WorldWideScience

Sample records for silicate solid phases

  1. Solid-phase extraction (SPE) of Iron using Lanthanum Silicate ion exchange

    International Nuclear Information System (INIS)

    Kiarostami, V.; Husain, W.

    2002-01-01

    Solid-phase extraction (SPE) is gaining wide use as an effective and speedy technique which reduces solvent usage, disposal costs and extraction time. The analyte is adsorbed from solution onto a solid adsorbent, which is followed by elution of the analyte with a solvent appropriate for instrumental analysis. However, there is an increasing need for new selective adsorbents to expand the area of this technique. Lanthanum silicate ion exchanger, which shows unusual selectivity elements and in this study, it was employed to develop a SPE method for iron ion. Special experiments such as determination of distribution coefficient for iron ion in different solvent systems have been determined

  2. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  3. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  4. Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C

    International Nuclear Information System (INIS)

    Weres, O.; Tsao, L.

    1988-01-01

    Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams

  5. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    Science.gov (United States)

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.; Cook, Stuart N.; Scanlon, David O.; Fearn, Sarah; Cabana, Jordi; Greaves, Colin; Kilner, John A.; Skinner, Stephen J.

    2014-01-01

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  7. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  8. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  9. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  10. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  11. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  12. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  13. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  14. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    , but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...... present in the solid. Some minerals of siliceous ooze, such as opal, have hydrogen in their structures which influences the measured hydrogen index (HI). The neutron tool obtains the combined signal of the HI of the solid phase and of the water that occupies the true porosity. The HI is equal to true...... to interpret lithology and the unusual physical properties of the studied intervals. The integration of all these data revealed that the studied siliceous ooze is a mixture of opal and non-opal (shale). Our results proved to be reasonably consistent. The studied intervals apparently do not contain hydrocarbons....

  15. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  16. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  17. Dispersion of Silicate in Tricalcium Phosphate Elucidated by Solid-State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rewal, A.; Wei, X.; Akinc, M.; Schmidt-Rohr, K.

    2008-03-12

    The dispersion of silicate in tricalcium phosphate, a resorbable bioceramics for bone replacement, has been investigated by various solid-state nuclear magnetic resonance (NMR) methods. In samples prepared with 5 and 10 mol% of both {sup 29}SiO{sub 2} and ZnO, three types of silicate have been detected: (i) SiO{sub 4}{sup 4-} (Q{sub 0} sites) with long longitudinal (T{sub 1,Si}) relaxation times ({approx} 10,000 s), which substitute for {approx}1% of PO{sub 4}{sup 3-}; (ii) silicate nanoinclusions containing Q{sub 2}, Q{sub 1}, and Q{sub 0} sites with T{sub 1,Si} 100 s, which account for most of the silicon; and (iii) crystalline Q{sub 4} (SiO{sub 2}) with long T{sub 1,Si}. Sensitivity was enhanced >100-fold by {sup 29}Si enrichment and refocused detection. The inclusions in both samples have a diameter of {approx}8 nm, as proved by {sup 29}Si{l_brace}{sup 31}P{r_brace} REDOR dephasing on a 30-ms time scale, which was simulated using a multispin approach specifically suited for nanoparticles. {sup 29}Si CODEX NMR with 30-s {sup 29}Si spin diffusion confirms that an inclusion contains >10 Si (consistent with the REDOR result of >100 Si per inclusion). Overlapping signals of silicate Q{sub 2}, Q{sub 1}, and Q{sub 0} sites were spectrally edited based on their J-couplings, using double-quantum filtering. The large inhomogeneous broadening of the Q{sub 2}, Q{sub 1}, and Q{sub 0} {sup 29}Si subspectra indicates that the nanoinclusions are amorphous.

  18. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  19. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  20. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  1. [Determination of patulin in fruits and jam by solid phase extraction-ultra performance liquid chromatography].

    Science.gov (United States)

    Lü, Weichao; Shen, Shuchang; Wang, Chao

    2017-11-08

    With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.

  2. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  3. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  4. Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water

    International Nuclear Information System (INIS)

    Takesue, Masafumi; Suino, Atsuko; Hakuta, Yukiya; Hayashi, Hiromichi; Smith, Richard Lee

    2008-01-01

    Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa at reaction times from 1 to 4320 min was studied in the relation to its phase formation mechanism. Appearance of luminescent ZSM from green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation at a reaction time of 2 min. Luminescence appeared at a much lower temperature and at shorter reaction times than the conventional solid-state reaction. Needle-like-shaped α-ZSM was the most stable particle shape and phase in the supercritical water reaction environment and particles formed via two routes: a homogenous nucleation route and a heterogenous route that involves solid-state diffusion and recrystallization. - Graphical abstract: Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa were studied in the relation to its phase formation mechanism. Green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation

  5. Solid Phase Characterization Of Heel Samples From Tank 241-C-110

    International Nuclear Information System (INIS)

    Page, J.S.; Cooke, G.A.; Pestovich, J.A.; Huber, H.J.

    2011-01-01

    During sluicing operations of tank 241-C-110, a significant amount of solids were unable to be retrieved. These solids (often referred to as the tank 'heel') were sampled in 2010 and chemically and mineralogically analyzed in the 222-S Laboratory. Additionally, dissolution tests were performed to identify the amount of undissolvable material after using multiple water contacts. This report covers the solid phase characterization of six samples from these tests using scanning electron microscopy, polarized light microscopy, and X-ray diffraction. The chemical analyses, particle size distribution analysis, and dissolution test results are reported separately. Two of the samples were from composites created from as-received material - Composite A and Composite B. The main phase in these samples was sodium-fluoride-phosphate hydrate (natrophosphate) - in the X-ray diffraction spectra, this phase was the only phase identifiable. Polarized light microscopy showed the presence of minor amounts of gibbsite and other phases. These phases were identified by scanning electron microscopy - energy dispersive X-ray spectroscopy as sodium aluminosilicates, sodium diuranate, and sodium strontium phosphate hydrate (nastrophite) crystals. The natrophosphate crystals in the scanning electron microscopy analysis showed a variety of erosive and dissolution features from perfectly shaped octahedral to well-rounded appearance. Two samples were from water-washed Composites A and B, with no change in mineralogy compared to the as-received samples. This is not surprising, since the water wash had only a short period of water contact with the material as opposed to the water dissolution tests. The last two samples were residual solids from the water dissolution tests. These tests included multiple additions of water at 15 C and 45 C. The samples were sieved to separate a coarser fraction of > 710 μm and a finer fraction of < 710 μm. These two fractions were analyzed separately. The coarser

  6. Physical mineralogy of (Ca,Al)-rich silicate phases of the Earth's mantle. Geodynamic implications

    International Nuclear Information System (INIS)

    Gautron, Laurent

    2008-01-01

    bottom heating of the big domes observed in the cross sections of the mantle obtained by seismic tomography. The possible relation between our results from mineral physics and the volume of 'hot' materials present at the bottom of the mantle, is also discussed. The second silicate phase bearing Ca and Al presented in this thesis is the new high pressure phase named CAS phase of composition CaAl 4 Si 2 O 11 . After many experimental studies performed at high pressure on basaltic crust assemblage, it is now commonly accepted that the CAS phase is one of the main mineral phases present in the oceanic crust (Mid-Ocean Ridge Basalt, MORB) subducted to the lowermost lower mantle. The CAS phase is shown to be one of the last solid residual phases (with Ca-perovskite) when the oceanic crust is partially molten, as expected when this crust reaches the D'' region. Here, we show that the CAS phase bears an iso-symmetrical transition where some silicon atoms adopt a coordination 5, in the trigonal bipyramidal site (2 face-sharing tetrahedra). The implications of such intermediate coordination (between coordinations 4 and 6) is discussed in terms of diffusion processes, diffusion creep deformation, viscosity: it appears that the formation of SiO 5 groups strongly favours the deformation properties of these materials, and then enhances their transport properties. It is clear that the coordination of silicon atoms could have a strong direct effect on the dynamic processes occurring in the deep mantle. With the two studies presented in this thesis, we see that experimental mineral physics can provide essential data for models in geodynamics, thermal behaviour and in seismology. Seismic waves give data about the structure of the deep Earth and the density profile, while experimental geodynamics reproduce the rheological behaviour of the mantle with appropriate fluids and a bottom heating: it is then important to provide complementary data about the Earth materials. The study of the CAS

  7. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  8. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  9. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  10. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  11. Influence of composition of the raw materials on phase formation in solid compounds based on slag and clay minerals

    International Nuclear Information System (INIS)

    Galkin, A.V.; Tolebaev, T.; Omarova, V.I.; Burkitbaev, M.; Blynskiy, A.P.; Bachilova, N.V.; Matsynina, V.I.

    2003-01-01

    Full text: Activation of solidification processes in a compound formed on the basis of slag and clay minerals using sodium hydroxide - the output product from processing the BN-350 sodium coolant it is expedient to form the final product with a phase composition representing (in terms of long term storage) hydro-alumino-silicates incorporating Na-22 and Cs-137 radionuclides, which isomorphly replace other atoms in the crystal lattice sites. Combination of mineral phases, such as alkaline and alkaline-earth hydro-alumino-silicates with zeolite-like structure, providing sorptive properties, and the tobermorite like low-base hydro silicates of calcium defining the physico-mechanical properties of compound is the necessary condition for the compound stability. Investigations of phase formation in the mixtures of Kazakhstan clay, slag materials and alkali have been conducted targeted to control the physico-chemical properties of solid compound. The mixtures of alkali, thermal power plant ashes and clays of various mineralogical genesis (kaolinite, bentonite, Ca-Na-smectite montmorillonite) have been studied. The ashes and phosphorous slag while interacting with alkali are determined to form the non-alkaline hydro-silicates of stavrolite and indianite (anortite) type with free alkali being found in an unbound state. Both alkaline and alkaline-alkaline-earth hydro-silicates of Na 2 Ca 2 Si 2 O 7 H 2 O type are only formed in a compounds containing metallurgical slag. Formation of alkaline hydro-alumino-silicates of NaAlSiO 4 H 2 0 type as well as tomsonite (Na 4 Ca 8 [Al 20S i 20 O 80 ] 24H 2 O) - the zeolite like mineral have been detected in a two-component alkali-clay mixtures. Besides the quantity of tomsonite was determined to be not only dependent on Al 2 O 3 content in clay component but is also defined by stoichiometric composition of the mixture, because zeolite synthesis takes place under conditions of gels co-deposition and high pH value. Maximum quantity of

  12. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging a rapidly evolving state-of-the-art technical base empowered by Phase I NASA SBIR funding, NanoSonic's polymer derived rare earth silicate EBCs will...

  13. Synthesis of silicated hydroxyapatite Ca10(PO4)6-x(SiO4)x(OH)2-x

    International Nuclear Information System (INIS)

    Palard, Mickael; Champion, Eric; Foucaud, Sylvie

    2008-01-01

    The preparation of silicated hydroxyapatite Ca 10 (PO 4 ) 6-x (SiO 4 ) x (OH) 2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by a heat treatment. X-ray diffraction and Rietveld refinement, Fourier transformed IR (FTIR) spectroscopy, elemental analyses, transmission electron microscopy and thermal analyses were used to characterize the samples. The raw materials were composed of a partially silicated and carbonated apatite and a secondary minor phase containing the excess silicon. Single phase silicated hydroxyapatites, with 0≤x≤1, could be synthesized after a thermal treatment of the raw powders above 700 deg. C. The presence of carbonate groups in the raw apatite played an important role in the incorporation of silicates during heating. From the different results, the mechanisms of formation of SiHA are discussed. - Graphical abstract: The preparation of pure silicated hydroxyapatite Ca 10 (PO 4 ) 6-x (SiO 4 ) x (OH) 2-x powders with controlled silicon content was investigated. The synthesis route included a precipitation in aqueous media. It required an additional high temperature solid-state reaction to fully incorporate the silicon into the apatite crystals

  14. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  15. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  16. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  17. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)

    2016-12-01

    The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.

  18. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  19. Heterogeneous condensation of ice mantle around silicate core grain in molecular cloud

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Interstellar water ice grains are observed in the cold and dense regions such as molecular clouds, HII regions and protostellar objects. The water ice is formed from gas phase during the cooling stage of cosmic gas with solid grain surfaces of high temperature silicate minerals. It is a question whether the ice is formed through the homogeneous condensation process (as the ice alone) or the heterogeneous one (as the ice around the pre-existing high temperature mineral grains). (author)

  20. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  1. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  2. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  3. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  4. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    Science.gov (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  5. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  6. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  7. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    Science.gov (United States)

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (penamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (penamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  8. Density-functional theory for fluid-solid and solid-solid phase transitions.

    Science.gov (United States)

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/nfcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  9. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  10. Solid phase assays

    International Nuclear Information System (INIS)

    Reese, M.G.; Johnson, L.R.; Ransom, D.K.

    1980-01-01

    In a solid phase assay for quantitative determination of biological and other analytes, a sample such as serum is contacted with a receptor for the analyte being assayed, the receptor being supported on a solid support. No tracer for the analyte is added to the sample before contacting with the receptor; instead the tracer is contacted with the receptor after unbound analyte has been removed from the receptor. The assay can be otherwise performed in a conventional manner but can give greater sensitivity. (author)

  11. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    Science.gov (United States)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  12. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    for the C-S-H phase formed during hydration. It will be demonstrated that Al3+ and flouride guest-ions in the anhydrous and hydrated calcium silicates can be studied in detail by 27Al and 19F MAS NMR, thereby providing information on the local structure and the mechanisms for incorporation of these ions......Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first......- and second-coordination spheres of the spin nucleus under investigation while it is less sensitive to long-range order. Thus, crystalline as well as amorphous phases can be detected in a quantitative manner by solid-state NMR. In particular the structure of the calcium-silicate-hydrate (C-S-H) phase have...

  13. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    DEFF Research Database (Denmark)

    Nielsen, John; Lyngsø, Lars Ole

    1996-01-01

    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...

  14. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    Science.gov (United States)

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  15. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  16. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  17. Ab-initio structure determination of novel strontium-containing layered silicate AES-18 synthesized using mechanochemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Takuji [AIST Tohoku, Sendai (Japan). Research Center for Compact Chemical System; Ideta, Chiaki; Yamamoto, Katsutoshi [Kitakyushu Univ. (Japan). Faculty of Environmental Engineering

    2013-07-01

    A new strontium-containing layered silicate, alkaline earth-containing silicate (AES)-18 [chemical composition: Si{sub 16}O{sub 24}(OH){sub 16} . {Sr(OH)_2}{sub 8} . (KOH){sub 2}], was synthesized utilizing a mechanochemical reaction in which an admixture of strontium hydroxide, which unfavorably precipitates in conventional syntheses, and a fumed silica (Aerosil) was allowed to react in the solid phase. The crystal structure of AES-18 was elucidated by the charge-flipping method using powder X-ray diffraction data, and the obtained structure was refined by a combination with the Rietveld method and the maximum entropy method (MEM). The structure analyses showed a tetragonal symmetry with a = 0.912738(3) nm, c = 1.628120(8) nm, and the space group P4{sub 2}/mnc. Two silicate layers composed of Q{sup 3} local structure [(-SiO){sub 3}Si-OH], 7-coordinated Sr{sup 2+} cations, and K{sup +} cations were included in a unit cell, and a Sr{sub 4}(OH){sub 17} cluster was formed between adjacent silicate layers. The framework topology of AES-18 containing 4- and 8-Si-membered rings was similar to that of paracelsian.

  18. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  19. Solid phase transformations

    CERN Document Server

    Čermák, J

    2008-01-01

    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  20. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  1. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  2. Solid-phase spectrophotometry

    International Nuclear Information System (INIS)

    Brykina, G.D.; Marchenko, D.Yu.; Shpigun, O.A.

    1995-01-01

    Solid-phase spectrophotometry (SPS), which is based on the direct measurement of light absorption of an ion exchanger containing a substance of interest, was reviewed. Since 1976, it has been known that aborbance of an ion exchanger is directly proportional to the concentration of a particular ion in solution. A similar dependence can also be followed for other sorbents, as well as for foams, membranes, films, etc., which do not exhibit ion exchange properties. One can use absorption, diffuse reflection, and luminescence spectra parameters as an analytical signal. Thus, SPS of ion exchangers is among the analytical techniques that combine the sorption concentration and surface determination of the substance of interest. This review summarizes the advancements in SPS over the last six years and demonstrates the prospects for its development. Special attention is paid to experimental methods for measuring solid-phase absorption and to the basic procedures of sample preparation, including new ones. These two facets are of great importance for obtaining precise results and extending the capabilities of SPS

  3. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  4. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  5. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  6. Mineral CO2 sequestration in basalts and ultra-basic rocks: impact of secondary silicated phases on the carbonation process

    International Nuclear Information System (INIS)

    Sissmann, Olivier

    2013-01-01

    The formation of carbonates constitutes a stable option for carbon dioxide (CO 2 ) geological sequestration, and is prone to play a significant role in reducing emissions of anthropic origin. However, our comprehension of the carbonation mechanism, as well as of the kinetics limitations encountered during this chemical reaction, remains poorly developed. Though there is a large number of studies focusing on the dissolution kinetics of basic silicates and on the precipitation of carbonates, few have inquired about the impact that the formation of non-carbonated secondary phases can have on these reaction's kinetics. It is the approach chosen here, as only solid knowledge of the global carbonation mechanism can make this process predictive and efficient. Experimental data on dissolution and carbonation have therefore been determined in batch reactors, on relevant minerals and rocks. Firstly, we studied the carbonation of olivine (a major phase within peridotites and minor within basalts) at 90 deg. C and under pCO 2 of 280 bars. The dissolution of San Carlos olivine (Mg 1.76 Fe 0.24 SiO 4 ) is slowed down by the formation of a surface silica gel, when the fluid reaches equilibrium with amorphous silica. The transport of species to the reactive medium becomes the limiting step of the process, slowing down the dissolution process of San Carlos olivine by 5 orders of magnitude. However, this passivation doesn't occur during the alteration of Ca-olivine (Ca 2 SiO 4 ), though a surface silica layer does form. This comparison suggests that it isn't the structure of the silicate but its chemical composition, which controls the transport properties through the interfacial layer. The second part explores the effects of organic ligands and of temperature variations on the formation of those phases. The addition of citrate at 90 deg. C increases the kinetics of San Carlos olivine by one order of magnitude, and allows the release of enough Mg in the aqueous medium to form

  7. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  8. The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions

    Science.gov (United States)

    O'Neill, H. S.

    2006-12-01

    accuracy including possible systematic errors of 0.5 kJ/mol (1 st. dev.). Any asymmetry is unambiguously constrained to be very small. These results were combined with experimental data (all at or above 900ºC), for partitioning of Mg and Fe between olivine and one of ilmenite (Pownceby and O'Neill, in prep.), Ti-, Al- or Cr-spinel (O'Neill, unpublished) and pyroxenes, garnet, and various high-pressure phases (literature). Internal consistency can be checked using other available partitioning data between pairs of these phases (i.e., without olivine). Except for some of the high-pressure phases, the ferromagnesian solutions are symmetrical with W Mg-Fe decreasing with the difference in the volumes of the end-members, which in turn depends on the atomic (Mg+Fe)/O ratio. This suggests that mixing in binary amphiboles, micas and other complex ferromagnesian silicates should be nearly ideal. The discrepancies shown by the high-pressure phases may be due to Fe3+ substitutions. As a working hypothesis, it is proposed that solid solutions between cations of the same charge and roughly similar size have simple thermodynamic mixing properties, with little asymmetry, modest excess entropies and excess enthalpies proportional to the volume difference of the end-members. Order-disorder phenomena have surprisingly little effect in the high temperature regime for which experimental data are available. Refs: [1] Davies and Navrotsky, J Sol State Chem 46, 1-22, 1983. [2] O'Neill et al., CMP 146, 308-325, 2003.

  9. Modeling the Onset of Phase Separation in CaO-SiO2-CaCl2 Chlorine-Containing Silicate Glasses.

    Science.gov (United States)

    Swansbury, Laura A; Mountjoy, Gavin; Chen, Xiaojing; Karpukhina, Natalia; Hill, Robert

    2017-06-08

    The addition of chlorine into a bioactive glass composition is expected to reduce its abrasiveness and increase its bioactivity, which is important for dental applications such as toothpastes. There is a lack of information and understanding regarding the structural role of chlorine in chlorine-containing bioactive silicate glasses. This has prompted classical core-shell model molecular dynamics simulations of (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses to be performed, where x ranges from x = 0.0 to 43.1 mol % CaCl 2 . These ternary glasses are advantageous for a fundamental study because they do not have additional network formers (e.g., phosphorus pentoxide) or modifiers (e.g., sodium) typically found in bioactive glass compositions. The (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses were seen to become phase-separated around the x = 16.1 mol % CaCl 2 composition, and chlorine predominantly coordinated with calcium. These findings provide a solid foundation for further computational modeling work on more complex chlorine-containing bioactive glass compositions.

  10. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  11. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  12. Effect of solids, caloric content on dual-phase gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Maegdenbergh, V.; Urbain, J.L.; Siegel, J.A.; Mortelmans, L.; De Roo, M. (Univ. Hospital Gasthuisberg, Leuven (Belgium) Temple Univ. Hospital, Philadelphia, PA (USA))

    1990-03-01

    The dual-phase gastric emptying technique is routinely employed to determine the differential emptying of solids and liquids in a wide spectrum of gastrointestinal diseases. Composition, acidity, volume, caloric density, physical form and viscosity of the test means have been shown to be important determinants for the quantitative evaluation of gastric emptying. In this study, the authors have evaluated the effect of increasing the caloric content of the solid portion of a physiologic test mean on both solid and liquid emptying kinetics in health male volunteers. They observed that increasing solid caloric content delayed emptying of both solids and liquids. For the solid phase, the delay was accounted for by a longer lag phase and decrease in emptying rate; for liquids a longer emptying rate was also obtained. They conclude that modification of the caloric content of the solid portion of a meal not only affects the emptying of the solid phase but also alters the emptying of the liquid component of the meal.

  13. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  14. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  15. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  16. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  17. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  18. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  19. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  20. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  1. Solid Phase Equilibrium Relations in the CaO-SiO2-Nb2O5-La2O3 System at 1273 K

    Science.gov (United States)

    Qiu, Jiyu; Liu, Chengjun

    2018-02-01

    Silicate slag system with additions Nb and RE formed in the utilization of REE-Nb-Fe ore deposit resources in China has industrial uses as a metallurgical slag system. The lack of a phase diagram, theoretical, and thermodynamic information for the multi-component system restrict the comprehensive utilization process. In the current work, solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 quaternary system at 1273 K (1000 °C) were investigated experimentally by the high-temperature equilibrium experiment followed by X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer. Six spatial independent tetrahedron fields in the CaO-SiO2-Nb2O5-La2O3 system phase diagram were determined by the Gibbs Phase Rule. The current work combines the mass fraction of equilibrium phase and corresponding geometric relation. A determinant method was deduced to calculate the mass fraction of equilibrium phase in quaternary system according to the Mass Conservation Law, the Gibbs Phase Rule, the Lever's Rule, and the Cramer Law.

  2. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. (Argonne National Lab., IL (United States)); Pelton, A.; Eriksson, G. (Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering)

    1992-01-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  3. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1992-07-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  4. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  5. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  6. Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.

  7. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  8. Obtaining calcium silicates by using solid residues as precursors. Influence of water in the process of mixing reagents; Obtencin de silicatos de calcio empleando como precursores residuos solidos. Influencia del mezclado de reactivos en fase seca o fase humeda

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sese, M.; Eliche-Quesada, D.; Corpas-Iglesias, F. A.

    2011-07-01

    The suitability of re-using residues marble, remaining from cutting marble, as a source of calcium-oxide, as well as the resultant ashes from the combustion of the wastes generated in the process of manufacturing boards from derivates of wood, as a source of silica, as raw material for the production of calcium silicate products has been determined. First of all, the influence of water has been studied in the initial phase of mixing residues. Marble and ashes have been mixed in molar relation CaO:SiO{sub 2} of 1:1 using two different ways: using a planetary ball mill (while in solid state) or agitating at 90 degree centigrade (2 h) using a 60 wt% of water (while in humid state). Later, both mixtures were sintered at 1100 degree centigrade (24 h). In order to use the obtained calcium-silicates as ceramic insulating thermal materials, the samples were compressed at 15 Tm obtaining bricks from which the technological properties have been studied. The ceramic materials obtained from mixing the residues in dry phase, as well as those obtained in the wet phase, can be used as thermal insulators, showing values of conductivity of 0.18 and 0.12 w/m{sup 2}K, with an elevated resistance to compressive strength. (Author) 14 refs.

  9. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  10. Role of nanoparticles in analytical solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.

    2013-01-01

    Solid phase microextraction (SPME) is commonly used to measure the free concentration of fairly hydrophobic substances in aqueous media on the basis of their partitioning between sample solution and a solid phase. Here we study the role of nanoparticles that may sorb the analyte in the sample

  11. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  12. Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis

    International Nuclear Information System (INIS)

    Annenkov, Vadim V.; Pal'shin, Viktor A.; Verkhozina, Olga N.; Larina, Lyudmila I.; Danilovtseva, Elena N.

    2015-01-01

    A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.

  13. Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, Vadim V., E-mail: annenkov@lin.irk.ru [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Pal' shin, Viktor A.; Verkhozina, Olga N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Larina, Lyudmila I. [A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Danilovtseva, Elena N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation)

    2015-09-01

    A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.

  14. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  15. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  16. Solid-phase reductive amination for glycomic analysis.

    Science.gov (United States)

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  17. Non-Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization.

    Science.gov (United States)

    Berkson, Zachariah J; Messinger, Robert J; Na, Kyungsu; Seo, Yongbeom; Ryoo, Ryong; Chmelka, Bradley F

    2017-05-02

    Mesostructured MFI zeolite nanosheets are established to crystallize non-topotactically through a nanolayered silicate intermediate during hydrothermal synthesis. Solid-state 2D NMR analyses, with sensitivity enhanced by dynamic nuclear polarization (DNP), provide direct evidence of shared covalent 29 Si-O- 29 Si bonds between intermediate nanolayered silicate moieties and the crystallizing MFI zeolite nanosheet framework. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study on confirmation of Solid-Meal Lag Phase of Gastric Emptying

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Kyoung Soo; Kim, Chang Guhn; Juhng, Seon Kwan; Won, Jong Jin; Nah, Yong Ho

    1991-01-01

    The purpose of this study was to examine the existence of a lag phase of gastric emptying of solid meals. We studied solid phase gastric emptying in 26 normal subject using continuous data acquisition for 30 minutes. Each ingested a 300 g meal containing 99m Tc-labeled scrambled egg (solid 150 g, milk 150 ml). Lag phase was determined by 1) inspection of the gastric emptying curve 2) time to a 2% decrease in stomach activity 3) the time of visual appearance of duodenal activity on computer image. We concluded that solid meal lag phase exist.

  19. Study on confirmation of Solid-Meal Lag Phase of Gastric Emptying

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Kyoung Soo; Kim, Chang Guhn; Juhng, Seon Kwan; Won, Jong Jin; Nah, Yong Ho [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    1991-07-15

    The purpose of this study was to examine the existence of a lag phase of gastric emptying of solid meals. We studied solid phase gastric emptying in 26 normal subject using continuous data acquisition for 30 minutes. Each ingested a 300 g meal containing {sup 99m}Tc-labeled scrambled egg (solid 150 g, milk 150 ml). Lag phase was determined by 1) inspection of the gastric emptying curve 2) time to a 2% decrease in stomach activity 3) the time of visual appearance of duodenal activity on computer image. We concluded that solid meal lag phase exist.

  20. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate.

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M

    2017-09-08

    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

  1. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  2. Amino-modified diamond as a durable stationary phase for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Yang, Li; Lee, Milton L; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2008-08-15

    We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0-14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.

  3. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  4. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  5. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  6. N-Acyliminium Intermediates in Solid-Phase Synthesis

    DEFF Research Database (Denmark)

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.

    2010-01-01

    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  7. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Science.gov (United States)

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  8. Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm

    International Nuclear Information System (INIS)

    Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; Francis, Arokiasamy J.

    2009-01-01

    Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone

  9. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  10. Solid phase extraction membrane

    Science.gov (United States)

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  11. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  12. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  13. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  14. Linkage of biomolecules to solid phases for immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Topics covered by this lecture include a brief review of the principal methods of linkage of biomolecules to solid phase matrices. Copies of the key self explanatory slides are presented as figures together with reprints of two publications by the author dealing with a preferred chemistry for the covalent linkage of antibodies to hydroxyl and amino functional groups and the effects of changes in solid phase matrix and antibody coupling chemistry on the performance of a typical excess reagent immunoassay for thyroid stimulating hormone

  15. Solid solubility of MgO in the calcium silicates of portland clinker. The effect of CaF2

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1992-03-01

    Full Text Available The solid solubility of MgO in the calcium silicates of portland clinker has been determined by XRD and XDS. The influence that the presence of CaF2 has on said solubility has also been verified. The solid solution limit of MgO in C3S at 1275 ºC lies at about 1.0% wt, where the triclinic form II stabilizes. The presence of CaF2 does not alter the maximum value of the MgO solubilized in that silicate, although there does take place the stabilization of the triclinic polymorph II at lower MgO contents (between 0.3 - 0.6% wt. The maximum amount of solubilized MgO in βC2 at 1.050 ºC lies around 0.5% wt. This value does not change by the presence of CaF2.Se ha determinado por DRX y EDX la solubilidad sólida del MgO en los silicatos cálcicos del clínker portland. Se ha comprobado, así mismo la influencia que sobre dicha solubilidad tiene la presencia de CaF2. El límite de disolución sólida del MgO en el C3S a 1.275º C se sitúa alrededor del 1,0% en peso, estabilizándose la forma triclínica II. La presencia de CaF2 no altera el valor máximo de MgO solubilizado en este silicato, aunque si se produce la estabilización del polimorfo triclínico II a contenidos menores de MgO (entre 0,3 – 0,6% en peso. La cantidad máxima de MgO solubilizado en e/ βC2S a 1.050 ºC se sitúa en torno al 0,5% en peso. Este valor no se ve modificado por la presencia de CaF2.

  16. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers

    International Nuclear Information System (INIS)

    Lasheras-Zubiate, M.; Navarro-Blasco, I.; Fernández, J.M.; Álvarez, J.I.

    2012-01-01

    Highlights: ► Speciation of Zn, Pb and Cr has been studied in chitosan-modified cement mortars. ► Metal retention mechanisms have been clarified by newly identified crystalline forms. ► Native chitosan induced and stabilized newly characterized Pb (IV) species. ► Dietrichite is responsible for the Zn immobilization in the polymer-modified mortar. ► Leaching of Zn decreased by 24% in the presence of low molecular weight chitosan. - Abstract: Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm −2 . A newly reported Zn phase, dietrichite (ZnAl 2 (SO 4 ) 4 ·22H 2 O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb 4 Al 2 (SiO 3 ) 7 ), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI).

  17. Phase diagram of a Lennard-Jones solid

    International Nuclear Information System (INIS)

    Choi, Y.; Ree, T.; Ree, F.H.

    1993-01-01

    A phase diagram of a Lennard-Jones solid at kT/ε≥0.8 is constructed by our recent perturbation theory. It shows the stability of the face-centered-cubic phase except within a small pressure and temperature domain, where the hexagonal-close packed phase may occur. The theory predicts anharmonic contributions to the Helmholtz free energy (important to the crystal stability) in good agreement with Monte Carlo data

  18. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Cassidy, D.P.; Irvine, R.L.

    1995-01-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  19. MOLECULARLY IMPRINTED SOLID PHASE EXTRACTION FOR TRACE ANALYSIS OF DIAZINON IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani ، F. Golbabaei

    2009-04-01

    Full Text Available Amongst organophosphate pesticides, the one most widely used and common environmental contaminant is diazinon; thus methods for its trace analysis in environmental samples must be developed. Use of diazinon imprinted polymers such as sorbents in solid phase extraction, is a prominent and novel application area of molecular imprinted polymers. For diazinon extraction, high performance liquid chromatography analysis was demonstrated in this study. During optimization of the molecular imprinted solid phase extraction procedure for efficient solid phase extraction of diazinon, Plackett-Burman design was conducted. Eight experimental factors with critical influence on molecular imprinted solid phase extraction performance were selected, and 12 different experimental runs based on Plackett-Burman design were carried out. The applicability of diazinon imprinted polymers as the sorbent in solid phase extraction, presented obtained good recoveries of diazinon from LC-grade water. An increase in pH caused an increase in the recovery on molecular imprinted solid phase extraction. From these results, the optimal molecular imprinted solid phase extraction procedure was as follows: solid phase extraction packing with 100 mg diazinon imprinted polymers; conditioning with 5 mL of methanol and 6 mL of LC-grade water; sample loading containing diazinon (pH=10; washing with 1 mL of LC-grade water, 1 mL LC- grade water containing 30% acetonitrile and 0.5 mL of acetonitrile, respectively; eluting with 1 mL of methanol containing 2% acetic acid. The percentage recoveries obtained by the optimized molecular imprinted solid phase extraction were more than 90% with drinking water spiked at different trace levels of diazinon. Generally speaking, the molecular imprinted solid phase extraction procedure and subsequent high performance liquid chromatography analysis can be a relatively fast and proper approach for qualitative and quantitative analysis of diazinon in

  20. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  1. Solid phase microextraction.

    Science.gov (United States)

    Pawliszyn, J

    2001-01-01

    Solid Phase Microextraction (SPME) uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix. After contact with sample, analytes are absorbed or adsorbed by the fibre phase (depending on the nature of the coating) until an equilibrium is reached in the system. The amount of an analyte extracted by the coating at equilibrium is determined by the magnitude of the partition coefficient of the analyte between the sample matrix and the coating material. After the extraction step, the fibres are transferred, with the help of a syringe-like handling device, to analytical instrument, for separation and quantitation of target analytes. This technique integrates sampling, extraction and sample introduction and is a simple way of facilitating on-site monitoring. Applications of this technique include environmental monitoring, industrial hygiene, process monitoring, clinical, forensic, food, flavour, fragrance and drug analyses, in laboratory and on-site analysis.

  2. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  3. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  4. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    Science.gov (United States)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  5. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    Science.gov (United States)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  6. Biogasification of solid wastes by two-phase anaerobic fermentation

    International Nuclear Information System (INIS)

    Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.

    1997-01-01

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  7. solid phase extraction method for selective determination

    African Journals Online (AJOL)

    FATOKI

    determination of phthalate ester plasticizers in rivers and marine water samples. Of the ... samples that receive effluent from industries that use phthalate esters. ... Keywords Phthalates, Plasticizers, Solid Phase Gas Chromatography.

  8. Liquid-phase and solid-phase radioimmunoassay with herpes simplex virus type 1 nucleocapsids

    International Nuclear Information System (INIS)

    Bystricka, M.; Rajcani, J.; Libikova, H.; Sabo, A.; Foeldes, O.; Sadlon, J.

    1985-01-01

    Liquid-phase radioimmunoassay and solid-phase radioimmunoassay are described using 125 I-labelled or immobilized nucleocapsids (NC) of herpes simplex virus (HSV) type1. These techniques appeared sensitive and specific for quantitation of HSV-NC antigens and corresponding antibodies. (author)

  9. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    Science.gov (United States)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  10. The Pictet-Spengler reaction in solid-phase combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, Thomas E; Diness, Frederik; Meldal, Morten

    2003-01-01

    The Pictet-Spengler reaction is an important reaction for the generation of tetrahydro-beta-carbolines and tetrahydroisoquinoline ring systems, which exhibit a range of biological and pharmacological properties. This review covers the solid-phase Pictet-Spengler reaction, as employed in solid...

  11. Phase 2, Solid waste retrieval strategy

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve

  12. Phase 2, Solid waste retrieval strategy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  13. The role of solid-solid phase transitions in mantle convection

    Science.gov (United States)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  14. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  15. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  16. Solid Phase Extraction and Spectrophotometric Determination of ...

    African Journals Online (AJOL)

    NJD

    2005-04-15

    Apr 15, 2005 ... to the economy and has significant industrial applications. The development of a ... Waters Solid Phase Extraction (SPE) device (the device can carry out twenty ... HPLC grade dimethyl formamide (DMF) (Fisher. Corporation ...

  17. UTILIZATION OF RICE HUSK AS RAW MATERIAL IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2011-12-01

    Full Text Available The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2 was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB, 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.

  18. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  19. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  20. Solid phase extraction method for determination of mitragynine in ...

    African Journals Online (AJOL)

    All rights reserved. ... 1Department of Pharmacology, 2Department of Applied Science, 3Police Forensic Science Center 10, Yala 95000, 4Natural ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high.

  1. Properties of zirconium silicate and zirconium-silicon oxynitride high-k dielectric alloys for advanced microelectronic applications: Chemical and electrical characterizations

    Science.gov (United States)

    Ju, Byongsun

    2005-11-01

    As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3

  2. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  3. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  4. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  5. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  6. Reduced Young modulus and hardness of electron irradiated binarypotassium-silicate glass

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Lukeš, J.; Jurek, Karel

    2012-01-01

    Roč. 275, MAR (2012), s. 7-10 ISSN 0168-583X R&D Projects: GA ČR GA104/09/1269 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron radiation * silicate glass * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.266, year: 2012

  7. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    DEFF Research Database (Denmark)

    Nielsen, Thomas Eiland

    2009-01-01

    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...... with significant structural complexity and diversity. This review describes some of the most systematic solid-phase approaches that are potentially suited for pharmaceutical applications, that is, the methods described are useful for the synthesis of compound collections, and exhibit tunable stereochemistry...

  8. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  9. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Science.gov (United States)

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. On the study of the solid-solid phase transformation of TlBiTe2

    International Nuclear Information System (INIS)

    Chrissafis, K.; Vinga, E.S.; Paraskevopoulos, K.M.; Polychroniadis, E.K.

    2003-01-01

    The narrow gap semiconductor TlBiTe 2 undergoes a solid-solid phase transformation from the rhombohedral (D 3d ) to the cubic (O h ) phase. The present paper deals with the study of this phase transformation combining the results of Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). It has been found that during heating the transformation is an athermal activated process, which can be described only by a combination of more than one processes while during cooling it exhibits an expectable thermal hysteresis due to the volume difference. The results of the kinetic analysis combined with the electron microscopy findings, supported also by the Fourier Transform Infrared (FTIR) spectroscopy ones, lead to the conclusion that TlBiTe 2 undergoes a multiple-step, displacive, martensitic type transformation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kavita [Central University of Jharkhand, Ranchi (India); Bhattacharjee, Santanu, E-mail: santanu@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur (India)

    2017-06-15

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. • LaSPT sintered at 1200 °C is fairly conducting.

  13. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    International Nuclear Information System (INIS)

    Parmar, Kavita; Bhattacharjee, Santanu

    2017-01-01

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. • LaSPT sintered at 1200 °C is fairly conducting.

  14. Solid phase radioimmunoassays for human C-reactive protein

    International Nuclear Information System (INIS)

    Shine, B.; Beer, F.C. de; Pepys, M.B.

    1981-01-01

    Two new, rapid and sensitive radioimmunoassays for human C-reactive protein (CRP) have been established using antiserum coupled to magnetizable cellulose particles, which facilitate phase separation. A single antibody method, using solid phase anti-CRP, provides a sensitivity of 50 μg/l with a 1-h incubation time and intra- and inter-assay coefficients of variation of 10%. A double antibody method, using fluid phase rabbit anti-CRP serum and solid phase sheep anti-rabbit IgG serum, provides a sensitivity of 3 μg/l with an overnight incubation and intra- and inter-assay coefficients of variation of 10%. Among 468 sera from normal adult volunteer blood donors the median CRP concentration was 800 μg/l, interquartile range 340-1700 μg/l and range 70-29,000 μg/l. Ninety percent of samples contained less than 3 mg/l and 99% less than 10 mg/l. Low levels (14-650 μg/l) of CRP were detected both in amniotic fluids and in cerebrospinal fluids. (Auth.)

  15. SOLID-PHASE PEPTIDE SYNTHESIS OF ISOTOCIN WITH AMIDE ...

    African Journals Online (AJOL)

    SOLID-PHASE PEPTIDE SYNTHESIS OF ISOTOCIN WITH AMIDE OF ASPARAGINE PROTECTED WITH 1-TETRALINYL. TRIFLUOROMETHANESULPHONIC ACID (TFMSA) DEPROTECTION, CLEAVAGE AND AIR OXIDATION OF MERCAPTO GROUPS TO DISULPHIDE.

  16. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    Science.gov (United States)

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  17. Bioinspired magnetite synthesis via solid precursor phases

    NARCIS (Netherlands)

    Lenders, J.J.M.; Mirabello, G.; Sommerdijk, N.A.J.M.

    2016-01-01

    Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms-without the need of high supersaturation levels-to accumulate significant quantities of

  18. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  19. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    Science.gov (United States)

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-04-01

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  20. Investigation of binary solid phases by calorimetry and kinetic modelling

    OpenAIRE

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...

  1. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  2. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate

    International Nuclear Information System (INIS)

    Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.

    2004-01-01

    In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass

  3. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.

  4. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity...... was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto...... of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  5. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    Science.gov (United States)

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  6. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  7. Unitized solid phase immunoassay kit and method

    International Nuclear Information System (INIS)

    1975-01-01

    A unitized solid phase kit for radioimmunoassay is disclosed. All of the necessary assay reagents are incorporated into a single tube wherein all phases of the assay procedure are performed, requiring only the addition of the patient's sample. Antibody is bound to the tube surface while labelled antigen is also present but unbound. Storage in the absence of air and water results in the stabilization of the reagents such that the system can be stored for long periods

  8. Solid-phase microextraction

    DEFF Research Database (Denmark)

    Nilsson, Torben

    The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...... of SPME were examined for halogenated and non-halogenated volatile hydrocarbons, and a standard method for their quantitative analysis in aqueous samples was developed and validated in inter-laboratory studies on the basis of reference material and in comparison with the traditional methods....... The influences of some possible interferences on the SPME process were examined, and new SPME probes were tested for the in situ monitoring of groundwater pollutants. Inter-laboratory studies were carried out also for the validation of SPME for the quantitative analysis of organochlorine, organonitrogen...

  9. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  10. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    DEFF Research Database (Denmark)

    Baatrup, G; Jonsson, H; Sjöholm, A

    1988-01-01

    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were...

  11. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    Science.gov (United States)

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016

  12. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  13. Solid-solid synthesis and structural phase transition process of SmF3

    Science.gov (United States)

    Yan, Qi-Cao; Guo, Xing-Min

    2018-04-01

    Mazes of contradictory conclusions have been obtained by previous researches about structural phase transition process of SmF3. In this paper, the single crystals of SmF3 (hexagonal and orthorhombic) were prepared by solid-solid synthesis, which have shown gradual changes in crystal growth modes with the increase temperature and holding time. Furthermore, we propose the phase transition process of in SmF3. Hexagonal symmetry of SmF3 (space group Pnma) was prepared firstly by heating Sm2O3 and NH4HF2 over 40 min at 270 °C. And then orthorhombic symmetry of SmF3 (space group P63mc) was obtained by heating hexagonal symmetry over 10 h at 650 °C. The reaction of SmF3 (hexagonal) = SmF3 (orthorhombic) is extremely sluggish at a low temperature (less than 650 °C), which was seen as a Mixed Grown Region.

  14. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  15. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  16. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.124, year: 2016

  17. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  18. Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2-Ca2SiO4

    International Nuclear Information System (INIS)

    Martinez, I.M.; Velasquez, P.A.; De Aza, P.N.

    2010-01-01

    The aim of this study was to synthesize materials of α-tricalcium phosphate doped with small amounts of dicalcium silicate, by solid state reaction, at high temperature and slow cooling to room temperature. The obtained materials were characterized by X-ray diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy, showing that there is a region between 0.5 and 4.0 wt.% of dicalcium silicate where solid solution α-tricalcium phosphate (α-TCPss) is stable to room temperature.

  19. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Energy Technology Data Exchange (ETDEWEB)

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2012-12-15

    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  20. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  1. Simulating Solid-Solid Phase Transition in Shape-Memory Alloy Microstructure by Face-Offsetting Method

    International Nuclear Information System (INIS)

    Bellur Ramaswamy, Ravi S.; Tortorelli, Daniel A.; Fried, Eliot; Jiao Xiangmin

    2008-01-01

    Advances in the understanding of martensitic transformations (diffusionless, solid-solid phase transformations) have been instrumental to the recent discovery of new low hysteresis alloys. However, some key fundamental issues must be better understood to design still better alloys. Restricting attention to antiplane shear, we use finite element analysis to model the shape-memory alloy microstructure within the Abeyaratne-Knowles continuum thermomechanical framework and use an interface kinetic relation of the kind proposed by Rosakis and Tsai. Geometric singularities and topological changes associated with microstructural evolution pose significant numerical challenges. We address such challenges with a recently developed front-tracking scheme called the face-offsetting method (FOM) to explicitly model phase interfaces. Initial results demonstrate the effectiveness of FOM in resolving needle-like twinned microstructures

  2. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  3. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Science.gov (United States)

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Science.gov (United States)

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    Science.gov (United States)

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  6. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  7. Evaluation of a solid-phase RIA technique and a solid-phase ELISA technique for demonstrating hepatitis-B surface antigen

    International Nuclear Information System (INIS)

    Vranckx, R.; Cole, J.; Peetermans, M.

    1978-01-01

    The sensitivities of a solid-phase radioimmunoassay (RIA), a solid-phase enzyme immunoassay (ELISA) and a haemagglutination test (RPHA) for the detection of the hepatitis-B surface antigen (HBsAg) were compared (1) by screening a panel of 300 sera (97 positives and 203 negatives), and (2) by titrating serial dilutions of 10 positive sera. Ninety-seven sera were positive by RIA, 95% were detected by ELISA and 81% were detected by RPHA. In the serial dilutions, the average end-points of the titrations were 0.005ng/ml for RIA, 0.01ng/ml for ELISA and 0.04 ng/ml for RPHA. It can be concluded that the sensitivity of the ELISA test is intermediate between that of the RIA and the RPHA. The ELISA and the RPHA tests seem to be a little more sensitive for the detection of subtype ay than for the detection of subtype ad. (author)

  8. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1979-01-01

    Silicate and troilite (FeS) from IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurbole: - 3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, + 1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)sub(trapped) ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns. Troilite samples were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 Myr; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te gave an age of -10.8 +- 0.7 Myr. Thus, low-melting troilite predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate; meteorites with older silicates have greater Ni contents. No model easily accounts for this result as well as other properties of IAB irons; nevertheless, these results, taken at face value, favour a nebular formation model. The great age of troilite from Mundrabilla suggests that this troilite formed in a different nebular region from the silicate and metal, and was later mechanically mixed with these other phases. The correlation between the trace elements in the metal and the I-Xe ages of the silicate provides one of the first known instances in which another well-defined meteoritic property correlates with I-Xe ages. In addition, almost all the 129 Xe in Mundrabilla silicate (etched in acid) was correlated with 128 Xe. These two results further support the validity of the I-Xe dating method. (author)

  9. C18, C8, and perfluoro reversed phases on diamond for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Wiest, Landon A; Herbert, David; Biggs, Katherine N; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2009-04-17

    In spite of advances in solid-phase extraction (SPE) technology there are certain disadvantages to current SPE silica-based, column packings. The pH range over which extraction can occur is limited and each column is generally only used once. New diamond-based reversed SPE phases (C(18), C(8), and perfluorinated) were developed in our laboratories. Studies were done which show that these phases do not have the same limitations as traditional silica-based stationary phases. The synthesis and properties of these diamond-based phases are presented, and the stability, percent recovery, and column capacity are given for the C(18) phase.

  10. Constraining Silicate Weathering Processes in an Active Volcanic Complex: Implications for the Long-term Carbon Cycle

    Science.gov (United States)

    Washington, K.; West, A. J.; Hartmann, J.; Amann, T.; Hosono, T.; Ide, K.

    2017-12-01

    While analyzing geochemical archives and carbon cycle modelling can further our understanding of the role of silicate weathering as a sink in the long-term carbon cycle, it is necessary to study modern weathering processes to inform these efforts. A recent compilation of data from rivers draining basaltic catchments estimates that rock weathering in active volcanic fields (AVFs) consumes atmospheric CO2 approximately three times faster than in inactive volcanic fields (IVFs), suggesting that the eruption and subsequent weathering of large igneous provinces likely played a major role in the carbon cycle in the geologic past [1]. The study demonstrates a significant correlation between catchment mean annual temperature (MAT) and atmospheric CO2 consumption rate for IVFs. However CO2 consumption due to weathering of AVFs is not correlated with MAT as the relationship is complicated by variability in hydrothermal fluxes, reactive surface area, and groundwater flow paths. To investigate the controls on weathering processes in AVFs, we present data for dissolved and solid weathering products from Mount Aso Caldera, Japan. Aso Caldera is an ideal site for studying the how the chemistry of rivers draining an AVF is impacted by high-temperature water/rock interactions, volcanic ash weathering, and varied groundwater flow paths and residence times. Samples were collected over five field seasons from two rivers and their tributaries, cold groundwater springs, and thermal springs. These samples capture the region's temperature and precipitation seasonality. Solid samples of unaltered volcanic rocks, hydrothermally-altered materials, volcanic ash, a soil profile, and suspended and bedload river sediments were also collected. The hydrochemistry of dissolved phases were analyzed at the University of Hamburg, while the mineralogy and geochemical compositions of solid phases were analyzed at the Natural History Museum of Los Angeles. This work will be discussed in the context of

  11. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  12. Radiochemical investigations to the complex formation of uranium (VI) with silicic acid

    International Nuclear Information System (INIS)

    Hrnecek, E.

    1997-12-01

    The complexation of tracer amounts of UO 2 2+ by silicic acid was investigated by an extraction method using 2,5. 10 -3 M 1-(2-thenoyl)-3,3,3-trifloroacetone (IMA) in benzene as extractant at 25 degree C. The tracer used in the experiments was uranium-232, which has been separated from its daughter nuclides by ion exchange from 10 M HCl on Dowex 1x2. The ionic strength in the aqueous phase for the extractions was kept constant at 0,2 M (Na, H)ClO 4 and the pH was varied between pH 2,5 and pH 4,5. For the determination of the stability constants, a silicic acid concentration of 0,01 M, 0,03 M and 0,067 M in the (Na, H)ClO 4 solution was used. The time- and pH- dependence of the polymerization of these silicic acid solutions was determined by kinetical investigations with an ammoniumheptamolybdate-reagent. The uranium concentration in the aqueous and organic phases was determined by liquid scintillation counting using α/β -discrimination. The stability constants determined were log Q1, = -2,20 for the reaction UO 2 2+ Si(OH) 4 = UO 2 OSi(OH) 3 + + H + and Q 2 = -5,87 for the reaction of the polymeric silicate UO 2 2+ (-SiOH) j (-SiOH) j-2 (SiO) 2 UO 2 +2 H + . The influence of silicate on the speciation calculations for uranium in a model natural water is also discussed. (author)

  13. Solid phase tube radioimmunoassay for digoxin detection

    International Nuclear Information System (INIS)

    Stellner, K.; Glatz, C.; Linke, R.

    1975-01-01

    A solid phase radioimmunoassay with 125 I is described for cardiac patients. The test for the digoxin determination and the poisoning due to cardiac glycosides can be measured very accurately and carried out easily. In addition, the test determination can be automatically performed in connection with other tests. (GSE/LH) [de

  14. Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates

    International Nuclear Information System (INIS)

    Jin, Geng Bang; Soderholm, L.

    2015-01-01

    Colorless crystals of ThSiO 4 (huttonite) (1) and (Ca 0.5 Na 0.5 ) 2 NaThSi 8 O 20 (2) have been synthesized by the solid-state reactions of ThO 2 , CaSiO 3 , and Na 2 WO 4 at 1073 K. Green crystals of (Ca 0.5 Na 0.5 ) 2 NaUSi 8 O 20 (3) have been synthesized by the solid-state reactions of UO 2 , CaSiO 3 , and Na 2 WO 4 at 1003 K. All three compounds have been characterized by single-crystal X-ray diffraction. Compound 1 adopts a monazite-type three-dimensional condensed structure, which is built from edge- and corner-shared ThO 9 polyhedra and SiO 4 tetrahedra. Compounds 2 and 3 are isostructural and they crystallize in a steacyite-type structure. The structure consists of discrete pseudocubic [Si 8 O 20 ] 8− polyanions, which are connected by An 4+ cations into a three-dimensional framework. Each An atom coordinates to eight monodentate [Si 8 O 20 ] 8− moieties in a square antiprismatic geometry. Na + and Ca 2+ ions reside in the void within the framework. Raman spectra of 1, 2, and 3 were collected on single crystal samples. 1 displays more complex vibrational bands than thorite. Raman spectra of 2 and 3 are analogous with most of vibrational bands located at almost the same regions. - Graphical abstract: A Raman spectrum and crystal structures of (Ca 0.5 Na 0.5 ) 2 NaAnSi 8 O 20 (An=Th, U), which contain pseudocubic [Si 8 O 20 ] 8− polyanions and eight-coordinate An 4+ cations. - Highlights: • Single crystal growth of three tetravalent actinide silicates from melts. • Single-crystal structures and Raman spectra of (Ca 0.5 Na 0.5 ) 2 NaAnSi 8 O 20 (An=Th, U). • First report of Raman spectrum of huttonite on single crystal samples

  15. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  16. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  17. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Science.gov (United States)

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  18. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  19. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.; Afsarimanesh, Nasrin; Xie, Li; Nag, Anindya; Al-Bahadly, I. H.; Yu, P. L.; Kosel, Jü rgen

    2016-01-01

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid

  20. Elementary excitations and phase transformations in solids

    International Nuclear Information System (INIS)

    Cowley, R.A.

    1985-01-01

    Neutron scattering is and will continue to be a uniquely powerful tool for the study of elementary excitations and phase transformations in solids. The paper examines a few recent experiments on molecular crystals, superionic materials, paramagnetic scattering and phase transitions to see what experimental features made these experiments possible, and hence to make suggestions about future needs. It is concluded that new instruments will extend the scope of neutron scattering studies to new excitations, that there is a need for higher resolution, particularly for phase transition studies, and that it will be important to use intensity information, discrimination against unwanted inelastic processes and polarization analysis to reliably measure the excitations in new materials. (author)

  1. Low energy and low dose electron irradiation of potassium-lime-silicate glass investigated by XPS. I. Surface composition

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Zemek, Josef

    2003-01-01

    Roč. 320, - (2003), s. 177-186 ISSN 0022-3093 R&D Projects: GA ČR GA104/99/1407 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray photoelectron spectroscopy * potassium-lime-silicate glass * electron -solid interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.563, year: 2003

  2. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  3. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  4. Investigation of solid-phase hydrogenation of amino acids and peptides

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Myasoedov, N.F.; Zajtsev, D.A.; Lubnin, M.Yu.; Tatur, V.Yu.; Kozik, V.S.; Dorokhova, E.M.; Rozenberg, S.N.

    1990-01-01

    The possibility of synthesizing amino acids and peptides multiply labelled with tritium or deuterium by the method of solid-phase isotopic exchange with gaseous hydrogen isotopes was verified. Establishment of the isotopic hydrogen equilibrium between the gaseous phase and the solid phase formed by the amino acid molecules was found experimentally. The activation energy of the isotopic exchange is 13 kcal/mol. A mathematical model was set up for the isotopic exchange with a probable substitution of hydrogen atoms. Uniformly labelled amino acids were obtained in a high optical purity and with 80 to 90% hydrogen substitution by deuterium and tritium. Tritiated peptides were prepared in high yields at molar activities of 1.5 to 3.7 TBq/mmol. (author). 4 tabs

  5. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  6. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  7. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  8. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  9. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  10. Irradiation of potassium-silicate glass surfaces: XPS and REELS study

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Zemek, Josef; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2016-01-01

    Roč. 48, č. 7 (2016), s. 543-546 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : electron spectroscopy * potassium silicate glass * x-ray irradiation * electron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2016

  11. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  12. High-performance polymer/layered silicate nanocomposites

    Science.gov (United States)

    Heidecker, Matthew J.

    resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  13. A reactor/separator device for use in automated solid phase immunoassay

    International Nuclear Information System (INIS)

    Farina, P.R.; Ordonez, K.P.; Siewers, I.J.

    1979-01-01

    A reactor/separator device is described for use in automated solid phase immunoassay, including radioimmunoassays. The device is a column fitted at the bottom portion with a water impermeable disc which can hold, for example, immunoabsorbents, immobilized antisera or ion exchange resins. When the contents of the column supported by the disc are brought into contact with an aqueous phase containing reagents or reactants, a chemical reaction is initiated. After the reaction, centrifugally applied pressure forces the aqueous phase through the filter disc making it water permeable and separating a desired component for subsequent analysis. The reactor/separator device of the present invention permits kinetic solid phase assays (non-equilibrium conditions) to be carried out which would be difficult to perform by other conventional methods. (author)

  14. Faults of solid-phase welding in titanium joints and their effect on strength

    International Nuclear Information System (INIS)

    Matyushkin, B.A.; Redchits, V.V.

    1982-01-01

    A possibility of the usage of thermal arc energy for the determination of the kinetics of solid-phase joint formation of the VT20 titanium alloy is found out experimentally. Positive action of diffusion annealing upon mechanical properties. of solid-phase joints is explained by the defect elimination

  15. Method for calculating solid-solid phase transitions at high temperature: An application to N2O

    International Nuclear Information System (INIS)

    Kuchta, B.; Etters, R.D.

    1992-01-01

    Two similar techniques for calculating solid-solid phase transitions at high temperatures are developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial reversible path from one phase to another by application of a control parameter. Thermodynamic averages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An application to N 2 O at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results support experimental evidence that the transition pressure is virtually independent of temperature

  16. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  17. The importance of the Maillard-metal complexes and their silicates in astrobiology

    Science.gov (United States)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  18. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    Science.gov (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  19. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  20. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  1. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    NARCIS (Netherlands)

    de Jong, GJ; Koster, EHM

    2000-01-01

    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused

  2. Development of headspace solid-phase microextraction method for ...

    African Journals Online (AJOL)

    A headspace solid-phase microextraction (HS-SPME) method was developed as a preliminary investigation using univariate approach for the analysis of 14 multiclass pesticide residues in fruits and vegetable samples. The gas chromatography mass spectrometry parameters (desorption temperature and time, column flow ...

  3. Solid phase separation technique for use in radioimmunoassays

    International Nuclear Information System (INIS)

    Tu, J.I.

    1979-01-01

    A radioimmunoassay procedure, and article of manufacture for carrying out that procedure, are disclosed herein. The solid phase separation technique utilized in the radioimmunoassay of this invention utilizes a test tube, the internal surface of which has been coated with two antibody layers

  4. The study of long-term stability in liquid-solid phases for HLW disposal

    International Nuclear Information System (INIS)

    Wei, Y.Y.; Tseng, C.L.; Yang, J.Y.; Ke, C.H.; Wang, T.H.; Jan, Y.L.; Lee, C.B.; Lan, P.L.; Hsu, C.N.; Tsai, S.C.; Li, M.H.; Teng, S.P.

    2005-01-01

    Full text of publication follows: This study is conducted to observe changes in both chemical properties of buffer materials and liquid phases over an experimental period of 2 years. In our experiments, bentonite powder and crushed granite are separately mixed with synthetic groundwater, synthetic seawater and de-ionised water at a fixed liquid-solid ratio of 30. A mixed set with both bentonite and granite together as solid phase is also investigated. During this study, aliquots of the liquid phases are sampled every two months and pH and Eh values are measured immediately. Concentrations of Na, Mg, K, Al, Ca, Ti, Mn, Ba, Fe, Sr, Li and Th are analyzed in the liquid phase directly by ICP-AES. After separation by centrifugation followed by freeze drying and digestion, the solid phases are analyzed as well for elemental composition. Alteration of solid phases during the experimental period is discussed. The preliminary results show that the pH values of the three solutions vary considerably in the individual experimental systems containing bentonite, granite or the mixed system. In general, higher pH values are found in DI-water for all solid phases. Eh values fluctuate a lot in the range 100 to 300 mV in all experiment sets. Different to the experiments with granite for which similar Eh values are found in all solutions, a significantly different Eh-value is found in the experiment with bentonite in DI-water as compared to the other solutions. The results from element analysis indicate that equilibrium is achieved after only two months and element concentrations change only slightly thereafter. We conclude from our experiments that both bentonite and granite keep their characteristics as radionuclide sorbents in the vicinity of a nuclear waste repository. Reaction equilibria appear to be attained rapidly. Because there are just a few alterations in this study, it would be a huge error source in analyzing from the inhomogeneous solid phase such as granite and losses

  5. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R

    2007-06-01

    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  6. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  7. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  8. Investigation of binary solid phases by calorimetry and kinetic modelling

    NARCIS (Netherlands)

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the

  9. Development and Application of Solid Phase Extraction Method for ...

    African Journals Online (AJOL)

    NICO

    for the addition of organic modifier, sample load volume, conditioning solvent, washing solvent and ... Solid phase extraction, polycyclic aromatic hydrocarbons, water samples, ... such as polymeric, activated carbon or silica modified with.

  10. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  11. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    DEFF Research Database (Denmark)

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.

    2004-01-01

    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formatio...

  13. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

    International Nuclear Information System (INIS)

    Na Liu; Yanfei Wang; Chuhua He

    2016-01-01

    A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L -1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g -1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process. (author)

  14. Zirconium determination in rocks by solid-phase spectrophotometry

    International Nuclear Information System (INIS)

    Brykina, G.D.; Lebedeva, G.G.; Agapova, G.F.; AN SSSR, Moscow

    1990-01-01

    A method was developed for determination of zirconium in rocks by solid-phase spectrophotometry using AV-17x8-Cl anion exchanger modified with xylenol orange. Relative standard deviation at the level of (2-4.9)x10 -3 % ZrO 2 was about 0.245

  15. Solid Phase Radioimmunoassay for Measuring Serum Prolactin Using Antibody Coupled Magnetizable Particles

    International Nuclear Information System (INIS)

    El-Bayoumy, A.S.A.

    2012-01-01

    The objective of the present work was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of prolactin (PRL) in human serum are described. The production of polyclonal antibodies was carried out by immunizing three Balb/C mice intraperitoneal through primary injection and two booster doses. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-prolactin using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum prolactin. Preparation of 125 I-PRL tracer was prepared using lactoperoxidase method and it was purified by gel filtration using sephadex G-100. The PRL standards were prepared using a highly purified PRL antigen with assay buffer as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of prolactin based on magnetizable solid phase separation. These magnetic particles retain their characteristics during storage for 6 months at 4 degree C. In conclusion, this assay could be used as a useful diagnostic tool for pituitary dysfunction and possible reproductive disability.

  16. EXPERIMENTAL INVESTIGATION OF IRRADIATION-DRIVEN HYDROGEN ISOTOPE FRACTIONATION IN ANALOGS OF PROTOPLANETARY HYDROUS SILICATE DUST

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Remusat, Laurent [IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Laurent, Boris; Leroux, Hugues, E-mail: mathieu.roskosz@mnhn.fr [Unité Matériaux et Transformations, Université Lille 1, CNRS UMR 8207, Bâtiment C6, F-59655 Villeneuve d’Ascq (France)

    2016-11-20

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  17. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    Science.gov (United States)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  18. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  19. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua

    2003-01-01

    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  20. Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K

    International Nuclear Information System (INIS)

    Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying

    2005-01-01

    The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed

  1. Practical solid and liquid phase markers for studying gastric emptying in man

    International Nuclear Information System (INIS)

    Thomforde, G.M.; Brown, M.L.; Malagelada, J.R.

    1985-01-01

    This paper presents a method used to evaluate solid and liquid phase markers for radionuclide gastric emptying studies. The authors conducted in vitro and in vivo comparative experiments employing several radiolabeled markers. Among the solid phase markers tested, Tc-99m-sulfur colloid in vivo-labeled liver and I-131-fiber performed optimally. However, Tc-99M sulfur colloid in scrambled egg showed very acceptable performance and it is significantly easier to prepare. Among liquid phase markers, they found In-111-DTPA stabilized with 1% albumin to be a good agent and appropriate for dual isotope emptying studies

  2. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  3. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  4. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    International Nuclear Information System (INIS)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-01-01

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m -1 for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction

  5. Solid-phase synthesis of 3-amino-2-pyrazolines

    DEFF Research Database (Denmark)

    Nielsen, John

    1998-01-01

    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  6. Solid-Phase Extraction Combined with High Performance Liquid ...

    African Journals Online (AJOL)

    Methods: Solid-phase extraction method was employed for the extraction of the estrogen from milk and high performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination of estrogen. Results: Optimal chromatographic conditions were achieved on an Eclipse XDB-C18 column at a ...

  7. Composition characteristics and regularities of dissolving of hydroxyapatite materials obtained in water solutions with varied content of silicate ions

    Science.gov (United States)

    Solonenko, A. P.

    2018-01-01

    Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.

  8. Solid oxide electrolysis cells - Performance and durability

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.

    2007-10-15

    In this work H2 electrode supported solid oxide cells (SOC) produced at Risoe National Laboratory, DTU, have been used for steam electrolysis. Electrolysis tests have been performed at temperatures from 650AeC to 950AeC, p(H2O)/p(H2) from 0.99/0.01 to 0.30/0.70 and current densities from -0.25 A/cm2 to -2 A/cm2. The solid oxide electrolysis cells (SOEC) have been characterised by iV curves and electrochemical impedance spectroscopy (EIS) at start and end of tests and by EIS under current load during electrolysis testing. The tested SOCs have shown the best initial electrolysis performance reported in literature to date. Area specific resistances of 0.26 Oecm2 at 850AeC and 0.17 Oecm2 at 950AeC were obtained from electrolysis iV curves. The general trend for the SOEC tests was: 1) a short-term passivation in first few hundred hours, 2) then an activation and 3) a subsequent and underlying long-term degradation. The transient phenomenon (passivation/activation) was shown to be a set-up dependent artefact caused by the albite glass sealing with a p(Si(OH)4) of 1.10-7 atm, leading to silica contamination of the triple-phase boundaries (TPBs) of the electrode. The long-term degradation for the SOECs was more pronounced than for fuel cell testing of similar cells. Long-term degradation of 2%/1000 h was obtained at 850AeC, p(H2O)/p(H2) = 0.5/0.5 and -0.5 A/cm2, whereas the degradation rate increased to 6%/1000h at 950AeC, p(H2O)/p(H2) = 0.9/0.1 and -1.0 A/cm2. Both the short-term passivation and the long-term degradation appear mainly to be related to processes in the H2 electrode. Scanning electron microscopy micrographs show that only limited changes occur in the Ni particle size distribution and these are not the main degradation mechanism for the SOECs. Micro and nano analysis using energy dispersive spectroscopy in combination with transmission electron microscopy (TEM) and scanning TEM reveals that glassy phase impurities have accumulated at the TPBs as a result of

  9. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  10. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  11. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  12. Microwave-assisted solid-phase Ugi four-component condensations

    DEFF Research Database (Denmark)

    Nielsen, John

    1999-01-01

    An 18-member library was constructed from 2 isocyanides, 3 aldehydes and 3 carboxylic acids via microwave-assisted solid-phase Ugi reactions on TentaGel S RAM. Products of high purity were obtained in moderate to excellent yields after reaction times of 5 minutes or less (irradiation at 60W). (C...

  13. Development of a solid-phase assay for measurement of proteolytic enzyme activity

    International Nuclear Information System (INIS)

    Varani, J.; Johnson, K.; Kaplan, J.

    1980-01-01

    A solid-phase, plate assay was developed for the measurement of proteolytic enzyme activity. In this assay procedure, radiolabeled substrates were dried onto the surface of microtiter wells. Following drying, the wells were washed two times with saline to remove the nonadherent substrate. When proteolytic enzymes were added to the wells, protein hydrolysis occurred, releasing radioactivity into the supernatant fluid. The amount of protein hydrolysis that occurred was reflected by the amount of radioactivity in the supernatant fluid. When 125 I-hemoglobin was used as the substrate, it was as susceptible to hydrolysis by trypsin in the solid-phase assay as it was in solution in a standard assay procedure. Protease activity from a variety of sources (including from viable cells as well as from extracellular sources) were also able to hydrolyze the hemoglobin on the plate. 125 I-Labeled serum albumen, fibrinogen, and rat pulmonary basement membrane were also susceptible to hydrolysis by trypsin in the solid phase. When [ 14 C]elastin was dried onto the plate, it behaved in a similar manner to elastin in solution. It was resistant to hydrolysis by nonspecific proteases such as trypsin and chymotrypsin but was highly susceptible to hydrolysis by elastase. The solid-phase plate assay has several features which recommended it for routine use. It is as sensitive as standard tube assays (and much more sensitive than routinely used colormetric assays). It is quick and convenient; there are no precipitation, centrifugation, or filtration steps. In addition, very small volumes of radioactive wastes are generated. Another advantage of the solid-phase plate assay is the resistance of the dried substrates to spontaneous breakdown and to microbial contamination. Finally, this assay is suitable for use with viable cells as well as for extracellular proteases

  14. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    Energy Technology Data Exchange (ETDEWEB)

    Podbrscek, Peter [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Drazic, Goran [Department for Nanostructured Materials, Jozef Stefan Institute, Jamova 39, SI 1000 Ljubljana (Slovenia); Anzlovar, Alojz [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia); Orel, Zorica Crnjak, E-mail: zorica.crnjak.orel@ki.si [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia)

    2011-11-15

    Highlights: {yields} We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. {yields} Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. {yields} Introduction of Si into reaction mixture influenced on particle size and their photoactivity. {yields} Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH){sub 2} gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  15. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    International Nuclear Information System (INIS)

    Podbrscek, Peter; Drazic, Goran; Anzlovar, Alojz; Orel, Zorica Crnjak

    2011-01-01

    Highlights: → We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. → Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. → Introduction of Si into reaction mixture influenced on particle size and their photoactivity. → Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH) 2 gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  16. The role of medium range order on phase transitions in chain silicates upon compression

    International Nuclear Information System (INIS)

    Serghiou, G; Chopelas, A; Boehler, R

    2004-01-01

    Raman spectroscopic measurements of the tetrahedrally coordinated crystal MnSiO 3 (rhodonite) in an argon pressure medium show that it becomes amorphous above 33 GPa. This observation consolidates our findings and explanation for the global structural trends exhibited by the extended chain silicate family AA'BO 3 (AA': Mg, Ca, Mn, Fe; B: Si) upon compression. In particular, crystals of this family are made of two types of building blocks coined P and C. Those crystals comprised solely of P blocks transform to dense higher coordinated crystalline phases; those comprised of P and C blocks, such as MnSiO 3 rhodonite, become amorphous; whereas those comprised solely of C blocks show both crystalline and amorphous regions upon compression. The reason that this medium range order length scale (building block scale) classification is correlated with the type of transitions taking place upon compression is due to the instability of C blocks and C-P interfaces with respect to P blocks and P-P interfaces at high pressures

  17. Investigation into process of solid-phase synthesis of calcium vanadates

    International Nuclear Information System (INIS)

    Fotiev, A.A.; Krasnenko, T.I.; Slobodin, B.V.

    1983-01-01

    Processes of solid-phase synthesis of calcium vanadates by Toubandt method, measuring electric conductivity and Ca 45 and V 48 radioactive indicators are investigated. It is shown that reaction diffusion during calcium vanadates production from oxides is ensured by calcium and oxygen ions or calcium ions and electrons through the product layer, as to oxygen - through the gas phase

  18. The mechanism of reequilibration of solids in the presence of a fluid phase

    International Nuclear Information System (INIS)

    Putnis, Andrew; Putnis, Christine V.

    2007-01-01

    The preservation of morphology (pseudomorphism) and crystal structure during the transformation of one solid phase to another is regularly used as a criterion for a solid-state mechanism, even when there is a fluid phase present. However, a coupled dissolution-reprecipitation mechanism also preserves the morphology and transfers crystallographic information from parent to product by epitaxial nucleation. The generation of porosity in the product phase is a necessary condition for such a mechanism as it allows fluid to maintain contact with a reaction interface which moves through the parent phase from the original surface. We propose that interface-coupled dissolution-reprecipitation is a general mechanism for reequilibration of solids in the presence of a fluid phase. - Graphical abstract: A single crystal of KBr is transformed to a porous single crystal of KCl by immersion in saturated KCl solution. The image shows partial transformation of a crystal of KBr (core) to KCl (porous, milky rim) by an interface coupled dissolution-reprecipitation mechanism. The external dimensions and crystallographic orientation of the original crystal are preserved, while a reaction interface moves through the crystal

  19. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  20. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  1. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon and...

  2. Solid phase radioimmunoassay for HBe Ag and anti-HBe

    Energy Technology Data Exchange (ETDEWEB)

    Froesner, G G; Deinhardt, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Hygiene und Medizinische Mikrobiologie; Sugg, U [Tuebingen Univ. (Germany, F.R.). Abt. fuer Transfusionswesen mit Blutbank; Haas, H [Staedtische Krankenanstalten Esslingen (Germany, F.R.). Zentrallabor; Overby, R L [Abbott Labs., North Chicago, IL (USA)

    1978-04-01

    A highly sensitive solid phase radioimmunoassay for the detection of hepatitis Be-antigen (HBeAg) and anti-HBe is described. Iodine-125 labelled anti-HBe is used as a tracer. The assay is about 500 foLd more sensitive than immunodiffusion.

  3. Solid phase extraction-electrospray ionization mass spectrometric method for the determination of palladium

    International Nuclear Information System (INIS)

    Pranaw Kumar; Telmore, Vijay M.; Jaison, P.G.; Sarkar, Arnab; Alamelu, D.; Aggarwal, S.K.

    2015-01-01

    Platinum group of element (PGEs) are extensively used as a catalyst and anticancer reagent. Due to the soft nature of PGEs, sulphur based donar ligands are used for the separation of these elements. Studies on the formation of different species are helpful for obtaining the ideas about separation of these elements from the complex matrices. Palladium (Pd) is studied as a representative element which is also formed by nuclear fission of fissile nuclides. In view of the relatively small amount of solvent required for separation, solid phase extraction is preferred over most of the separation methods. Solid phase extraction method using DPX as a stationary phase was previously reported for the separation of Pd in SHLLW using benzoylthiourea as a ligand. However, in case of large volume samples manual extraction by DPX is tedious task. In the present studies, the feasibility of extraction using benzoylthiourea on automated solid phase extraction system was carried out for the extraction of Pd

  4. Phase relations and Gibbs energies of spinel phases and solid solutions in the system Mg-Rh-O

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prusty, Debadutta [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Kale, G.M. [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Refinement of phase diagram for the system Mg-Rh-O and thermodynamic data for spinel compounds MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} is presented. Black-Right-Pointing-Pointer A solid-state electrochemical cell is used for thermodynamic measurement. Black-Right-Pointing-Pointer An advanced design of the solid-state electrochemical cell incorporating buffer electrodes is deployed to minimize polarization of working electrode. Black-Right-Pointing-Pointer Regular solution model for the spinel solid solution MgRh{sub 2}O{sub 4} - Mg{sub 2}RhO{sub 4} based on ideal mixing of cations on the octahedral site is proposed. Black-Right-Pointing-Pointer Factors responsible for stabilization of tetravalent rhodium in spinel compounds are identified. - Abstract: Pure stoichiometric MgRh{sub 2}O{sub 4} could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh{sub 2}O{sub 3} in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh{sub 2}O{sub 3}. The spinel phase can be considered as a solid solution of Mg{sub 2}RhO{sub 4} in MgRh{sub 2}O{sub 4}. The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg{sub 1+x}Rh{sub 2-x}O{sub 4} was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured

  5. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Science.gov (United States)

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  6. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases

    DEFF Research Database (Denmark)

    Tolborg, Jakob Fjord; Petersen, Lars; Jensen, Knud Jørgen

    2002-01-01

    and the prospect of automatability. Here, we report the first application of glycosynthases to solid-phase oligosaccharide synthesis by use of the 51 kDa serine and glycine mutants of Agrobacterium sp. beta-glucosidase, Abg E358S and E358G. Acceptors were linked to PEGA resin through a backbone amide linker (BAL...

  7. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    Science.gov (United States)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  8. Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines

    DEFF Research Database (Denmark)

    Le Quement, Sebastian T.; Ishoey, Mette; Petersen, Mette T.

    2011-01-01

    by deactivating proteolytic caspases. The Smac protein has an antagonistic effect on IAPs, thus providing structural clues for the synthesis of new pro-apoptotic compounds. Herein, we report a solid-phase approach for the synthesis of Smac-derived tetrapeptide libraries. On the basis of a common (N......-Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide–alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities...... and yields (both typically above 90%). The peptides were subjected to biological evaluation in a live/dead cellular assay which revealed that structural decorations on the AVPF sequence indeed are highly important for cytotoxicity toward HeLa cells....

  9. Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry

    NARCIS (Netherlands)

    Crescenzi, C; Bayoudh, S; Cormack, P.A G; Klein, T; Ensing, K

    2001-01-01

    Matrix solid-phase dispersion(MSPD) is a new sample pretreatment for solid samples. This technique greatly simplifies sample pretreatment but, nonetheless, the extracts often still require an extra cleanup step that is both laborious and time-consuming. The potential;of combining MSPD with

  10. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  11. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, A.; Aponte, C.

    2014-08-15

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During the process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve

  12. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  13. New Solid Phases for Estimation of Hormones by Radioimmunoassay Technique

    International Nuclear Information System (INIS)

    Sheha, R.R.; Ayoub, H.S.M.; Shafik, M.

    2013-01-01

    The efforts in this study were initiated to develop and validate new solid phases for estimation of hormones by radioimmunoassay (RIA). The study argued the successful application of different hydroxy apatites (HAP) as new solid phases for estimation of Alpha fetoprotein (AFP), Thyroid Stimulating hormone (TSH) and Luteinizing hormone (LH) in human serum. Hydroxy apatites have different alkali earth elements were successfully prepared by a well-controlled co-precipitation method with stoichiometric ratio value 1.67. The synthesized barium and calcium hydroxy apatites were characterized using XRD and Ftir and data clarified the preparation of pure structures of both BaHAP and CaHAP with no evidence on presence of other additional phases. The prepared solid phases were applied in various radioimmunoassay systems for separation of bound and free antigens of AFP, TSH and LH hormones. The preparation of radiolabeled tracer for these antigens was carried out using chloramine-T as oxidizing agent. The influence of different parameters on the activation and coupling of the used apatite particles with the polyclonal antibodies was systematically investigated and the optimum conditions were determined. The assay was reproducible, specific and sensitive enough for regular estimation of the studied hormones. The intra-and inter-assay variation were satisfactory and also the recovery and dilution tests indicated an accurate calibration. The reliability of these apatite particles had been validated by comparing the results that obtained by using commercial kits. The results finally authenticates that hydroxyapatite particles would have a great potential to address the emerging challenge of accurate quantitation in laboratory medical application

  14. A solid-phase-radioimmunoassay for total serum thyroxine

    International Nuclear Information System (INIS)

    Moedder, G.; Sokolowski, G.

    1978-01-01

    A new solid phase radioimmunoassay for total serum thyroxine was evaluated over a longer time under clinical routine conditions and compared with an established test system. The results show up that the T 4 values are precise, reliable and reproducible, the is incomplicate to handle and well suitable for semiautomatic pipetting systems. (orig.) 891 MG [de

  15. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Aydın, Ahmet Alper, E-mail: ahmetalperaydin@gmail.com [Chair of Urban Water Systems Engineering, Technische Universität München, Am Coulombwall, 85748 Garching (Germany); Aydın, Adnan [Istanbul Bilim University, School of Health, Esentepe, Istanbul, Sisli, 34394 (Turkey)

    2014-04-01

    Highlights: • A new physico-chemical process below 1000 °C for immobilization of galvanic sludges. • Sodium tetraborate and sodium silicate have been used as additives. • A strategy for adjustment of solid waste/additive mixture composition is presented. • Strategy is valid for wastes of hydrometallurgical and electro-plating processes. • Lower energy consumption and treated waste volume, shorter process time are provided. - Abstract: Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900 °C and fritted at three different temperatures of 850 °C, 900 °C and 950 °C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass–ceramics.

  16. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  17. Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction

    International Nuclear Information System (INIS)

    Mohd Marsin Sanagi; Syairah Salleh; Wan Aini Wan Ibrahim

    2011-01-01

    Molecularly imprinted polymer solid phase extraction (MIP-SPE) method has been developed for the determination of organophosphorus pesticides (OPPs) in water samples. The MIP was prepared by thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker, acetonitrile as porogenic solvent and quinalphos as the template molecule. The three OPPs (diazinon, quinalphos and chloropyrifos) were selected as target analytes as they are widely used in agriculture sector. Various parameters affecting the extraction efficiency of the imprinted polymers have been evaluated to optimize the selective preconcentration of OPPs from aqueous samples. The characteristics of the MIP-SPE method were validated by high performance liquid chromatography (HPLC). The accuracy and selectivity of the MIP-SPE process developed were verified using non-imprinted polymer solid phase extraction (NIP-SPE) and a commercial C 18 -SPE was used for comparison. The recoveries of the target analytes obtained using the MIPs as the solid phase sorbent ranged from 83% to 98% (RSDs 1.05 - 1.98 %; n=3) for water sample. The developed MIP-SPE method demonstrates that it could be applied for the determination of OPPs in water samples. (author)

  18. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  19. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  20. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Science.gov (United States)

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  1. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    NARCIS (Netherlands)

    Zielinska, K.

    2014-01-01

    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  2. Solid-phase microextraction for the analysis of biological samples

    NARCIS (Netherlands)

    Theodoridis, G; Koster, EHM; de Jong, GJ

    2000-01-01

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a

  3. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  4. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  6. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  7. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  8. Electrophysical properties of microalloyed alumo-silicate ceramics as active dielectric

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2013-01-01

    Full Text Available In this paper, electrophysical properties of porous alumo-silicate ceramics, modified by alloying with magnesium and microalloying with aluminum, were investigated. Complex multiphase system, as active microalloyed ceramics, has specific behavior under influence of external electrical field, which involves changes of dielectric losses and impedance, depending on frequency and temperature. Dielectric properties were measured in the frequency range 20 Hz - 1 MHz. Values for permittivity (εr ranged between 140 - 430. Order of magnitude for electrical resistivity was about 106 Ωm, for impedance 104 - 108 Ω, and loss tangent had values about and greater than 0.05. Current flow through active dielectric takes place through dielectric barrier and throughout conduction bands of thin aluminum and magnesium metal films. Permittivity has nonlinear distribution and complex functional dependences because of significant nonhomogeneity of active microalloyed ceramics. Lower values of electrical resistivity are the result of complex electron and ion transfer of charge through solid phase and pores, with decreased potential barriers height, due to the influence of additives, ingredients and defects. [Projekat Ministarstva nauke Republike Srbije, br. III 45012 i br. ON 172057

  9. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    Science.gov (United States)

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening. © 2013. Published by Elsevier B.V. All rights reserved.

  10. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  11. Double-antibody solid-phase radioimmunoassay: a simplified phase-separation procedure applied to various ligands

    International Nuclear Information System (INIS)

    Tevaarwerk, G.J.M.; Boyle, D.A.; Hurst, C.J.; Anguish, I.; Uksik, P.

    1980-01-01

    The purpose was to develop a simplified and reliable method of separating free from antibody-bound ligand using a precipitating antibody linked to a cellulose derivative. Dose-response curves and control sera were set up in parallel for various pituitary and placental polypeptides, steroid hormones, insulin, glucagon, triiodothyronine, thyroxine, angiotensin I, calcitonin, gastrin, cyclic AMP, and digoxin. After first-antibody reactions had reached equilibrium, free and bound ligand were separated using a double-antibody solid-phase system in parallel with conventional methods, including dextran-coated charcoal, double-antibody precipitation, single-antibody solid phase, organic solvents, salt precipitation, and anion-exchange resins. The effect of variations in temperature, incubation time, protein content, pH, and amount of separating material added were studied. The results showed that separation was complete within 1 hr for small ligand molecules and within 2 hr for larger ones. Dose-response curves and control-sera results closely paralleled those obtained with conventional methods. The method was not affected by moderate variations in incubation variables. Nonspecific binding was less than 3% in all assays, while intra-assay and interassay coefficients of variation were similar to those obtained with conventional phase-separation methods. It is concluded that the method is a simple and rapid alternative phase-separation system. It has the advantage of being free from common nonspecific intersample variations, and can be applied to any assay system based on rabbit or guinea pig antibodies without preliminay time- or reagent-consuming titration or adjustments to establish optimum phase-separating conditions

  12. Influence of silicate ions on the formation of goethite from green rust in aqueous solution

    International Nuclear Information System (INIS)

    Kwon, Sang-Koo; Kimijima, Ken'ichi; Kanie, Kiyoshi; Suzuki, Shigeru; Muramatsu, Atsushi; Saito, Masatoshi; Shinoda, Kozo; Waseda, Yoshio

    2007-01-01

    We investigated the influence of silicate ions on the formation of goethite converted from hydroxysulphate green rust, which was synthesized by neutralizing mixed solution of Fe 2 (SO 4 ) 3 and FeSO 4 with NaOH solution, by O 2 in an aqueous solution. The pH and oxidation-reduction potential of the suspension and the Fe and Si concentrations in supernatant solutions were analyzed. X-ray diffraction results for the solid particles formed during the conversion were consistent with the results of the solution analyses. The results indicated that silicate ions suppressed the conversion from green rust to α-FeOOH and distorted the linkages of FeO 6 octahedral units in the α-FeOOH structure

  13. Modeling and Analysis of a Three-Phase Solid-State Var ...

    African Journals Online (AJOL)

    Modeling and Analysis of a Three-Phase Solid-State Var Compensator (SSVC) ... Nigerian Journal of Technology. Journal Home ... The problems associated with the flow of reactive power in transmission and distribution lines are well known.

  14. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  15. Radioimmuoassay study of antidigitoxin antibodies in liquid phase and after coupling on a solid phase

    International Nuclear Information System (INIS)

    Collignon, A.; German, A.; Scherrmann, J.M.; Bourdon, R.

    1983-01-01

    Antidigitoxin antibodies prepared by immunizing rabbits with a digitoxin-bovine serum albumin conjugate have been studied by radioimmunoassay in the native serum (homogeneous phase antibodies) and after coupling on glass beads (heterogeneous phase antibodies). Homogeneous phase antibodies present a satisfactory titer and affinity constant and react very specifically with digitoxin. Fixation of antibodies on a solid phase induce a loss of their immunoreactivity as it is showed by modification of the inhibition curves, by a greater sensitivity to the chemical structure of the tracer and by a decrease of the affinity constant. Reactionnal kinetic and sensitivity to the incubation temperature are not modified. Heterogeneous phase antibodies present a greater stability. Both antibodies types can be used for a digitoxin radioimmunoassay [fr

  16. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers

    International Nuclear Information System (INIS)

    Liu Rong; Ma Xinpeng; Zhao Fengli; Wang Xiangjian; Wang Guangwei; Huang Yongqing; Zhang Donghui

    2009-01-01

    To study the phase characteristics of solid-state amplifiers(20 kW/142.8 MHz,10 kW/571.2 MHz) in sub-harmonic bunchers(SHBs) of the BEPC II linear accelerator, phase shift in pulse and phase stability are measured using a digital measurement method based on field programmable gate array(FPGA). The hardware of the measurement system includes the frequency synthesizer, digital signal processing board(FPGA) and PC, and the software includes an internal algorithm on FPGA, communication procedures and PC client interface procedures. The measurement results of phase characteristics are consistent with the actual situation, which is the basis for the further implement of phase compensation in SHBs. (authors)

  17. The acid aging as alternative process for uranium recovery from silicated ores

    International Nuclear Information System (INIS)

    Cipriani, M.; Della Testa, A.

    1984-01-01

    The influence of different variables on the extraction uranium efficiency and on the silicate solubility by means of acid aging is studied. The variables studied in bench scale were: acid/ore, oxidizing/ore and liquid/solid relationships; reaction time; temperature and recovery time. The results are discussed and compared with the ones of continuous operation of a semi-pilot plant. A flowsheet of the industrial process application is presented. (M.A.C.) [pt

  18. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  19. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    Science.gov (United States)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  20. Solid phase extraction and metabolic profiling of exudates from living copepods

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Nylund, Göran M.

    2016-01-01

    describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds...... that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms....... Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude...

  1. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: ponge@mnhn.fr [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)

    2011-10-15

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  2. Form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage

    International Nuclear Information System (INIS)

    Jiang, Zhu; Leng, Guanghui; Ye, Feng; Ge, Zhiwei; Liu, Chuanping; Wang, Li; Huang, Yun; Ding, Yulong

    2015-01-01

    Graphical abstract: The figure (a) displays the microstructure of calcium silicate and the inset figure is the LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM. Calcium silicate is used as a porous skeleton material which could absorb large amounts of the nitrate PCM in voids and prevent the PCM from leakage during phase change process. Figure (b) shows the heat capacity of the composite PCM and the inset figure is the DSC curve of the composite. It indicates that this composite has a low melting point (103.5 °C) and good energy storage property. Based on the novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM, this work involves fabrication process, thermal and microstructural characterization, and chemical and physical stability measurements. - Highlights: • A novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was prepared. • It has a low melting point (103.5 °C) and could remain stable until 585.5 °C. • It could keep form-stable without leakage during phase change process. • Thermal conductivity of the composite PCM reaches up to 1.177 W m"−"1 K"−"1. • It shows good thermal reliability after 1000 times heating and cooling cycling. - Abstract: In this paper, a novel form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was developed by cold compression and sintering. The eutectic quaternary nitrate is used as PCM, while calcium silicate is used as structural supporting material. X-ray Diffraction (XRD) shows the PCM and the supporting material have good chemical compatibility. This composite PCM has a low melting point (103.5 °C) and remain stable without decomposition until 585.5 °C. Moreover, this composite shows excellent long term stability after 1000 melting and freezing cycles. Thermal conductivity of the composite was measured to be 1.177 W m"−"1 K"−"1, and that could be increased by adding thermal conductivity enhancers into the composite

  3. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland

    2014-01-01

    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  4. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    Science.gov (United States)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  5. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Kolitsch, A.; Machovič, V.; Stara, S.; Míka, M.; Špirková, J.

    2010-01-01

    Roč. 356, 44-49 (2010), s. 2468-2472 ISSN 0022-3093. [XII International Conference on the Physics of Non-Crystalline Solids. Foz do Iguaçu, PR, Brazil , 06.09.-09.09.2009] R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion implantation * Silicate glasses * Metal nanoparticles * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2010

  7. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  8. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    Science.gov (United States)

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  9. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  10. Prediction of transport phenomena in near and far field: interaction solid phase/fluid phase

    International Nuclear Information System (INIS)

    Mingarro, E.

    1995-01-01

    The prediction of transport phenomena in near and far field is presented in the present report. The study begins with the analysis of solid phases stability: solubility of storage waste: UO 2 and solubility of radionuclides the redox and sorption-desorption conditions are the last aspects studied to predict the transport phenomena

  11. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    Science.gov (United States)

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland

    2011-01-01

    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4...

  13. Copper welding in solid phase; Svarka medi v tverdoj faze

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, V Sh

    1993-12-31

    An analysis of the publications on the technology of diffusion welding of copper in solid phase is carried out. The aspects of diffusion welding of copper with silver, aluminium, nickels, chromium, titanium, stainless steel and refractory metals are considered 35 refs.

  14. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  15. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms

    International Nuclear Information System (INIS)

    Domene, Xavier; Alcaniz, Josep M.; Andres, Pilar

    2008-01-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids. - Comparison of solid-phase and eluate bioassays for organic waste testing

  16. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  17. The formation of molecular hydrogen on silicate dust analogs: The rotational distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Syracuse University, Physics Department, Syracuse, NY 13244-1320, USA. (United States); Sabri, T.; Jæger, C., E-mail: lisseth.gavilan@obspm.fr [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena (Germany)

    2014-02-01

    Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H{sub 2}. The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T {sub rot} ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H{sub 2} formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

  18. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  19. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  20. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  1. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    International Nuclear Information System (INIS)

    Lors, Christine; Ponge, Jean-Francois; Martinez Aldaya, Maite; Damidot, Denis

    2011-01-01

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: → Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. → Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. → Proposal for a restricted battery of 5 most sensitive tests. → Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  2. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  3. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  4. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  5. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    DEFF Research Database (Denmark)

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik

    2014-01-01

    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  6. Graft-copolymerization of styrene on polypropylene in the solid phase

    NARCIS (Netherlands)

    Beenen, W.; VanderWal, D.; Janssen, L.P.B.M.; Buijtenhuijs, A.; Hogt, A.H.; Wal, Douwe J. v.d.

    The graft-copolymerization of styrene on PP in the solid phase has been studied under various reaction conditions using a radical initiator. Polymerization kinetics were investigated by DSC experiments and reactions in glass ampoules. The conversion rate and grafting efficiency of styrene appeared

  7. Immunochemical cross-reactivity between albumin and solid-phase adsorbed histamine

    DEFF Research Database (Denmark)

    Poulsen, L K; Nolte, H; Søndergaard, I

    1990-01-01

    For production of an antibody against histamine, this was coupled to human serum albumin (HSA) and used for immunization of rabbits. To test the antiserum, an immunoradiometric assay was developed comprising solid-phase bound histamine, antisera and radiolabelled protein A. Titration and inhibition...

  8. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  9. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    Science.gov (United States)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  10. Solid phase 125I labelled radioimmunoassay for spermidine

    International Nuclear Information System (INIS)

    Zhao Shimin

    1991-01-01

    Using 125 I labelled monoclonal antibody against spermidine and solid phase antigen spermidine-bovine serum albumin conjugate, the radioimmunoassay for spermidine was developed. The sensitivity of this method was about 8 times higher than that of liquid phase 14 C labelled spermidine radioimmunoassay, reaching detection limit of 10 ng/ml (0.5 ng/tube). The working range of standard curve was 0-10 5 ng/ml. The new method was suitable for spermidine measurements in saliva, stomach fluid, and cerebrospinal fluid. The coefficients of variation (CV) of within and between-assay were 4% and 13%, respectively. Preliminary clinical measurements showed that the spermidine levels in saliva of cancer patients and in cerebrospinal fluid of leukemia patients were significantly elevated

  11. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  12. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  13. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  14. The contact angle of wetting of the solid phase of soil before and after chemical modification

    Directory of Open Access Journals (Sweden)

    Tyugai Zemfira

    2015-07-01

    Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of

  15. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  16. Solid phase micro-extraction in environmental atmosphere

    International Nuclear Information System (INIS)

    Tao Ping; Wei Lifan; Tan Yun

    2002-01-01

    Solid phase micro-extraction (SPME) is an advanced technique of sample pretreatment in environmental atmosphere analysis, i.e., a sampling method of extracting volatile organic compounds from environmental gas. According to the primary survey on the theory and application of SPME, a suitable extraction tip, i.e., a coated fused silica fiber, is selected to construct a SPME apparatus. This SPME apparatus is used to extract volatile organic compounds from environmental atmosphere and a qualitative detection is conducted in gas chromatography-mass spectrometer system. Good experimental results are obtained

  17. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate-based bioceramic

    NARCIS (Netherlands)

    Wang, S; Xu, Y; Zhou, J.; Li, H; Chang, Jiang; Huan, Z

    2017-01-01

    Iron-matrix composites with calcium silicate (CS) bioceramic as the reinforcing phase were fabricated through powder metallurgy processes. The microstructures, mechanical properties, apatite deposition and biodegradation behavior of the Fe-CS composites, as well as cell attachment and proliferation

  18. The Deep Impact Coma of Comet 9P/Tempel 1 as a Time-of-Flight Experiment Motivates DDSCAT Models for Porous Aggregate Grains with Silicate Crystal Inclusions

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, S. S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Richard, D. T.; Kolokolova, L.; Moreno, F.

    2010-10-01

    Spitzer IRS spectra of short-period Ecliptic Comets (ECs) have silicate features, and many have distinct crystalline silicate peaks. These Spitzer spectra, when fitted with thermal models after subtraction of the relatively strong contribution of the nuclear flux to the IR spectrum (e.g., Harker et al. 2007), demonstrate ECs have weaker silicate features than long-period Nearly-Isotropic Comets (NICs). There are exceptions, however, as some NICs also have weak features like most ECs. Grains with lower porosities (lower fraction of vacuum) can explain weaker silicate features (Kelley and Wooden 2009; Kolokolova et al. 2007). Alternatively, omitting the smallest (submicron) solid grains can reduce the contrast of the silicate feature (Lisse et al. 2006). However, so far, only models for solid submicron crystals fit the crystalline peaks in spectra of comets with weak silicate features. This presents a dilemma: how can the coma be devoid of small grains except for the crystals? The Spitzer spectra of the Deep Impact event with EC 9P/Tempel 1 provides a data set to model larger porous grains with crystal inclusions because the post-impact coma was a time-of-flight experiment: an impulsive release of grains were size-sorted in time by their respective gas velocities so that the smaller grains departed the inner coma quicker than larger grains. A velocity law derived from fitting small beam Gemini spectra (Harker et al. 2007) indicates that at 20 hour post-impact the (pre-impact subtracted) Spitzer IRS spectrum contained grains larger than 10-20 micron radii, moving at 20 m/s, that produced a weak silicate feature with an 11.2 micron crystalline olivine peak. Furthermore, this feature looks like the silicate feature from the nominal coma. We present some results of a computational effort to model discrete crystals and mixed-mineral porous aggregate grains with silicate crystal inclusions using DDSCAT on the NAS Pleiades supercomputer.

  19. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    Science.gov (United States)

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  20. Double antibody solid-phase radioimmunoassay for staphylococcal enterotoxin A

    International Nuclear Information System (INIS)

    Lindroth, S.; Niskanen, A.

    1977-01-01

    A double antibody solid-phase (DASP) radioimmunoassay for staphylococcal enterotoxin A is described. In the assay the antigen-antibody complex is precipitated by anti-rabbit serum which is adsorbed onto a solid carrier (cellulose). The method is sensitive to 200 pg of enterotoxin. It was possible to detect a little as 2-5 ng of enterotoxin A/ml food extract from minced meat and sausage. Enterotoxins B and C were not found to inhibit the uptake of labled enterotoxin A at a level which might distort the results of the enterotoxin A assay. The DASP technique is sensitive, rapid, and easy to perform and thus compares favorably with other radioimmunoassays for enterotoxin. (orig.) [de

  1. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  2. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    International Nuclear Information System (INIS)

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    2016-01-01

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  3. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    Science.gov (United States)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  4. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  5. Calculated Phase Relations in the System KFMASH Between 6 and 16 GPa

    Science.gov (United States)

    Massonne, H.; Brandelik, A.

    2005-12-01

    To better understand the modal compositions of deeply buried metagranitoids and metapelites, phase relations in the model system K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) with SiO2 in excess were calculated applying thermodynamic principles. We used the software package PTGIBBS, published data, and thermodynamic data (e.g. for phase egg (AlSiO3OH), K-hollandite (KAlSi3O8)) newly derived on the basis of former high-pressure (HP) experiments. Non-ideal mixing was considered for the solid solution series of garnet (components: pyrope, majorite, almandine) and potassic white mica (components: muscovite, MgAl-celadonite, FeAl-celadonite). For phases such as HP-clinoenstatite ((Mg,Fe)SiO3), Si-spinel ((Fe,Mg)2SiO4), and beta phase ((Mg,Fe)2SiO4) only binary solid solutions, assuming ideal mixing, were taken into account. On the basis of the above data, we constructed petrogenetic grids mainly for the P-T range 6 to 16 GPa and 600 to 1600 ° C. Typical features of these grids are, for instance, the disappearance of K-cymrite (KAlSi3O8 H2O) with rising pressure close to 10 GPa and the occurrence of phase egg above 12 GPa. In KMASH potassic white mica reacts with OH-topaz at about 11 GPa (1000-1200 ° C) to form pyrope + K-hollandite. The content of majorite component in pyrope is less than 1 mol% which is systematically so for all garnets coexisting with an Al-silicate at least up to 16 GPa. Potassic white mica, which is virtually pure MgAl-celadonite, finally breaks down at pressures close to 12 GPa. Decomposition assemblages are K-hollandite + HP-clinoenstatite + H2O (T free) garnet + Al-silicate. The latter phase is either OH-topaz (Al2SiO4(OH)2) or phase egg or kyanite also depending on the availability of H2O. Metagranitoids should be composed of shishovite + K-hollandite + majorite-bearing garnet + (enstatite-rich) clinopyroxene. Si-spinel is an important additional phase in this assemblage. This phase shows increasing amounts by approaching to 16 GPa.

  6. 10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals

    Science.gov (United States)

    Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold

    1999-02-01

    The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.

  7. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  8. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  9. Solid-phase Synthesis of Combinatorial 2,4-Disubstituted-1,3,5-Triazine via Amine Nucleophilic Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Won [KIST Gangneung Institute, Gangneung (Korea, Republic of); Ham, Jungyeob [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Chang, Young-Tae [National University of Singapore, Singapore (Singapore); Lee, Jae Wook [University of Science and Technology, Daejon (Korea, Republic of)

    2015-01-15

    In combinatorial chemistry, solid-phase synthesis is a popular approach formass production of small molecules. Compared to solution-phase synthesis, it is easy to prepare and purify a large number of heterocyclic small molecules via solid-phase chemistry; the overall reaction time is decreased as well. 1,3,5-Triazine is a nitrogen-containing heterocyclic aromatic scaffold that was shown to be a druggable scaffold in recent studies. These structures have been reported as anticancer, antimicrobial, and antiretroviral compounds, as CDKs and p38 MAP kinase inhibitors, as estrogen receptor modulators, and as inosine monophosphate dehydrogenase inhibitors. we designed and synthesized disubstituted triazine compounds as an analog of disubstituted pyrimidine compounds. These disubstituted triazine compounds possess a linear structure which may have biological activity similar to that of disubstituted pyrimidine. Here we report the solid-phase synthesis of disubstituted triazine compounds.

  10. Solid-phase Synthesis of Combinatorial 2,4-Disubstituted-1,3,5-Triazine via Amine Nucleophilic Reaction

    International Nuclear Information System (INIS)

    Moon, Sung Won; Ham, Jungyeob; Chang, Young-Tae; Lee, Jae Wook

    2015-01-01

    In combinatorial chemistry, solid-phase synthesis is a popular approach formass production of small molecules. Compared to solution-phase synthesis, it is easy to prepare and purify a large number of heterocyclic small molecules via solid-phase chemistry; the overall reaction time is decreased as well. 1,3,5-Triazine is a nitrogen-containing heterocyclic aromatic scaffold that was shown to be a druggable scaffold in recent studies. These structures have been reported as anticancer, antimicrobial, and antiretroviral compounds, as CDKs and p38 MAP kinase inhibitors, as estrogen receptor modulators, and as inosine monophosphate dehydrogenase inhibitors. we designed and synthesized disubstituted triazine compounds as an analog of disubstituted pyrimidine compounds. These disubstituted triazine compounds possess a linear structure which may have biological activity similar to that of disubstituted pyrimidine. Here we report the solid-phase synthesis of disubstituted triazine compounds

  11. Linkers, resins, and general procedures for solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  12. Binding of properdin to solid-phase immune complexes

    DEFF Research Database (Denmark)

    Junker, A; Baatrup, G; Svehag, S E

    1998-01-01

    The capacity of serum to support deposition of C3, properdin and factor B was studied by enzyme-linked immunosorbent assay using solid-phase immune complexes (IC) for activation of complement. Deposition of C3 and properdin occurred in fairly dilute normal human serum (NHS), but factor B uptake...... fixed to IC was the principal ligand for properdin in the assay. The findings could have biological implications relating to complement-mediated modification of immune complexes in disease....

  13. Influence of pressure on the solid state phase transformation of Cu–Al–Bi alloy

    International Nuclear Information System (INIS)

    Gong, Li; Jian-Hua, Liu; Wen-Kui, Wang; Ri-Ping, Liu

    2010-01-01

    The solid state phase transformation of Cu-Al-Bi alloy under high pressure was investigated by x-ray diffraction, energy dispersive spectroscopy and transmission electron microscopy. Experimental results show that the initial crystalline phase in the Cu-Al-Bi alloy annealed at 750 °C under the pressures in the range of 0–6 GPa is α-Cu solid solution (named as α-Cu phase below), and high pressure has a great influence on the crystallisation process of the Cu-Al-Bi alloy. The grain size of the α-Cu phase decreases with increasing pressure as the pressure is below about 3 GPa, and then increases (P > 3 GPa). The mechanism for the effects of high pressure on the crystallisation process of the alloy has been discussed. (condensed matter: structure, thermal and mechanical properties)

  14. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    Solid-phase PCR (SP-PCR) has attracted considerable interest in different research fields since it allows parallel DNA amplification on the surface of a solid substrate. However, the applications of SP-PCR have been hampered by the low efficiency of the solid-phase amplification. In order to incr...... diagnosis, high-throughput DNA sequencing, and single-nucleotide polymorphism analysis. Graphical abstract Schematic representation of solid-phase PCR....

  15. General approach to standardization of the solid-phase radioimmunoassay for quantitation of class-specific antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zollinger, W D; Boslego, J W [Walter Reed Army Inst. of Research, Washington, DC (USA)

    1981-10-30

    The feasibility of using an anti-human immunoglobulin/human immunoglobulin/(/sup 125/I)anti-human immunoglobulin 'sandwich' in a solid-phase radioimmunoassay to produce a standard curve which could be used to quantitate antigen-specific antibody of a particular immunoglobulin class was investigated. The amount of secondary antibody (SAb) bound was determined as a function of whether the primary antibody (PAb) was bound to its specific solid-phase antigen or by a solid-phase anti-human immunoglobulin. No significant difference between the two values was observed. Quantitation of anti-tetanus toxoid antibody by this method was in a good agreement with quantitative precipitin tests. Comparison of SAb binding as a function of the way the PAb is bound was extended to class-specific PAb by use of murine monoclonal antibodies to meningococcal antigens. In most cases somewhat greater binding of SAb occurred when PAb was bound to antigen, but in several cases where low avidity antibody and/or poor quality antigens were used, greater SAb binding occurred when PAb was bound by anti-mouse immunoglobulin. The results indicate that this approach may be useful as a general method for standardizing the SPRIA and other solid-phase immunoassays such as the ELISA to measure class-specific antibody.

  16. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  18. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  19. Quantum computational capability of a 2D valence bond solid phase

    International Nuclear Information System (INIS)

    Miyake, Akimasa

    2011-01-01

    Highlights: → Our model is the 2D valence bond solid phase of a quantum antiferromagnet. → Universal quantum computation is processed by measurements of quantum correlations. → An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  20. Structural study of chlorine tri-fluoride and bromine penta-fluoride in liquid and solid phase

    International Nuclear Information System (INIS)

    Rousson, R.

    1973-01-01

    This research thesis reports the structural study of chlorine tri-fluoride and bromine penta-fluoride between 20 C and about -265 C. After some generalities on these compounds and a presentation of the experimental technique, the author reports and discusses results obtained with these both compounds: Raman spectrum for the liquid and for the solid phase, infrared spectrum for the solid phase, calorimetric measurements. In the case of chlorine tri-fluoride, the author studies the evolution of the liquid spectrum with temperature, shows the existence of an intermediate solid phase, and compares results obtained by Raman spectroscopy and nuclear magnetic resonance. He also applies to bromine penta-fluoride an analysis of normal coordinates of a XF 5 molecule: relationship between force constants and vibration frequencies, application of Wilson method, resolution of the molecular equation, determination of normal vibration modes [fr

  1. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Demirkiran, Hande; Hu Yongfeng; Zuin, Lucia; Appathurai, Narayana; Aswath, Pranesh B.

    2011-01-01

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts ( 5 (PO 4 ) 2 SiO 4 and Na 3 Ca 6 (PO 4 ) 5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L 2,3 -edge and calcium (Ca) K-edge XANES. Si L 2,3 -edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L 2,3 -edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na 3 Ca 6 (PO 4 ) 5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  2. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  3. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  4. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  5. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  6. Effects of Bacterial Siderophore and Biofilm Synthesis on Silicate Mineral Dissolution Kinetics: Results from Experiments with Targeted Mutants

    Science.gov (United States)

    Van Den Berghe, M. D.; West, A. J.; Nealson, K. H.

    2018-05-01

    This project aims to characterize and quantify the specific microbial mechanisms and metabolic pathways responsible for silicate mineral dissolution and micronutrient acquisition directly from mineral phases.

  7. Thermal conductivity of solid cyclohexane in orientationally ordered and disordered phases

    International Nuclear Information System (INIS)

    Konstantinov, V. A.; Revyakin, V. P.; Sagan, V. V.; Pursky, O. I.; Sysoev, V. M.

    2011-01-01

    Thermal conductivity Λ P of solid cyclohexane is measured at a pressure P = 0.1 MPa in the temperature range from 80 K to the melting point, which covers the ranges of low-temperature orientationally ordered phase II and high-temperature orientationally disordered phase I. Thermal conductivity Λ V is measured at a constant volume in orientationally disordered phase I. The thermal conductivity measured at atmospheric pressure decreases with increasing temperature as Λ P ∝ T −1.15 in phase II, whereas Λ P ∝ T −0.3 in phase I. As temperature increases, isochoric thermal conductivity Λ V in phase I increases gradually. The experimental data are described in terms of a modified Debye model of thermal conductivity with allowance for heat transfer by both phonons and “diffuse” modes.

  8. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  9. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  10. Solid-phase synthesis of head and tail bis-acridinylated peptides

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Matějka, P.; Hlaváček, Jan; Stibor, I.

    2004-01-01

    Roč. 45, č. 6 (2004), s. 1203-1205 ISSN 0040-4039 R&D Projects: GA ČR GA203/02/1379 Institutional research plan: CEZ:AV0Z4055905 Keywords : 9-amino acridine * solid phase synthesis * head and tail peptide conjugates Subject RIV: CC - Organic Chemistry Impact factor: 2.484, year: 2004

  11. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  12. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  13. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  14. Computer-aided design model for anaerobic-phased-solids digester system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Zhang, R. [University of California, Davis, CA (United States); Tiangco, V. [California Energy Commission, Sacramento, CA (United States)

    1999-07-01

    The anaerobic-phased-solids (APS) digester system is a newly developed anaerobic digestion system for converting solid wastes, such as crop residues and food wastes, into biogas for power and heat generation. A computer-aided engineering design model has been developed to design the APS-digester system and study the heat transfer from the reactors and energy production of the system. Simulation results of a case study are presented by using the model to predict the heating energy requirement and biogas energy production for anaerobic digestion of garlic waste. The important factors, such as environmental conditions, insulation properties, and characteristics of the wastes, on net energy production are also investigated. (author)

  15. Evaluation of a Solid Phase DNA Binding Matrix for Downstream PCR Analysis

    National Research Council Canada - National Science Library

    Bader, Douglas E; Fisher, Glen R; Stratilo, Chad W

    2005-01-01

    A commercially available solid-phase DNA binding matrix (FTA cards) was evaluated for its ability to capture and release DNA for downstream gene amplification and detection assays using polymerase chain reaction (PCR...

  16. Technical note: New applications for on-line automated solid phase extraction

    OpenAIRE

    MacFarlane, John D.

    1997-01-01

    This technical note explains the disadvantages of manual solid phase extraction (SPE) techniques and the benefits to be gained with automatic systems. The note reports on a number of general and highly specific applications using the Sample Preparation Unit OSP-2A.

  17. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  18. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. The effect of high antigen density on solid-phase radioimmunoassays for antibody regardless of immunoglobulin class

    International Nuclear Information System (INIS)

    Rubin, R.L.; Hardtke, M.A.; Carr, R.I.

    1980-01-01

    Human sera containing antibody to casein or to bovine serum albumin were used to assess the validity and utility of a solid-phase assay for quantitating antibody activity. Rabbit anti-human immunoglobulin radiolabeled with 125 I and capable of reacting with all human immunoglobulin classes was used to detect antibody bound to antigen immobilized to polystyrene tubes by a new covalent technique. This method results in very high antigen concentrations in highly stable association with polystyrene tubes. Kinetic and absorption studies demonstrated that low avidity antibodies are better detected when antigen is immobilized by the covalent method than when passively adsorbed. Conditions are described for minimizing artifactual interactions and for obtaining results similar to those obtained with conventional, liquid-phase assays. Failure to reach equilibrium in solid-phase assays and other problems are proposed to explain, in part, the inability to obtain a better correlation between solid- and liquid-phase immunoassays. (Auth.)

  20. Development of solid phase radioimmunoassay using antibody coupled magnetizable particles for measurement of progesterone in human serum

    International Nuclear Information System (INIS)

    Mehany, N.L.

    2007-01-01

    The aim of the present study was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of progesterone in human serum are described. The production of polyclonal antibodies was carried out by immunizing five white New-Zealand rabbits subcutaneously. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-progesterone using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum progesterone. 125 I-progesterone tracer was prepared using chloramine-T and iodogen oxidation methods and purified using high performance liquid chromatography. The progesterone standards were prepared using highly purified progesterone powder with hormone free serum as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of progesterone based on magnetizable solid phase separation. This may be extremely helpful in diagnosis and proper management of ovulation during childbearing years

  1. The detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    International Nuclear Information System (INIS)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J.

    1983-01-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml. (author)

  2. A new solid-phase sandwich radioimmunoassay and its application to the detection of snake venom

    International Nuclear Information System (INIS)

    Coulter, A.R.; Cox, J.C.; Sutherland, S.K.; Waddel, C.J.

    1978-01-01

    A solid-phase sandwich radioimmunoassay is described which can be used for the detection and quantitative estimation of crude snake venom and a snake neurotoxin in clinical and experimental situations. Rabbit IgG antivenom or antineurotoxin, covalently coupled to a solid phase (CH-Sepharose 4B) is incubated with sample of unknown venom concentration. Venom bound by the solid-phase antibody is detected by reaction with 125 I-labelled rabbit IgG antivenom or antineurotoxin ([ 125 I]IgG). The resultant count, T, is the total (specific and non-specific) uptake of [ 125 I]IgG. Non-specific binding N, is similarly determined, but with normal rabbit IgG antivenom or antineurotoxin ([ 125 I]IgG). The resultant count, T, is the total (specific and non-specific) uptake of [ 125 I]IgG. Non-specific binding N, is similarly determined, but with normal rabbit IgG bound to the solid phase. A T:N value greater than 1.8 for human serum or urine indicates the presence of venom in a sample (P>0.95). Positive samples are assayed at several dilutions and the venom present estimated from the specific count (T-N). Levels of 0.4 ng/ml of crude tiger snake venom (TSV) and 0.1 ng/ml of neurotoxin can be reliably detected by this procedure. (Auth.)

  3. New solid phase radioimmunoassay (CLB-RIA) for the detection of hepatitis-B antigen and antibody

    Energy Technology Data Exchange (ETDEWEB)

    Duimel, W J [Centraal Laboratorium van de Bloedtransfusiedienst, Amsterdam; Brummelhuis, H G.J.

    1975-07-01

    A new competitive solid phase radioimmunoassay (CLB-RIA) has been developed for the detection of HBAg and HBAb in human serum and plasma. In the assay, sheep antibodies to HBAg, covalently linked to an insoluble carrier, highly purified /sup 125/I labelled HBAg and the serum or plasma sample are incubated for 20 h at room temperature. After incubation, the bound and the free fraction of the tracer are separated by centrifugation. The presence of both HBAg and HBAb results in a decrease of the amount of bound tracer, when compared with a negative control serum. Differentiation between HBAg and HBAb requires the use of another type of radioimmunoassay. For this purpose a sandwich solid phase radioimmunoassay, for the detection of HBAb only, has been developed (CLB-AURIA). In this, assay-purified HBAg is covalently linked to an insoluble carrier. Using a mixture of both immunosorbents (insolubilized HBAg and HBAb), it is possible to detect and to distinguish HBAg and HBAb in one single solid phase radioimmunoassay (CLB-MIRIA). The influence of three parameters on the CLB-RIA, the incubation time, the amount of tracer and the effect of Tween-20 has been studied. The sensitivity of the described solid phase CLB-RIA for the detection of HBAg is comparable to that of other radioimmunoassays reported in literature; its specificity is very high.

  4. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  5. Solid-phase extraction of carotenoids.

    Science.gov (United States)

    Shen, Yao; Hu, Yumin; Huang, Ke; Yin, Shi'an; Chen, Bo; Yao, Shouzhuo

    2009-07-24

    In this work, solid-phase extraction (SPE) trapping performance of lutein and beta-carotene, which were used as the model molecules of carotenoids, was investigated. The absorption, elution, and enrichment of carotenoids on SPE cartridges with four different sorbents, i.e. C(30), C(18), diol, and silica, were compared respectively with the help of frontal analysis technique. The high retentions of both lutein and beta-carotene were achieved on the C(18) and C(30) cartridges. The diol and silica cartridges only had good retention for lutein. The optimized SPE method for sample pretreatment for the carotenoids analysis was obtained after the investigation of trapping performance. The method was applied successfully to the analysis of biological sample, i.e. serum and human breast milk. The recovery, accuracy, and precision of SPE method comparing with those of traditional liquid-liquid extraction (LLE) method for the sample pretreatment for the analysis of carotenoids owned a number of advantages such as rapid, no chloroform used, and accurate versus LLE.

  6. Visualizing a dilute vortex liquid to solid phase transition in a Bi2Sr2CaCu2O8 single crystal

    International Nuclear Information System (INIS)

    Shaw, Gorky; Mandal, Pabitra; Banerjee, S S; Tamegai, T

    2012-01-01

    Using high-sensitivity magneto-optical imaging, we find evidence for a jump in local vortex density associated with a vortex liquid to vortex solid phase transition just above the lower critical field in a single crystal of Bi 2 Sr 2 CaCu 2 O 8 . We find that the regions of the sample where the jump in vortex density occurs are associated with low screening currents. In the field–temperature vortex phase diagram, we identify phase boundaries demarcating a dilute vortex liquid phase and the vortex solid phase. The phase diagram also identifies a coexistence regime of the dilute vortex liquid and solid phases and shows the effect of pinning on the vortex liquid to vortex solid phase transition line. We find that the phase boundary lines can be fitted to the theoretically predicted expression for the low-field portion of the phase boundary delineating a dilute vortex solid from a vortex liquid phase. We show that the same theoretical fit can be used to describe the pinning dependence of the low-field phase boundary lines provided that the dependence of the Lindemann number on pinning strength is considered. (paper)

  7. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  8. Luminescence properties of dysprosium doped calcium magnesium silicate phosphor by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Ishwar Prasad, E-mail: ishwarprasad1986@gmail.com [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandrakar, Priya; Baghel, R.N.; Bisen, D.P.; Brahme, Nameeta [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Tamrakar, Raunak Kumar [Department of Applied Physics, Bhilai Institute of Technology, Durg, C.G. 491001 (India)

    2015-11-15

    Dysprosium doped calcium magnesium silicate (CaMgSi{sub 2}O{sub 6}:Dy{sup 3+}) white light emitting phosphor was synthesized by solid state reaction process. The crystal structure of sintered phosphor was monoclinic structure with space group C2/c. Chemical composition of the sintered CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was confirmed by EDX. The prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was excited from 352 nm and their corresponding emission spectra were recorded at blue (470 nm), yellow (570 nm) and red (675 nm) line due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 11/2} transitions of Dy{sup 3+} ions. The combination of these three emissions constituted as white light confirmed by the Commission Internationale de L'Eclairage (CIE) chromatic coordinate diagram. The possible mechanism of the white light emitting long lasting CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was also investigated. Investigation on afterglow property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. Thus the present investigation indicates that the local piezoelectricity-induced electron bombardment model is responsible to produce ML in prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor. - Highlights: • The crystal structure of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is consistent with standard monoclinic structure. • CIE coordinates of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is suitable as white light emitting phosphor. • The local piezoelectricity-induced electron bombardment model is responsible to produce ML in CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor.

  9. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  10. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  11. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  12. Three magnetic particles solid phase radioimmunoassay for T4: Comparison of their results with established methods

    International Nuclear Information System (INIS)

    Bashir, T.

    1996-01-01

    The introduction of solid phase separation techniques is an important improvement in radioimmunoassays and immunoradiometric assays. Magnetic particle solid phase method has additional advantages over others, as the separation is rapid and centrifugation is not required. Three types of magnetic particles have been studied in T 4 RIA and the results have been compared with commercial kits and other established methods. (author). 4 refs, 9 figs, 2 tabs

  13. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  14. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  15. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.; Thibault, S.; Town, R.M.

    2012-01-01

    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the

  16. New practical algorithm for modelling analyte recovery in bioanalytical reversed phase and mixed-mode solid phase extraction

    NARCIS (Netherlands)

    Hendriks, G.; Uges, D. R. A.; Franke, J. P.

    2008-01-01

    Solid phase extraction (SPE) is a widely used method for sample cleanup and sample concentration in bioanalytical sample preparation. A few methods to model the retention behaviour on SPE cartridges have been described previously but they are either not applicable to ionised species or are not

  17. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bowman, C.; Peters, D.K.; Lockwood, C.M.

    1983-01-01

    A solid-phase radioimmunoassay (RIA) is described for the detection of IgG autoantibodies to glomerular basement membrane (GBM) induced in the Brown Norway rat by mercuric chloride. The assay involves the adsorption of a collagenase digest of GBM to plastic microtitre plates and detection of bound antibody with affinity purified radiolabelled rabbit anti-rat IgG. Comparison with existing immunofluorescence methods for detection of anti-GBM antibody showed that the solid-phase RIA is highly sensitive, allowing detection of antibody in solutions with as low as 0.5 ng protein/ml. The assay is suitable for detection of anti-GBM antibody both in serum and in eluates from nephritic kidneys. The assay proved to be specific in competitive studies of inhibition brought about by GBM, keyhole limpet antigen and ovalbumin. This solid-phase RIA is reproducible, robust and easy to perform. (Auth.)

  18. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    Science.gov (United States)

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  19. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio

    Science.gov (United States)

    Woitke, P.; Helling, Ch.; Hunter, G. H.; Millard, J. D.; Turner, G. E.; Worters, M.; Blecic, J.; Stock, J. W.

    2018-06-01

    We have introduced a fast and versatile computer code, GGCHEM, to determine the chemical composition of gases in thermo-chemical equilibrium down to 100 K, with or without equilibrium condensation. We have reviewed the data for molecular equilibrium constants, kp(T), from several sources and discussed which functional fits are most suitable for low temperatures. We benchmarked our results against another chemical equilibrium code. We collected Gibbs free energies, ΔGf⊖, for about 200 solid and liquid species from the NIST-JANAF database and the geophysical database SUPCRTBL. We discussed the condensation sequence of the elements with solar abundances in phase equilibrium down to 100 K. Once the major magnesium silicates Mg2SiO4[s] and MgSiO3[s] have formed, the dust to gas mass ratio jumps to a value of about 0.0045 which is significantly lower than the often assumed value of 0.01. Silicate condensation is found to increase the carbon to oxygen ratio (C/O) in the gas from its solar value of 0.55 up to 0.71, and, by the additional intake of water and hydroxyl into the solid matrix, the formation of phyllosilicates at temperatures below 400 K increases the gaseous C/O further to about 0.83. Metallic tungsten (W) is the first condensate found to become thermodynamically stable around 1600-2200 K (depending on pressure), several hundreds of Kelvin before subsequent materials such as zirconium dioxide (ZrO2) or corundum (Al2O3) can condense. We briefly discuss whether tungsten, despite its low abundance of 2 × 10-7 times the silicon abundance, could provide the first seed particles for astrophysical dust formation. GGCHEM code is publicly available at http://https://github.com/pw31/GGchemTable D.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A1

  20. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  1. Isostructural solid-solid transition of (colloidal) simple fluids

    International Nuclear Information System (INIS)

    Tejero, C.F.; Daanoun, A.; Lakkerkerker, H.N.W.; Baus, M.

    1995-01-01

    A variational approach based on the Gibbs-Bogoliubov inequality is used in order to evaluate the free energy of simple fluids described by a double-Yukawa pair potential. A hard-sphere reference fluid is used to describe the fluid phases, and an Einstein reference crystal to describe the solid phases. Apart from the usual type of phase diagram, typical of atomic simple fluids with long-ranged attractions, we find two types of phase diagrams, specific to colloidal systems with intermediate and short-ranged attractions. One of the latter phase diagrams exhibits an isostructural solid-solid transition, which has not yet been observed experimentally

  2. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Hills, C.D.; Tyrer, M.; Slipper, I.; Shen, H.G.; Brough, A.

    2007-01-01

    The hydration of tricalcium silicate (C 3 S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn 2+ , Pb 2+ , Cu 2+ and Cr 3+ were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C 3 S hydration, even though Zn 2+ doping exhibited a severe retardation effect at an early period of time of C 3 S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C 3 S hydration. The contents of portlandite in the control, Cr 3+ -doped, Cu 2+ -doped, Pb 2+ -doped and Zn 2+ -doped C 3 S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and 2 Cr(OH) 7 .3H 2 O, Ca 2 (OH) 4 4Cu(OH) 2 .2H 2 O and CaZn 2 (OH) 6 .2H 2 O). These compounds were identified as crystalline phases in heavy metal doping C 3 S suspensions and amorphous phases in heavy metal doping C 3 S pastes. 29 Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C 3 S pastes. The average numbers of Si in C-S-H gel for the Zn 2+ -doped, Cu 2+ -doped, Cr 3+ -doped, control, and Pb 2+ -doped C 3 S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C 3 S hydration process in the presence of carbon dioxide

  3. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    Science.gov (United States)

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    Science.gov (United States)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  5. Solid-phase peptide quantitation assay using labeled monoclonal antibody and glutaraldehyde fixation

    International Nuclear Information System (INIS)

    Kasprzyk, P.G.; Cuttitta, F.; Avis, I.; Nakanishi, Y.; Treston, A.; Wong, H.; Walsh, J.H.; Mulshine, J.L.

    1988-01-01

    A solid-phase radioimmunoassay utilizing iodinated peptide-specific monoclonal antibody as a detection system instead of labeled peptide has been developed. Regional specific monoclonal antibodies to either gastrin-releasing peptide or gastrin were used as models to validate the general application of our modified assay. Conditions for radioactive labeling of the monoclonal antibody were determined to minimize oxidant damage, which compromises the sensitivity of other reported peptide quantitation assays. Pretreatment of 96-well polyvinyl chloride test plates with a 5% glutaraldehyde solution resulted in consistent retention of sufficient target peptide on the solid-phase matrix to allow precise quantitation. This quantitative method is completed within 1 h of peptide solid phasing. Pretreatment of assay plates with glutaraldehyde increased binding of target peptide and maximized antibody binding by optimizing antigen presentation. The hypothesis that glutaraldehyde affects both peptide binding to the plate and orientation of the peptide was confirmed by analysis of several peptide analogs. These studies indicate that peptide binding was mediated through a free amino group leaving the carboxy-terminal portion of the target peptide accessible for antibody binding. It was observed that the length of the peptide also affects the amount of monoclonal antibody that will bind. Under the optimal conditions, results from quantitation of gastrin-releasing peptide in relevant samples agree well with those from previously reported techniques. Thus, we report here a modified microplate assay which may be generally applied for the rapid and sensitive quantitation of peptide hormones

  6. Development Of Solid Phase Radioimmunoassay Using Antibody Coupled Cellulose Particles For Measurement Of Prolactin In Human Serum

    International Nuclear Information System (INIS)

    Abdel-Ghany, I.Y.

    2013-01-01

    The objective of the present study was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase cellulose particles for the measurement of prolactin (PRL) in human serum were described. The production of polyclonal antibodies was carried out by immunizing three Balb/C mice intraperitoneal through primary injection and two booster doses. The activation of cellulose particles using 1,1-carbonyl diimidazole (CDI) and coupling of these solid phase particles with IgG fraction of mouse anti-PRL were carried out. Preparation of 125 I-PRL tracer was prepared using lactoperoxidase method then purified by gel filtration using sephadex G-100. The PRL standards were prepared using a highly purified PRL antigen with assay buffer as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of prolactin based on solid phase separation. These cellulose particles retain their characteristics during storage for 6 months at 4 degree C. In conclusion, this assay could be used as a useful diagnostic tool for pituitary dysfunctions and possible reproductive disability

  7. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    Science.gov (United States)

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid - Phase Extraction Ultra-Performance Liquid Chromatography...QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–TIME-OF-FLIGHT MASS

  8. EFFECT OF AGING TIME TOWARD CRYSTALLINITY OF PRODUCTS IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-12-01

    Full Text Available Researches about the effects of aging time toward crystallinity of products in the synthesis of mesoporous silicates MCM-41 have been done. MCM-41 was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium hydroxide, cetyltrimetylammoniumbromide (CTMAB and aquadest in the molar ratio of 8Na2SiO3 : CTMAB : NaOH : 400H2O. Hydrothermal treatment was carried out at 110 °C in a teflon-lined stainless steel autoclave heated in the oven, with variation of aging time, i.e.: 4, 8, 12, 16, 24, 36, 48, and 72 h respectively. The solid phase were filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcinations at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined powders were characterized by using FTIR spectroscopy and X-ray diffraction method. The relative crystallinity of products was evaluated based on the intensity of d100 peaks. The best product was characterized by using N2 physisorption method in order to determine the specific surface area, mean pore diameter, lattice parameter, and pore walls thickness. It was concluded that the relative crystallinity of the products was sensitively influenced by the aging time. The highest relative crystallinity was achieved when used 36 h of aging time in hydrothermal treatment. In this optimum condition the product has 946.607 m2g-1 of specific surface area, 3.357 nm of mean pore diameter, 4.533 nm of lattice parameter, and 1.176 nm of pore walls thickness.

  9. Differing results of direct and indirect solid phase radioimmunoassay for HBsAg in acute hepatitis

    International Nuclear Information System (INIS)

    Strohm, W.D.; Legler, K.; Gerlich, W.; Stamm, B.; Zimmer, S.; Biotest-Serum-Institut G.m.b.H., Frankfurt am Main; Goettingen Univ.

    1978-01-01

    In 54 patients suffering from active viral hepatitis the indirect solid phase radioimmunoassay (ind-SPRIA) for HBsAg was positive in 9 cases the direct solid phase radioimmunoassay (d-SPRIA) being negative. In 2 further cases ind-SPRIA was positive during several weeks but d-SPRIA only once. AntiHBc could be detected in 9 of these patients. In 7 patients the usual decrease of the transaminase activity was followed by a second elavation with prolongation of the disease. The unknown factor detected by ind-SPRIA suggests a special of acute hepatitis. (orig.) [de

  10. Differing results of direct and indirect solid phase radioimmunoassay for HBsAg in acute hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Strohm, W D; Legler, K; Gerlich, W; Stamm, B; Zimmer, S [Frankfurt Univ. (Germany, F.R.). Abt. fuer Gastroenterologie; Biotest-Serum-Institut G.m.b.H., Frankfurt am Main (Germany, F.R.); Goettingen Univ. (Germany, F.R.). Hygiene-Institut)

    1978-09-01

    In 54 patients suffering from active viral hepatitis the indirect solid phase radioimmunoassay (ind-SPRIA) for HBsAg was positive in 9 cases the direct solid phase radioimmunoassay (d-SPRIA) being negative. In 2 further cases ind-SPRIA was positive during several weeks but d-SPRIA only once. AntiHBc could be detected in 9 of these patients. In 7 patients the usual decrease of the transaminase activity was followed by a second elavation with prolongation of the disease. The unknown factor detected by ind-SPRIA suggests a special of acute hepatitis.

  11. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    Science.gov (United States)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  12. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids

    Science.gov (United States)

    Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel

    2018-05-01

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  13. Cesium and strontium incorporation into uranophane, Ca[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}{center_dot}5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Matthew; Clark, Sue B. [Washington State Univ., Chemistry Dept. and Center for Multiphase Environmental Research, WA (United States); Utsunomiya, Satoshi; Ewing, Rodney C. [University of Michigan, Nuclear Engineering and Radiological Sciences Dept., Ann Arbor, MI (United States)

    2002-11-01

    The uranyl silicate solid uranophane, Ca[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}{center_dot}5H{sub 2}O, is likely an important secondary solid that forms in the alteration of spent nuclear fuel. This 1:1 U(VI)-silicate structure may serve as a host for the incorporation of fission products such as {sup 137}Cs or {sup 90}Sr by substitution of Ca{sup 2+} in interlayer spaces in the solid. We have investigated this possibility by synthesizing 1:1 U(VI)-silicate solids where the Ca{sup 2+} is completely or partially replaced by either Sr{sup 2+} or Cs{sup +}. The solids obtained have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), and elemental analysis. We observe that the Sr{sup 2+} analog of uranophane yields a diffractogram that resembles the XRD pattern obtained for synthetic uranophane, although the morphology of the solid is different from uranophane. Conversely, substitution of Cs{sup +} for Ca{sup 2+} in the synthesis of the 1:1 uranyl-silicate solid yields a very different diffractogram but solid phase morphology similar to uranophane. When Ca{sup 2+} is partially replaced in the synthesis, the diffractograms appear to be similar to uranophane for both the Sr{sup 2+} an Cs{sup +} systems, but SEM indicates that a mixture of solid phases are formed. We describe and summarize our results, and propose additional studies to address the question of whether these cations are incorporated into the uranophane solid. (author)

  14. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Science.gov (United States)

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  15. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  16. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  17. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  18. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    Science.gov (United States)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  19. Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions.

    Science.gov (United States)

    Meeus, Joke; Scurr, David J; Chen, Xinyong; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van den Mooter, Guy

    2015-04-01

    Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix. MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed. MDSC, TOF-SIMS and AFM provided insights into differences in drug distribution via the observed surface coverage for 3 differently composed ternary solid dispersions. Combining MDSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions.

  20. Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials

    OpenAIRE

    Kelly, K; Infante, JR; Taylor, MH; Patel, MR; Wong, DJ; Iannotti, N; Mehnert, JM; Loos, AH; Koch, H; Speit, I; Gulley, JL

    2018-01-01

    © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. BACKGROUND: Antibodies targeting the programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint may cause adverse events (AEs) that are linked to the mechanism of action of this therapeutic class and unique from those observed with conventional chemotherapy. METHODS: Patients with advanced solid tumors who were enrolled in the phase 1 JAVELIN Solid Tumor (1650 patient...

  1. Photoluminescence properties and energy-transfer of thermal-stable Ce3+, Mn2+-codoped barium strontium lithium silicate red phosphors

    International Nuclear Information System (INIS)

    Zhang Xinguo; Gong Menglian

    2011-01-01

    Research highlights: → Excited by UV, strong red luminescence is observed from Ce 3+ , Mn 2+ -codoped barium strontium lithium silicate (BSLS), while violet-blue emission from Ce 3+ sole doped BSLS. → These results indicate the Mn 2+ -derived red emission is originated by an efficient Ce 3+ → Mn 2+ energy transfer. → The red emission becomes stronger with increased Sr content, and shows red-shift. → These phosphors demonstrate good thermal stability even in 180 o C, which is suitable for NUV LED application. - Abstract: A series of thermal-stable Ce 3+ , Mn 2+ -codoped barium strontium lithium silicate (BSLS) phosphors was synthesized by a high-temperature solid-state reaction. The XRD patterns of this phosphor seem to be a new phase that has not been reported before. BSLS:Ce 3+ , Mn 2+ showed two emission bands under 365 nm excitation: one observed at 421 nm was attributed to Ce 3+ emission, and the other found in red region was assigned to Mn 2+ emission through Ce 3+ -Mn 2+ efficient energy transfer. The Mn 2+ emission shifted red along with the replacement of barium by strontium, which was due to the change of crystal field. A composition-optimized phosphor, BSLS:0.10Ce 3+ , 0.05Mn 2+ (Ba = 65), exhibited strong and broad red-emitting and supreme thermal stability. The results suggest that this phosphor is suitable as a red component for NUV LED or high pressure Hg vapor (HPMV) lamp.

  2. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  3. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  4. Investigations on the crystal-structure and non-ambient behaviour of K2Ca2Si8O19 - a new potassium calcium silicate

    Science.gov (United States)

    Schmidmair, Daniela; Kahlenberg, Volker; Praxmarer, Alessandra; Perfler, Lukas; Mair, Philipp

    2017-09-01

    Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 bar . Unit cell dimensions are a = 7.4231(7) Å, b = 10.7649(10) Å, c = 12.1252(10) Å, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

  5. Electronic structure of elements and compounds and electronic phases of solids

    International Nuclear Information System (INIS)

    Nadykto, B.A.

    2000-01-01

    The paper reviews technique and computed energies for various electronic states of many-electron multiply charged ions, molecular ions, and electronic phases of solids. The model used allows computation of the state energy for free many-electron multiply charged ions with relative accuracy ∼10 -4 suitable for analysis of spectroscopy data

  6. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    Science.gov (United States)

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  8. Homogeneous nucleation in phase separation of solid 3He-4He mixtures

    International Nuclear Information System (INIS)

    Poole, M.; Smith, A.; Maidanov, V.A.; Rudavskii, E.Ya.; Grigor'ev, V.N.; Slezov, V.V.; Saunders, J.; Cowan, B.

    2003-01-01

    NMR and pressure have been measured during phase separation in solid 3 He- 4 He mixtures. Spin echoes were used to observe bounded diffusion and to estimate the diffusion coefficient, size and nuclei concentration in the 3 He-enriched phase. The characteristic phase separation time constant of the mixture was found from pressure measurements. The results argue convincingly for homogeneous nucleation. The surface tension of the nuclei is found independently from NMR and from pressure measurements; the two determinations agree well and yield a surface tension coefficient of 4.9x10 -6 J m -2

  9. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  10. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  11. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean

    CSIR Research Space (South Africa)

    Mtshali, TN

    2012-11-01

    Full Text Available Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation...

  12. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    Science.gov (United States)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  13. An in-line clean system for the solid-phase extraction of emerging contaminants in natural waters

    OpenAIRE

    Sodré, Fernando F.; Locatelli, Marco Antonio F.; Jardim, Wilson F.

    2010-01-01

    A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus i...

  14. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    DEFF Research Database (Denmark)

    Mathiessen, Bente; Zhuravlev, Fedor

    2013-01-01

    of [18F]FDG. The combination of compact form factor, simplicity of [18F]F− recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.......The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic...

  15. Kinetics of solid-phase in ion exchange on tin hydrogen phosphate

    International Nuclear Information System (INIS)

    Kislitsyn, M.N.; Ketsko, V.A.; Yaroslavtsev, A.B.

    2004-01-01

    Solid state reactions in mixture of tin hydrogen phosphate and alkali metal (M=Na, K, Cs) chlorides have been studied both in the mode of polythermal heating and at a fixed temperature, using data of X-ray phase and thermogravimetric analyses. In the range 400-750 Deg C solid state ion exchange reactions occur in the systems studied and yield mono-- and dialkali phosphates MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 . Counter diffusion coefficients for alkali metal cations and protons in the matrices of compositions MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 have been determined [ru

  16. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    Science.gov (United States)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  18. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  19. Basal plane shift as an order parameter of transitions between antiferromagnetic phases of solid oxygen

    International Nuclear Information System (INIS)

    Gomonay, E.V.; Loktev, V.M.

    2005-01-01

    A phenomenological model in the spirit of the Landau theory of phase transitions is derived, and the conditions for existence and phase transitions between different magnetocrystal structures of solid oxygen are analyzed for wide ranges of pressure, temperature and external magnetic field

  20. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  1. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Ensafi@cc.iut.ac.ir; Ghaderi, Ali R. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO{sub 3} and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 {mu}g of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO{sub 3} solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL{sup -1} Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL{sup -1} Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  2. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Ghaderi, Ali R.

    2007-01-01

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO 3 and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 μg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO 3 solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL -1 Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL -1 Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments

  3. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  4. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  5. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  6. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  7. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  8. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.

    2016-03-30

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.

  9. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  10. Determination of solid- and liquid-phase gastric emptying half times in cats by use of nuclear scintigraphy.

    Science.gov (United States)

    Costello, M; Papasouliotis, K; Barr, F J; Gruffydd-Jones, T J; Caney, S M

    1999-10-01

    To use nuclear scintigraphy to establish a range of gastric emptying half times (t1/2) following a liquid or solid meal in nonsedated cats. 12 clinically normal 3-year-old domestic shorthair cats. A test meal of 75 g of scrambled eggs labeled with technetium Tc 99m tin colloid was fed to 10 of the cats, and solid-phase gastric emptying t1/2 were determined by use of nuclear scintigraphy. In a separate experiment, 8 of these cats plus an additional 2 cats were fed 18 ml (n = 5) or 36 ml (n = 5) of a nutrient liquid meal labeled with technetium Tc 99m pentetate. Liquid-phase gastric emptying t1/2 then were determined by use of scintigraphy. Solid-phase gastric emptying t1/2 were between 210 and 769 minutes (median, 330 minutes). Median liquid-phase gastric emptying t1/2 after ingestion of 18 or 36 ml of the test meal were 67 minutes (range, 60 to 96 minutes) and 117 minutes (range, 101 to 170 minutes), respectively. The median t1/2 determined for cats receiving 18 ml of the radiolabeled liquid was significantly less than that determined for cats receiving 36 ml of the test meal. The protocol was tolerated by nonsedated cats. Solid-phase gastric emptying t1/2 were prolonged, compared with liquid-phase t1/2, and a major factor governing the emptying rate of liquids was the volume consumed. Nuclear scintigraphy may prove useful in assessing gastric motility disorders in cats.

  11. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  12. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    International Nuclear Information System (INIS)

    Fiebach, H.; Uckert, W.; Micheel, B.

    1982-01-01

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle. (author)

  13. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    Energy Technology Data Exchange (ETDEWEB)

    Fiebach, H.; Uckert, W.; Micheel, B. (Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Krebsforschung)

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle.

  14. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7

    DEFF Research Database (Denmark)

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong

    2011-01-01

    of RNA extract in the liquid phase with sequence-specific nested PCR on the solid phase. A simple ultraviolet cross-linking method was used to immobilize the DNA probes over an unmodified glass surface, which makes solid-phase PCR a convenient possibility for AIV screening. The testing of 33 avian fecal....... In this article, a DNA microarray-based solid-phase polymerase chain reaction (PCR) approach has been developed for rapid detection of influenza virus type A and for simultaneous identification of pathogenic virus subtypes H5 and H7. This solid-phase RT-PCR method combined reverse-transcription amplification...

  15. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  16. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  17. Fluorine incorporation during Si solid phase epitaxy

    International Nuclear Information System (INIS)

    Impellizzeri, G.; Mirabella, S.; Romano, L.; Napolitani, E.; Carnera, A.; Grimaldi, M.G.; Priolo, F.

    2006-01-01

    We have investigated the F incorporation and segregation in preamorphized Si during solid phase epitaxy (SPE) at different temperatures and for several implanted-F energies and fluences. The Si samples were amorphized to a depth of 550 nm by implanting Si at liquid nitrogen temperature and then enriched with F at different energies (65-150 keV) and fluences (0.07-5 x 10 14 F/cm 2 ). Subsequently, the samples were regrown by SPE at different temperatures: 580, 700 and 800 deg. C. We have found that the amount of F incorporated after SPE strongly depends on the SPE temperature and on the energy and fluence of the implanted-F, opening the possibility to tailor the F profile during SPE

  18. A combination of solid-phase extraction and dispersive solid-phase extraction effectively reduces the matrix interference in liquid chromatography-ultraviolet detection during pyraclostrobin analysis in perilla leaves.

    Science.gov (United States)

    Farha, Waziha; Rahman, Md Musfiqur; Abd El-Aty, A M; Jung, Da-I; Kabir, Md Humayun; Choi, Jeong-Heui; Kim, Sung-Woo; Im, So Jeong; Lee, Young-Jun; Shin, Ho-Chul; Kwon, Chan-Hyeok; Son, Young-Wook; Lee, Kang-Bong; Shim, Jae-Han

    2015-12-01

    Perilla leaves contain many interfering substances; thus, it is difficult to protect the analytes during identification and integration. Furthermore, increasing the amount of sample to lower the detection limit worsens the situation. To overcome this problem, we established a new method using a combination of solid-phase extraction and dispersive solid-phase extraction to analyze pyraclostrobin in perilla leaves by liquid chromatography with ultraviolet absorbance detection. The target compound was quantitated by external calibration with a good determination coefficient (R(2) = 0.997). The method was validated (in triplicate) with three fortification levels, and 79.06- 89.10% of the target compound was recovered with a relative standard deviation <4. The limits of detection and quantification were 0.0033 and 0.01 mg/kg, respectively. The method was successfully applied to field samples collected from two different areas at Gwangju and Muan. The decline in the resiudue concentrations was best ascribed to a first-order kinetic model with half-lives of 5.7 and 4.6 days. The variation between the patterns was attributed to humidity. Copyright © 2015 John Wiley & Sons, Ltd.

  19. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  20. Assessment of Metaborate Fusion for the Rapid Dissolution of Solid Samples: Suitability with the Northstar ARSIIe

    Science.gov (United States)

    2016-07-01

    5 Table 3. Residual Silicates avec Flocculation in Glass Beaker or Polyethylene Cone ................ 8 Table 4...is formed. Since the concentration of silicates in soil or sediment is high (up to 70-75% in silicon dioxide ( SiO2 ) in some cases), the condensation...flux, for the fusion of acidic samples such as solids containing a significant portion of SiO2 . Conversely, lithium tetraborate, an acidic flux, will

  1. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.

  2. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  3. Solid-phase synthesis of an apoptosis-inducing tetrapeptide mimicking the Smac protein

    DEFF Research Database (Denmark)

    Le Quement, Sebastian Thordal; Ishøy, Mette; Petersen, Mette Terp

    2011-01-01

    An approach for the solid-phase synthesis of apoptosis-inducing Smac peptidomimetics is presented. Using a Rink linker strategy, tetrapeptides mimicking the N-4-terminal residue of the Smac protein [(N-Me)AVPF sequence] were synthesized on PEGA resin in excellent purities and yields. Following two...

  4. Silicate complexation of NpO2+ ion in perchlorate media

    International Nuclear Information System (INIS)

    Pathak, P.N.; Choppin, G.R.

    2007-01-01

    Complexation behavior of NpO 2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO 4 ) at pcH 3.68±0.08 and 25 deg C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β 1 ) for the 1:1 complex, NpO 2 (OSi(OH) 3 ), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I = 0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am 3+ , Eu 3+ , UO 2 2+ , PuO 2 2+ , Np 4+ , Ni 2+ and Co 2+ . The speciation of NpO 2 + -o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. (author)

  5. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing [Energy; Lu, Dongping [Energy; Bowden, Mark [Environmental; El Khoury, Patrick Z. [Environmental; Han, Kee Sung [Environmental; Deng, Zhiqun Daniel [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy

    2018-01-22

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport properties of liquid phase synthesized Li7P3S11 is identified and discussed.

  6. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium

    International Nuclear Information System (INIS)

    Nakao, Ryuji; Halldin, Christer

    2013-01-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. Methods: This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Results: Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for 11 C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Conclusion: Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma

  7. Application of solid-phase microextraction in analytical toxicology.

    Science.gov (United States)

    Pragst, Fritz

    2007-08-01

    Solid-phase microextraction (SPME) is a miniaturized and solvent-free sample preparation technique for chromatographic-spectrometric analysis by which the analytes are extracted from a gaseous or liquid sample by absorption in, or adsorption on, a thin polymer coating fixed to the solid surface of a fiber, inside an injection needle or inside a capillary. In this paper, the present state of practical performance and of applications of SPME to the analysis of blood, urine, oral fluid and hair in clinical and forensic toxicology is reviewed. The commercial coatings for fibers or needles have not essentially changed for many years, but there are interesting laboratory developments, such as conductive polypyrrole coatings for electrochemically controlled SPME of anions or cations and coatings with restricted-access properties for direct extraction from whole blood or immunoaffinity SPME. In-tube SPME uses segments of commercial gas chromatography (GC) capillaries for highly efficient extraction by repeated aspiration-ejection cycles of the liquid sample. It can be easily automated in combination with liquid chromatography but, as it is very sensitive to capillary plugging, it requires completely homogeneous liquid samples. In contrast, fiber-based SPME has not yet been performed automatically in combination with high-performance liquid chromatography. The headspace extractions on fibers or needles (solid-phase dynamic extraction) combined with GC methods are the most advantageous versions of SPME because of very pure extracts and the availability of automatic samplers. Surprisingly, substances with quite high boiling points, such as tricyclic antidepressants or phenothiazines, can be measured by headspace SPME from aqueous samples. The applicability and sensitivity of SPME was essentially extended by in-sample or on-fiber derivatization. The different modes of SPME were applied to analysis of solvents and inhalation narcotics, amphetamines, cocaine and metabolites

  8. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  9. About Fundamental Problems of Hydrosphere and Silicate Karst

    Directory of Open Access Journals (Sweden)

    A. Ya. Gayev

    2017-09-01

    Full Text Available Rationale of hydrosphere model with two regions of supply and discharge reveals regularities of ground water formation reflecting the special features of system water – rock – gas – living material and character of interaction of hydrosphere with the other spheres of the Earth. It is necessary to concentrate the development of endogenous hy-drogeology fundamentals with the study of silicate karst on investigation of “white and black smokers”, the structure and isotope composition of water in different phase condi-tions, and on modeling of situation in hydrometagenese zone. It will support the development of geotechnology and providing the humanity with mineral and energetic resources in future.

  10. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    Science.gov (United States)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  11. Phase transitions in solid Kr-CH4 solutions and rotational excitations in phase II

    International Nuclear Information System (INIS)

    Bagatskii, M.I.; Mashchenko, D.A.; Dudkin, V.V.

    2007-01-01

    The heat capacity C p of solid Kr-n CH 4 solutions with the CH 4 concentrations n=0.82, 0.86, 0.90 as well as solutions with n=0.90, 0.95 doped with 0.002 O 2 impurity has been investigated under equilibrium vapor pressure over the internal 1-24 K. The (T,n)-phase diagram was refined and the region of two-phase states was determined for Kr-n CH 4 solid solutions. The contribution of the rotational subsystem, C r ot, to the heat capacity of the solutions has been separated. Analysis of C r ot(T) at T 1 and E 2 between the tunnel levels of the A-, T- and A-, E--nuclear-spin species of CH 4 molecules in the orientationally ordered subsystem, and to determine the effective energy gaps E 1 between lowest levels of the A- and T- species. The relations τ(n) and E 1 (n) stem from changes of the effective potential field caused as the replacement of CH 4 molecules by Kr atoms at sites of the ordered sublattices. The effective gaps E L between a group of tunnel levels of the ground-state liberation state and the nearest group of excited levels of the liberation state of the ordered CH 4 molecules in the solutions with n=0.90 (E L =52 K) and 0.95 (E L =55 K) has been estimated

  12. Microwave-assisted solid phase conversion study of Meldrum's acid to ethylenetetracarboxylic dianhydride (C 6O 6)

    Science.gov (United States)

    Taherpour, Avat (Arman)

    2010-01-01

    Utilization of microwave irradiation provides an effective method for fast synthesizing of some important compounds. Microwave-assisted solid phase is an especial class in chemical synthesis. By the use of MW-irradiation on chemicals, sometimes interesting results can be seen. The synthesis of the interesting molecule ethylenetetracarboxylic dianhydride (C 6O 6) was attempted with a few different methods. In this study, the microwave-assisted solid phase conversion of Meldrum's acid to ethylenetetracarboxylic dianhydride was reported. This conversion was characterized by FT-IR, GC/MS and NMR spectroscopy results.

  13. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  14. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  15. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  16. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    Science.gov (United States)

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  17. Solid-phase synthesis of yttrium ferrites with structures of perovskite and garnet

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, E V; Shapovalov, A G; Aksel' rod, N L; Pazdnikov, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1980-09-01

    The solid phase synthesis of yttrium ferrites having a perovskite- and garnet-like structure has been investigated in the temperature range from 800 to 1500 deg C and temper times of up to 80 hours by reaction zone simulation and magnetic phase analysis. It is shown that for conversion degrees d<0.15 the reactions are diffusion-controlled. The rate constants and effective diffusion in the formation of YFeO/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ have been determined.

  18. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Visual monitoring of solid-phase extraction using chromogenic fluorous synthesis supports.

    Science.gov (United States)

    Blackburn, Christopher

    2012-03-12

    Reductive aminations and further transformations of an azo dye and fluorous tagged aldehyde are described. The intensely colored 2,4-dialkoxybenzyl protected amines undergo Fmoc-based peptide coupling, Suzuki reactions, and sulfonamide formation with product isolation facilitated by visual monitoring of fluorous solid phase extraction. Target compounds are released from the supports in high yields and purities by treatment with trifluoroacetic acid (TFA).

  20. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2011-01-01

    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  1. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  2. Phase I study of afatinib combined with nintedanib in patients with advanced solid tumours.

    Science.gov (United States)

    Bahleda, Rastislav; Hollebecque, Antoine; Varga, Andrea; Gazzah, Anas; Massard, Christophe; Deutsch, Eric; Amellal, Nadia; Farace, Françoise; Ould-Kaci, Mahmoud; Roux, Flavien; Marzin, Kristell; Soria, Jean-Charles

    2015-11-17

    This Phase I study evaluated continuous- and intermittent-dosing (every other week) of afatinib plus nintedanib in patients with advanced solid tumours. In the dose-escalation phase (n=45), maximum tolerated doses (MTDs) were determined for continuous/intermittent afatinib 10, 20, 30 or 40 mg once daily plus continuous nintedanib 150 or 200 mg twice daily. Secondary objectives included safety and efficacy. Clinical activity of continuous afatinib plus nintedanib at the MTD was further evaluated in an expansion phase (n=25). The most frequent dose-limiting toxicities were diarrhoea (11%) and transaminase elevations (7%). Maximum tolerated doses were afatinib 30 mg continuously plus nintedanib 150 mg, and afatinib 40 mg intermittently plus nintedanib 150 mg. Treatment-related adverse events (mostly Grade⩽3) included diarrhoea (98%), asthenia (64%), nausea (62%) and vomiting (60%). In the dose-escalation phase, two patients had partial responses (PRs) and 27 (60%) had stable disease (SD). In the expansion phase, one complete response and three PRs were observed (all non-small cell lung cancer), with SD in 13 (52%) patients. No pharmacokinetic interactions were observed. MTDs of continuous or intermittent afatinib plus nintedanib demonstrated a manageable safety profile with proactive management of diarrhoea. Antitumour activity was observed in patients with solid tumours.

  3. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    Science.gov (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  5. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Číž, Milan; Ambrožová, Gabriela; Lojek, Antonín; Yanakieva, I.; Kratchanova, M.

    2010-01-01

    Roč. 123, č. 4 (2010), s. 1055-1061 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : anthocyanins * solid-phase extraction * berry extracts Subject RIV: BO - Biophysics Impact factor: 3.458, year: 2010

  6. Solid-phase immunoradiometric assay for C-reactive protein using magnetisable cellulose particles

    International Nuclear Information System (INIS)

    Beer, F.C. de; Pepys, M.B.

    1982-01-01

    An immunoradiometric assay (IRMA) for C-reactive protein (CRP) was developed using magnetisable cellulose particles as the solid-phase support for anti-CRP antibodies. 125 I-labelled immunopurified anti-CRP antibody was used to quantitate the amount of CRP taken up by the solid phase. Unbound label was easily and rapidly removed by decantation after sedimenting the particles on a magnet. The assay could detect 1 μg CRP/l and had a range of up to 10 mg/l with the portion of the standard curve between 10 μg/l and 2-3 mg/l being linear. Fifty samples per hour could be processed manually from serum to CRP result with an intra-assay CV of 5.2% and an inter-assay CV of 10.0%, based on 5 replicates of 5 samples with CRP levels between 2 mg/l and 180 mg/l run in 5 separate assays. Fifty clinical samples were assayed in parallel with a standard electroimmunoassay and yielded a linear correlation coefficient (r) of 0.975 and a slope of 0.98. With its single, brief incubation step including all reagents and its simple phase separation procedure the present method may be the assay of choice when precise measurement of CRP concentrations is required rapidly. (Auth.)

  7. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  8. A multilevel simulation approach to derive the slip boundary condition of the solid phase in two-fluid models

    Science.gov (United States)

    Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin

    2011-11-01

    The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).

  9. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  10. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography.

    Science.gov (United States)

    Lukić, Igor; Banović, Mara; Persurić, Dordano; Radeka, Sanja; Sladonja, Barbara

    2006-01-06

    Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.

  11. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoyan, E-mail: luxy@hit.edu.cn, E-mail: dzk@psu.edu; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-04-07

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  12. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    International Nuclear Information System (INIS)

    Lu, Xiaoyan; Li, Hui; Zheng, Limei; Cao, Wenwu

    2015-01-01

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr 1−x Ti x )O 3 system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point

  13. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  14. Diffusionless phase transition with two order parameters in spin-crossover solids

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii, E-mail: yugudyma@gmail.com; Ivashko, Victor [Department of General Physics, Chernivtsi National University, 58012 Chernivtsi (Ukraine); Linares, Jorge [Groupe d' Etude de la Matière Condensée (GEMAC), UMR 8635, CNRS, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2014-11-07

    The quantitative analysis of the interface boundary motion between high-spin and low-spin phases is presented. The nonlinear effect of the switching front rate on the temperature is shown. A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on interaction integral is considered. These considerations led to examination of the relation between the order parameters during temperature changes. Starting from the phenomenological Hamiltonian, entropy has been derived using the mean field approach. Finally, the phase diagram, which characterizes the system, is numerically analyzed.

  15. Solid-phase immunoradiometric assay for serum amyloid A protein using magnetisable cellulose particles

    International Nuclear Information System (INIS)

    De Beer, F.C.; Dyck, R.F.; Pepys, M.B.

    1982-01-01

    An immunoradiometric assay for human serum amyloid A protein (SAA) was developed using magnetisable cellulose particles as the solid phase. Rabbit antiserum to SAA was raised by immunization with SAA isolated from acute-phase serum by gel filtration in formic acid. The antiserum was rendered monospecific for SAA by solid-phase immunoabsorption with normal human serum, which contains only traces of SAA, and some was coupled covalently to the cellulose particles. Immunopurified anti-SAA antibodies were isolated from the monospecific anti-SAA serum by binding to, and elution from insolubilized acute-phase serum and were radiolabelled with 125 I. The assay was calibrated with an acute phase serum which contained 6000 times more SAA than normal sera with the lowest detectable level of SAA, and an arbitrary value of 6000 U/l was assigned to this standard. Sera were tested in the native, undenatured state and there was no increase in SAA immunoreactivity following alkali treatment or heating. The assay range was from 1-2000 U/l so that all SAA levels above 6 U/l could be measured on a single (1:6) dilution of serum. The intra- and interassay coefficients of variation were 11.7 and 15.0% respectively. Among 100 healthy normal subjects (50 male, 50 female) the median SAA level was 9 U/l, range <1-100, with 93% below 20 U/l and only 2% below the lower limit of sensitivity of the assay (1 U/l). (Auth.)

  16. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers

    NARCIS (Netherlands)

    Haftka, Joris J H; Scherpenisse, Peter; Oetter, G??nter; Hodges, Geoff; Eadsforth, Charles V.; Kotthoff, Matthias; Hermens, Joop L M

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibres were used in the present study to measure CMC values of twelve nonionic, anionic, cationic and zwitterionic surfactants. The SPME derived CMC

  17. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa

    2015-01-01

    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We ...

  18. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  19. Optimized Solid Phase-Assisted Synthesis of Dendrons Applicable as Scaffolds for Radiolabeled Bioactive Multivalent Compounds Intended for Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Gabriel Fischer

    2014-05-01

    Full Text Available Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET.

  20. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.