, TX (United States); Rout, B. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); University of North Texas, Center for Advanced Research and Technology, Denton, TX (United States); McDaniel, F.D. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States)

    2014-09-18

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C{sup -}) at a fluence of 3 x 10{sup 17} atoms/cm{sup 2} was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H{sub 2} + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main

  9. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    Science.gov (United States)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  10. Extrinsic passivation of silicon surfaces for solar cells

    OpenAIRE

    Bonilla, R.S.; Reichel, C.; Hermle, M.; Martins, G.; Wilshaw, P.R.

    2015-01-01

    In the present work we study the extent to which extrinsic chemical and field effect passivation can improve the overall electrical passivation quality of silicon dioxide on silicon. Here we demonstrate that, when optimally applied, extrinsic passivation can produce surface recombination velocities below 1.2 cm/s in planar 1 Omega cm n-type Si. This is largely due to the additional field effect passivation component which reduces the recombination velocity below 2.13 cm/s. On textured surface...

  11. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  12. Calculation of critical concentrations of actinides in an infinite medium of silicon dioxide

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Sato, Shohei; Kawasaki, Hiromitsu

    2009-01-01

    The critical concentrations of actinides in metal-silicon-dioxide (SiO 2 ) and in metal-water (H 2 O) mixtures were calculated for 26 actinides including 233,235 U, 239,241 Pu, 242m Am, 243,245,247 Cm, and 249,251 Cf. The calculations were performed using the Monte Carlo neutron transport calculation code MCNP5 combined with the evaluated nuclear data library JENDL3.3. The results showed that the critical concentration of actinide in metal-SiO 2 mixtures was about 1/5 of that in metal-H 2 O mixtures for all the fissile nuclides investigated. The k ∞ 's of metal-SiO 2 and metal-H 2 O at one-half of the respective critical concentration of actinide, which was assumed as the subcritical concentration limit, were found to be less than 0.8 for all the actinides considered. By applying the sum-of-fractions rule to the concentrations of six nuclides in metal-SiO 2 mixtures, the subcriticality of high-level radioactive wastes was confirmed for a reported sample. The effects of different nuclear data libraries on the results of critical concentrations were found to be large for 242 Cm, 247 Cm, and 250 Cf by comparison with the results calculated with another evaluated nuclear data library, ENDF/B-VI. (author)

  13. Determination of silicon and chromium content in gray cast iron by the Van der Pauw method; Determinacion del contenido de silicio y cromo en fundiciones grises mediante el metodo de Van der Pauw

    Energy Technology Data Exchange (ETDEWEB)

    Tremps, E.; Enrique, J. L.; Moron, C.; Garcia, A.; Gomez, A.

    2013-07-01

    In this paper we show a system based on the resistivity measurement of samples of gray cast iron by the Van der Pauw method to calculate the silicon content in the samples. Twenty five trials have been carried out, studying resistive and metallographic characteristics of the samples. This has demonstrated that it is possible to obtain, by this method, the silicon content in molten flat with low content of alloying elements, also the content of chromium in series smelters where the rate of silicon remains constant. (Author)

  14. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.

    Science.gov (United States)

    Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Faisal, Mohammad; Al Sahli, Abdulaziz A

    2014-11-01

    Research into nanotechnology, an emerging science, has advanced in almost all fields of technology. The aim of the present study was to evaluate the role of nano-silicon dioxide (nano-SiO2 ) in plant resistance to salt stress through improvement of the antioxidant system of squash (Cucurbita pepo L. cv. white bush marrow). Seeds treated with NaCl showed reduced germination percentage, vigor, length, and fresh and dry weights of the roots and shoots. However, nano-SiO2 improved seed germination and growth characteristics by reducing malondialdehyde and hydrogen peroxide levels as well as electrolyte leakage. In addition, application of nano-SiO2 reduced chlorophyll degradation and enhanced the net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate, and water use efficiency. The increase in plant germination and growth characteristics through application of nano-SiO2 might reflect a reduction in oxidative damage as a result of the expression of antioxidant enzymes, such as catalase, peroxidase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase. These results indicate that nano-SiO2 may improve defense mechanisms of plants against salt stress toxicity by augmenting the Pn , gs , transpiration rate, water use efficiency, total chlorophyll, proline, and carbonic anhydrase activity in the leaves of plants. © 2014 SETAC.

  15. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  16. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  17. Dependence of RF power on the content and configuration of hydrogen in amorphous hydrogenated silicon by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.

  18. Numerical study of self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride substrate

    International Nuclear Information System (INIS)

    Ding Yanfang; Zhu Ziqiang; Zhu Ming; Lin Chenglu

    2006-01-01

    Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advantages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal-oxide-silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (MN), which has a thermal conductivity that is about 200 times higher than that of SiO 2 (320 W·m -1 ·K -1 versus 1.4 W·m -1 ·K -l ). To investigate the self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electrical characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AIN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the applications of SOI to high temperature conditions. (authors)

  19. Nitrogen dioxide column content measurements made from an aircraft between 5 deg and 82 deg N

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, W A

    1984-01-01

    In the first two weeks of May 1981, the research jet of the German Aerospace Research Estlablishment (DFVLR) was charted to fly a meridional section between 5 deg and 82 deg N. A scanning filter photometer, developed at the Max-Planck-Institut fuer Aeronomie to measure column content values of atmospheric ozone and nitrogen dioxide, using ultraviolet and visible absorption techniques, constituted part of the experimental payload for this campaign that was called SIMOC. The vertical NO2 column content above the aircraft, flying at approximately 10 km, was found to decrease rapidly from 6.9 x 10 to the 15th molecules/sq cm to 2.5 x 10 to the 15th molecules/sq cm around 50 deg N and then to increase again north of 75 deg N. A sharp rise in the NO2 content was observed south of the subtropical jet but this could possibly be due to the increased depth of the troposphere above the aircraft in these regions. 8 references.

  20. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  1. Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure.

    Science.gov (United States)

    Rufo, Lourdes; Franco, Alejandro; de la Fuente, Vicenta

    2014-07-01

    Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.

  2. Characterization of silicon-oxide interfaces and organic monolayers by IR-UV ellipsometry and FTIR spectroscopy

    Science.gov (United States)

    Hess, P.; Patzner, P.; Osipov, A. V.; Hu, Z. G.; Lingenfelser, D.; Prunici, P.; Schmohl, A.

    2006-08-01

    VUV-laser-induced oxidation of Si(111)-(1×1):H, Si(100):H, and a-Si:H at 157 nm (F II laser) in pure O II and pure H IIO atmospheres was studied between 30°C and 250°C. The oxidation process was monitored in real time by spectroscopic ellipsometry (NIR-UV) and FTIR spectroscopy. The ellipsometric measurements could be simulated with a three-layer model, providing detailed information on the variation of the suboxide interface with the nature of the silicon substrate surface. Besides the silicon-dioxide and suboxide layer, a dense, disordered, roughly monolayer thick silicon layer was included, as found previously by molecular dynamics calculations. The deviations from the classical Deal-Grove mechanism and the self-limited growth of the ultrathin dioxide layers (TMS) groups and n-alkylthiol monolayers on gold-coated silicon. The C-H stretching vibrations of the methylene and methyl groups could be identified by FTIR spectroscopy and IR ellipsometry.

  3. HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, James [Princeton Univ., NJ (United States)

    2017-12-04

    This project is the first investigation of the use of thin titanium dioxide layers on silicon as a hole-blocking / electron-transparent selective contact to silicon. The work was motivated by the goal of a high-efficiency low-cost silicon-based solar cells that could be processed entirely at low temperature (300 Degree Celsius) or less, without requiring plasma-processing.

  4. Modification of the refractive index and the dielectric constant of silicon dioxide by means of ion implantation

    International Nuclear Information System (INIS)

    Swart, J.W.; Diniz, J.A.; Doi, I.; Moraes, M.A.B. de

    2000-01-01

    The modification of silicon dioxide films by means of ion implantation of fluorine and carbon was studied. 19 F + and 12 C + ions were separately and sequentially implanted in 250 nm thick thermal SiO 2 films with energies ranging from 10 to 50 keV and fluences in the interval 5x10 15 to 5x10 16 cm -2 . Metal/oxide/semiconductor (MOS) capacitors were fabricated on half side of the wafers. The implanted SiO 2 /Si samples were characterized by means of ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The MOS capacitors were used to determine the relative dielectric constant. Our results indicate a considerable reduction of the dielectric constant and refractive index. The refractive index was reduced from 1.46 to 1.29 when only fluorine was implanted or when fluorine with a higher dose was implanted in combination with carbon. For the same conditions, a relative dielectric constant of 3.4 was obtained and a shift in the Si-O bond stretching mode from 1085 to 1075 cm -1 was observed by FTIR spectroscopy

  5. NEW METHOD OF PRODUCTION OF ALUNINUM SILICON ALLOYS

    Directory of Open Access Journals (Sweden)

    V. K. Afanasiev

    2015-01-01

    Full Text Available A new approach to the preparation of aluminum-silicon alloys, based on the concept of the leading role of hydrogen in determining the structure and properties of alloys consists in using as charge materials of silicon dioxide (silica and hydrogen instead of crystalline silicon was described. Practical ways to implement the new method were proposed on the example of industrial alloys prepared on charge synthetic alloy. It is shown that the application of the proposed method allows to improve the mechanical properties and reduce the coefficient of thermal expansion alloys, Al-Si. The effect of heat treatment on mechanical properties, density and thermal expansion of synthetic alloys was researched.

  6. On the photon annealing of silicon-implanted gallium-nitride layers

    International Nuclear Information System (INIS)

    Seleznev, B. I.; Moskalev, G. Ya.; Fedorov, D. G.

    2016-01-01

    The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.

  7. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  8. The kinetics of dewetting ultra-thin Si layers from silicon dioxide

    International Nuclear Information System (INIS)

    Aouassa, M; Favre, L; Ronda, A; Berbezier, I; Maaref, H

    2012-01-01

    In this study, we investigate the kinetically driven dewetting of ultra-thin silicon films on silicon oxide substrate under ultra-high vacuum, at temperatures where oxide desorption and silicon lost could be ruled out. We show that in ultra-clean experimental conditions, the three different regimes of dewetting, namely (i) nucleation of holes, (ii) film retraction and (iii) coalescence of holes, can be quantitatively measured as a function of temperature, time and thickness. For a nominal flat clean sample these three regimes co-exist during the film retraction until complete dewetting. To discriminate their roles in the kinetics of dewetting, we have compared the dewetting evolution of flat unpatterned crystalline silicon layers (homogeneous dewetting), patterned crystalline silicon layers (heterogeneous dewetting) and amorphous silicon layers (crystallization-induced dewetting). The first regime (nucleation) is described by a breaking time which follows an exponential evolution with temperature with an activation energy E H ∼ 3.2 eV. The second regime (retraction) is controlled by surface diffusion of matter from the edges of the holes. It involves a very fast redistribution of matter onto the flat Si layer, which prevents the formation of a rim on the edges of the holes during both heterogeneous and homogeneous dewetting. The time evolution of the linear dewetting front measured during heterogeneous dewetting follows a characteristic power law x ∼ t 0.45 consistent with a surface diffusion-limited mechanism. It also evolves as x ∼ h -1 as expected from mass conservation in the absence of thickened rim. When the surface energy is isotropic (during dewetting of amorphous Si) the dynamics of dewetting is considerably modified: firstly, there is no measurable breaking time; secondly, the speed of dewetting is two orders of magnitude larger than for crystalline Si; and thirdly, the activation energy of dewetting is much smaller due to the different driving

  9. Silicon alleviates salt stress, decreases malondialdehyde content ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... growth and quality of cut flower miniature rose 'Pinocchio' in the rockwool culture ..... Gibberellins are a group of naturally occurring plant hormones that affect .... Effects of silicon on tolerance to water deficit and heat stress in ...

  10. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  11. Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Chorkendorff, Ib

    2011-01-01

    Here we report on strontium zirconate as a getter for silicon dioxide and aluminum oxide in yttria stabilized zirconia (YSZ) single crystals for cleaning purposes. YSZ single crystals were covered with strontium zirconate powder and heat treated at 1450°C in water vapor. After treatment the YSZ...... by transmission electron microscopy (TEM) the interface region between bump and YSZ single crystal bulk was examined. EDS showed a homogeneous distribution of silicon and aluminum through the cross section of a bump. The results suggest strontium zirconate as a good getter for silicon and aluminum from bulk...

  12. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  13. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  16. Dissection of QTLs for Hull Silicon Content on the Short Arm of Rice Chromosome 6

    Directory of Open Access Journals (Sweden)

    Ji-rong WU

    2010-06-01

    Full Text Available The QTL qHUS6 for hull silicon content in rice was previously located on the short arm of rice chromosome 6. By using an F2:3 population segregating in the RM587–RM19784 region harboring qHUS6 in an isogenic background, two QTLs for hull silicon content were detected, of which qHUS6-1 was located in the distal region and qHUS6-2 in the region proximal to the centromere. Three rice plants carrying small heterozygous segments in the target region were selected, of which two covered the qHUS6-1 region and the other covered the qHUS6-2 region. Three F2:3 populations were derived from the selfed seeds of the three plants, respectively. QTL mapping was performed using the two populations segregating in the qHUS6-1 region, and qHUS6-1 was delimited to a 147.0-kb region flanked by the markers RM510 and RM19417. Five groups of F3 lines with different genotypic compositions in the qHUS6-2 region were selected from the other F2:3 population. Two QTLs were separated with two-way ANOVA, of which qHUS6-2a was located in the interval defined by RM19706–RM19795 and qHUS6-2b in the interval RM314–RM19665.

  17. Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Grigor’eva, N. A., E-mail: natali@lns.pnpi.spb.ru [St. Petersburg State University (Russian Federation); Eckerlebe, H. [Helmholtz-Zentrum Geesthacht (Germany); Eliseev, A. A.; Lukashin, A. V.; Napol’skii, K. S. [Moscow State University (Russian Federation); Kraje, M. [Reactor Institute Delft (Netherlands); Grigor’ev, S. V. [St. Petersburg State University (Russian Federation)

    2017-03-15

    The structural and magnetic properties of the mesoporous systems based on silicon dioxide with a regular hexagonal arrangement of pores several microns in length and several nanometers in diameter, which are filled with iron compound nanofilaments in various chemical states, are studied in detail. The studies are performed using the following mutually complementary methods: transmission electron microscopy, SQUID magnetometry, electron spin resonance, Mössbauer spectroscopy, polarized neutron small-angle diffraction, and synchrotron radiation diffraction. It is shown that the iron nanoparticles in pores are mainly in the γ phase of Fe{sub 2}O{sub 3} with a small addition of the α phase and atomic iron clusters. The effective magnetic field acting on a nanofilament from other nanofilaments is 11 mT and has a dipole nature, the ferromagnetic–paramagnetic transition temperature is in the range 76–94 K depending on the annealing temperature of the samples, and the temperature that corresponds to the change in the magnetic state of the iron oxide nanofilaments is T ≈ 50–60 K at H = 0 and T ≈ 80 K at H = 300 mT. It is also shown that the magnetization reversal of an array of nanofilaments is caused by the magnetostatic interaction between nanofilaments at the fields that are lower than the saturation field.

  18. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  19. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  20. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    Science.gov (United States)

    Roy, Debdutta

    Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily

  1. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  2. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  3. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  4. Oxygen measurements in thin ribbon silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, S L; Ast, D G; Baghdadi, A

    1987-03-01

    The oxygen content of thin silicon ribbons grown by the dendritic web technique was measured using a modification of the ASTM method based on Fourier transform infrared spectroscopy. Web silicon was found to have a high oxygen content, ranging from 13 to 19 ppma, calculated from the absorption peak associated with interstitial oxygen and using the new ASTM conversion coefficient. The oxygen concentration changed by about 10% along the growth direction of the ribbon. In some samples, a shoulder was detected on the absorption peak. A similar shoulder in Czochralski grown material has been variously interpreted in the literature as due to a complex of silicon, oxygen, and vacancies, or to a phase of SiO/sub 2/ developed along dislocations in the material. In the case of web silicon, it is not clear which is the correct interpretation.

  5. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  6. The influence of diffusion of fluorine compounds for silicon lateral etching

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick; Goodyear, Alec; Braithwaite, Nicholas St.John

    2004-07-01

    In an earlier study, it was proposed that long-range surface transport of fluorine atoms could precede the eventual binding to a silicon atom. The rate of binding increases if the silicon is bombarded with high energy ions. In this study, the lateral etching of a silicon layer, sandwiched between two silicon dioxide layers, was studied in order to investigate and extend these hypotheses. The under etching of the silicon layer was higher for wafers which suffered ion bombardment, showing that this mechanism is important even for horizontal etching. At the same time, the thickness of the silicon layer was varied. In all cases, the thinner silicon layer etched much faster then the thicker layer, indicating that fluorine surface transport is much more important than re-emission for these processes. The etch rate increase with ion bombardment can be explained by the fact that part of the energy of the incoming ions is transferred to the fluorine compounds which are on the horizontal surfaces and that ion bombardment enhances the fluorine surface transport.

  7. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  8. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  9. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  10. The investigation of influence of accelerated electrons on SiO2 used in silicon solar cells

    International Nuclear Information System (INIS)

    Abdullaev, G.B.; Bakirov, M.Ya; Akhmedov, G.M.; Safarov, N.A.; Safarova, F.D.

    1994-01-01

    The process of radiation defects production in enlightened SiO 2 layers coated on silicon solar cells was studied. During irradiation the silicon solar cells with enlightened layers radiation defects are formed both in silicon and SiO 2 thus making worse photo energetic parameters of cells. For investigation of radiation effects formed under irradiation by electrons with 5 MeV energy and cobalt-60 gamma-rays photoluminescence, absorption spectra and electron spin resonance methods were used. It is supposed that main radiation defects in silicon dioxide are E'-centers and oxygen vacancies. (A.D. Avezov). 10 refs.; 2 figs

  11. Electronic transport through organophosphonate monolayers on silicon/silicon dioxide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Achyut; Pathak, Anshuma; Tornow, Marc [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Liao, Kung-Ching; Schwartz, Jeffrey [Department of Chemistry, Princeton University, NJ (United States); Cattani-Scholz, Anna; Abstreiter, Gerhard [Walter Schottky Institut, TU Muenchen (Germany)

    2011-07-01

    Understanding the electronic transport through layered systems of organic functional layers on semiconductor surfaces is of major importance for future applications in nanoelectronics, photovoltaics and sensors. We have prepared self-assembled monolayers (SAMs) of 9,10-diphenyl-2,6-diphosphono-anthracene and 11-hydroxyundecyl phosphonic acid precursors on highly p-doped silicon surfaces coated with a 1 nm SiO{sub 2} layer. Contact angle, AFM and ellipsometry evidenced the homogeneity of the formed SAMs, and their thickness was determined to be 0.82{+-}0.07 nm and 1.13{+-}0.09 nm, respectively. We provided large area electrical contacts on top of the SAMs by a hanging Hg drop electrode. The measured I-V characteristics revealed an enhanced conductance of the aromatic vs. the aliphatic compounds, with current densities of the order of 10 A/m{sup 2} and 0.01 A/m{sup 2}, at 0.5 V, respectively. We analyzed the data in terms of non-resonant tunneling through the combined oxide-SAM barrier and found good qualitative agreement up to 0.2 V bias. Preliminary measurements on organized bilayers of anthracene bisphosphonates that were grown using techniques of coordination chemistry are discussed, too.

  12. A Study on Kaolin and Titanium dioxide affecting Physical Properties of Electrocoating

    International Nuclear Information System (INIS)

    Yang, Wonseog; Hwang, Woonsuk

    2013-01-01

    The electrocoating for automotive bodies is pigmented with a mixture of titanium dioxide and kaolin. In this study, the effects of titanium dioxide and kaolin contents in coating on electrodeposition process, drying, and surface properties such as surface roughness, gloss, impact resistance and corrosion resistance were investigated. Titanium dioxide and kaolin in coating do not have a decisive effect on curing reaction during drying and corrosion resistance but on gloss, surface roughness, impact resistance and electrodeposition process of coating. According to its size and shape on coating surface, pigment contents increased during drying process. However, the contents of kaolin and TiO 2 in coating didn't affect the corrosion resistance on zinc phosphated substrate, and the curing properties

  13. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    Science.gov (United States)

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  14. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  15. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  16. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  17. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  18. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  19. Effect of Silicon in U-10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, Elizabeth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showed that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.

  20. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge.

    Science.gov (United States)

    Kim, Jae-Hyun; Kim, Cheol-Su; Ignacio, Rosa Mistica Coles; Kim, Dong-Heui; Sajo, Ma Easter Joy; Maeng, Eun Ho; Qi, Xu-Feng; Park, Seong-Eun; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Kyu-Jae; Kim, Soo-Ki

    2014-01-01

    Silicon dioxide (SiO2) nanoparticles (NPs) have been widely used in the biomedical field, such as in drug delivery and gene therapy. However, little is known about the biological effects and potential hazards of SiO2. Herein, the colloidal SiO2 NPs with two different sizes (20 nm and 100 nm) and different charges (L-arginine modified: SiO2 (EN20[R]), SiO2 (EN100[R]); and negative: SiO2 (EN20[-]), SiO2 (EN100[-]) were orally administered (750 mg/kg/day) in female C57BL/6 mice for 14 days. Assessments of immunotoxicity include hematology profiling, reactive oxygen species generation and their antioxidant effect, stimulation assays for B- and T-lymphocytes, the activity of natural killer (NK) cells, and cytokine profiling. In vitro toxicity was also investigated in the RAW 264.7 cell line. When the cellularity of mouse spleen was evaluated, there was an overall decrease in the proliferation of B- and T-cells for all the groups fed with SiO2 NPs. Specifically, the SiO2 (EN20(-)) NPs showed the most pronounced reduction. In addition, the nitric oxide production and NK cell activity in SiO2 NP-fed mice were significantly suppressed. Moreover, there was a decrease in the serum concentration of inflammatory cytokines such as interleukin (IL)-1β, IL-12 (p70), IL-6, tumor necrosis factor-α, and interferon-γ. To elucidate the cytotoxicity mechanism of SiO2 in vivo, an in vitro study using the RAW 264.7 cell line was performed. Both the size and charge of SiO2 using murine macrophage RAW 264.7 cells decreased cell viability dose-dependently. Collectively, our data indicate that different sized and charged SiO2 NPs would cause differential immunotoxicity. Interestingly, the small-sized and negatively charged SiO2 NPs showed the most potent in vivo immunotoxicity by way of suppressing the proliferation of lymphocytes, depressing the killing activity of NK cells, and decreasing proinflammatory cytokine production, thus leading to immunosuppression.

  1. Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon

    Science.gov (United States)

    Le, Katherine; Yang, Yindong; Barati, Mansoor; McLean, Alexander

    2018-05-01

    The treatment of relatively inexpensive silicon-iron alloys is a potential refining route in order to generate solar-grade silicon. Phosphorus is one of the more difficult impurity elements to remove by conventional processing. In this study, electromagnetic levitation was used to investigate phosphorus behavior in silicon-iron alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1723 K to 1993 K), gas flow rate, iron content, and initial phosphorus concentration in the alloy. Thermodynamic modeling of the dephosphorization reaction permitted prediction of the various gaseous products and indicated that diatomic phosphorus is the dominant species formed.

  2. Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Charles T. Price

    2013-01-01

    Full Text Available Physicians are aware of the benefits of calcium and vitamin D supplementation. However, additional nutritional components may also be important for bone health. There is a growing body of the scientific literature which recognizes that silicon plays an essential role in bone formation and maintenance. Silicon improves bone matrix quality and facilitates bone mineralization. Increased intake of bioavailable silicon has been associated with increased bone mineral density. Silicon supplementation in animals and humans has been shown to increase bone mineral density and improve bone strength. Dietary sources of bioavailable silicon include whole grains, cereals, beer, and some vegetables such as green beans. Silicon in the form of silica, or silicon dioxide (SiO2, is a common food additive but has limited intestinal absorption. More attention to this important mineral by the academic community may lead to improved nutrition, dietary supplements, and better understanding of the role of silicon in the management of postmenopausal osteoporosis.

  3. Origin of interfacial charging in irradiated silicon nitride capacitors

    International Nuclear Information System (INIS)

    Hughes, R.C.

    1984-01-01

    Many experiments show that when metal-silicon nitride-silicon dioxide-silicon (MNOS) devices are irradiated in short circuit, a large interfacial charge builds up near the nitride-SiO 2 -Si interface. This effect cannot be explained by simple models of radiation-induced conductivity of the nitride, but it is reported here that inclusion of carrier diffusion and recombination in the photoconductivity equations can predict the observed behavior. Numerical solutions on a computer are required, however, when these complications are added. The simulations account for the magnitude and radiation dose dependence of the results, as well as the occurrence of a steady state during the irradiation. The location of the excess trapped charge near the interface is also predicted, along with the large number of new traps which must be introduced to influence the steady-state charge distribution

  4. Dependences of deposition rate and OH content on concentration of added trichloroethylene in low-temperature silicon oxide films deposited using silicone oil and ozone gas

    Science.gov (United States)

    Horita, Susumu; Jain, Puneet

    2018-03-01

    We investigated the dependences of the deposition rate and residual OH content of SiO2 films on the concentration of trichloroethylene (TCE), which was added during deposition at low temperatures of 160-260 °C with the reactant gases of silicone oil (SO) and O3. The deposition rate depends on the TCE concentration and is minimum at a concentration of ˜0.4 mol/m3 at 200 °C. The result can be explained by surface and gas-phase reactions. Experimentally, we also revealed that the thickness profile is strongly affected by gas-phase reaction, in which the TCE vapor was blown directly onto the substrate surface, where it mixed with SO and O3. Furthermore, it was found that adding TCE vapor reduces residual OH content in the SiO2 film deposited at 200 °C because TCE enhances the dehydration reaction.

  5. Silicon based multilayer photoelectrodes for photoelectrolysis of water to produce hydrogen from the sun

    Science.gov (United States)

    Faruque, Faisal

    The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.

  6. The influence of dissolved H2O content in supercritical carbon dioxide to the inclusion complexes formation of ketoprofen/β-cyclodextrin

    Science.gov (United States)

    Goenawan, Joshua; Trisanti, P. N.; Sumarno

    2015-12-01

    This work studies the relation between dissolved H2O content in supercritical carbon dioxide (SC-CO2) with the formation of ketoprofen (KP)/β-cyclodextrin(CD) inclusion complexes. The process involves a physical mixture of these two compounds into contact with the supercritical carbon dioxide which had been previously saturated with H2O over a certain duration. The pressure used for saturation process is 130 bar and saturation temperature was ranged between 30 °C to 50 °C. The inclusion process was achieved by keeping it for 2 hours at 160 bar and 200 bar with inclusion temperature of 50 °C. The results enable us to suggest explanations for the inclusion formation. The inclusion complexes can be formed by contacting the dissolved H2O in SC-CO2 to the physical mixture of KP and CD. An increase in the temperature of saturation process resulted in an increase of dissolved H2O content in the supercritical carbon dioxide. The increasing levels of this water soluble resulted an increase in the inclusion complexes that has been formed. The formation of inclusion complexes includes the water molecules enhancing the emptying of the CD cavities and being replaced by KP, towards a more stable energy state. The drug release used for analyzing the dissolution rate of the KP/CD complexes. The results vary from 79,85% to 99,98% after 45 minutes which is above the rate that has been assigned by Farmakope Indonesia at 70% dissolution rate for KP. The use of SC-CO2 offers a new methods for increasing the rate of dissolution of drugs that are hydrophobic such as KP. CO2 used as a supercritical fluid because of its relatively low cost, easily obtainable supercritical conditions, and lack of toxicity. The material samples were characterized by DSC and Spectrophotometer UV-vis technique.

  7. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    International Nuclear Information System (INIS)

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-01

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems

  8. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lan; Harburg, Daniel V.; Rogers, John A., E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Ave., Urbana, Illinois 61801 (United States); Bozler, Carl [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420 (United States); Omenetto, Fiorenzo [Department of Biomedical Engineering, Department of Physics, Tufts University, 4 Colby St., Medford, Massachusetts 02155 (United States)

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  9. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang Guiyin; Li Hui; Liu Xu

    2010-01-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO 2 ) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO 2 acting as the supporting material. The structural analysis of these form-stable LA/SiO 2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO 2 . The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg -1 when the mass percentage of the LA in the SiO 2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  10. Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K C [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Liao, E [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Ong, W L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Wong, J D S [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Agarwal, A [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Nagarajan, R [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Yobas, L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

    2006-04-01

    Oxygen plasma treatment has been used extensively to bond polydimethyl siloxane to polydimethyl siloxane or glass in the rapid prototyping of microfluidic devices. This study aimed to improve the bonding quality of polydimethyl siloxane to passivated silicon using oxygen plasma treatment, and also to evaluate the bonding quality. Four types of passivated silicon were used: phosphosilicate glass, undoped silicate glass, silicon nitride and thermally grown silicon dioxide. Bonding strength was evaluated qualitatively and quantitatively using manual peel and mechanical shear tests respectively. Through peel tests we found that the lowering of plasma pressure from 500 to 30 mTorr and using a plasma power between 20 to 60 W helped to improve the bond quality for the first three types of passivation. Detailed analysis and discussion were conducted to explain the discrepancy between the bonding strength results and peeling results. Our results suggested that polydimethyl siloxane can be effectively bonded to passivated silicon, just as to polydimethyl siloxane or glass.

  11. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  12. A rapid tool for determination of titanium dioxide content in white chickpea samples.

    Science.gov (United States)

    Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail

    2018-02-01

    Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    Science.gov (United States)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  14. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    Science.gov (United States)

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I., E-mail: klyui@isp.kiev.ua; Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine); Fomovskii, F. V. [Kremenchug National University (Ukraine); Han, Wei [Jilin University, College of Physics (China)

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  16. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  17. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  18. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  19. Formation of SiC using low energy CO2 ion implantation in silicon

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorbani, S.; Dorranian, D.; Azadfar, P.; Hojabri, A.R.; Ghoranneviss, M.

    2008-01-01

    Carbon dioxide ions with 29 keV energy were implanted into (4 0 0) high-purity p-type silicon wafers at nearly room temperature and doses in the range between 1 x 10 16 and 3 x 10 18 ions/cm 2 . X-ray diffraction analysis (XRD) was used to characterize the formation of SiC in implanted Si substrate. The formation of SiC and its crystalline structure obtained from above mentioned technique. Topographical changes induced on silicon surface, grains and evaluation of them at different doses observed by atomic force microscopy (AFM). Infrared reflectance (IR) and Raman scattering measurements were used to reconfirm the formation of SiC in implanted Si substrate. The electrical properties of implanted samples measured by four point probe technique. The results show that implantation of carbon dioxide ions directly leads to formation of 15R-SiC. By increasing the implantation dose a significant changes were also observed on roughness and sheet resistivity properties.

  20. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  1. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  2. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  3. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  4. Method of manufacturing mixed stock powders for nuclear fuel elements

    International Nuclear Information System (INIS)

    Hirayama, Satoshi.

    1980-01-01

    Purpose: To alleviate the limit of the present reactor operating conditions by uniformly mixing an additive to the main content as an uranium dioxide or mixture of the uranium dioxide with plutonium dioxide. Method: A mixed stock powder is obtained by adding an additive of at least two of aluminium oxide, beryllium oxide, calcium oxide, magnesium oxide, silicon oxide, sodium oxide, potassium oxide, phosphorus oxide, titanium oxide and iron oxide to suspension having ammonia water as dispersion medium to start the deposition of precipitation at a step of precipitating ammonium diuranate or plutionium hydroxide of a main content of uranium dioxide or mixture of uranium dioxide and plutonium dioxide and deposited precipitate is calcinated and reduced. (Yoshihara, H.)

  5. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  6. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  7. Microstructure and wear behaviour of silicon doped Cr-N nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bao Mingdong, E-mail: bmingd@yahoo.com.c [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); Yu Lei; Xu Xuebo [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); He Jiawen [State Key Lab. for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China); Sun Hailin [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom); Zhejiang Huijin-Teer Coatings Technolgy Co., Ltd., Lin' an 311305 (China); Teer, D.G. [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom)

    2009-07-01

    Hard Cr-N and silicon doped Cr-Si-N nanocomposite coatings were deposited using closed unbalanced magnetron sputtering ion plating system. Coatings doped with various Si contents were synthesized by changing the power applied on Si targets. Composition of the films was analyzed using glow discharge optical emission spectrometry (GDOES). Microstructure and properties of the coatings were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and nano-indentation. The harnesses and the elastic modulus of Cr-Si-N coatings gradually increased with rising of silicon content and exhibited a maximum at silicon content of 4.1 at.% and 5.5 at.%. The maximum hardness and elastic modulus of the Cr-Si-N nanocomposite coatings were approximately 30 GPa and 352 GPa, respectively. Further increase in the silicon content resulted in a decrease in the hardness and the elastic modulus of the coatings. Results from XRD analyses of CrN coatings indicated that strongly preferred orientations of (111) were detected. The diffraction patterns of Cr-Si-N coatings showed a clear (220) with weak (200) and (311) preferred orientations, but the peak of CrN (111) was decreased with the increase of Si concentration. The XRD data of single-phase Si{sub 3}N{sub 4} was free of peak. The peaks of CrN (111) and (220) were shifted slightly and broadened with the increase of silicon content. SEM observations of the sections of Cr-Si-N coatings with different silicon concentrations showed a typical columnar structure. It was evident from TEM observation that nanocomposite Cr-Si-N coatings exhibited nano-scale grain size. Friction coefficient and specific wear rate (SWR) of silicon doped Cr-N coatings from pin-on-disk test were significantly lower in comparison to that of CrN coatings.

  8. Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier

    Science.gov (United States)

    Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.

    2018-04-01

    We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.

  9. Novel photodefined polymer-embedded vias for silicon interposers

    International Nuclear Information System (INIS)

    Thadesar, Paragkumar A; Bakir, Muhannad S

    2013-01-01

    This paper describes the fabrication and characterization of novel photodefined polymer-embedded vias for silicon interposers. The fabricated polymer-embedded vias can help obtain ∼3.8× reduction in via-to-via capacitance as well as a reduction in insertion loss compared to TSVs with a silicon dioxide liner. Polymer-embedded vias 100 μm in diameter, 270 μm tall and at 250 μm pitch were fabricated. Resistance and leakage measurements were performed for the fabricated polymer-embedded vias. The average value of the measured resistance for 20 polymer-embedded vias is 2.54 mΩ and the maximum measured via-to-via leakage current for 10 pairs of polymer-embedded vias is 80.8 pA for an applied voltage of 200 V. (paper)

  10. Kinetics of AOX Formation in Chlorine Dioxide Bleaching of Bagasse Pulp

    Directory of Open Access Journals (Sweden)

    Shuangxi Nie

    2014-07-01

    Full Text Available In this paper, a kinetic model of the first chlorine dioxide bleaching stage (D0 in an elemental chlorine-free (ECF bleaching sequence is presented for bagasse pulps. The model is based on the rate of adsorbable organic halogen (AOX formation. The effects of the chlorine dioxide dosage, the sulfuric acid dosage, and the reaction temperature on the AOX content of wastewater are examined. The reaction of AOX formation could be divided into two periods. A large amount of AOX was formed rapidly within the first 10 min. Ten minutes later, the AOX formation rate significantly decreased. The kinetics could be expressed as: dW⁄dt=660.8•e^(-997.98/T 〖•[ClO〗_2 ]^0.877•[H2SO4 ]^0.355•W^(-1.065, where W is the AOX content, t is the bleaching time (min, T is the temperature (K, [ClO2] is the dosage of chlorine dioxide (kg/odt, and [H2SO4] is the dosage of sulfuric acid (kg/odt. The fit of the experiment results obtained for different temperatures, initial chlorine dioxide dosages, initial sulfuric acid dosages, and AOX content were very good, revealing the ability of the model to predict typical mill operating conditions.

  11. Optimization of screen-printed ruthenium dioxide electrodes for pH measurements

    International Nuclear Information System (INIS)

    Wyzkiewicz, I.

    2002-01-01

    Optimization of disposable, screen-printed pH-sensors based on ruthenium dioxide is described in this paper. The electrodes were prepared with the use of thick-film technology. The pH-sensitive layers were deposited onto polyester foil. Polymer graphite paste containing ruthenium dioxide from 0% to 90% has been investigated. The dependence of the pH-sensitive layers related to ruthenium dioxide content is presented. The investigation proved that the electrodes containing 40-60% ruthenium dioxide exhibit linear high sensitivity (∼ 50 mV/pH) in the wide range of pH (2 - 11) as well as very good reproducibility. (author)

  12. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  13. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  14. Silicon for ultra-low-level detectors and sup 32 Si

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A recent dark matter experiment using a silicon diode detector confirms that the decay of {sup 32}Si is a dangerous background in ultra-low-level experiments using silicon as detector material or shielding. In this Letter we study the mechanism of how {sup 32}Si enters commercially available silicon. Ways to avoid this contamination are pointed out. Limits on the {sup 32}Si content of silicon from measurements with miniaturized low-level proportional counters are also given. (orig.).

  15. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    Science.gov (United States)

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time.

  16. Vibrational modes of porous silicon

    International Nuclear Information System (INIS)

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  17. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  18. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    Science.gov (United States)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  19. Assessment of pre-industrial carbon dioxide content in the atmosphere using hydro-chemical data

    International Nuclear Information System (INIS)

    Heans, K.A.; Liaxin, Y.I.

    2001-01-01

    A hydrochemical method has been developed to calculate concentrations of carbon dioxide (CO 2 ) in the pre-industrial atmosphere and its relationship to climatic change. The following factors affect the Earth's climate: (1) the sun with all its processes, (2) the attraction of the moon that limits the axis of inclination of the Earth, and (3) the cycle of carbon dioxide and the greenhouse effect. An imbalance in the climate system would be a major global disaster that could be detrimental for life on Earth. Recent studies and temperature measurements have shown a trend in which air temperature has increased in the troposphere in the last 100 years, affecting the normal development of natural processes. Various phenomena result from climatic change, or the gradual heating of the Earth. These include the weakening of the glacial layer that covers the Earth's surface, cycles of prolonged slowing in freeze and thaw periods of aquatic surfaces, and increased air temperature in the troposphere which can also causes abnormal fluctuations of temperature in the atmosphere, resulting in heat waves and droughts. Gradual heating of the Earth can also result in rainy periods that produce devastating floods, hurricanes and extreme winds. Changes in water temperature can influence pH levels which affect certain marine species. An increase of 5 degrees C in the global average atmospheric temperature has created changes in 420 physical processes as well as in the behavior of plants and animals. The author stated that the most drastic factor that affects the balance of the Earth's climate is the actions of man interfering with the carbon cycle, as carbon dioxide plays a vital role in the formation of the greenhouse effect. The problem results from an imbalance of the carbon dioxide cycle when CO 2 emissions are increased through the combustion of fossil fuels. It was determined that before the beginning of the Industrial Revolution, carbon dioxide in the atmosphere was 256 ppm

  20. Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure

    International Nuclear Information System (INIS)

    Wang Deng-Feng; Liang Ji-Ran; Li Chang-Qing; Yan Wen-Jun; Hu Ming

    2016-01-01

    In this work, we report an enhanced nitrogen dioxide (NO 2 ) gas sensor based on tungsten oxide (WO 3 ) nanowires/porous silicon (PS) decorated with gold (Au) nanoparticles. Au-loaded WO 3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy (HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO 3 nanowires. The effect of the Au nanoparticles on the NO 2 -sensing performance of WO 3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO 2 at room temperature (25 °C). It is found that the 10-Å Au-loaded WO 3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO 3 nanowires/porous silicon is also discussed. (paper)

  1. Moisture content of PuO2 fuel used for the milliwatt generator heat source

    International Nuclear Information System (INIS)

    Zanotelli, W.A.

    1980-01-01

    The determination of the moisture content of 238 Pu dioxide fuel for use in Milliwatt Generator heat sources was studied in an attempt to more clearly define the production fuel preloading procedures. The study indicated that water was not present or being adsorbed at various steps of the process (or during storage) that could lead to compatibility problems during pretreatment or long-term storage. The moisture content of the plutonium dioxide was analyzed by a commercial moisture analyzer. The moisture content at all steps of the process including storage averaged from 0.002% to 0.005%. The moisture content of the plutonium dioxide exposed to moist atmosphere for 7 days was 0.001%. These values indicated that no significant amount of moisture was adsorbed by the plutonium dioxide fuel charges. The only significant moisture content found was an average of 3.47%, after self-calcination. This was expected since no additional steps, other than self-heating of the fuel, are taken to remove the water

  2. Laser-zone Growth in a Ribbon-to-ribbon (RTR) Process Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    Science.gov (United States)

    Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Rice, M. J.; Ellis, R. J.

    1979-01-01

    A technique for growing limited-length ribbons continually was demonstrated. This Rigid Edge technique can be used to recrystallize about 95% of the polyribbon feedstock. A major advantage of this method is that only a single, constant length silicon ribbon is handled throughout the entire process sequence; this may be accomplished using cassettes similar to those presently in use for processing Czochralski waters. Thus a transition from Cz to ribbon technology can be smoothly affected. The maximum size being considered, 3 inches x 24 inches, is half a square foot, and will generate 6 watts for 12% efficiency at 1 sun. Silicon dioxide has been demonstrated as an effective, practical diffusion barrier for use during the polyribbon formation.

  3. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  4. Obtaining of polycrystalline silicon for semiconductor industry

    International Nuclear Information System (INIS)

    Mukashev, F.; Nauryzbaev, M.; Kolesnikov, B.; Ivanov, Y.

    1996-01-01

    The purpose of the project is to create pilot equipment and optimize the process of obtaining polycrystalline silicon on semi-industrial level. In the past several decades, the historical experience in the developing countries has shown that one of the most promising ways to improve the economy,of a country is to establish semiconductor industry. First of all, the results can help increase defense, national security and create industrial production. The silane method, which has been traditionally' used for obtaining technical and polycrystalline silicon, is to obtain and then to pyrolyzed mono-and poly silanes. Although the traditional methods of obtaining silicon hydrides have specific advantages, such as utilizing by-products, they also have clear shortcomings, i.e. either low output of the ultimate product ( through hydrolysis of Mg 2 Si) or high contents of by-products in it or high contents of dissolving vapors (through decomposing Mg 2 Si in non-water solutions)

  5. Stability of sorbents based on hydrated TiO2 with different content of ZrO2

    International Nuclear Information System (INIS)

    Malykh, T.G.; Sharygin, L.M.

    1983-01-01

    The effect of ZrO 2 content in hydrated titanium dioxide on i s hydrothermat stabitity in the 120-350 deg C range, is investigated. It is shown that the specific surface of hydrated titanium dioxide in the process of hydrothermal treatment at different temperatures changes within a number of stages and depends on the zirconium dioxide contents in it. Sorbents are stable under hydrothermal conditions at temperatures not exceeding 300 deg C. The stabilizing effect of zirconiUm dioxide on the properties of hydrated titanium dioxide is most pronounced at 350 deg C

  6. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  7. Oxidation suppressing device for steel materials in carbon dioxide cooled reactors

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Purpose: To effectively reduce impurity hydrogens in carbon dioxide. Constitution: At least three gas chambers are arranged serially each by way of a valve in a gas flow channel branched from a primary carbon dioxide coolant circuits. Then, a polymeric partition membrane having higher permeation rate for hydrogen than for carbon dioxide, e.g., made of polytrifluorochloroethylene is disposed between first and second gas chambers and, further, the first and the third gas chambers are connected each by way of a valve to the primary carbon dioxide coolant circuit to constitute a gas recovery channel. Carbon dioxide is caused to flow through the channel by means of a pump disposed between the second and third gas chambers, hydrogen as impurity passed through the partition walls is concentrated and discharged out of the channel, while the carbon dioxide with reduced hydrogen content is returned from the first and the third gas chambers to the circuit. (Sekiya, K.)

  8. The formation of ethane from carbon dioxide under cold plasma

    International Nuclear Information System (INIS)

    Zhang Xiuling; Zhang Lin; Dai Bin; Gong Weimin; Liu Changhou

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increasing in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increasing in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well

  9. Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration illustrated through experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, E S

    1944-01-01

    By culture experiments with the freshwater plants Helodea canadensis and Ceratophyllum demersum, in which both the contents of carbon dioxide and pH of the water were varied, it was shown that ph within the area 4.5 to 8.2 has no appreciable influence on the growth. The supply of carbon dioxide, on the other hand, has very great influence. The fact that the two freshwater plants mentioned in Denmark are found in alkaline water only, is due to the contents of assimilable carbon dioxide decreasing with decrease of pH. While thus in alkaline water there are generally large quantities of bicarbonate, from which half of the carbon dioxide may be utilized in the assimilation, there is in acid water (pH below 4.5) no bicarbonate. Carbon dioxide in true solution and bicarbonate carbon dioxide behave differently as sources of carbon dioxide for the assimilation; this is amongst other things due to the fact that the absorption of the carbon dioxide through the bicarbonate is made actively on the part of the plant. The investigations which illustrate the influence of the quantity of carbon dioxide on the intensity of assimilation were made on submersed plants in water containing bicarbonate, and therefore give quite different results in relation to terraneous plants, where the carbon dioxide is exclusively assimilated.

  10. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  11. Accumulation of radiation defects and products of radiolysis in lithium orthosilicate pebbles with silicon dioxide additions under action of high absorbed doses and high temperature in air and inert atmosphere

    Science.gov (United States)

    Zarins, A.; Supe, A.; Kizane, G.; Knitter, R.; Baumane, L.

    2012-10-01

    One of the technological problems of a fusion reactor is the change in composition and structure of ceramic breeders (Li4SiO4 or Li2TiO3 pebbles) during long-term operation. In this study changes in the composition and microstructure of Li4SiO4 pebbles with 2.5 wt% silicon dioxide additions, fabricated by a melt-spraying process, were investigated after fast electron irradiation (E = 5 MeV, dose rate up to 88 MGy h-1) with high absorbed dose from 1.3 to 10.6 GGy at high temperature (543-573 K) in air and argon atmosphere. Three types of pebbles with different diameters and grain sizes were investigated. Products of radiolysis were studied by means of FTIR and XRD. TSL and ESR spectroscopy were used to detect radiation defects. SEM was used to investigate structure of pebbles. Experiments showed that Li4SiO4 pebbles with a diameter of 500 μm had similar radiation stability as pebbles with diameter <50 μm which were annealed at 1173 K for 128 h in argon and air atmosphere. As well as determined that lithium orthosilicate pebbles with size 500 (1243 K 168 h) and <50 μm (1173 K 128 h) have a higher radiation stability in air and argon atmosphere than pebbles with size <50 μm (1073 K 1 h). Degree of decomposition α10.56 of the lithium orthosilicate pebbles at an absorbed dose of 10.56 GGy in air atmosphere is 1.5% and 0.15% at irradiation in dry argon. It has been suggested that changes of radiation stability of lithium orthosilicate pebbles in air atmosphere comparing with irradiated pebbles in argon atmosphere is effect of chemical reaction of lithium orthosilicate surface with air containing - H2O and CO2 in irradiation process. As well as it has been suggested that silicon dioxide - lithium metasilicate admixtures do not affect formation mechanism of radiation defect and products of radiolysis in lithium orthosilicate pebbles.

  12. Impurities in silicon and their impact on solar cell performance

    NARCIS (Netherlands)

    Coletti, Gianluca

    2011-01-01

    Photovoltaic conversion of solar energy is a rapidly growing technology. More than 80% of global solar cell production is currently based on silicon. The aim of this thesis is to understand the complex relation between impurity content of silicon starting material (“feedstock”) and the resulting

  13. Photochemical reactions of brominated diphenylethers in organic solvents and adsorbed on silicon dioxide in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Palm, W.U.; Kopetzky, R.; Sossinka, W.; Ruck, W. [Univ. of Lueneburg, Environmental Chemistry, Lueneburg (Germany); Zetzsch, C. [Univ. of Bayreuth, Atmos. Chem. Research, Bayreuth, and Fraunhofer-Inst. of Toxicology and Experimental Medicine, Hannover (Germany)

    2004-09-15

    Polybrominated diphenylethers (BDEs) are in use as flame retardants worldwide and are found as xenobiotics in environmental samples. Photolysis by sunlight, one of the potential abiotic degradation pathways, is found to be rapid in laboratory experiments, especially for deca-BDE, the most prominent BDE as compared to commercial penta- and octa-BDEs. Due to the extremely low water solubility of BDEs, these experiments were mostly performed in organic solvents so far, and a few in environmental matrices (sand and soil) and on dry and hydrated quartz glass. However, detailed UV absorption spectra of deca-BDE and debrominated BDEs in the relevant wavelength range above 300 nm have become available only recently, besides the UV maxima of a number of synthesized congeners at shorter wavelengths and an exploratory study from our laboratory. Other important parameters to assess the abiotic degradation in the environment, such as OH-rate constants and photolytic quantum yields of BDEs are not available. Furthermore, analysis of BDEs was mostly performed by GC-MS, and the capability of HPLC with a diode array detector (DAD) has not yet been exploited. This study presents kinetic results on the photolysis of BDEs in tetrahydrofuran (THF) with detailed photolytic pathways for a tetra-BDE (2,2'4,4'-BDE), a hexa-BDE (2,2'4,4',5,5'-BDE) and deca-BDE. Employing HPLC with a diode array detector (DAD) as analytical tool, quantum yields of BDEs with N{sub Br} = 1-10 are determined. Furthermore, the formation of brominated dibenzofurans (BDFs) was investigated. Since the environmental relevance of photolysis experiments in organic solvents is questionable, first results on photolysis of deca-BDE adsorbed on silicon dioxide particles, suspended in water, are presented.

  14. Large-Signal Injection-Level Spectroscopy of Impurities in Silicon

    International Nuclear Information System (INIS)

    Ahrenkiel, R.K.; Johnston, S.W.

    1998-01-01

    Deep level defects in silicon are identified by measuring the recombination lifetime as a function of the injection level. The basic models for recombination at deep and shallow centers is developed. The defect used for the theoretical model is the well-known interstitial Fe ion in silicon. Data are presented on silicon samples ranging in defect content from intentionally Fe-doped samples to an ultra-pure float-zone grown sample. These data are analyzed in terms of the injection-level spectroscopy model

  15. Spectrophotometric determination of silicon in silumin matrix

    International Nuclear Information System (INIS)

    Samanta, Papu; Pandey, K.L.; Kumar, Pradeep; Bagchi, A.C.; Abdulla, K.K.

    2015-01-01

    In dispersion fuel, fissile material is dispersed in inert matrix. Aluminum-silicon-nickel (silumin) alloy is employed as inert matrix owing to its high thermal conductivity, high castability, high corrosion resistance. All these properties depend on the chemical composition and the structure of silumin. Silicon is stringent specification in silumin. A spectrophotometric method has been developed for the determination of silicon content in silumin matrix. Silumin matrix was fused with LiOH and subsequent dissolution in water along with few drops of conc. sulphuric acid. The molybodo-silicic formed by the addition of ammonium molybdate is reduced to molybdenum blue by ascorbic acid in the presence of antimony. The absorbance was measured at 810 nm. Aluminum and nickel were found to be non-interfering with the silicon determination. (author)

  16. Correlation of lattice distortion with photocatalytic activity of titanium dioxide

    International Nuclear Information System (INIS)

    Wang Xia; Shui Miao; Li Rongsheng; Song Yue

    2008-01-01

    The photocatalytic activity of titanium dioxide dispersions on X-3B pigment degradation has been investigated. A variety of factors that would influence the photocatalytic activity such as crystallite size, lattice distortion, and anatase content are discussed in detail. It is found that lattice distortion is the most important one among these factors and is expected to inhibit the hole and electron pair recombination. It determines, to some extent, the photocatalytic efficiency of titanium dioxide dispersions

  17. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  18. Forming of nanocrystal silicon films by implantation of high dose of H+ in layers of silicon on isolator and following fast thermal annealing

    International Nuclear Information System (INIS)

    Tyschenko, I.E.; Popov, V.P.; Talochkin, A.B.; Gutakovskij, A.K.; Zhuravlev, K.S.

    2004-01-01

    Formation of nanocrystalline silicon films during rapid thermal annealing of the high-dose H + ion implanted silicon-on-insulator structures was studied. It was found, that Si nanocrystals had formed alter annealings at 300-400 deg C, their formation being strongly limited by the hydrogen content in silicon and also by the annealing time. It was supposed that the nucleation of crystalline phase occurred inside the silicon islands between micropores. It is conditioned by ordering Si-Si bonds as hydrogen atoms are leaving their sites in silicon network. No coalescence of micropores takes place during the rapid thermal annealing at the temperatures up to ∼ 900 deg C. Green-orange photoluminescence was observed on synthesized films at room temperature [ru

  19. Emission Mechanisms of Si Nanocrystals and Defects in SiO2 Materials

    Directory of Open Access Journals (Sweden)

    José Antonio Rodríguez

    2014-01-01

    Full Text Available Motivated by the necessity to have all silicon optoelectronic circuits, researchers around the world are working with light emitting silicon materials. Such materials are silicon dielectric compounds with silicon content altered, such as silicon oxide or nitride, enriched in different ways with Silicon. Silicon Rich Oxide or silicon dioxide enriched with silicon, and silicon rich nitride are without a doubt the most promising materials to reach this goal. Even though they are subjected to countless studies, the light emission phenomenon has not been completely clarified. So, a review of different proposals presented to understand the light emission phenomenon including emissions related to nanocrystals and to point defects in SiO2 is presented.

  20. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  1. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  2. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  3. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    Science.gov (United States)

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  4. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (0silicon, silicon oxide, and photoresist was determined at different etching temperatures, ICP and RF powers, and SF6 to O2 ratios. The study demonstrates that the etching selectivity of the SiGe mask for silicon depends strongly on three factors: Ge content; boron concentration; and etching temperature. Compared to conventional SiO2 and SiN masks, the proposed SiGe masking material exhibited several advantages, including high etching selectivity to silicon (>1:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  5. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  6. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  7. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    information-data on various carbon dioxide emission sources and available capture-utilization technologies; the model and solution libraries [2]; and the generic 3-stage approach for determining more sustainable solutions [3] through superstructure (processing networks) based optimization – adopted for global...... need to provide, amongst other options: useful data from in-house databases on carbon dioxide emission sources; mathematical models from a library of process-property models; numerical solvers from library of implemented solvers; and, work-flows and data-flows for different benefit scenarios...... to be investigated. It is useful to start by developing a prototype framework and then augmenting its application range by increasing the contents of its databases, libraries and work-flows and data-flows. The objective is to present such a prototype framework with its implemented database containing collected...

  8. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    Science.gov (United States)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.

  9. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, Sergio [Ned Silicon Spa, Via Th. Edison 6, 60027 Osimo (Ancona) (Italy)

    2010-09-15

    It is well known that silicon in its various structural configurations (single crystal, multicrystalline, amorphous, micro-nanocrystalline) supplies almost 90% of the substrates used in the photovoltaic industry. It is also known, since years, that the photovoltaic (PV) industry shows a marked growth trend, which demanded and demands a continuous, huge increase of the bulk silicon supply in the order of 30%/yr. In order to fulfill their today- and future needs, many companies worldwide took the decision to start the installation of many thousand tons/year plants, most of them using the Siemens process, some of them using the MG route, to produce the so called solar grade (SG) silicon. The advantages of the Siemens process are well known, as it provides ultrapure silicon, directly usable for growing either single crystalline Czochralski ingots or multicrystalline ingots using the directional solidification (DS) technique. The disadvantages are its high energetic cost (a minimum of 120 kWH/kg) and the possible losses of chlorinated gases in the atmosphere, with possible severe environmental problems. The advantages of the MG route are still potential, as there is no commercially available production of solar silicon as yet, and rely on its reduced energetic costs (a maximum of 25-30 kWh/kg) for a feedstock directly usable for growing multicrystalline ingots using the DS technique. The drawbacks of silicon of MG origin are its larger concentration of metallic impurities, as compared with the Siemens one, the higher B and P content, and the potentially high carbon content. The aim of this paper is to deal with some of the problems encountered so far with the silicon of MG origin with respect to the metallic and non-metallic impurities content, as well as to propose technologically feasible solar grade feedstock specifications. (author)

  10. Delayed-Onset Edematous Foreign Body Granulomas 40 Years After Augmentation Rhinoplasty by Silicone Implant Combined with Liquid Silicone Injection.

    Science.gov (United States)

    Hu, Hao-Chun; Fang, Hsu-Wei; Chiu, Yu-Hsun

    2017-06-01

    Despite the widespread application of augmentation rhinoplasty in Asia, reports on the interaction between alloplastic implants and injectable filler are scarce. This paper reports on a patient with delayed-onset edematous foreign body granuloma that had been caused by augmentation rhinoplasty performed using a silicone implant in conjunction with a liquid silicone injection 40 years earlier. This is the longest reported duration between initial rhinoplasty and the exacerbation of foreign body granuloma. This case report also presents intraoperative findings pertaining to the interlocking structures between silicone implants and injected liquid silicone. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  11. Fabrication and Modification of Nanoporous Silicon Particles

    Science.gov (United States)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  12. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by thermionic vacuum arc (TVA) method

    Science.gov (United States)

    Ciupinǎ, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Vladoiu, Rodica; Mandes, Aurelia; Dinca, Virginia; Nicolescu, Virginia; Manu, Radu; Dinca, Paul; Zaharia, Agripina

    2018-02-01

    To obtain protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, was used TVA method. The initial carbon layer has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV. The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. The retention of oxygen in the protective layer of N-Si-C is due to the following phenomena: (a) The reaction between oxygen and silicon carbide resulting in silicon oxide and carbon dioxide; (b) The reaction involving oxygen, nitrogen and silicon resulting silicon oxinitride with a variable composition; (c) Nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.

  13. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    Science.gov (United States)

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  14. Stressing effects on the charge trapping of silicon oxynitride prepared by thermal oxidation of LPCVD Si-rich silicon nitride

    International Nuclear Information System (INIS)

    Choi, H.Y.; Wong, H.; Filip, V.; Sen, B.; Kok, C.W.; Chan, M.; Poon, M.C.

    2006-01-01

    It was recently found that the silicon oxynitride prepared by oxidation of silicon-rich silicon nitride (SRN) has several important features. The high nitrogen and extremely low hydrogen content of this material allows it to have a high dielectric constant and a low trap density. The present work investigates in further detail the electrical reliability of this kind of gate dielectric films by studying the charge trapping and interface state generation induced by constant current stressing. Capacitance-voltage (C-V) measurements indicate that for oxidation temperatures of 850 and 950 deg. C, the interface trap generation is minimal because of the high nitrogen content at the interface. At a higher oxidation temperature of 1050 deg. C, a large flatband shift is found for constant current stressing. This observation can be explained by the significant reduction of the nitrogen content and the phase separation effect at this temperature as found by X-ray photoelectron spectroscopy study. In addition to the high nitrogen content, the Si atoms at the interface exist in the form of random bonding to oxygen and nitrogen atoms for samples oxidized at 850 and 950 deg. C. This structure reduces the interface bonding constraint and results in the low interface trap density. For heavily oxidized samples the trace amount of interface nitrogen atoms exist in the form of a highly constraint SiN 4 phase and the interface oxynitride layer is a random mixture of SiO 4 and SiN 4 phases, which consequently reduces the reliability against high energy electron stressing

  15. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  16. Methods and compositions for removing carbon dioxide from a gaseous mixture

    Science.gov (United States)

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  17. Uranium tetrafluoride production via dioxide by wet process

    International Nuclear Information System (INIS)

    Aquino, A.R. de.

    1988-01-01

    The study for the wet way obtention of uranium tetrafluoride by the reaction of hydrofluoric acid and powder uranium dioxide, is presented. From the results obtained at laboratory scale a pilot plant was planned and erected. It is presently in operation for experimental data aquisition. Time of reaction, temperature, excess of reagents and the hydrofluoric acid / uranium dioxide ratio were the main parameters studied to obtain a product with the following characteristics: - density greater than 1 g/cm 3 , conversion rate greater than 96%, and water content equal to 0,2% that allows its application to heaxafluoride convertion or to magnesiothermic process. (author) [pt

  18. Adsorption, desorption, and film formation of quinacridone and its thermal cracking product indigo on clean and carbon-covered silicon dioxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris; Lassnig, Roman; Truger, Magdalena; Resel, Roland; Leising, Günther; Winkler, Adolf, E-mail: a.winkler@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2016-09-07

    The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 10{sup 19} s{sup −1} were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (∼5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO{sub 2} surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.

  19. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  20. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  1. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    International Nuclear Information System (INIS)

    Huppmann, T.; Leonhardt, S.; Krampe, E.; Wintermantel, E.; Yatsenko, S.; Radovanovic, I.; Bastian, M.

    2014-01-01

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO 2 ) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO 2 for antimicrobial efficacy is to deposit a thin TiO 2 coating on the surface. In contrast to the common way of applying a coating, TiO 2 particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO 2 P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO 2 -PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result

  2. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    Science.gov (United States)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  3. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  4. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  5. Accumulation of radiation defects and products of radiolysis in lithium orthosilicate pebbles with silicon dioxide additions under action of high absorbed doses and high temperature in air and inert atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, A.; Supe, A. [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia); Kizane, G., E-mail: gunta.kizane@lu.lv [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), POB 3640, 76021 Karlsruhe (Germany); Baumane, L. [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia)

    2012-10-15

    One of the technological problems of a fusion reactor is the change in composition and structure of ceramic breeders (Li{sub 4}SiO{sub 4} or Li{sub 2}TiO{sub 3} pebbles) during long-term operation. In this study changes in the composition and microstructure of Li{sub 4}SiO{sub 4} pebbles with 2.5 wt% silicon dioxide additions, fabricated by a melt-spraying process, were investigated after fast electron irradiation (E = 5 MeV, dose rate up to 88 MGy h{sup -1}) with high absorbed dose from 1.3 to 10.6 GGy at high temperature (543-573 K) in air and argon atmosphere. Three types of pebbles with different diameters and grain sizes were investigated. Products of radiolysis were studied by means of FTIR and XRD. TSL and ESR spectroscopy were used to detect radiation defects. SEM was used to investigate structure of pebbles. Experiments showed that Li{sub 4}SiO{sub 4} pebbles with a diameter of 500 {mu}m had similar radiation stability as pebbles with diameter <50 {mu}m which were annealed at 1173 K for 128 h in argon and air atmosphere. As well as determined that lithium orthosilicate pebbles with size 500 (1243 K 168 h) and <50 {mu}m (1173 K 128 h) have a higher radiation stability in air and argon atmosphere than pebbles with size <50 {mu}m (1073 K 1 h). Degree of decomposition {alpha}{sub 10.56} of the lithium orthosilicate pebbles at an absorbed dose of 10.56 GGy in air atmosphere is 1.5% and 0.15% at irradiation in dry argon. It has been suggested that changes of radiation stability of lithium orthosilicate pebbles in air atmosphere comparing with irradiated pebbles in argon atmosphere is effect of chemical reaction of lithium orthosilicate surface with air containing - H{sub 2}O and CO{sub 2} in irradiation process. As well as it has been suggested that silicon dioxide - lithium metasilicate admixtures do not affect formation mechanism of radiation defect and products of radiolysis in lithium orthosilicate pebbles.

  6. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  8. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization.

    Directory of Open Access Journals (Sweden)

    Bing Han

    Full Text Available BACKGROUND: The great advances of nanomaterials have brought out broad important applications, but their possible nanotoxicity and risks have not been fully understood. It is confirmed that exposure of environmental particulate matter (PM, especially ultrafine PM, are responsible for many lung function impairment and exacerbation of pre-existing lung diseases. However, the adverse effect of nanoparticles on allergic asthma is seldom investigated and the mechanism remains undefined. For the first time, this work investigates the relationship between allergic asthma and nanosized silicon dioxide (nano-SiO₂. METHODOLOGY/PRINCIPAL FINDINGS: Ovalbumin (OVA-treated and saline-treated control rats were daily intratracheally administered 0.1 ml of 0, 40 and 80 µg/ml nano-SiO₂ solutions, respectively for 30 days. Increased nano-SiO₂ exposure results in adverse changes on inspiratory and expiratory resistance (Ri and Re, but shows insignificant effect on rat lung dynamic compliance (Cldyn. Lung histological observation reveals obvious airway remodeling in 80 µg/ml nano-SiO₂-introduced saline and OVA groups, but the latter is worse. Additionally, increased nano-SiO₂ exposure also leads to more severe inflammation. With increasing nano-SiO₂ exposure, IL-4 in lung homogenate increases and IFN-γ shows a reverse but insignificant change. Moreover, at a same nano-SiO₂ exposure concentration, OVA-treated rats exhibit higher (significant IL-4 and lower (not significant IFN-γ compared with the saline-treated rats. The percentages of eosinophil display an unexpected result, in which higher exposure results lower eosinophil percentages. CONCLUSIONS/SIGNIFICANCE: This was a preliminary study which for the first time involved the effect of nano-SiO₂ to OVA induced rat asthma model. The results suggested that intratracheal administration of nano-SiO₂ could lead to the airway hyperresponsiveness (AHR and the airway remolding with or without OVA

  9. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.

    2009-01-01

    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  10. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  11. Xylanase-Aided Chlorine Dioxide Bleaching of Bagasse Pulp to Reduce AOX Formation

    Directory of Open Access Journals (Sweden)

    Yi Dai

    2016-02-01

    Full Text Available Xylanase pretreatment was used to improve the chlorine dioxide bleaching of bagasse pulp. The pulp was pretreated with xylanase, which was followed by a chlorine dioxide bleaching stage. The HexA content of the pulp and the AOX content of the bleaching effluent were measured using UV-Vis and GC-MS methods, respectively. The results showed that a good correlation occurred between HexA and kappa number. HexA content of the pulp decreased significantly after the xylanase pretreatment. The AOX content of the bleaching effluent decreased as HexA was removed from the pulp. It was found that AOX could be reduced by up to 29.8%, comparing XD0 with a D0 stage. Fourier transform infrared spectroscopy (FTIR was employed to determine the breakage of chemical bonds in the pulp. It revealed that some lignin and hemicellulose were removed after xylanase treatment. The GC-MS results showed that some toxic chloride such as 2,4,6-trichlorophenol could be completely removed after xylanase pretreatment.

  12. RTV Silicone Rubber Degradation Induced by Temperature Cycling

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-07-01

    Full Text Available Room temperature vulcanized (RTV silicone rubber is extensively used in power system due to its hydrophobicity and hydrophobicity transfer ability. Temperature has been proven to markedly affect the performance of silicone rubbers. This research investigated the degradation of RTV silicone rubber under temperature cycling treatment. Hydrophobicity and its transfer ability, hardness, functional groups, microscopic appearance, and thermal stability were analyzed using the static contact angle method, a Shore A durometer, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and thermogravimetry (TG, respectively. Some significant conclusions were drawn. After the temperature was cycled between −25 °C and 70 °C, the hydrophobicity changed modestly, but its transfer ability changed remarkably, which may result from the competition between the formation of more channels for the transfer of low molecular weight (LMW silicone fluid and the reduction of LMW silicone fluid in the bulk. A hardness analysis and FTIR analysis demonstrated that further cross-linking reactions occurred during the treatment. SEM images showed the changes in roughness of the RTV silicone rubber surfaces. TG analysis also demonstrated the degradation of RTV silicone rubber by presenting evidence that the content of organic materials decreased during the temperature cycling treatment.

  13. Determination of gas residues in uranium dioxide pellets

    International Nuclear Information System (INIS)

    Riella, H.G.

    1978-01-01

    The measurement of low amounts of residual gases, excluding water, in ceramic grade uranium dioxide pellets, using high temperature vacuum extraction technique, is dealt with. The high temperature extraction gas analysis apparatus was designed and assembled for sequential analysis of up to eight uranium dioxide pellets by run. The system consists of three major units, namely outgassing unit, transfer unit and analytical unit. The whole system is evacuated to a final pressure of less then 10 -5 torr. A weighed pellet is transfered into the outgassing unit for subsequent dropping into a Platinum-Rhodium crucible which is heated inductively up to 1600 0 C during 30 minutes. The released gases are imediately transfered from the outgassing to analytical unit passing through a cold trap at -95 0 C to remove water vapor. The gases are transfered to previously calibrated volumetric bulb where the total pressure and temperature are determined. An estimate of the gas content in the pellets at STP condition is obtained from the measured volume, pressure and temperature of the gas mixture by applying ideal gases equation. Analysis to two lots (fourteen samples) of uranium dioxide pellets by the method described here indicated a mean gas content of 0,060cm 3 /g UO 2 . The lower limit of this technique is 0,03cm 3 /g UO 2 (STP). The time required for the analysis of eight pellets is about 9 hours [pt

  14. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  15. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Huppmann, T., E-mail: teresa.huppmann@tum.de; Leonhardt, S., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Krampe, E., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Wintermantel, E., E-mail: wintermantel@tum.de [Institute of Medical and Polymer Engineering, Technische Universität München (Germany); Yatsenko, S., E-mail: s.yatsenko@skz.de; Radovanovic, I., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de; Bastian, M., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de [SKZ- German Plastics Center, Würzburg (Germany)

    2014-05-15

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO{sub 2}) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO{sub 2} for antimicrobial efficacy is to deposit a thin TiO{sub 2} coating on the surface. In contrast to the common way of applying a coating, TiO{sub 2} particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO{sub 2} P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO{sub 2}-PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result.

  16. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    Energy Technology Data Exchange (ETDEWEB)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao, E-mail: yxzheng@fudan.edu.c [Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2010-11-10

    A series of SiO{sub 2} films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO{sub 2} films thicker than 60 nm are close to those of bulk SiO{sub 2}. For the thin films deposited at the rate of {approx}1.0 nm s{sup -1}, the refractive indices increase with decreasing thickness from {approx}60 to {approx}10 nm and then drop sharply with decreasing thickness below {approx}10 nm. However, for thin films deposited at the rates of {approx}0.4 and {approx}0.2 nm s{sup -1}, the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  17. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    International Nuclear Information System (INIS)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao

    2010-01-01

    A series of SiO 2 films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO 2 films thicker than 60 nm are close to those of bulk SiO 2 . For the thin films deposited at the rate of ∼1.0 nm s -1 , the refractive indices increase with decreasing thickness from ∼60 to ∼10 nm and then drop sharply with decreasing thickness below ∼10 nm. However, for thin films deposited at the rates of ∼0.4 and ∼0.2 nm s -1 , the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  18. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    NARCIS (Netherlands)

    Everaert, EP; VanderMei, HC; Busscher, HJ

    1996-01-01

    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen.

  19. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  20. Process Development in the Preparation and Characterization of Silicon Alkoxide From Rice Husk

    International Nuclear Information System (INIS)

    Khin San Win; Toe Shein; Nyunt Wynn

    2011-12-01

    The preparation and characterization of silicon alkoxide (silicon isopropoxide) from rice husk char has been studied. In the investigation, four kinds of Myanmar paddies were chemically assayed. Analyses showed the silicon contend varies from 73-92% . Based on the silicon content, the process development in the production of silicon isopropoxide was carried out. In the process development, silicon isopropoxide with a yield of 44.21% was achieved by the direct reaction of isopropanol in situ by silicon tetrachloride, which was directly produced by the chlorination of rice husk char at the high temperature range of 900-1100 C. The novelity of the process was that, silicon isopropoxide was achieved in situ and not by using the old process, where generally isopropanol was reacted with silicon tetrachloride. The physiochemical properties of silicon isopropoxide was confirmed by conventional and modern techniques. In the investigation, the starting materials, silica in the reaction products were characterized, identified and confirmed by modren techniques. Silicon isopropoxide can be a sources of pore silica whereby silicon of 97-99% of purity can be achieved.

  1. Research and Application Progress of Silicone Rubber Materials in Aviation

    Directory of Open Access Journals (Sweden)

    HUANG Yanhua

    2016-06-01

    Full Text Available The research progress of heat resistance, cold resistance, electrical conductivity and damping properties of aviation silicone rubber were reviewed in this article. The heat resistance properties of silicone rubber can be enhanced by changing the molecular structure (main chain, end-group, side chain and molecular weight of the gum and adding special heat-resistance filler. The cold resistance of aviation silicone rubber can be enhanced by adjusting the side chain molecular structure of the gum and the content of different gum chain. The electrical conductivity of silicone rubber can be improved by optimizing, blending and dispersing of conductive particles. The damping property of silicone rubber can be improved by designing and synthesizing of high-molecular polysiloxane damping agent. Furthermore, the application of aviation silicone rubber used in high-low temperature seal, electrical conduction and vibration damping technology are also summarized, and the high performance (for example long-term high temperature resistance, ultralow temperature resistance, high electromagnetic shelding, long-term fatigue resistance vibration damping, quasi constant modulus and so on of special silicone rubber is the future direction of aviation silicone rubber.

  2. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  3. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  4. Computer simulation for the formation of the insulator layer of silicon-on-insulator devices by N sup + and O sup + Co-implantation

    CERN Document Server

    Lin Qing; Xie Xin Yun; Lin Chenglu; Liu Xiang Hua

    2002-01-01

    A buried sandwiched layer consisting of silicon dioxide (upper part), silicon oxynitride (medium part) and silicon nitride (lower part) is formed by N sup + and O sup + co-implantation in silicon wafers at a constant temperature of 550 degree C. The microstructure is performed by cross-sectional transmission electron microscopy. To predict the quality of the buried sandwiched layer, the authors study the computer simulation for the formation of the SIMON (separated by implantation of oxygen and nitrogen) structure. The simulation program for SIMOX (separated by implantation of oxygen) is improved in order to be applied in O sup + and N sup + co-implantation on the basis of different formation mechanism between SIMOX and SIMNI (separated by implantation of nitrogen) structures. There is a good agreement between experiment and simulation results verifying the theoretical model and presumption in the program

  5. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  6. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    Science.gov (United States)

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations.

  7. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  8. Silicon Conversion From Bamboo Leaf Silica By Magnesiothermic Reduction for Development of Li-ion Baterry Anode

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Silicon (Si is a promising alternative material for the anode Lithium ion Battery (LIB. Si has a large theoretical capacity about 3579 mA hg-1, ten times greater than the commercial graphite anode (372 mA hg-1. Bamboo is a source of organic silica (bio-silica. Most part biogenetic content of SiO2 is obtained in bamboo leaves. This paper aims to investigate the synthesis nano Si from bamboo leaves through magnesiothermic reduction after silica extraction using sol–gel method and to observe nano Si of bamboo leaf as mixed material for lithium ion baterry. Silica and silicon content was determined using XRF. Silica product has 96,3 wt. % yield of extraction from bamboo leaf, while silicon yield was obtained 61.2 wt. %. The XRD pattern revealed that silica and silicon product were amourphous. The extracted silica and silicon from bambo leaf has spherical shape and agglomerated form. As anoda material for LIB, silicon product achieved 0,002 mAh capacity for 22 cycle.

  9. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  10. [Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress].

    Science.gov (United States)

    Gao, Qing-Hai; Wang, Ya-Kun; Lu, Xiao-Min; Jia, Shuang-Shuang

    2014-05-01

    The present study evaluated the effects of exogenous silicon on growth and physiological characteristics of hydroponically cultured cucumber seedlings under ammonium stress. The results showed that the growth, especially the aerial part growth of cucumber seedlings cultured with ammonium were significantly inhibited than those with nitrate, especially after treatment for 10 d, the aerial part fresh mass of cucumber seedlings were reduced 6.17 g per plant. The accumulation of reactive oxygen species (ROS) was also promoted in cucumber seedlings under ammonium, and the contents of O2*- and H2O2 were significantly increased in cucumber leaves. With the exogenous silicon treatment, the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) were significantly improved, the ability to remove reactive oxygen species was enhanced, the contents of O2*- and H2O2 were significantly reduced in cucumber leaves, decreasing the reactive oxygen damage to the cell membrane, and the ratio of electrolyte leakage and the content of MDA in cucumber leaves. Also, with exogenous silicon treatment, the plasma membrane and activity of vacuolar membrane H(+)-ATP was significantly increased, transport capacity of intracellular proton was improved, and the level of ammonium in cucumber body was significantly reduced, thereby reducing the toxicity of ammonium. In conclusion, exogenous silicon could relieve ammonium stress, by increasing the antioxidant enzyme activity, H(+)-ATP activity, and decreasing the ammonium content in cucumber seedlings.

  11. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  12. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  13. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  14. Naturally occurring 32 Si and low-background silicon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  15. Naturally occurring 32Si and low-background silicon dark matter detectors

    Science.gov (United States)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  16. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  17. Master index for the carbon dioxide research state-of-the-art report series

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, M P [ed.

    1987-03-01

    Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

  18. Structure and mechanical properties of the irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Khamraeva, R.N.; Ummatov, Kh.D.; Khajdarov, T.Kh.; Rustamova, V.M.

    2001-01-01

    In this work the results of study for radiation influence on phase content and mechanical properties of mono- and polycrystalline silicon are presented. Samples were irradiated at room temperature for 10 hours by X-quanta with mean energy 35 keV. Structural measurements were carried out on the DRON-UM1 with CuK α =1.542 Angstrom. Crystal internal friction was measurement by the ultrasonic resonance method at frequency 39 k Hz. Structure examinations show the impurity phase presence in the crystalline quartz form in the initial silicon mono- and polycrystals

  19. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  20. Enthalpy of sublimation as measured using a silicon oscillator

    Science.gov (United States)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  1. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  2. Enhanced photo-response of porous silicon photo-detectors by embeddingTitanium-dioxide nano-particles

    Science.gov (United States)

    Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.

    2018-05-01

    Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.

  3. The preparation of uranium tetrafluoride from dioxide by aqueous way

    International Nuclear Information System (INIS)

    Aquino, A.R. de; Abrao, A.

    1990-01-01

    This paper describes the study for the wet way obtention of uranium tetrafluoride by the reaction of hydrofluoric acid and powder uranium dioxide. With the results obtained at laboratory scale a pilot plant was planned and erected. It is presently in operation for experimental data aquisition. Time of reaction, temperature, excess of reagents and the hydrofluoric acid / uranium dioxide ratio were the main parameters studied to obtain a product with the following characteristics: - density greater than 1 g/cm 3 , - conversion rate greater than 96%, -water content equal to 0,2%, that allows its application to hexafluoride convertion or to magnesiothermic process. (authOr) [pt

  4. PLA and single component silicone rubber blends for sub-zero temperature blown film packaging applications

    Science.gov (United States)

    Meekum, Utai; Khiansanoi, Apichart

    2018-06-01

    The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.

  5. Study on melting available silicone from coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Chen-tao Hou; Sheng-quan Wang; Xiao-fei Xie [Xi' an University of Science and Technology, Xi' an (China). College of Geology and Environment

    2009-12-15

    Available silicone was melted from coal gangue samples from Hancheng diggings through calcination, digestion, and other means. The best calcination temperature was determined from a range of 550-1150{sup o}C; and the best time, from a range of 0.5-5 h by colorimetry method. The proper ratio of coal gangue, limestone, sodium carbonate, and caustic soda was then determined through orthogonal experiment. The results show that the proper extraction condition for available silicone is the ratio of coal gangue, limestone, sodium carbonate, and caustic soda at 1:0.5:0.1:0.05, calcination temperature at 700{sup o}C, and calcination time at 2 h. In this condition, the available silicone content can be more than 19.65%. 10 refs., 2 figs., 3 tabs.

  6. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    . Beginning with scanning velocity equal to 2000 mm/s, the torch existence is not fixed visually; silicon oxide origination is stopped, and silicon particles with nanometer sizes are formed as a result of silicon destruction. The process of silicon destruction is followed by sounds of different frequency depending on scanning velocity. Practical significance. The surface ablation for single-crystal silicon has been shown for the first time ever to be influenced significally by such features of laser radiation as laser beam scanning velocity and the covering of scanning lines. Laser beam scanning modes of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm have been found out providing the synthesis of nanostructured silicon dioxide particles or silicon nanoparticles.

  7. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  8. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  9. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  10. Dietary Silicon Intake of Korean Young Adult Males and Its Relation to their Bone Status.

    Science.gov (United States)

    Choi, Mi-Kyeong; Kim, Mi-Hyun

    2017-03-01

    Accumulated data suggests a positive effect of silicon on bone health; however, limited research exists on the silicon content of foods. To further the understanding of the relationship between dietary silicon intake and bone health, a food composition database of commonly consumed foods in Korea is required. For quantitative data on the intake levels of silicon, we analyzed the silicon content of 365 food items commonly consumed in Korea using inductively coupled plasma-atomic emission spectrometry following microwave-assisted digestion. To investigate the dietary silicon intake status and to examine the potential role of dietary silicon intake in the bone status of men, a total of 400 healthy Korean adult males aged 19-25 were observed for their diet intake and calcaneus bone density using the 24-h recall method and quantitative ultrasound, respectively. Clinical markers reflecting bone metabolism such as serum total alkaline phosphatase, N-mid osteocalcin, and type 1 collagen C-terminal telopeptide concentrations were also analyzed. Silicon intake of the subjects was estimated as 37.5 ± 22.2 mg/day. Major food sources of dietary silicon in the Korean male were cereal and cereal products (25.6 % of total silicon intake), vegetables (22.7 %), beverages and liquors (21.2 %), and milk and milk products (7.0 %). Silicon intake correlated positively with age, weight, energy intake, protein intake, calcium intake, and alcohol intake. After adjusted for age, weight, energy intake, protein intake, calcium intake, alcohol intake, smoking cigarettes, and regular exercise status, daily total silicon intake had no correlation with calcaneus bone density and the bone metabolism markers, but silicon intake from vegetables had a positive correlation with serum total alkaline phosphatase activity, a bone formation maker. These findings show the possible positive relationship between dietary silicon intake from vegetables and the bone formation of young adult males. Further

  11. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  12. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon: Final Report, 19 April 2001; FINAL

    International Nuclear Information System (INIS)

    Khattack, C. P.; Joyce, D. B.; Schmid, F.

    2001-01-01

    This report summarizes the results of the developed technology for producing SoG silicon by upgrading MG silicon with a cost goal of$20/kg in large-scale production. A Heat Exchanger Method (HEM) furnace originally designed to produce multicrystalline ingots was modified to refine molten MG silicon feedstock prior to directional solidification. Based on theoretical calculations, simple processing techniques, such as gas blowing through the melt, reaction with moisture, and slagging have been used to remove B from molten MG silicon. The charge size was scaled up from 1 kg to 300 kg in incremental steps and effective refining was achieved. After the refining parameters were established, improvements to increase the impurity reduction rates were emphasized. With this approach, 50 kg of commercially available as-received MG silicon was processed for a refining time of about 13 hours. A half life of and lt;2 hours was achieved, and the B concentration was reduced to 0.3 ppma and P concentration to 10 ppma from the original values of 20 to 60 ppma, and all other impurities to and lt;0.1 ppma. Achieving and lt;1 ppma B by this simple refining technique is a breakthrough towards the goal of achieving low-cost SoG silicon for PV applications. While the P reduction process was being optimized, the successful B reduction process was applied to a category of electronics industry silicon scrap previously unacceptable for PV feedstock use because of its high B content (50-400 ppma). This material after refining showed that its B content was reduced by several orders of magnitude, to(approx)1 ppma (0.4 ohm-cm, or about 5x1016 cm-3). NREL's Silicon Materials Research team grew and wafered small and lt;100 and gt; dislocation-free Czochralski (Cz) crystals from the new feedstock material for diagnostic tests of electrical properties, C and O impurity levels, and PV performance relative to similar crystals grown from EG feedstock and commercial Cz wafers. The PV conversion

  13. Estimation of Future Demand for Neutron-Transmutation-Doped Silicon Caused by Development of Hybrid Electric Vehicle

    International Nuclear Information System (INIS)

    Kim, Myong Seop; Park, Sang Jun

    2008-01-01

    By using this doping method, silicon semiconductors with an extremely uniform dopant distribution can be produced. They are usually used for high power devices such as thyristor (SCR), IGBT, IGCT and GTO. Now, the demand for high power semiconductor devices has increased rapidly due to the rapid increase of the green energy technologies. Among them, the productions of hybrid cars or fuel cell engines are excessively increased to reduce the amount of discharged air pollution substances, such as carbon dioxide which causes global warming. It is known that the neutron-transmutation-doped floating-zone (FZ) silicon wafers are used in insulated-gate bipolar transistors (IGBTs) which control the speed of the electric traction motors equipped in hybrid or fuel cell vehicles. Therefore, inevitably, it can be supposed that the demand of the NTD silicon is considerably increased. However, it is considered likely that the irradiation capacity will not be large enough to meet the increasing demand. After all, the large irradiation capacity for NTD such as a reactor dedicated to the silicon irradiation will be constructed depending on the industrial demand for NTD silicon. In this work, we investigated the relationship between the hybrid electric vehicle (HEV) industry and the NTD silicon production. Also, we surveyed the prospect for the production of the HEV. Then, we deduced the worldwide demand for the NTD silicon associated with the HEV production. This work can be utilized as the basic material for the construction of the new irradiation facility such as NTD-dedicated neutron source

  14. Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering

    Science.gov (United States)

    Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A study was designed to test if application of 50 ppm...

  15. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Khomenko, Volodymyr G.; Barsukov, Viacheslav Z.

    2007-01-01

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g -1 . The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  16. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  18. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  19. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  20. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  1. Hydrogen plasma treatment of silicon dioxide for improved silane deposition.

    Science.gov (United States)

    Gupta, Vipul; Madaan, Nitesh; Jensen, David S; Kunzler, Shawn C; Linford, Matthew R

    2013-03-19

    We describe a method for plasma cleaning silicon surfaces in a commercial tool that removes adventitious organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor deposition of silanes. Chemical differences between the surfaces were confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and (ii) a principal components analysis (PCA) of TOF-SIMS data taken from the different plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in different gas ratios, which should allow greater control of surface chemistry, and the duration of the H2 plasma (complete surface treatment appeared to take place quickly) are also presented. We believe that this work is significant because of the importance of silanes as surface functionalization reagents, and in particular because of the increasing importance of gas phase silane deposition.

  2. Top-gate microcrystalline silicon TFTs processed at low temperature (<200 deg. C)

    International Nuclear Information System (INIS)

    Saboundji, A.; Coulon, N.; Gorin, A.; Lhermite, H.; Mohammed-Brahim, T.; Fonrodona, M.; Bertomeu, J.; Andreu, J.

    2005-01-01

    N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 deg. C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2 -N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it =6.4x10 10 eV -1 cm -2 . High field effect mobility, 25 cm 2 /V s for electrons and 1.1 cm 2 /V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously

  3. Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

  4. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  5. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  6. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  7. Silicon/HfO2 interface: Effects of proton irradiation

    International Nuclear Information System (INIS)

    Maurya, Savita; Radhakrishna, M.

    2015-01-01

    Substrate oxide interfaces are of paramount importance in deciding the quality of the semiconductor devices. In this work we have studied how 200 keV proton irradiation affects the interface of a 13 nm thick, atomic layer deposited hafnium dioxide on silicon substrate. Pre- and post-irradiation electrical measurements are used to quantify the effect of proton irradiation for varying electrode geometries. Proton irradiation introduces positive charge in the oxide and at the interface of Si/HfO 2 interface. The gate current is not very much affected under positive injection since the induced positive charge is compensated by the injected electrons. Current voltage characteristics under negative bias get affected by the proton irradiation

  8. Characterization of nanostructured CuO-porous silicon matrixformed on copper coated silicon substrate via electrochemical etching

    International Nuclear Information System (INIS)

    Naddaf, M.; Mrad, O.; Al-Zier, A.

    2015-01-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak (blue) PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.(author)

  9. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  10. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    Science.gov (United States)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  11. Laboratory evaluation of hot metal de siliconizing process in ladle; Avaliacao laboratorial do processo de dessiliciacao do gusa na panela

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Sergio R.M.; Furtado, Henrique S.; Bentes, Miguel A.G.; Almeida, Pedro S. de [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil). Centro de Pesquisas

    1996-12-31

    The attractiveness of hot metal de siliconizing in ladle, relative to the process in blast furnace runner, is the previous knowledge of silicon content of hot metal, without the constraints of slag removing by skimmer met in torpedo car, and the better efficiency in low range silicon content, making easier the process controllability. Meanwhile, the main question about this technology is the extent of the resulfurization of hot metal that may occur due to process be performed after the desulfurization. This work simulates de de siliconizing process in ladle by experiments in induction furnace to compare the efficiencies of various de siliconizing agents available at CSN iron and steel making plant, and to evaluate the resulfurization intensity able to occur during the process, as well as, unexpected increasing of refractory wear. (author) 4 refs., 8 figs., 6 tabs.

  12. 13C trend in an Egyptian recent tree as a record for global carbon dioxide behaviour

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Belacy, N.; Abou El-Nour, F.

    1988-01-01

    The record of the 13 C content in tree rings of an Egyptian tree is used as indication for the increase of the atmospheric carbon dioxide concentration. A decrease of the 13 C isotopic content of the tree rings is observed starting from 1940 coinciding with a significant increase in the global production of CO 2 due to combustion of fossil fuel depleted in 13 C with respect to the atmosphere. Considering the local as well as the global CO 2 production rates together with the measured isotopic data, it may be concluded that the behaviour of carbon dioxide in the investigated Eastern Delta province in Egypt reflects mainly a global rather than a local effect. (author)

  13. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J

    2015-06-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than

  14. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover☆

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.

    2015-01-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague–Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n = 8–10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2–6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague–Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially

  15. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  16. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...

  17. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics

    International Nuclear Information System (INIS)

    Pavon, J.M. Cano; Alonso, E. Vereda; Cordero, M.T. Siles; Torres, A. Garcia de; Lopez-Cepero, J.M.

    2005-01-01

    Biomorphic silicon carbide ceramics are a new class of materials prepared by several complex processing steps including pre-processing (shaping, drying, high-temperature pyrolysis in an inert atmosphere) and reaction with liquid silicon to obtain silicon-carbide. The results of industrial process of synthesis (measured by the SiC content) must be evaluated by means of fast analytical methods. In the present work, diverse samples of biomorphic ceramics derived from wood are studied for to evaluate the capability of the different analytical techniques (XPS, LIBS, FT-IR and also atomic spectroscopy applied to previously dissolved samples) for the analysis of these materials. XPS and LIBS gives information about the major components, whereas XPS and FT-IR can be used to evaluate the content of SiC. On the other hand, .the use of atomic techniques (as ICP-MS and ETA-AAS) is more adequate for the analysis of metal ions, specially at trace level. The properties of ceramics depend decisively of the content of chemical elements. Major components found were C, Si, Al, S, B and Na in all cases. Previous dissolution of the samples was optimised by acid attack in an oven under microwave irradiation

  18. Experimental testing on free vibration behaviour for silicone rubbers proposed within lumbar disc prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, Iuliana, E-mail: rotaruiuliana2000@gmail.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania); “Gr. T. Popa” University of Medicine and Pharmacy of Iasi, Faculty of Medical Bioengineering, Department of Biomedical Sciences, 9-13 M. Kogalniceanu Street, 700454 Iasi (Romania); Bujoreanu, Carmen [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania); Bele, Adrian; Cazacu, Maria [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi (Romania); Olaru, Dumitru [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania)

    2014-09-01

    This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. - Highlights: • Two types of silicone rubber were proposed within the total lumbar disc prostheses. • The filler content of elastomers was highlighted by microscopy investigation. • Damping capacity of the two elastomers was evaluated using free vibration analysis. • The logarithmic decrement and the relative damping coefficient were determined. • The silicone rubbers prepared in our work showed acceptable damping properties.

  19. Experimental testing on free vibration behaviour for silicone rubbers proposed within lumbar disc prosthesis

    International Nuclear Information System (INIS)

    Rotaru, Iuliana; Bujoreanu, Carmen; Bele, Adrian; Cazacu, Maria; Olaru, Dumitru

    2014-01-01

    This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. - Highlights: • Two types of silicone rubber were proposed within the total lumbar disc prostheses. • The filler content of elastomers was highlighted by microscopy investigation. • Damping capacity of the two elastomers was evaluated using free vibration analysis. • The logarithmic decrement and the relative damping coefficient were determined. • The silicone rubbers prepared in our work showed acceptable damping properties

  20. Teores de silício no solo e na planta de arroz de terras altas com diferentes doses de adubação silicatada e nitrogenada Silicon contents in soil and in highland rice plants under different doses of silicon and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    M. Mauad

    2003-10-01

    Full Text Available O Si não é elemento essencial para o crescimento e desenvolvimento das plantas, porém sua absorção pode trazer inúmeros benefícios para culturas acumuladoras de Si, como o arroz. Entretanto, considerando o avançado grau de intemperização em que se encontram os solos tropicais, os teores de Si disponível nestes solos são baixos. O objetivo deste trabalho foi avaliar, na cultura do arroz de terras altas sob condições de túnel plástico, o efeito de doses de Si e de N na produção de matéria seca, na produtividade de grãos, no teor de N, nos teores de Si no solo e na planta e na quantidade de Si extraído do solo. Os tratamentos foram constituídos por três doses de N (5, 75 e 150 mg kg-1 de N, tendo como fonte a uréia e quatro doses de Si (0, 200, 400 e 600 mg kg-1 de SiO2 tendo como fonte o silicato de cálcio (Wollastonita. O delineamento experimental utilizado foi inteiramente casualizado com esquema fatorial 3 x 4, com cinco repetições. O acúmulo de matéria seca, a produtividade de grãos e os teores de N na planta não foram influenciados pelas doses de Si. O incremento da adubação nitrogenada aumentou a produção de matéria seca, a produtividade de grãos e o teor de N na planta, porém nenhum efeito foi encontrado para os teores de Si no solo. Houve interação N x Si para os teores de Si na planta e para a quantidade de Si acumulado pelas plantas.The element Silicon is not deemed essential for plant growth and development, but its absorption can benefit cumulative cultures like rice greatly. The Si content of tropical soils, however, is very low, due to the advanced weathering degree. The objective of this work was to evaluate the growth of rice plants in highlands under plastic tunnels and the effects of nitrogen (N and Si doses on dry matter production, grain productivity, N content; Si soil and plant contents; and on the amount of extracted silicon. The treatments consisted of three doses of N (5, 75, and 150

  1. Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings

    International Nuclear Information System (INIS)

    Pilloud, D.; Pierson, J.F.; Pichon, L.

    2006-01-01

    Zr-Si-N films were deposited on silicon and X38CrMoV5 steel substrates by sputtering composite Zr-Si targets in reactive Ar-N 2 mixture. The silicon concentration in the deposited films was adjusted by the variation of the number of Si chips located on the target erosion zone. As a function of the silicon content, the films exhibited the following structures: insertion of Si into the ZrN lattice, nanocomposite (nc-ZrN/a-SiN x ) and an amorphous-like structure. Addition of silicon into ZrN-based coatings induced a lost of the golden aspect due to the decrease of the metallic behaviour. This result was confirmed by ellipsometric measurements. The films refractive index increased with the silicon concentration. On the other hand, a continuous decrease of the extinction coefficient was noticed. The effect of the silicon content on the optical properties of Zr-Si-N films was discussed as a function of the films structure and the occurrence of new optical absorptions due to the silicon chemical bonds. Finally, the evolution of the films electrical resistivity was discussed in connection to the films structure changes

  2. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  3. Evaluation of process costs for small-scale carbon dioxide removal from natural gas. Topical report, September 1989-December 1989

    International Nuclear Information System (INIS)

    Changela, M.K.; Reading, G.J.; Echterhoff, L.W.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high carbon dioxide subquality natural gas. Two processing technologies are evaluated: conventional diethanolamine (DEA) absorption and membrane separation. Comparison of the established costs shows both capital and operating cost advantages for small-scale membrane applications. Membranes offer higher cost savings at low feed flow rates and high carbon dioxide feed contents. Membranes are produced in modules, thus they do not exhibit economies of scale. This works to their advantage for removing carbon dioxide on a small scale. Processing costs for amine systems are more sensitive to economies of scale, and thus decrease more rapidly than for membranes at higher feed flow rates. The report shows that membranes have a definite market niche within the natural gas processing arena. For economic reasons, membranes will likely become the technology of choice for small-scale systems that treat high carbon dioxide content natural gas streams. However, amines will continue to service large-scale systems and applications where deep carbon dioxide removal is required. A related report (GRI Report No. GRI-91/0093 entitled, 'Technical Evaluation of Hybrid Membrane/DEA Modeling') shows that hybrid systems, the integration of membranes and amines, also offer the potential to lower processing costs

  4. Diaphragm metering pumps for cooling silicon sensors at the CERN research center for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Geiselhart, Marc [LEWA Pumpen AG, Reinach (Switzerland); CERN Press Office, Geneva (Switzerland)

    2016-12-15

    With approximately 9,600 magnets and a circumference of 26.659 km, the Large Hadron Collider (LHC) is the largest and most sophisticated accelerator operated by the CERN research institute. The Large Hadron Collider beauty (LHCb) experiment, the A Toroidal LHC ApparatuS (ATLAS) experiment, and the Compact Muon Solenoid (CMS) experiment are three of the four experiments currently installed at LHC. In order to achieve precise measurements, silicon detectors are built in close vicinity to the interaction point of all experiments. Carbon dioxide cooling plants cool the innermost layers of the silicon detectors down to temperatures as low as -40 C. Two diaphragm metering pumps have been used for the LHCb experiment since 2007. Two similar systems operated in redundancy guarantee from the beginning of 2015 the thermal management of the IBL sub-detector of the TALS experiment.

  5. Accurate (p, ρ, T) data for two new (carbon dioxide + nitrogen) mixtures from (250 to 400) K at pressures up to 20 MPa

    International Nuclear Information System (INIS)

    Mondéjar, M.E.; Villamañán, R.M.; Span, R.; Chamorro, C.R.

    2012-01-01

    Highlights: ► New (p, ρ, T) data of two mixtures of nitrogen and carbon dioxide are reported. ► Experimental data show a disagreement with the equation of state at low temperatures and high pressures. ► Relative deviations in density increase with the carbon dioxide molar fraction of the mixture. ► Only relative deviations at pressures below 10 MPa are within a 0.1% band. - Abstract: Recently our group published a set of (p, ρ, T) data for two (carbon dioxide + nitrogen) mixtures with a low carbon dioxide content (x CO 2 =0.10,0.15). These data showed larger relative deviations from the GERG-2008 equation of state than expected, specially at low temperatures, high pressures, and for the mixture with higher carbon dioxide content (x CO 2 =0.15). In order to analyze whether the mentioned deviations from the equation of state increase with the carbon dioxide content, it was decided to measure the (p, ρ, T) behavior of two additional mixtures with higher carbon dioxide molar fractions (x CO 2 =0.20,0.50). The new experimental data show again an appreciable disagreement with the GERG-2008 equation of state at low temperatures and high pressures. Relative deviations, which depend on temperature, arise to 0.4% at 250 K and 20 MPa and to 0.24% at 275 K and 20 MPa for the x CO 2 =0.20 and x CO 2 =0.50 mixture, respectively. Second virial coefficients are calculated for the two new mixtures presented in this work and also for those presented in our previous paper.

  6. Viability study of photodiodes utilization in determination of soil water content by gamma transmission

    International Nuclear Information System (INIS)

    Santos, L.A.P.; Khoury, H.; Carneiro, C.J.G.

    1991-01-01

    An experiment to verify the viability of using silicon photodetectors in a sup(241)Am γ-ray spectroscopy system for measuring soil water content was carried out in disturbed soil cores. The good correlation between the logarithm of the attenuation factor and the water content, r sup(2)=0.99, proves that the low efficiency of these detectors is not a limiting factor in measuring the water content. Furthermore, the small dimensions of the silicon photodetectors and associate electronic equipment are important characteristics that could permit the construction of a portable gammametry system to be used under field conditions. (author)

  7. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate microcapsules as energy storage particle

    Directory of Open Access Journals (Sweden)

    W.L. Wu

    Full Text Available A phase-change energy-storage material, silicone rubber (SR coated n-octadecane/poly (styrene-methyl methacrylate (SR/OD/P(St-MMA microcapsule composites, was prepared by mixing SR and OD/P(St-MMA microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TG, differential scanning calorimetry (DSC and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR, of which content was 2 phr (per hundred rubber. The enthalpy value of the composites was 67.6 J g−1 and the composites were found to have good energy storage function. Keywords: n-Octadecane, Silicone rubber, Microcapsule, Energy-storage, Composites

  8. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    Science.gov (United States)

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

  9. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  10. Influence of silicon content and heat treatment on wear resistance of white chromium cast irons under high speed solidification conditions; Influencia del contenido de silicio y el tratamiento termico en la resistencia al desgaste de fundiciones blancas al cromo en condiciones de rapida solidificacion

    Energy Technology Data Exchange (ETDEWEB)

    Goyo, L.; Varela, A.; Verhaege, M.; Garcia, A.; Mier, J.; Moors, M.

    2012-11-01

    The influence of silicon content and heat treatment on microstructure, abrasive and dry friction wear resistance of a 3 % C, 12 % Cr cast iron, under fast solidification conditions is studied. The fast solidification condition diminishes the carbide volume and the silicon content increases their dispersion and finesses. All matrixes obtained were perlitics, whit different finesses. No intermediate transformation products were noticed. Hardness had little variation. Austenization treatment show little effectivity, with tendency to increase wear in reference to as cast and maintenance treatments. Behavior under dry friction and abrasive wear were similar under test conditions applied whit more influence of carbide morphology in the abrasive wear conditions. (Author) 32 refs.

  11. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2016-10-01

    Full Text Available A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and to act as anti-reflection coating. A silicon dioxide ultrathin layer interposed between the n-Si and the graphene increases the open-circuit voltage of the cell. The solar cell optimization has been achieved through a mathematical model, which has been validated by using experimental data reported in literature. The new flexible photovoltaic device can be integrated in a wide range of microsystems powered by solar energy.

  12. Fundamental characterization of the effect of nitride sidewall spacer process on boron dose loss in ultra-shallow junction formation

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, P. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States) and Microelectronics Research Center, University of Texas, Austin, TX 78758 (United States)]. E-mail: puneet.kohli@sematech.org; Chakravarthi, S. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Jain, Amitabh [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Bu, H. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Mehrotra, M. [Silicon Technology Development, Texas Instruments, Dallas, TX 75243 (United States); Dunham, S.T. [Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (United States); Banerjee, S.K. [Microelectronics Research Center, University of Texas, Austin, TX 78758 (United States)

    2004-12-15

    A nitride spacer with an underlying deposited tetraethoxysilane (TEOS) oxide that behaves as a convenient etch stop layer is a popular choice for sidewall spacer in modern complementary metal oxide semiconductor (CMOS) process flows. In this work, we have investigated the effect of the silicon nitride spacer process chemistry on the boron profile in silicon and the related dose loss of B from Si into silicon dioxide. This is reflected as a dramatic change in the junction depth, junction abruptness and junction peak concentration for the different nitride chemistries. We conclude that the silicon nitride influences the concentration of hydrogen in the silicon dioxide and different nitride chemistries result in different concentrations of hydrogen in the silicon dioxide during the final source/drain anneal. The presence of H enhances the diffusivity of B in the silicon dioxide and thereby results in a significant dose loss from the Si into the silicon dioxide. In this work, we show that this dose loss can be minimized and the junction profile engineered by choosing a desirable nitride chemistry.

  13. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    Science.gov (United States)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  14. The potential of postharvest silicon dips to regulate phenolics in ...

    African Journals Online (AJOL)

    ACCI

    2013-03-27

    Mar 27, 2013 ... This study investigated the ability of silicon dips to enhance the phenolic content in order to .... observed under a scanning electron microscope equipped with. EDX detector (Zeiss EVO LS15, Oxford XMax detector, and INCA.

  15. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  16. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  17. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  18. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  19. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    Science.gov (United States)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  20. The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin C contents of tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Khan, Ikhtiar; Azam, Andaleeb; Mahmood, Abid

    2013-01-01

    The global average temperature has witnessed a steady increase during the second half of the twentieth century and the trend is continuing. Carbon dioxide, a major green house gas is piling up in the atmosphere and besides causing global warming, is expected to alter the physico-chemical composition of plants. The objective of this work was to evaluate the hypothesis that increased CO(2) in the air is causing undesirable changes in the nutritional composition of tomato fruits. Two varieties of tomato (Lycopersicon esculentum) were grown in ambient (400 μmol mol(-1)) and elevated (1,000 μmol mol(-1)) concentration of CO(2) under controlled conditions. The fruits were harvested at premature and fully matured stages and analyzed for yield, proximate composition, elemental concentration, fatty acid, and vitamin C contents. The amount of carbohydrates increased significantly under the enhanced CO(2) conditions. The amount of crude protein and vitamin C, two important nutritional parameters, decreased substantially. Fatty acid content showed a mild decrease with a slight increase in crude fiber. Understandably, the effect of enhanced atmospheric CO(2) was more pronounced at the fully matured stage. Mineral contents of the fruit samples changed in an irregular fashion. Tomato fruit has been traditionally a source of vitamin C, under the experimental conditions, a negative impact of enhanced CO(2) on this source of vitamin C was observed. The nutritional quality of both varieties of tomato has altered under the CO(2) enriched atmosphere.

  1. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  2. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    Science.gov (United States)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  3. Chromatographic determination of silicon and phosphorus as molybdic heteropoly acids with preconcentration

    International Nuclear Information System (INIS)

    Tikhomirova, T.I.; Krokhin, O.V.; Dubovik, D.B.; Ivanov, A.V.; Shpigun, O.A.

    2002-01-01

    Chromatographic behaviour of silicon and phosphorus as molybdic heteropoly acids with preconcentration as ion associations of heteropoly acid with tributylammonium bromide was studied. The technique of simultaneous analysis of silicon and phosphorus was developed. During investigation into the effect of acetonitril content in the probe on the form of chromatographic peak of molybdosilicic acid the negative influence of acetonitril on the form of peak was ascertained. This effect may be eliminated by the lowering of acetonitril content up to 50 %. It was found that under these conditions the chromatographic peak practically was absent, because of the heteropoly acid of the Mo(VI) abundance transformed in the MoO 2 2+ cation form without reaction with tributylammonium cation during concentration of heteropoly acid [ru

  4. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  5. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming; Zhong, Zhaowei; Diallo, Elhadj; Wang, Zhihong; Yue, Weisheng

    2014-01-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  6. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  7. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  8. The effects of changes in the UK energy demand and environmental legislation on atmospheric pollution by carbon dioxide

    International Nuclear Information System (INIS)

    Blakemore, F.B.; Davies, C.; Isaac, J.G.

    1998-01-01

    It has been demonstrated that the combustion of fossil fuel accounts for 97% of the carbon dioxide generated in the UK. The demand for primary energy over the 1970-1994 period has only marginally increased, however the demand for natural gas, which has a significantly lower carbon content per unit of energy than other fuels, accounts largely for the lowering of carbon dioxide emissions. The enactment UK/EU Environmental Legislation coupled with World Agreements accounts for a significant lowering of carbon dioxide emissions over this period. Future predictions suggest that a further downturn in carbon dioxide emissions will take place over the 1990-2000 period, followed by a pronounced increase over the 2000-2020 period. The expansion of the use of CCGT and/or the introduction of the IGCC and the SUPC in the power generating sector provides an opportunity for a further reduction in carbon dioxide emissions. (author)

  9. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  10. Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts

    International Nuclear Information System (INIS)

    Paek, Min-Kyu; Lee, Won-Kyu; Jin, Jinan; Jang, Jung-Mock; Pak, Jong-Jin

    2012-01-01

    Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid Mn-Si-Fe-Csat alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

  11. Capacity spectroscopy of minority-carrier radiation traps in n-type silicon

    International Nuclear Information System (INIS)

    Kuchinskij, P.V.; Lomako, V.M.; Shakhlevich, L.N.

    1987-01-01

    Minority charge-carrier radiation traps in n-silicon, produced by neutron transmutation doping (NTD) and zone melting method, were studied using unsteady capacity spectroscopy method. Studying the parameters of defects, formed in the lower half of the restricted zone, was performed using minority carrier injection by forward current pulses. Samples were p + -n-structures, produced on the basis of silicon with different oxygen content. It is shown, that a trap with activation energy ≅E v +0.34 eV appears to be the main defect in oxygen p-silicon. Investigation into thermal stability has shown, that centers with E v +0.34 eV and E v +0.27 eV activation energies are annealed within the same temperature interval (300-400 deg C)

  12. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    Science.gov (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  13. Inflammability of magnesium and its alloys in carbon dioxide either pure or mixed with water vapour, air or oxygen

    International Nuclear Information System (INIS)

    Baque, P.; Chevilliard, C.; Darras, R.

    1964-01-01

    Whereas low contents of metallic additions have only a small influence on the temperature at which magnesium begins to burn in carbon dioxide, an increase in the specific surface area of the samples is likely to reduce it considerably, the self-heating phenomena being then more pronounced. On the other hand, the exact nature of the surrounding atmosphere is a very important factor; thus the temperature at which ignition begins increases with increasing carbon dioxide pressure, decreases very rapidly when the moisture content of this gas increases up to 3000 v.p.m., and decreases regularly when the partial pressure of air or oxygen increases. (authors) [fr

  14. Influence of calcium and silicon supplementation into Pleurotus ostreatus substrates on quality of fresh and canned mushrooms.

    Science.gov (United States)

    Thongsook, T; Kongbangkerd, T

    2011-08-01

    Supplements of gypsum (calcium source), pumice (silicon source) and pumice sulfate (silicon and calcium source) into substrates for oyster mushrooms (Pleurotus ostreatus) were searched for their effects on production as well as qualities of fresh and canned mushrooms. The addition of pumice up to 30% had no effect on total yield, size distribution and cap diameters. The supplementation of gypsum at 10% decreased the total yield; and although gypsum at 5% did not affect total yield, the treatment increased the proportion of large-sized caps. High content (>10%) of pumice sulfate resulted in the lower yield. Calcium and silicon contents in the fruit bodies were not influenced by supplementations. The centrifugal drip loss values and solid content of fresh mushrooms, and the percentage of weight gained and firmness of canned mushrooms, cultivated in substrates supplemented with gypsum, pumice and pumice sulfate were significantly (p≤0.05) higher than those of the control. Scanning electron micrographs revealed the more compacted hyphae of mushroom stalks supplemented with silicon and/or calcium after heat treatment, compared to the control. Supplementation of P. ostreatus substrates with 20% pumice was the most practical treatment because it showed no effect on yield and the most cost-effective.

  15. Porous silicon confers bioactivity to polycaprolactone composites in vitro.

    Science.gov (United States)

    Henstock, J R; Ruktanonchai, U R; Canham, L T; Anderson, S I

    2014-04-01

    Silicon is an essential element for healthy bone development and supplementation with its bioavailable form (silicic acid) leads to enhancement of osteogenesis both in vivo and in vitro. Porous silicon (pSi) is a novel material with emerging applications in opto-electronics and drug delivery which dissolves to yield silicic acid as the sole degradation product, allowing the specific importance of soluble silicates for biomaterials to be investigated in isolation without the elution of other ionic species. Using polycaprolactone as a bioresorbable carrier for porous silicon microparticles, we found that composites containing pSi yielded more than twice the amount of bioavailable silicic acid than composites containing the same mass of 45S5 Bioglass. When incubated in a simulated body fluid, the addition of pSi to polycaprolactone significantly increased the deposition of calcium phosphate. Interestingly, the apatites formed had a Ca:P ratio directly proportional to the silicic acid concentration, indicating that silicon-substituted hydroxyapatites were being spontaneously formed as a first order reaction. Primary human osteoblasts cultured on the surface of the composite exhibited peak alkaline phosphatase activity at day 14, with a proportional relationship between pSi content and both osteoblast proliferation and collagen production over 4 weeks. Culturing the composite with J744A.1 murine macrophages demonstrated that porous silicon does not elicit an immune response and may even inhibit it. Porous silicon may therefore be an important next generation biomaterial with unique properties for applications in orthopaedic tissue engineering.

  16. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  17. Specific features of the current–voltage characteristics of SiO{sub 2}/4H-SiC MIS structures with phosphorus implanted into silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylova, A. I., E-mail: m.aleksey.spb@gmail.com; Afanasyev, A. V.; Ilyin, V. A.; Luchinin, V. V. [St. Petersburg State Electrotechnical University LETI (Russian Federation); Sledziewski, T. [Friedrich–Alexander–Universität Erlangen–Nürnberg (Germany); Reshanov, S. A.; Schöner, A. [Ascatron AB (Sweden); Krieger, M. [Friedrich–Alexander–Universität Erlangen–Nürnberg (Germany)

    2016-01-15

    The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.

  18. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  19. Morphological and structural evolution of the anatase phase of silicon modified titanium dioxide obtained by Sol-gel; Evolucao estrutural e morfologica da fase anatase de dioxido de titanio modificada com silicio obtido pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, S.A.; Oliveira, C.T.; Ciola, R.A.; Cavalheiro, A.A., E-mail: silvanicelopes@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The photonic efficiency of the titanium dioxide photocatalyst is dependent on the crystalline structure and the anatase phase presents high efficiency in the border region between the UV-B and UV-A, with a redox potential sufficient to generate hydroxyl radicals and superoxide ion in order to oxidate organic compounds. In spite of the organic matter degradation effectiveness, the efficiency can be reduced substantially due to the presence of crystalline defects, which act as premature recombination centers of the electron-hole pair. The increasing of calcining temperature allows the elimination of most of these defects, but the structural ordering at temperatures around 600°C eventually leads to the phase transition toward rutile, which is not photoactive. In this work, it was demonstrated through FTIR and XRD that the silicon modifier presence stabilizes the anatase phase even at temperatures as high as 900°C. (author)

  20. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  1. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  2. Silicon dioxide obtained by Polymeric Precursor Method; Obtencao de dioxido de silicio pelo Metodo dos Precursores Polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A., E-mail: cinthia_quimica@hotmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO{sub 2} oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  3. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  4. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    Science.gov (United States)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is

  5. Large-grain polycrystalline silicon film by sequential lateral solidification on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Chung, Choong-Heui; Yun, Sun Jin; Moon, Jaehyun; Park, Dong-Jin; Kim, Dae-Won; Lim, Jung Wook; Song, Yoon-Ho; Lee, Jin Ho

    2005-01-01

    A large-grain polycrystalline silicon film was obtained on a plastic substrate by sequential lateral solidification. With various combinations of sputtering powers and Ar working gas pressures, the conditions for producing dense amorphous silicon (a-Si) and SiO 2 films were optimized. The successful crystallization of the a-Si film is attributed to the production of a dense a-Si film that has low argon content and can endure high-intensity laser irradiation

  6. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  7. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  8. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  9. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  10. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  11. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  12. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate) microcapsules as energy storage particle

    Science.gov (United States)

    Wu, W. L.; Chen, Z.

    A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.

  13. Effect of nanosilicon dioxide on growth performance, egg quality, liver histopathology and concentration of calcium, phosphorus and silicon in egg, liver and bone in laying quails

    Science.gov (United States)

    Faryadi, Samira; Sheikhahmadi, Ardashir

    2017-11-01

    This experiment was conducted to evaluate the effects of different levels of nanosilicon dioxide (nSiO2) on performance, egg quality, liver histopathology and concentration of calcium (Ca), phosphorus and silicon (Si) in egg, liver and bone in laying quails. The experiment was administered using 60 laying quails at 16-26 weeks of age with five treatments [0 (control), 500, 1000, 2000 and 4000 mg nSiO2 per kg of diet] and four replicates in a completely randomized design. During the experiment, the amount of feed intake was recorded weekly and performance parameters were measured. During the last 3 days of the experiment, all of the eggs in each replicate were collected and egg quality parameters were measured. At the end of 26 weeks of age, the birds were sacrificed and blood samples were collected. Liver samples from each treatment were fixed in 10% buffered formalin for histopathological assessment. The right thigh bone and a portion of liver were inserted in plastic bags and stored at - 20. The results showed that nSiO2 supplementation significantly affected egg weight and egg mass ( P 0.05) by dietary treatments. In conclusion, the results indicated that dietary supplementation of nSiO2 could improve bone density and performance without any adverse effect on the health of laying quails.

  14. EFFECT OF SILICON CONTENT ON MACHINABILITY OF Al-Si ALLOYS

    Directory of Open Access Journals (Sweden)

    Birol Akyüz

    2016-09-01

    Full Text Available In this study the effect of the change in the amount of Silicon (Si occuring in Al-Si alloys on mechanical and machinability properties of the alloy was investigated. The change in mechanical properties and microstructure, which depends on the increase in Si percentage, and the effects of this change on Flank Build-up (FBU, wear on the cutting edge, surface roughness, and machinability were also studied. Alloys in different ratios of Si (i.e. 2 to 12 wt %, were employed in the study. The specimens for tests were obtained by casting into metal moulds. The results obtained from experimental studies indicate improved mechanical properties and machinability, depending on the rise in Si percentage in Al-Si alloys. It is also observed that the increase in Si percentage enhanced surface quality.

  15. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  16. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  17. Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Science.gov (United States)

    Zarins, Arturs; Valtenbergs, Oskars; Kizane, Gunta; Supe, Arnis; Knitter, Regina; Kolb, Matthias H. H.; Leys, Oliver; Baumane, Larisa; Conka, Davis

    2016-03-01

    Lithium orthosilicate (Li4SiO4) pebbles with 2.5 wt.% excess of silicon dioxide (SiO2) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li4SiO4 pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li4SiO4 pebbles and to add titanium dioxide (TiO2), to obtain lithium metatitanate (Li2TiO3) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li4SiO4 pebbles with different contents of TiO2 for the first time, in order to estimate and compare radiation stability. The reference and the modified Li4SiO4 pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300-990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li4SiO4 pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO33-/TiO33-), HC2 centres (SiO43-/TiO3-) etc. On the basis of the obtained results, it is concluded that the modified Li4SiO4 pebbles with TiO2 additions have comparable radiation stability with the reference pebbles.

  18. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  19. kinetics of the coupled gas-iron reactions involving silicon and carbon

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... out for the system involving liquid iron containing carbon and silicon and a gas ... in content with liquid iron at. 15600C, the ... of carbon monoxide bubbles at the. Slag - metal ..... equilibrium strongly make chemical reactions.

  20. Effect of carbon dioxide on the rate of iodine vapor absorption by aqueous solution of sodium hydroxide

    International Nuclear Information System (INIS)

    Eguchi, Wataru; Adachi, Motonari; Miyake, Yoshikazu

    1978-01-01

    There is always carbon dioxide in the atmosphere as an impurity. Since this is an acid gas similar to iodine, each absorption rate seems to be affected by the other due to the coexistence of these two. Experiments have been conducted to clarify the absorption rate and absorption mechanism of iodine in the simultaneous absorption of iodine and carbon dioxide. Carbon dioxide coexisting with gas phases as an impurity decreases the absorption rate of iodine in the removal by washing with water of iodine mixed in the air. The first cause of this is that the diffusion coefficient of iodine in gas phase decreases with the carbon dioxide content in the gas phase. The second cause is that coexistent carbon dioxide is an acid gas, dissociates by dissolving into the absorbing solution, increases hydrogen ion concentration together with the formation of negative ions of bicarbonate and carbonate, and reduces hydroxyl ion concentration as a result. It is more important that existence of iodine has a catalytic effect to the rate of basic catalytic hydrolysis of carbon dioxide simultaneously dissolved in water phase, and accelerates this reaction rate. The mechanism of catalytic effect of iodine for the hydrolysis of carbon dioxide can not be clarified in detail only by this experiment, but the simultaneous absorption rate of iodine and carbon dioxide can be explained satisfactorily. (Wakatsuki, Y

  1. Electrophysical properties of silicon doped by palladium-103 isotope

    International Nuclear Information System (INIS)

    Makhkamov, Sh.; Tursunov, N.A.; Sattiev, A.R.; Normurodov, A.B.

    2007-01-01

    The work is devoted to study of radiation physical processes taking place in Si under nuclear transmutation, Identification and determination of defects microstructure and homogeneities and their distribution, study of interactions of nuclear-transformed phosphorus isotopes with palladium atoms, and its effect on crystal properties. For examination monocrystalline silicon of n- and p-type conductivity with specific resistance from 1 to 40 Ω·cm, dislocation density ∼10 4 cm -2 and oxygen content ∼10 17 cm -3 has been applied. Doping of silicon plates by examined admixture has been carried out by thermal diffusion method within temperature range 1000-1250 deg. C for 0.5- 5 h. Irradiation of doped silicon was conducted by reactor neutron fluences 5·10 18 - 5·10 19 cm -2 with subsequent annealing at 1000 deg. C for 30 min. Efficiency of mixture centers formation in silicon, effect of concentration of formed mixture-defect centers on electro-physical, photoelectric and recombination parameters of doped silicon and revealing of type and state of generated defects have been controlled by electric, volume and X-ray fluorescent methods. On the base of spectroscopic researches it is shown, that in silicon forbidden zone after Pd diffusion in DLTS spectra peaks related with acceptor (E c -0.18 and E v +0.34 eV) levels, and peak responsible for level E v +0.32 eV of donor character caused by palladium impurity. It is shown, that irradiation of doped silicon samples by neutrons lead to nuclear transmutation of 102 Pd, 104 Pd in 103 Pd isotopes in the crystal volume with following electron capture in stable isotope 103m Rh

  2. Neutron activation analysis of low-level element contents in silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Berger, A [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Niese, S [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Koehler, M [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Matthes, M [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Gawlik, D [Hahn-Meitner-Institut, Berlin (Germany)

    1997-03-01

    Semiconductor silicon is among the purest materials having ever been produced by modern technology. Thus, it is quite suitable as a primary reference material validating the correctness and the detection capabilities of developed analytical methods. Among them neutron activation analysis plays a competitive role. The U.S. National Institute of Science and Technology (NIST) has initiated and carried out an interlaboratory comparison in order to study the spread of analytical results worldwide evolved by several laboratories dealing with specimens of extreme purity. The outcome of the experiment was intended to review the capabilities of NAA as well as to differentiate between bulk and surface contamination. (orig./DG)

  3. Carbon Dioxide Embolism during Laparoscopic Surgery

    Science.gov (United States)

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  4. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    Directory of Open Access Journals (Sweden)

    Raúl O. Cadena-Pereda

    2012-08-01

    Full Text Available Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  5. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    Science.gov (United States)

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  6. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  7. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  8. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  9. Thermodynamic Properties of Alloys of Iron and Silicon

    International Nuclear Information System (INIS)

    Vecher, R.A.; Gejderih, V.A.; Gerasimov, Ja.I.

    1966-01-01

    The Fe-Si phase diagram is complex. At 1000°K there are FeSi 2 (β) and FeSi phases and solid solutions of silicon in α and α' iron. EMF measurements were made on the electrochemical cells: Fe|Fe 2+ , KI + Nal|Fe-Si at 600-800°C molten The alloys were prepared from particularly pure components by powder metallurgy and protracted annealing. Studies were made of ten alloys with silicon content between 85 and 4% in all the phase fields in the diagram section at 1000°K. We calculated the integral thermodynamic quantities ΔG, ΔH and ΔS for the formation of the silicides FeSi 2 (β), FeSi and Fe 3 Si at the mean temperature for the experimental range (1000°K), and also (using the thermal capacity of the silicides, the iron and the silicon) at 298, 1188 and 1798°K. The heats of formation of the silicides mentioned at 298°K (kcal/mole) are -19.4, -17.6 and -22.4 respectively. The data existing in the literature enable us to calculate the heat of formation of FeSi 2.33 (α-leboite) at 298°K and this is found to be -14.4 kcal/mole. The heats calculated by us are 1.5-3 kcal higher than the experimental values of Corber and Olsen. The heats of mixing calculated by us for liquid alloys agree well with data in the literature. The data obtained can be regarded as due to the change in the character of the bond in silicides from metallic to covalent when the silicon content is increased. From the data for alloy solutions of silicon in a-iron, the iron activities were calculated. It was found that the α ⇌ α' transformation observed is a real phase transformation. The two-phase range is wider than shown in the phase diagram (from data in the literature). Conversion of the iron activities in solid solution to liquid solution gives good agreement with the data of Chipman. (author) [fr

  10. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  11. Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Muders, C.M.; Kumar, A. [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Jiang, X., E-mail: xin.jiang@uni-siegen.de [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Pei, Z.L.; Gong, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, C., E-mail: csun@imr.ac.cn [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer XRD peaks show a tendency of decreasing intensity with increasing Si content. Black-Right-Pointing-Pointer Ti-Al-Si-Cu-N films present different microstructure with increasing Si content. Black-Right-Pointing-Pointer Films with 6 at.% Si content obtain the highest hardness, elastic modulus and H{sup 3}/E{sup 2}. Black-Right-Pointing-Pointer The wear rate decreases with an increase in hardness. - Abstract: In this study, nanocomposite Ti-Al-Si-Cu-N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H{sup 3}/E{sup 2}, friction coefficient, adhesive strength and wear rate of the Ti-Al-Si-Cu-N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti-Al-Si-Cu-N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H{sup 3}/E{sup 2} first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H{sup 3}/E{sup 2} of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive

  12. Determination of oxygen, nitrogen, and silicon in Nigerian fossil fuels by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Hannan, M.A.; Oluwole, A.F.; Kehinde, L.O.; Borisade, A.B.

    2003-01-01

    Classification, assessment, and utilization of coal and crude oil extracts are enhanced by analysis of their oxygen content. Values of oxygen obtained 'by difference' from chemical analysis have proved inaccurate. The oxygen, nitrogen, and silicon content of Nigerian coal samples, crude oils, bitumen extracts, and tar sand samples were measured directly using instrumental fast neutron activation analysis (FNAA). The total oxygen in the coal ranges from 5.20% to 23.3%, in the oil and extracts from 0.14% to 1.08%, and in the tar sands from 38% to 47%. The nitrogen content in the coal ranges from 0.54% to 1.35%, in the crude oil and bitumen extracts from ≤ 0.014% to 0.490%, and in the tar sands from 0.082% to 0.611%. The silicon content in the coal ranges from 1.50% to 8.86%; in the oil and the bitumen extracts it is <1%, and in the tar sands between 25.1% and 37.5%. The results show that Nigerian coals are mostly sub-bituminous. However, one of the samples showed bituminous properties as evidenced by the dry ash-free (daf) percent of carbon obtained. This same sample indicated a higher ash content resulting in a comparatively high percentage of silicon. In oils and tar sands from various locations, a comparison of elements is made. (author)

  13. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  14. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J

    2018-05-01

    Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.

  15. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  16. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  17. Siloxanes in silicone products intended for food contact

    DEFF Research Database (Denmark)

    Cederberg, Tommy Licht; Jensen, Lisbeth Krüger

    oligomers which might migrate to the food when the product is being used. DTU has proposed two action limits for low molecular weight siloxanes in food contact materials. For the sum of cyclic siloxanes D3 to D8 the limits are 12 mg/kg food for adults and 2 mg/kg food for children. For the sum of cyclic...... siloxanes D3 to D13 and linear siloxanes L3-L13 the limit is 60 mg/kg food. In 49 samples of silicone products intended for food contact from the Norwegian markets content of siloxanes has been measured. Coated paper for baking constituted 8 of the samples and in none of those samples siloxanes were found......Silicone is used in food contact materials due to its excellent physical and chemical properties. It is thermostable and flexible and is used in bakeware and kitchen utensils. Silicone is also used to coat paper to make it water and fat resistant. There is no specific regulation in EU which covers...

  18. The influence of oxidation properties on the electron emission characteristics of porous silicon

    International Nuclear Information System (INIS)

    He, Li; Zhang, Xiaoning; Wang, Wenjiang; Wei, Haicheng

    2016-01-01

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm"2 and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  19. The influence of oxidation properties on the electron emission characteristics of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    He, Li [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Xiaoning, E-mail: znn@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wenjiang [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Haicheng [School of Electrical and Information Engineering, Beifang University of Nationalities, Yinchuan750021 (China)

    2016-09-30

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm{sup 2} and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  20. Analytical techniques for determination and control of silica content in the water in thermal power plants

    Directory of Open Access Journals (Sweden)

    Ignjatović Nataša R.

    2015-01-01

    Full Text Available Ultrapure water with minimum contents of impurities is used for the preparation of steam in thermal power plants. More recently it has been found that the corrosion process is also influenced by sodium ions, chloride ions, and all forms of silicon in water. At higher temperatures and under high pressure the less soluble compounds of silicon are extracted, which form deposits on the walls of the boiler, the piping system and the turbine blades. Silicon is found in water in the form of different types (species which are characterized by specific physical and chemical properties. Distinctions can be made between highly reactive species of ionic (silicate anions and molecular forms (silicic acid and relatively inert types (suspended, colloidal, and polymerized silicon. The determination of various forms of silicon in water is a complex analytical task. This paper covers relevant research in the field of silicon specification analysis. Maintaining the unchanged, original composition of silicon species during various stages of analysis (sample collection, storage, and conservation has been given special attention. A large number of methods and procedures have been developed for the analysis of species of silicon, including chromatographic, spectroscopic and electrochemical techniques and combinations thereof. The techniques used for determining both the total amount and individual forms of silicon have been singled out. There is also an overview of the coupled techniques used most frequently in practice by using the methodology which involves preliminary separation of species and then individual specification. The paper offers an overview of analytical properties, advantages and disadvantages of the most representative analytical methods developed specifically for the analysis of silicon species in ultrapure water. The most important studies focusing on the silicon species in water have been highlighted and presented in detail. The determination of

  1. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  2. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  3. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  4. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  5. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    International Nuclear Information System (INIS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-01-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity. (paper)

  6. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    International Nuclear Information System (INIS)

    La Rocca, P.; Billotta, S.; Blancato, A.A.; Bonanno, D.; Bonanno, G.; Fallica, G.; Garozzo, S.; Lo Presti, D.; Marano, D.; Pugliatti, C.; Riggi, F.; Romeo, G.; Santagati, G.; Valvo, G.

    2015-01-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers

  7. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    Energy Technology Data Exchange (ETDEWEB)

    La Rocca, P., E-mail: paola.larocca@ct.infn.it [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Billotta, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Blancato, A.A.; Bonanno, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Fallica, G. [STMicroelectronics - Catania (Italy); Garozzo, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Lo Presti, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Pugliatti, C.; Riggi, F. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Valvo, G. [STMicroelectronics - Catania (Italy)

    2015-07-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers.

  8. Ethanol-water separation by pervaporation using silicone and polyvinyl alcohol membranes

    Directory of Open Access Journals (Sweden)

    Chinchiw, S.

    2006-09-01

    Full Text Available In this research, experiments were carried out to investigate the effects of operating parameters onthe pervaporation performance for the separation of ethanol-water solutions. Composite silicone membranessupported on polysulfone prepared with varied silicone contents and commercial polyvinyl alcohol (Pervap®2211, Sulzer membranes were used. The results showed that the composite silicone/polysulfone membranescoated with 3 wt% of silicone exhibited highest permeation flux with slightly lower separation factor forethanol. Furthermore, it was found that the composite silicone/polysulfone membranes were suitable for theseparation of ethanol from a dilute ethanol solutions. Both the separation factor and permeation flux of the composite membranes increased with increasing temperature and feed concentration. A membrane coated with a 7 wt% silicone gave highest separation factor of 7.32 and permeation flux of 0.44 kg/m2h at 5 wt% ethanol feed concentration and feed temperature of 70ºC. For polyvinyl alcohol membranes, the results showed that the membranes were suitable for the dehydration of concentrated ethanol solutions. The permeation flux increased and the separation factor for water decreased with increasing water feed concentration and temperature. The membrane gave highest separation factor of 248 and permeation flux of 0.02 kg/m2h at 5 wt% water feed concentration and feed temperature of 30ºC.

  9. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  10. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  11. Geochemistry of the stable isotopes of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Douthitt, C B [California Inst. of Tech., Pasadena (USA). Div. of Geological and Planetary Sciences

    1982-08-01

    One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta/sup 30/Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta/sup 30/Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150/sup 0/C. In both igneous minerals and rocks, delta/sup 30/Si shows a positive correlation with silicon content, as does delta/sup 18/O. Opal from both sponge spicules and sinters is light, with delta/sup 30/Si = -2.3 and -1.4 parts per thousand respectively. Large delta/sup 30/Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in /sup 28/Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta/sup 30/Si variations.

  12. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  13. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  14. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  15. Rheology behaviour of modified silicone-dammar as a natural resin coating

    Science.gov (United States)

    Zakaria, Rosnah; Ahmad, Azizah Hanom

    2015-08-01

    Modified silicone-dammar (SD) was prepared by various weight percent from 5 - 45 wt% of dammar added. The n-value (viscosity index) of silicone with 5 and 10 % were turn to be 1.6 and 1.3 of viscosity index. While 15, 20, 25 and 30 wt% of dammar added gave 0.7, 0.3, 0.2 and 0.1 of viscosity index. On the other hand, 35, 40 and 45 wt% of dammar gave a fixed value of viscosity index of 0.03. This n-value shows the dispersion quality of paint mixture indicates that the modified silicone-dammar was followed the Bingham's Model. The rheology measurement of SD mixture was analysed by plotting ln shear stress vs shear rate value. Analysis of the graph showed a Bingham plastic model with regression R2 equivalent to 0.99. The linear viscoelastic behaviour of SD samples increased in parallel with increasing dammar content indicate that the suspension of dammar in silicone resin could flow steadily with time giving a pseudoplastic behaviour.

  16. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  17. Surface Characteristics and Catalytic Activity of Copper Deposited Porous Silicon Powder

    Directory of Open Access Journals (Sweden)

    Muhammad Yusri Abdul Halim

    2014-12-01

    Full Text Available Porous structured silicon or porous silicon (PS powder was prepared by chemical etching of silicon powder in an etchant solution of HF: HNO3: H2O (1:3:5 v/v. An immersion time of 4 min was sufficient for depositing Cu metal from an aqueous solution of CuSO4 in the presence of HF. Scanning electron microscopy (SEM analysis revealed that the Cu particles aggregated upon an increase in metal content from 3.3 wt% to 9.8 wt%. H2-temperature programmed reduction (H2-TPR profiles reveal that re-oxidation of the Cu particles occurs after deposition. Furthermore, the profiles denote the existence of various sizes of Cu metal on the PS. The Cu-PS powders show excellent catalytic reduction on the p-nitrophenol regardless of the Cu loadings.

  18. Distribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa

    Directory of Open Access Journals (Sweden)

    Deivaseeno Dorairaj

    2017-07-01

    Full Text Available Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si, a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD, a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.

  19. EFFECTS.OF BORIC ACID ON THE CURE OF BORON-FILLED Y-3602 SILICONE GUM

    Energy Technology Data Exchange (ETDEWEB)

    Leichliter, G E

    1974-10-01

    The first two phases of a program designed to determine the effects of boric acid on the cure of Y-3602 silicone gum were conducted to evaluate extraction solvents and extraction time. The standard production formulation of B10-filled Y-3602 silicone gum was used in these evaluations. Results showed that the best solvent for reproducibility and high amine content was chloroform. The second phase indicated that extraction was essentially complete at the end of 4 hours.

  20. The geochemistry of the stable isotopes of silicon

    International Nuclear Information System (INIS)

    Douthitt, C.B.

    1982-01-01

    One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta 30 Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta 30 Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150 0 C. In both igneous minerals and rocks, delta 30 Si shows a positive correlation with silicon content, as does delta 18 O. Opal from both sponge spicules and sinters is light, with delta 30 Si = -2.3 and -1.4 parts per thousand respectively. Large delta 30 Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in 28 Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta 30 Si variations. (author)

  1. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  2. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    Science.gov (United States)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (μc-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (μc-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (μc-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the μc-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the μc-SiOx:H (0 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor of Si 3p - O 2p hybridization in the upper valence band. This coincides with a significant increase of the material's resistivity, possibly indicating the breakdown of the conducting crystalline Si network. Silicon oxide layers with a thickness of several hundred nanometres were deposited in a PECVD (plasma-enhanced chemical vapor deposition) multi chamber system

  3. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  4. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.

    1999-01-01

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  5. Simultaneous determination of boron, carbon and nitrogen in silicon by deuteron activation analysis

    International Nuclear Information System (INIS)

    He, Shiyu; Wang, Yinsong; Jin, Baikang; Hua, Zhifen; Zhao, Kaihua

    1984-01-01

    The paper describes simultaneous determination of trace quantities of B, C and N in semiconductor silicon by nuclear reaction of 10 B(d, n) 11 C(T 1/2 = 20.3 min), 11 B(d, 2n) 11 C, 12 C(d, n) 13 N(T 1/2 = 9.96 min) and 14 N(d, n) 15 O(T 1/2 = 2.03 min) with deuterons from a 1.2 m cyclotron in our institute. An inert-gas fusion technique is adopted for rapid radiochemical separation after irradiation of the samples. 11 C, 13 N and 15 O are absorbed in ascarite 5A molecular sieve cooled in liquid nitrogen and Hopcalite reagent at a temperature of 650 deg C respectively. Positron Annihilation events of each produced nucleus are counted by a γ - γ coincidence measuring system. B, C and N contents of about several ten parts per billion in silicon are then calculated simultaneously by a relatively quantitative method. Relative standard deviation for C, B and N are less than +-50% respectively. This method is simple, rapid and sensitive for estimating light element content in silicon material. (author)

  6. Certification of a plutonium dioxide reference material for elemental analyses (EC-NRM 210)

    International Nuclear Information System (INIS)

    Le Duigou, Y.

    1990-01-01

    A new EC plutonium reference material is made available in the form of 5g samples of plutonium dioxide powder. Before weighing the material must be calcined at 1 250 0 C for two hours. The plutonium content (880.26 ± 0.44) g.kg -1 has been derived from plutonium measurements performed by three different laboratories each applying a different oxydo-reductive method. The results of the plutonium measurement, the statistical evaluation of the uncertainty of the plutonium content together with information on the impurities present in the material are given in the report

  7. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, G. van; Herrera-Rivera, Z.; Helsper, H.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO 2 content and the

  8. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, van M.E.M.; Herrera-Rivera, Z.; Helsper, J.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the

  9. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  10. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    Science.gov (United States)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  11. Advanced, Non-Toxic, Anti-Corrosion, Anti-Fouling and Foul-Release Coatings Based on Covalently Attached Monolayers, Multilayers and Polymers

    National Research Council Canada - National Science Library

    McCarthy, Thomas J

    2007-01-01

    This report describes 7 publications that led from this grant: Buried Interface Modification Using Supercritical Carbon Dioxide, Controlled Growth of Silicon Dioxide from "Nanoholes" in Silicon-Supported Tris(trimethylsiloxy...

  12. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Science.gov (United States)

    Shibuya, Keisuke; Sawa, Akihito

    2015-10-01

    We systematically examined the effects of the substrate temperature (TS) and the oxygen pressure (PO2) on the structural and optical properties polycrystalline V O2 films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal-insulator transition (MIT) temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  13. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Directory of Open Access Journals (Sweden)

    Keisuke Shibuya

    2015-10-01

    Full Text Available We systematically examined the effects of the substrate temperature (TS and the oxygen pressure (PO2 on the structural and optical properties polycrystalline V O2 films grown directly on Si(100 substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  14. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation

    Science.gov (United States)

    He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu

    2018-05-01

    The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.

  15. Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jan; Kavan, Ladislav; Zukalová, Markéta; Janda, Pavel; Jirkovský, Jaromír; Vlčková Živcová, Zuzana; Poruba, A.; Bedu, M.; Döbbelin, M.; Tena-Zaera, R.

    2013-01-01

    Roč. 28, č. 3 (2013), s. 385-393 ISSN 0884-2914 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR(CZ) GAP108/12/0814 Grant - others:OpenAIRE(XE) EC 7th FP project SANS, NMP-246124; Open AIRE(XE) EC 7th FP projekt ORION, NMP-229036 Institutional support: RVO:61388955 Keywords : titanium dioxide * thin films * silicon Subject RIV: CG - Electrochemistry Impact factor: 1.815, year: 2013

  16. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  17. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Karakaya, Ahmet; Ozilgen, Mustafa

    2011-01-01

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO 2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  18. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  19. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  20. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    P. Zacchi

    2006-03-01

    Full Text Available Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.

  1. Silicon effect on the composition and structure of nanocalcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Tomoaia, Gheorghe [Orthophedics and Traumatology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Traian Mosoiu Str., Cluj-Napoca 400132 (Romania); Mocanu, Aurora [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania); Vida-Simiti, Ioan; Jumate, Nicolae [Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Bd., Cluj-Napoca 400641 (Romania); Bobos, Liviu-Dorel [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania); Soritau, Olga [Oncology Institute of Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca (Romania); Tomoaia-Cotisel, Maria, E-mail: mtcotisel.ubbcluj@yahoo.ro [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania)

    2014-04-01

    Nanostructured calcium phosphates, such as nanohydroxyapatite (HAP) and HAP with silicon content (HAP-Si) of 0.47 wt.% (1% SiO{sub 2}), 2.34 wt.% (5% SiO{sub 2}) and 4.67 wt.% (10% SiO{sub 2}) in the final product, were synthesized by aqueous precipitation, freeze dried and then calcined at 650, 950 and 1150 °C. The obtained materials were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging. From the analysis of the XRD patterns, the HAP and β-tricalcium phosphate (β-TCP) phases were identified and their amounts in the samples were estimated. The size of HAP and β-TCP crystallites was estimated to be in the nanocrystalline domain. FTIR spectra showed the presence of characteristic vibrations for P–O, H–O and Si–O groups and their modification with Si content and calcination temperature. TEM, SEM and AFM images also revealed the morphology of the particles and of their aggregates. These materials have been used to manufacture scaffolds which were tested for their influence on adhesion and proliferation of cells, in human osteoblast culture, considering their further use in bone reconstruction. It was found that an appropriate addition of silicon in nanocalcium phosphate scaffolds leads to an enhanced adhesion and proliferation of cells in osteoblasts in vitro. - Highlights: • Nanostructured calcium phosphates with different silicon contents were synthesized. • Scaffolds made from hydroxyapatites with Si were used in human osteoblast cultures. • All scaffolds proved to be biocompatible to human osteoblasts in vitro. • Cell adhesion and proliferation were improved for scaffolds with 0.47 and 2.34% Si.

  2. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Directory of Open Access Journals (Sweden)

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  3. Production of technical silicon and silicon carbide from rice-husk

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2014-10-01

    Full Text Available In the article there are studied physical and chemical properties of silicon-carbonic raw material – rice-husk, thermophysical characteristics of the process of rice-husk pyrolysis in nonreactive and oxidizing environment; structure and phase composition of products of the rice-husk pyrolysis in interval of temperatures 150 – 850 °С and high temperature pyrolysis in interval of temperatures 900 – 1 500 °С. There are defined the silicon-carbon production conditions, which meet the requirements applicable to charging materials at production of technical silicon and silicon carbide.

  4. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  5. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    Science.gov (United States)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  6. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  7. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    Science.gov (United States)

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  9. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  10. Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1997-02-01

    A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

  11. Reliability assessment of ultra-thin HfO{sub 2} films deposited on silicon wafer

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Nano-mechanical properties on annealed ultra-thin HfO{sub 2} film are studied. Black-Right-Pointing-Pointer By AFM analysis, hardness of the crystallized HfO{sub 2} film significantly increases. Black-Right-Pointing-Pointer By nano-indention, the film hardness increases with less contact stiffness. Black-Right-Pointing-Pointer Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO{sub 2}) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO{sub 2} films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO{sub 2} films deposited on silicon wafers (HfO{sub 2}/SiO{sub 2}/Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO{sub 2} (nominal thickness Almost-Equal-To 10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO{sub 2} phases for the atomic layer deposited HfO{sub 2}. The HfSi{sub x}O{sub y} complex formed at the interface between HfO{sub 2} and SiO{sub 2}/Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO{sub 2} film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically

  12. Characterization of amorphous silicon films by Rutherford backscattering spectrometry. [1. 5-MeV Ho/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, K; Imura, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Dept. of Electrical Engineering; Satou, M [Government Industrial Research Inst., Osaka, Ikeda (Japan); Fujimoto, F [Tokyo Univ. (Japan). Coll. of General Education; Hamakawa, Y [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science; Minomura, S [Tokyo Univ. (Japan). Inst. for Solid State Physics; Tanaka, K [Electrotechnical Lab., Tanashi, Tokyo (Japan)

    1980-01-01

    Rutherford backscattering spectrometry (RBS) was applied to the characterization of amorphous silicon films prepared by glow discharge in silane, tetrode- and diode-sputterings of silicon target in ambient argon or hydrogen diluted by argon. This method was able to detect at least 5 at.% hydrogen atoms in amorphous silicon through the change of stopping power. Hydrogen content in films made by glow discharge at the substrate temperature 25/sup 0/C to 300/sup 0/C and at 2 torr of silane gas varied from 50% to 20%. A strong trend was found for oxygen to dissolve into films: Films produced by diode sputtering in argon gas with higher pressure than 3 x 10/sup -2/ torr absorbed oxygen. The potential and fitness of the RBS method for the characterization of amorphous silicon films are emphasized and demonstrated.

  13. Nanoplasmonic solution for nonlinear optics

    DEFF Research Database (Denmark)

    Bache, Morten; Lavrinenko, Andrei; Lysenko, Oleg

    2014-01-01

    for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides...... and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication...... of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films...

  14. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  15. Release of low molecular weight silicones and platinum from silicone breast implants.

    Science.gov (United States)

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  16. A Comparative Analysis of Nutrients and Mineral Elements Content ...

    African Journals Online (AJOL)

    crude protein (Cp) ad crude fibre (Cf) content than A. gayanus. The high Cp .... protein. This gives an indication of relatively high quality of this grass species as livestock feed than its counterpart. Proteins play an important role in Carbon- dioxide fixation during .... Ruminant Nutrition, 1st edition, Macmillan Press. Ltd, London ...

  17. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Rull, Jordi [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Nonglaton, Guillaume, E-mail: guillaume.nonglaton@cea.fr [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Costa, Guillaume; Fontelaye, Caroline [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Marchi-Delapierre, Caroline; Ménage, Stéphane [Université Grenoble Alpes, Grenoble F38000 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Marchand, Gilles [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France)

    2015-11-01

    Graphical abstract: - Highlights: • First example of grafting of 3,4-epoxybutyltrimethoxysilane (EBTMOS) onto silicon oxide by supercritical fluid deposition. • Extraordinary efficiency of the supercritical fluid deposition for the grafting of the EBTMOS compared with the conventional solution or vapor phase methodologies. • Demonstration of the efficiency of this functionalization process for the immobilization of amino-modified oligonucleotides. - Abstract: The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO{sub 2}) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric

  18. Nuclear energy - Uranium dioxide powder and sintered pellets - Determination of oxygen/uranium atomic ratio by the amperometric method. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies an analytical method for the determination of the oxygen/uranium atomic ratio in uranium dioxide powder and sintered pellets. The method is applicable to reactor grade samples of hyper-stoichiometric uranium dioxide powder and pellets. The presence of reducing agents or residual organic additives invalidates the procedure. The test sample is dissolved in orthophosphoric acid, which does not oxidize the uranium(IV) from UO 2 molecules. Thus, the uranium(VI) that is present in the dissolved solution is from UO 3 and/or U 3 O 8 molecules only, and is proportional to the excess oxygen in these molecules. The uranium(VI) content of the solution is determined by titration with a previously standardized solution of ammonium iron(II) sulfate hexahydrate in orthophosphoric acid. The end-point of the titration is determined amperometrically using a pair of polarized platinum electrodes. The oxygen/uranium ratio is calculated from the uranium(VI) content. A portion, weighing about 1 g, of the test sample is dissolved in orthophosphoric acid. The dissolution is performed in an atmosphere of nitrogen or carbon dioxide when sintered material is being analysed. When highly sintered material is being analysed, the dissolution is performed at a higher temperature in purified phosphoric acid from which the water has been partly removed. The cooled solution is titrated with an orthophosphoric acid solution of ammonium iron(II) sulfate, which has previously been standardized against potassium dichromate. The end-point of the titration is detected by the sudden increase of current between a pair of polarized platinum electrodes on the addition of an excess of ammonium iron(II) sulfate solution. The paper provides information about scope, principle, reactions, reagents, apparatus, preparation of test sample, procedure (uranium dioxide powder, sintered pellets of uranium dioxide, highly sintered pellets of uranium dioxide and determination

  19. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  20. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  1. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  2. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  3. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    Science.gov (United States)

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  4. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  5. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  6. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  7. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  8. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  9. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  10. Investigations of the interactions of silicon dioxide with copper-aluminum alloy used as an adhesion promoter and diffusion barrier for copper metallization on silicon dioxide

    Science.gov (United States)

    Wang, Pei-I.

    This study explores the concept of alloying copper with Al in order to impart properties that will make Cu useful for interconnect applications in ICs. The advantages of using Al as the alloying element lies in the thermodynamically favored interaction of Al with the underlying dielectric and with the O 2 at the surface of pure Cu thus achieving both the adhesion and passivation. This approach has been shown to generate an ultra thin interfacial layer, which acts as an adhesion promoter and diffusion barrier against Cu migration in the dielectric, without significantly affecting the resistivity of Cu. An emphasis has been placed to examine (a) the interaction of Al (from the Cu-Al alloy) with SiO2 at the alloy-SiO2 interface, (b) the Al migration to surface of the alloy or pure Cu if used, and (c) the impact of such migration on the bulk Cu film and passivation on the surface. In this work, sputtered Cu-Al (1--5 at%), with a resistivity in the range of 5--6 muO-cm, were studied as diffusion barriers/adhesion promoters between SiO2 and pure Cu. The films were examined in as-deposited state and after anneal at different temperatures for varying times and in different ambients by the use of surface and interface characterization techniques, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectroscopy (SIMS), and resistance measurements together with metal-oxide-silicon (MOS) capacitor studies. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were also used to elucidate the structure. The results elucidate the mechanisms of Al movement and interaction with the interface SiO2 and O2 on surface and indicate that films of Cu doped with Al do act as a suitable diffusion barrier and adhesion promoter between SiO2 and Cu.

  11. Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays seedlings

    Directory of Open Access Journals (Sweden)

    Assieh Behdad

    2015-12-01

    Full Text Available Salinity reduced the efficiency of agricultural production like maize as one of the most important cereals for food and oil for humans. Silicon is the second most abundant element in the soil and alleviates the biotic and abiotic stresses in plants. The aim of this study is evaluate the effect of silicon and nanosilicon on improvement of salt stress in maize (Zea mays. For this propose, the interaction between the effects of different levels of salinity (0 and 100 mM, silicon and nanosilicon (50, 100 and 150 mg /mL was studied in completely randomized block design with factorial experiments and with three replications. The results showed that salinity significantly decreased root and shoot growth, amount of chlorophyll and carotenoid pigments, protein and potassium contents, compared to control. Treating plants with silicon and nanosilicon caused reduction of salinity effects and increase above indices. Salinity stress also caused a significant increase in proline, anthocyanin and soluble carbohydrate contents, lipid peroxidation, and catalase activity and treatment with silicon and nanosilicon alleviates effects of salt stress and reduced the amount of above indices. 150 mg/mL of nanosilicon showed the maximum effect on diminishing negative effects of salt stress on all examined parameters. So, the use of this element is proposed as alleviator of salt stress on maize.

  12. Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI

    Directory of Open Access Journals (Sweden)

    John E. Cunningham

    2012-04-01

    Full Text Available We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics.

  13. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  14. Measurements of Carbon Dioxide, Methane, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment

    Science.gov (United States)

    Yasuhara, Scott; Forgeron, Jeff; Rella, Chris; Franz, Patrick; Jacobson, Gloria; Chiao, Sen; Saad, Nabil

    2013-04-01

    The ability to quantify sources and sinks of carbon dioxide and methane on the urban scale is essential for understanding the atmospheric drivers to global climate change. In the 'top-down' approach, overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to 'bottom-up' predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. This approach, which has proven to be effective at continental scales, becomes challenging to implement at urban scales, due to poorly understood atmospheric transport models and high variability of the emissions sources in space (e.g., factories, highways, green spaces) and time (rush hours, factory shifts and shutdowns, and diurnal and seasonal variation in residential energy use). New measurement and analysis techniques are required to make sense of the carbon dioxide signal in cities. Here we present detailed, high spatial- and temporal- resolution greenhouse gas measurements made by multiple Picarro-CRDS analyzers in Silicon Valley in California. Real-time carbon dioxide data from a 20-month period are combined with real-time carbon monoxide, methane, and acetylene to partition the observed carbon dioxide concentrations between different anthropogenic sectors (e.g., transport, residential) and biogenic sources. Real-time wind rose data are also combined with real-time methane data to help identify the direction of local emissions of methane. High resolution WRF models are also included to better understand the dynamics of the boundary layer. The ratio between carbon dioxide and carbon monoxide is shown to vary over more than a factor of two from season to season or even from day to night, indicating rapid but frequent shifts in the balance between different carbon dioxide sources. Additional information is given by acetylene, a fossil fuel

  15. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  16. Carbon dioxide: Global warning for nephrologists.

    Science.gov (United States)

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  17. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  18. Influence of carbon dioxide on the fluid properties and calculation of initial oil in place of the Sandrovac field

    Energy Technology Data Exchange (ETDEWEB)

    Krizmanic, K; Peric, M

    1973-01-01

    The aim of this study is to acquaint the reader with the essential physical and production properties of the Sandrovac oil field. Extreme containment of carbon dioxide in fluids was encountered. Ranging in some places to 80%, this greatly influences physical properties of saturating fluids, and requires the study of the closest association of the content of carbon dioxide and physical parameters of fluids. At the same time, it enables the application of a qualitatively new and very efficient method of increasing the fluid recovery method of oil displacement by carbon dioxide. Principles and methods of calculating and processing the PVT data, capillary pressure, fluid saturations, relative permeabilities, and material balance calculations for tectonic blocks and hydrodynamic units, are given. (11 refs.)

  19. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  20. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment