WorldWideScience

Sample records for silicate hydrate c-s-h

  1. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H)

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, E., E-mail: gallucci.emmanuel@ch.sika.com; Zhang, X.; Scrivener, K.L.

    2013-11-15

    Temperature affects the properties of concrete through its effect on the hydration of cement and its associated microstructural development. This paper focuses on the modifications to C-S-H induced by isothermal curing between 5 and 60 °C. The results show that as the temperature increases (within the range studied) the C/S ratio of C-S-H changes only slightly, with a higher degree of polymerisation of silicate chains, but there is a significant decrease in its bound water content and an increase of apparent density of 25%. This increase seems to come from a different packing of C-S-H at the nanoscale. As a consequence of these changes, the microstructure of the cement paste is much coarser and porous, which explains the lower final strengths obtained by curing at elevated temperatures. -- Highlights: •C-S-H structure studied at the atomic level •Multiple analytical techniques used •Studies conducted at temperatures above and below normal temperatures.

  2. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    International Nuclear Information System (INIS)

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.; Tobón, Jorge I.

    2015-01-01

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure

  3. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  4. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  5. Thermodynamic properties of hydrated cement phases: C-S-H, C-A-S-H and M-S-H

    International Nuclear Information System (INIS)

    Roosz, Cedric

    2016-01-01

    Concrete is one of the most widely used building materials in the world. Durability, mechanical and chemical properties have made it a material of choice in storage concepts proposed by the French National Agency for Radioactive Waste Management (Andra), including the achievement of retaining structures, cell plugs, massive supports or conditioning waste. The study of the stability of the constituent phases of cementitious materials is needed in view of the planned quantities and the durability of the structures, and must consider (i) temperature ranges suitable for cement matrices containment in contact with exothermic waste (25-80 deg. C), and (ii) a representative time scale of the lifetime of the storage. The Andra ThermoChimie project therefore aims to develop a consistent thermodynamic database, to model the chemical evolution of cement materials in the environment of radioactive waste. However, in the present state, the database offers only thermodynamic data of cementitious crystalline phases, as well as a limited data set of three different chemical compositions for nano-crystalline C-S-H. This does not allow to reproduce the degradation of cementitious materials, or model the degradation of the new formulations, such as 'Low pH' concretes. The objective is therefore to acquire a thermodynamic complementary data set on phases such as C-S-H (Calcium Silicate Hydrates) C-A-S-H (Calcium Aluminate Silicate Hydrates) and M-S-H (Magnesium Silicate Hydrates), to complete the ThermoChimie database. This study is based on experimental, analytical and digital work, in order to obtain a set of thermodynamic data (Δ f G 0 , Δ f H 0 , Cp(T), S 0 ) sufficiently representative of the chemical variability of these phases. Finally, this set of data allows the development of a thermodynamic predictive model in extended spaces of compositions and temperatures. Development of this predictive model requires (i) The acquisition of thermodynamic properties on

  6. Suspension hydration of tricalcium silicate at constant pH. I. Variation of particle size and tricalcium silicate content

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within

  7. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  8. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays

    International Nuclear Information System (INIS)

    Viallis-Terrisse, H.

    2000-01-01

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  9. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  10. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting [Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vandeperre, Luc J. [Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  11. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  12. Suspension hydration of C3S [tricalcium silicate] at constant pH. II. Effect of previously formed hydrates and of additives

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    A retardation shown by the hydration of C3S at pH=11.5 can be prevented if before the addition of C3S there are present hydrate particles in the aqueous medium. These hydrate particles probably have the composition CSHn. This indicates a hydrate CSHn, precipitated from solution, as the retarding

  13. Chemical alteration of calcium silicate hydrates in saline groundwater. Mechanism of sorption of Na on C-S-H and effect of NaCl on leaching of Ca from C-S-H

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2004-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In the presence of some reactive ions in a saline groundwater, the chemical properties of cement materials should be affected. In this study, the mechanism of sorption of sodium (Na) on C-S-H and the effect of sodium chloride (NaCl) concentration on dissolution of Calcium Silicate Hydrate (C-S-H) are discussed by measuring the sorption isotherm of sodium onto C-S-H gel (Ca/Si = 0.65-1.2). Based on the experimental results, it is showed that sodium sorbs by substitution for Ca in C-S-H phases and leaching of Ca from C-S-H is enhanced in NaCl solution ( -1 mol dm -3 ). The results of sorption experiments are reasonably well modelled by the ion-exchange model assuming some calcium sites with different ion-exchange log K values. It is also suggested that the dissolution of C-S-H can be modelled reasonably well by considering the effect of ionic strength on activity coefficients of aqueous species for high Ca/Si ratio of C-S-H, and the effect of exchange of sodium with calcium of C-S-H on leaching of Ca becomes obvious for lower Ca/Si ratio of C-S-H. (author)

  14. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  15. Compositional Evolution of Calcium Silicate Hydrate (C-S-H) Structures by Total X-Ray Scattering

    KAUST Repository

    Soyer-Uzun, Sezen; Chae, Sejung Rosie; Benmore, Chris J.; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.

    2011-01-01

    High-energy X-ray diffraction was employed to study the structural characteristics of a set of C-S-H samples with 0.6 ≤ C/S a;circ 1.75. It has been observed that Si is tetrahedrally coordinated to O for all samples irrespective of chemical composition and the Ca-O coordination number gradually decreases from ∼7 to ∼6 with increasing C/S ratio. This suggests that the C-S-H structure evolves from a tobermorite-like structure into a jennite-like structure as a function of increasing C/S ratio as the interlayer space decreases from ∼1.3 to ∼1 nm. Evolution of these short- and medium-range order structural characteristics in the C-S-H system is associated with the alteration of the Ca-O layers and silicate depolymerization with increasing C/S. © 2011 The American Ceramic Society.

  16. Compositional Evolution of Calcium Silicate Hydrate (C-S-H) Structures by Total X-Ray Scattering

    KAUST Repository

    Soyer-Uzun, Sezen

    2011-12-09

    High-energy X-ray diffraction was employed to study the structural characteristics of a set of C-S-H samples with 0.6 ≤ C/S a;circ 1.75. It has been observed that Si is tetrahedrally coordinated to O for all samples irrespective of chemical composition and the Ca-O coordination number gradually decreases from ∼7 to ∼6 with increasing C/S ratio. This suggests that the C-S-H structure evolves from a tobermorite-like structure into a jennite-like structure as a function of increasing C/S ratio as the interlayer space decreases from ∼1.3 to ∼1 nm. Evolution of these short- and medium-range order structural characteristics in the C-S-H system is associated with the alteration of the Ca-O layers and silicate depolymerization with increasing C/S. © 2011 The American Ceramic Society.

  17. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays; Interaction des silicates de calcium hydrates, principaux constituants du ciment, avec les chlorures d'alcalins. Analogie avec les argiles

    Energy Technology Data Exchange (ETDEWEB)

    Viallis-Terrisse, H

    2000-10-06

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  18. Incorporation of zinc into calcium silicate hydrates, Part I: formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite

    International Nuclear Information System (INIS)

    Stumm, Andreas; Garbev, Krassimir; Beuchle, Guenter; Black, Leon; Stemmermann, Peter; Nueesch, Rolf

    2005-01-01

    We have investigated the incorporation of zinc into both nanocrystalline and crystalline calcium silicate hydrates with starting C/S ratios of 2/3 (0.66). Zinc was added replacing calcium in the starting mixtures [Zn/(Zn+Ca)=0-1/4; 0-10 wt.% Zn], and the resultant phases were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), differential thermal analysis-thermogravimetry (DTA-TG) and environmental scanning electron microscopy (ESEM). In both groups of samples, increasing zinc content led to gradual structural changes, until eventually a second phase was formed. Zinc was incorporated to similar limits in both sets of samples. The thermal stability of the structures increased to a certain zinc content, beyond which there was structural destabilisation. Zinc incorporation is possible up to ∼6 wt.%. Our observations strongly indicate similar zinc incorporation mechanisms in both sample series, namely incorporation of zinc into the interlayer of C-S-H(I) and the X-sheet of gyrolite for nanocrystalline and crystalline samples, respectively

  19. Discrete element modeling of calcium-silicate-hydrate

    International Nuclear Information System (INIS)

    Chandler, Mei Qiang; Peters, John F; Pelessone, Daniele

    2013-01-01

    The discrete element method (DEM) was used to model calcium-silicate-hydrate (C-S-H) at the nanoscale. The C-S-H nanoparticles were modeled as spherical particles with diameters of approximately 5 nm. Interparticle forces included traditional mechanical contact forces, van der Waals forces and ionic correlation forces due to negatively charged C-S-H nanoparticles and ion species in the nanopores. Previous work by the authors demonstrated the DEM method was feasible in studying the properties of the C-S-H nanostructures. In this work, the simulations were performed to look into the effects of nanoparticle packing, nanoparticle morphology, interparticle forces and nanoparticle properties on the deformation mechanisms and mechanical properties of the C-S-H matrix. This work will provide insights into possible ways to improve the properties of the C-S-H matrix. (paper)

  20. Class H cement hydration at 180 deg. C and high pressure in the presence of added silica

    International Nuclear Information System (INIS)

    Jupe, Andrew C.; Wilkinson, Angus P.; Luke, Karen; Funkhouser, Gary P.

    2008-01-01

    Under deep oil-well conditions of elevated temperature and pressure, crystalline calcium silicate hydrates are formed during Portland cement hydration. The use of silica rich mineral additives leads to the formation of crystalline hydrates with better mechanical properties than those formed without the additive. The effects of silica flour, silica fume (amorphous silica), and a natural zeolite mixture on the hydration of Class H cement slurries at 180 deg. C under externally applied pressures of 7 and 52 MPa are examined in real time using in-situ synchrotron X-ray diffraction. For some compositions examined, but not all, pressure was found to have a large effect on the kinetics of crystalline hydrate formation. The use of silica fume delayed both C 3 S hydration and the formation of crystalline silicate hydrates compared to what was seen with other silica sources

  1. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends

    International Nuclear Information System (INIS)

    Goni, S.; Guerrero, A.; Puertas, F.; Hernandez, M. S.; Palacios, M.; Dolado, J. S.; Zhu, W.; Howind, T.

    2011-01-01

    The textural and mechanical characterization of C-S-H gels formed from the hydration of pure T1-C 3 S, β-C 2 S and their blends are studied by Nitrogen sorption and nano indentation experiments. The surface area and nano porosity of C-S-H gels formed from the hydration of β-C 2 S and the 30-70 (T1-C 3 S and β-C 2 S mixture) are higher than those from hydration of T1-C 3 S, and 70-30, with the difference decreasing with hydration age. Such changes are well supported by findings of nano indentation study, which shows the greater relative volume of C-S-H phases with lower densities in the β-C 2 S and the 30-70 pastes. With the increase in hydration age, the relative volume of C-S-H phases with higher densities increased at the expenses of those with lower density. Important quantitative correlations were found among these textural characteristics and the mean chain length, determined from 2 9Si magic-angle-spinning (MAS) NMR, of the C-S-H gels. (Author) 36 refs.

  2. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Hills, C.D.; Tyrer, M.; Slipper, I.; Shen, H.G.; Brough, A.

    2007-01-01

    The hydration of tricalcium silicate (C 3 S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn 2+ , Pb 2+ , Cu 2+ and Cr 3+ were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C 3 S hydration, even though Zn 2+ doping exhibited a severe retardation effect at an early period of time of C 3 S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C 3 S hydration. The contents of portlandite in the control, Cr 3+ -doped, Cu 2+ -doped, Pb 2+ -doped and Zn 2+ -doped C 3 S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and 2 Cr(OH) 7 .3H 2 O, Ca 2 (OH) 4 4Cu(OH) 2 .2H 2 O and CaZn 2 (OH) 6 .2H 2 O). These compounds were identified as crystalline phases in heavy metal doping C 3 S suspensions and amorphous phases in heavy metal doping C 3 S pastes. 29 Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C 3 S pastes. The average numbers of Si in C-S-H gel for the Zn 2+ -doped, Cu 2+ -doped, Cr 3+ -doped, control, and Pb 2+ -doped C 3 S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C 3 S hydration process in the presence of carbon dioxide

  3. Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H

    Science.gov (United States)

    Rahimi-Aghdam, Saeed; Bažant, Zdeněk P.; Abdolhosseini Qomi, M. J.

    2017-02-01

    Although a few good models for cement hydration exist, they have some limitations. Some do not take into account the complete range of variation of pore relative humidity and temperature, and apply over durations limited from up a few months to up to about a year. The ones that are applicable for long durations are either computationally too intensive for use in finite element programs or predict the hydration to terminate after few months. However, recent tests of autogenous shrinkage and swelling in water imply that the hydration may continue, at decaying rate, for decades, provided that a not too low relative pore humidity (above 0.7) persists for a long time, as expected for the cores of thick concrete structural members. Therefore, and because design lifetimes of over hundred years are required for large concrete structures, a new hydration model for a hundred year lifespan and beyond is developed. The new model considers that, after the first day of hydration, the remnants of anhydrous cement grains, gradually consumed by hydration, are enveloped by contiguous, gradually thickening, spherical barrier shells of calcium-silicate hydrate (C-S-H). The hydration progress is controlled by transport of water from capillary pores through the barrier shells toward the interface with anhydrous cement. The transport is driven by a difference of humidity, defined by equivalence with the difference in chemical potential of water. Although, during the period of 4-24 h, the C-S-H forms discontinuous nano-globules around the cement grain, an equivalent barrier shell control was formulated for this period, too, for ease and effectiveness of calculation. The entire model is calibrated and validated by published test data on the evolution of hydration degree for various cement types, particle size distributions, water-cement ratios and temperatures. Computationally, this model is sufficiently effective for calculating the evolution of hydration degree (or aging) at every

  4. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends

    Directory of Open Access Journals (Sweden)

    Dolado, J. S.

    2011-06-01

    Full Text Available The textural and mechanical characterization of C-S-H gels formed from the hydration of pure T1-C3S, β-C2S and their blends are studied by Nitrogen sorption and nanoindentation experiments. The surface area and nanoporosity of C-S-H gels formed from the hydration of β-C2S and the 30-70 (T1-C3S and β-C2S mixture are higher than those from hydration of T1-C3S, and 70-30, with the difference decreasing with hydration age. Such changes are well supported by findings of nanoindentation study, which shows the greater relative volume of C-S-H phases with lower densities in the β-C2S and the 30-70 pastes. With the increase in hydration age, the relative volume of C-S-H phases with higher densities increased at the expenses of those with lower density. Important quantitative correlations were found among these textural characteristics and the mean chain length, determined from 29Si magic-angle-spinning (MAS NMR, of the C-S-H gels.La caracterización textural y mecánica de geles C-S-H formados a partir de la hidratación de muestras puras de T1-C3S, ß-C2S y sus mezclas ha sido estudiada por medio de adsorción de nitrógeno y nanoindentación. El área superficial y la nano-porosidad de los geles formados durante la hidratación del ß-C2S y la mezcla 30-70 (T1-C3S- ß-C2S son mayores que los correspondientes a los geles del T1-C3S, y la mezcla 70-30; esta diferencia disminuye con el tiempo de hidratación. Estos cambios coinciden con los resultados de nanoindentación que indican un aumento de volumen relativo de las fases C-S-H con una densidad menor en el caso del ß-C2S y la mezcla 30-70. Al aumentar el tiempo de hidratación, el volumen relativo de fases C-S-H de mayor densidad aumenta a expensas de aquellas de menor densidad. Importantes correlaciones cuantitativas se establecen entre las características texturales y la longitud de cadena media del gel C-S-H, determinada mediante RMN-MAS de 29Si.

  5. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.; Chae, S.; Chou, K. W.; Tyliszczak, T.; Monteiro, P. J. M.

    2011-01-01

    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas

  6. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  7. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  8. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate.

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M

    2017-09-08

    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

  9. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  10. X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels

    Directory of Open Access Journals (Sweden)

    Ayuela, A.

    2010-09-01

    Full Text Available For 22 crystalline Calcium Silicates Hydrates, we have calculated their structure and their elastic properties by atomistic force field methods as well as simulate their Xray diffraction patterns. From the computed Young moduli, it can be suggested that the key parameters to determine the elastic properties of crystalline Calcium Silicate Hydrates are densities and water content. We have compared these trends with those of cementitious C-S-H gel and synthetic C-S-H type I as a function of their C/S ratios and nominal water content. Our comparison show that the experimentally suggested values of density and Young moduli for C-S-H gel lie in the range of the calculated CSH crystals. However, we conclude that a detailed correspondence might require investigating structurally within CSH gels the role of water and especially of Ca and Si sites through their C/S ratio.

    En este trabajo se han calculado para 22 Silicatos Cálcicos Hidratados cristalinos, su estructura y sus propiedades elásticas mediante métodos atomísticos “force field”, así como simulado sus espectros de difracción de rayos X. De los módulos de Young calculados se puede deducir, que los parámetros clave que determinan las propiedades elásticas de los Silicatos Cálcicos Hidratados cristalinos son la densidad y el contenido en agua. Nuestros resultados muestran que los valores experimentales de la densidad y de los módulos de Young para el gel C-S-H están dentro del rango de los cristales de CSH calculados. Sin embargo, podemos concluir que para establecer una correlación más directa sería necesario investigar el papel que juegan el agua y sobre todo el Ca y Si, mediante la relación C/S, en la estructura del gel CSH.

  11. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C{sub 3}S, {beta}-C{sub 2}S and their blends; Caracterizacion textural y mecanica de geles C-S-H formados en la hidratacion de muestras sinteticas T1-C{sub 3}S, {beta}-C{sub 2}S y sus mezclas

    Energy Technology Data Exchange (ETDEWEB)

    Goni, S.; Guerrero, A.; Puertas, F.; Hernandez, M. S.; Palacios, M.; Dolado, J. S.; Zhu, W.; Howind, T.

    2011-07-01

    The textural and mechanical characterization of C-S-H gels formed from the hydration of pure T1-C{sub 3}S, {beta}-C{sub 2}S and their blends are studied by Nitrogen sorption and nano indentation experiments. The surface area and nano porosity of C-S-H gels formed from the hydration of {beta}-C{sub 2}S and the 30-70 (T1-C{sub 3}S and {beta}-C{sub 2}S mixture) are higher than those from hydration of T1-C{sub 3}S, and 70-30, with the difference decreasing with hydration age. Such changes are well supported by findings of nano indentation study, which shows the greater relative volume of C-S-H phases with lower densities in the {beta}-C{sub 2}S and the 30-70 pastes. With the increase in hydration age, the relative volume of C-S-H phases with higher densities increased at the expenses of those with lower density. Important quantitative correlations were found among these textural characteristics and the mean chain length, determined from {sup 2}9Si magic-angle-spinning (MAS) NMR, of the C-S-H gels. (Author) 36 refs.

  12. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  13. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  14. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  15. Thermodynamic description of the solubility of C-S-H gels in hydrated Portland cement. Literature review

    International Nuclear Information System (INIS)

    Soler, J.M.

    2007-11-01

    The objective of this study is to compile the available information published in the scientific literature regarding the solubility of C-S-H (calcium silica hydrate) gels, which are the main components of hydrated Portland cement. Modeling the thermodynamic properties of C-S-H, including its incongruent dissolution behavior, is an important requirement to understand the evolution and degradation of hydrated cement and concrete. The thermodynamic modeling of C-S-H started with the use of empirical or semi-empirical models and evolved to the application of solid solution models. Most of the experimental work has been performed at or near 25 deg C and the models are in principle applicable to temperatures near 25 deg C. One of the models provides an explicit dependence on temperature. (orig.)

  16. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.

    2017-03-24

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  17. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities.

    Science.gov (United States)

    Orozco, Carlos A; Chun, Byong W; Geng, Guoqing; Emwas, Abdul H; Monteiro, Paulo J M

    2017-04-11

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29 Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  18. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.; Chun, Byong W.; Geng, Guoqing; Emwas, Abdul-Hamid M.; Monteiro, Paulo J. M.

    2017-01-01

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  19. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density

    International Nuclear Information System (INIS)

    Bahafid, Sara; Ghabezloo, Siavash; Duc, Myriam; Faure, Pamela; Sulem, Jean

    2017-01-01

    Curing temperature has a significant influence on cement paste microstructure and the properties of its principal hydrate C-S-H. In this paper, the effect of the hydration temperature in the range of 7 °C to 90 °C on the microstructure of a class G oil-well cement is studied. This is done by combining various experimental methods, including X-ray diffraction associated with the Rietveld analysis, thermo-gravimetric analysis, mercury intrusion porosimetry and porosity evaluation by drying. The experimental results show an increase of the capillary porosity and a decrease of the gel porosity by increasing the hydration temperature. This is attributed to a decrease of the C-S-H intrinsic porosity and a corresponding increase of the C-S-H density for higher curing temperatures. The experimental results are used in a simple analysis method to evaluate the density of C-S-H, as well as its C/S ratio and H/S ratio in dry and saturated conditions. The evaluated C-S-H density varies from 1.88 g/cm 3 at 7 °C to 2.10 g/cm 3 at 90 °C. The results also show a decrease of molar C/S ratio with increasing hydration temperature from 1.93 at 7 °C to 1.71 at 90 °C and of the H/S ratio from 5.1 at 7 °C to 2.66 at 90 °C.

  20. The role of pH in the vapor hydration at 175 °C of the French SON68 glass

    International Nuclear Information System (INIS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; El Mendili, Yassine; Martin, Christelle

    2017-01-01

    The French simulated nuclear waste SON68 glass was altered in the presence of water vapor at 175 °C and 98% of relative humidity under several atmospheres (NH_3, H_2S, CO_2 and argon). The objectives were to study the role of pH on hydration kinetics and secondary phases formation. The hydration was followed by infrared spectroscopy and the nature and extent of alteration products were determined by characterizing the reacted glass surface with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), μ-Raman spectroscopy and X-ray diffraction (XRD). The glass hydration/alteration rate clearly increased with increasing pH, that is controlled by the gas atmosphere, as the following: NH_3 > Ar > CO_2 > H_2S. This can directly be linked to the secondary phases precipitated on the glass surface. Hence, the major alteration products observed at high pH (under NH_3 and Ar) are analcime and Ca-silicates hydrates (CSH) while at low pH (under CO_2 and H_2S) only a hydrated gel layer was identified. - Highlights: • The vapor hydration study of the SON68 glass under geological conditions. • The secondary phases formation in the alteration of SON68 glass. • The pH effect on the alteration kinetics of glass.

  1. The composition of cement hydrating at 60 deg C from synchrotron radiation

    International Nuclear Information System (INIS)

    Auld, J.; Turner, K.; Thorogood, G.J.; Ball, C.J.; Aldridge, L.P.; Taylor, J.C.

    2002-01-01

    Full text: Cement consists of 5 phases C3S, C2S, C3A, C4AF (where C denotes CaO, S denotes SiO 2 , A denotes AI 2 O 3 and F denotes Fe 2 O 3 ) and gypsum. When cement hydrates it forms an amorphous calcium silicate hydrate (C-S-H) as well as the crystalline ettringite and calcium hydroxide. The x-ray diffraction pattern of the hydrated cement is difficult to interpret because of its complexity. In addition, the overlapping lines from the remaining cement compounds make it difficult to quantify the amount of the crystalline components present. Using Rietveld analysis we have been able to interpret the patterns obtained from synchrotron x-ray diffraction patterns obtained at the Photon Factory at the Australian National Beamline Facility using BIGDIF. The changes in the composition of the hydrated cement paste were determined as a function of time during hydration at 60 deg C. Copyright (2002) Australian X-ray Analytical Association Inc

  2. Synthesis and characterisation of pure C(-A)-S-H phases

    International Nuclear Information System (INIS)

    L'Hopital, E.; Lothenbach, B.; Le Saout, G.; Kulik, D.A.; Scrivener, K.

    2015-01-01

    The construction of nuclear power plants requires huge quantity of cement and the cement production generates about 8% of global man-made CO 2 emissions. One way of reducing the concrete's CO 2 contribution is to lower its CO 2 generation and energy consumption by a partial replacement of clinker with supplementary cementitious materials (SCMs). Common SCMs such as blast furnace slag or fly ash contain more silicon and aluminium than Portland cement, so that the hydrates formed are different than in Portland cements, which might affect the concrete mechanical properties. The most important phase formed during the reaction of Portland cement with water is calcium silicate hydrate, C-S-H. In the presence of SCMs, C-S-H can have different composition compared to C-S-H in Portland cements. The present work focuses on synthesis of pure C(-A)- S-H at a Ca/Si ratio equal to 1 in presence of different quantities of aluminium (Al/Si atomic ratio from 0 to 0.05) to determine the aluminium incorporation in C-S-H. The absence of any other solids and the low aluminium concentrations measured in the solution clearly showed an uptake of aluminium within the C-(A)-S-H phase. The presence of aluminium increased the interlayer distance, indicating an uptake of aluminium in the C-(A)-S-H structure. The uptake of aluminium was more pronounced at higher dissolved aluminium concentrations, consistent with the formation of a solid solution between C-S-H and C-A-S-H. The presence of aluminium led to a decrease of the calcium concentrations, while the silica and aluminium concentrations increased

  3. Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.

  4. Temperature Effects on Tensile and Compressive Mechanical Behaviors of C-S-H Structure via Atomic Simulation

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2017-01-01

    Full Text Available An atomic scale model of amorphous calcium silicate hydrate (C-S-H with Ca/Si ratio of 1.67 is constructed. Effects of temperature on mechanical properties of C-S-H structure under tensile and compressive loading in the layered direction are investigated via molecular dynamics simulations. Results from present simulations show that (1 the tensile strength and Young’s modulus of C-S-H structure significantly decrease with the increase of the temperature; (2 the water layer plays an important role in the mechanical properties of C-S-H structure; (3 the compressive strength is stronger than tensile strength, which corresponds with the characteristic of cement paste.

  5. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  6. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  7. Development of Magnesium Silicate Hydrate cement system for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R.

    2012-01-01

    A novel low pH cement system for encapsulating nuclear industry wastes containing aluminium has been developed using blends of MgO and silica fume (SF). Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in early stages of hydration and then reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. When all brucite reacts with silica fume a cement system with an equilibrium pH just below 10 was achieved. Selected mixes have been characterized for hydration reactions, setting time and strength development. Mortar samples with w/s ratios of 0.5 and 50% by weight of sand added achieved compressive strengths in excess of 95 MPa after 28 days. The addition of MgCO 3 buffered the early pH and the addition of fine sand particles eliminated shrinkage cracking. The interaction of the optimised mortar with Al metal has been investigated. Al metal strips were firmly bound into the MgO:SF:sand samples and no H 2 gas detected, and this indicates that the novel systems developed in this work have potential for encapsulating certain types of problematic legacy wastes from the nuclear industry. (authors)

  8. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  9. Structural and hydration properties of amorphous tricalcium silicate

    International Nuclear Information System (INIS)

    Mori, K.; Fukunaga, T.; Shiraishi, Y.; Iwase, K.; Xu, Q.; Oishi, K.; Yatsuyanagi, K.; Yonemura, M.; Itoh, K.; Sugiyama, M.; Ishigaki, T.; Kamiyama, T.; Kawai, M.

    2006-01-01

    Mechanical milling was carried out to synthesize amorphous tricalcium silicate (Ca 3 SiO 5 ) sample, where Ca 3 SiO 5 is the most principal component of Portland cement. The partial phase transformation from the crystalline to the amorphous state was observed by X-ray and neutron diffractions. Moreover, it was found that the structural distortion on the Ca-O correlation exists in the milled Ca 3 SiO 5 . The hydration of the milled Ca 3 SiO 5 with D 2 O proceeds as follows: the formation of hydration products such as Ca(OD) 2 rapidly occurs in the early hydration stage, and then proceeds slowly after about 15 h. The induction time for the hydration of the milled Ca 3 SiO 5 is approximately one half shorter than that for the hydration of the unmilled one. This result means that the mechanical milling brings about the chemical activity of Ca 3 SiO 5 for hydration, and may be particularly useful for increasing the reactivity in the early hydration stage

  10. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-05

    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  11. NMR study of hydrated calcium silicates; Etude par RMN de la structure des silicates de calcium hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klur, I

    1996-02-26

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.) 101 refs.

  12. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  13. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  14. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  15. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    Science.gov (United States)

    2015-04-27

    MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10

  16. Hydration reactions in pastes C3S+C3A+CaSO4.2aq+H20 at 25°C.I

    NARCIS (Netherlands)

    Corstanje, W.A.; Stein, H.N.; Stevels, J.M.

    1973-01-01

    A characteristic retardation of the hydration of C3A is found in pastes C3S+C3A+CaSO4.2aq+H2O of weight ratios 1:3:z:4 at certain values of z, when sulphate concentration becomes insufficient for monosulphate formation. This retardation is ascribed to precipitation of amorphous Al(OH)3, when C3A

  17. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  18. A Study of Calcium-Silicate-Hydrate/Polymer Nanocomposites Fabricated Using the Layer-By-Layer Method

    Directory of Open Access Journals (Sweden)

    Mahsa Kamali

    2018-03-01

    Full Text Available Calcium-silicate-hydrate (CSH/polymer nanocomposites were synthesized with the layer-by-layer (LBL method, and their morphology and mechanical properties were investigated using atomic force microscopy (AFM imaging and AFM nanoindentation. Different sets of polymers were used to produce CSH/polymer nanocomposites. The effect of different factors including dipping time, calcium to silicate ratios (C/S ratios and pH on morphology was investigated. CSH/polymer nanocomposites made with different sets of polymers showed variation in morphologies. However, the Young’s modulus did not seem to reveal significant differences between the nanocomposites studied here. In nanocomposites containing graphene oxide (GO nanosheet, an increase in the density of CSH particles was observed on the GO nanosheet compared to areas away from the GO nanosheet, providing evidence for improved nucleation of CSH in the presence of GO nanosheets. An increase in roughness and a reduction in the packing density in nanocomposites containing GO nanosheets was observed.

  19. Calcium aluminates hydration in presence of amorphous SiO2 at temperatures below 90 deg. C

    International Nuclear Information System (INIS)

    Rivas Mercury, J.M.; Turrillas, X.; Aza, A.H. de; Pena, P.

    2006-01-01

    The hydration behaviour of Ca 3 Al 2 O 6 , Ca 12 Al 14 O 33 and CaAl 2 O 4 with added amorphous silica at 40, 65 and 90 deg. C has been studied for periods ranging from 1 to 31 days. In hydrated samples crystalline phases like katoite (Ca 3 Al 2 (SiO 4 ) 3- x (OH) 4 x ) and gibbsite, Al(OH) 3 , were identified, likewise amorphous phases like Al(OH) x , calcium silicate hydrates, C-S-H, and calcium aluminosilicate hydrates, C-S-A-H, were identified. The stoichiometry of Ca 3 Al 2 (SiO 4 ) 3- x (OH) 4 x (0≤3-x≤0.334), which was the main crystalline product, was established by Rietveld refinement of X-ray and neutron diffraction data and by transmission electron microscopy. - Graphical abstract: Katoite, Ca 3 Al 2 (SiO 4 ) 3- x (OH) 4 x (0≤3-x≤0.334), was identified besides gibbsite, Al(OH) 3 , as a crystalline stable hydration products in Ca 3 Al 2 O 6 , Ca 12 Al 14 O 33 and CaAl 2 O 4 hydrated with added amorphous silica between 40 and 90 deg. C

  20. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.

    2011-09-07

    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO 2. This observation suggests that CO 2 reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. © 2011 Springer Science+Business Media, LLC.

  1. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    Science.gov (United States)

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite

    Energy Technology Data Exchange (ETDEWEB)

    Grangeon, Sylvain, E-mail: S.Grangeon@brgm.fr [BRGM, 3, Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Claret, Francis; Lerouge, Catherine [BRGM, 3, Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Warmont, Fabienne [CRMD, UMR 6619 – CNRS, 1b rue de la férollerie, 45071 Orléans Cedex 2 (France); Sato, Tsutomu; Anraku, Sohtaro [Laboratory of Environmental Geology, Research Group of Geoenvironmental/Engineering Division of Solid Waste, Resources and Geoenvironmental/Engineering Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Sapporo 060-8628 (Japan); Numako, Chiya [Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1, Minami-Josanjima, Tokushima, 770-8502 (Japan); Linard, Yannick [ANDRA, Centre de Meuse/Haute Marne, 55290 Bure (France); Lanson, Bruno [ISTerre, Grenoble University, CNRS, F-38041 Grenoble (France)

    2013-10-15

    Four calcium silicate hydrates (C-S-H) with structural calcium/silicon (Ca/Si) ratios ranging from 0.82 ± 0.02 to 0.87 ± 0.02 were synthesized at room temperature, 50, 80, and 110 °C. Their structure was elucidated by collating information from electron probe micro-analysis, transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, and powder X-ray diffraction (XRD). A modeling approach specific to defective minerals was used because sample turbostratism prevented analysis using usual XRD refinement techniques (e.g. Rietveld analysis). It is shown that C-S-H with Ca/Si ratio of ∼ 0.8 are structurally similar to nano-crystalline turbostratic tobermorite, a naturally occurring mineral. Their structure thus consists of sheets of calcium atoms in 7-fold coordination, covered by ribbons of silicon tetrahedra with a dreierketten (wollastonite-like) organization. In these silicate ribbons, 0.42 Si per bridging tetrahedron are missing. Random stacking faults occur systematically between successive layers (turbostratic stacking). Layer-to-layer distance is equal to 11.34 Å. Crystallites have a mean size of 10 nm in the a–b plane, and a mean number of 2.6–2.9 layers stacked coherently along the c* axis.

  3. Early Age Carbonation Heat and Products of Tricalcium Silicate Paste Subject to Carbon Dioxide Curing

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-05-01

    Full Text Available This paper presents a study on the carbonation reaction heat and products of tricalcium silicate (C3S paste exposed to carbon dioxide (CO2 for rapid curing. Reaction heat was measured using a retrofitted micro-calorimeter. The highest heat flow of a C3S paste subject to carbonation curing was 200 times higher than that by hydration, and the cumulative heat released by carbonation was three times higher. The compressive strength of a C3S paste carbonated for 2 h and 24 h was 27.5 MPa and 62.9 MPa, respectively. The 24-h carbonation strength had exceeded the hydration strength at 28 days. The CO2 uptake of a C3S paste carbonated for 2 h and 24 h was 17% and 26%, respectively. The X-ray diffraction (XRD, transmission electron microscope coupled with energy dispersive spectrometer (TEM-EDS, and 29Si magic angle spinning–nuclear magnetic resonance (29Si MAS-NMR results showed that the products of a carbonated C3S paste were amorphous silica (SiO2 and calcite crystal. There was no trace of calcium silicate hydrate (C–S–H or other polymorphs of calcium carbonate (CaCO3 detected.

  4. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  5. Mineralogy of C-S-H belite hydrates incorporating Zn-Al-Ti layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Amor F.

    2018-01-01

    Full Text Available Recently, the belitic cements with low alite content were the subject of several research works which aimed to replace the Ordinary Portland Clinker (OPC for ecological reasons (reduction of CO2 emissions, so to understand the reactivity of this cement, the hydration study of the C2S “dicalcium silicate” phase is primordial research step. As well for a clean environment, the TiO2 photocatalyst has been extensively applied in the science of building materials because of its ability to degrade the cement surface pollutants. New photocatalyst based layered double hydroxides (LDH associated with zinc, aluminium and TiO2 was introduced to increase the compatibility with mortars. The present work is subjected to investigate the effect of the layered double hydroxides on the hydration of C2S in following the evolution of hydration by X-ray diffraction at 2, 7, 28 and 90 days and analyzing the calcium/silicon ratio of different formed hydrates.

  6. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    International Nuclear Information System (INIS)

    Famy, C.; Brough, A.R.; Taylor, H.F.W.

    2003-01-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C 6 A 2 S-bar 2 H 34 or {Ca 6 [Al(OH) 6 ] 2 ·24H 2 O}(SO 4 ) 2 [Al(OH) 4 ] 2 . If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125

  7. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  8. Portlandite content and ionic transport properties of hydrated C3S pastes

    International Nuclear Information System (INIS)

    Henocq, P.; Samson, E.; Marchand, J.

    2012-01-01

    This paper presents the results of a C 3 S paste characterization study. The objective was to determine the parameters needed to model the process of degradation. The experimental study focused on determining the portlandite content and the ionic diffusion coefficients of C 3 S paste. The molar C/S ratio of C–S–H in hydrated C 3 S pastes was also investigated. The portlandite content was determined with an experimental method based on an electron microprobe analysis. This method leads to a portlandite mass content of 24.4 ± 2.3%. The diffusion coefficient of each ionic species was determined by inverse analysis of diffusion test data performed on hydrated C 3 S samples using a multiionic transport model.

  9. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  10. Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate

    Science.gov (United States)

    2012-08-01

    coefficient is effective in making the C-S-H matrix stronger. However, increasing packing density also makes the material response more brittle ...16102-16107 Pellenq, R.J. –M and Van Damme, Henri., 2004, Why Does Concrete set?: The nature of Cohesion Forces in hardened Cement-Based...Hydrated Nanocomposites: Concrete, Bone , and Shale. J. Am. Ceram. Soc., 90(9): 2677-2692. Wu, Jianzhong. and John M. Prausnitz. 2002. Generalizations for

  11. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC)

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-01-01

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si ∼ 1.2, Al/Si ∼ 0.12), calcite, hydrotalcite, ettringite and possibly strätlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS − ) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  12. Does the Al substitution in C–S–H(I) change its mechanical property?

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    This study examines the influence of Al substitution for Si on the bulk modulus of calcium silicate hydrate I [C-S-H(I)], a structural analogue of C-S-H, by performing high-pressure synchrotron X-ray diffraction experiments in two C-S-H(I) samples: one a hydration product of alkali-activated slag and the other a synthetic C-S-H(I). The test result shows that not only the bulk modulus but also the incompressibility of the lattice parameters a, b, and c of two C-S-H(I) samples are very similar to each other, regardless of the Al substitution. This result may be due to the four-coordinated configuration of the substituted Al, which makes the dreierketten silicate chains maintain the same arrangement after the substitution. © 2010 Elsevier Ltd.

  13. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    for the C-S-H phase formed during hydration. It will be demonstrated that Al3+ and flouride guest-ions in the anhydrous and hydrated calcium silicates can be studied in detail by 27Al and 19F MAS NMR, thereby providing information on the local structure and the mechanisms for incorporation of these ions......Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first......- and second-coordination spheres of the spin nucleus under investigation while it is less sensitive to long-range order. Thus, crystalline as well as amorphous phases can be detected in a quantitative manner by solid-state NMR. In particular the structure of the calcium-silicate-hydrate (C-S-H) phase have...

  14. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    International Nuclear Information System (INIS)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-01-01

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature

  15. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  16. Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Sant, Gaurav; Phillips, James C; Bauchy, Mathieu

    2017-09-20

    Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.

  17. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  18. The application of thermal analysis, XRD and SEM to study the hydration behavior of tricalcium silicate in the presence of a polycarboxylate superplasticizer

    International Nuclear Information System (INIS)

    Liu, Ming; Lei, Jiaheng; Guo, Liping; Du, Xiaodi; Li, Junsheng

    2015-01-01

    Highlights: • The initial hydration process of C 3 S is markedly retarded by PC. • The decomposition temperature of Ca(OH) 2 is slightly lower after PC modification. • The adsorption amount of PC on C 3 S increases progressively with the hydration time. • The size of Ca(OH) 2 crystals are changed due to the adsorption of PC. - Abstract: Hydration behavior of tricalcium silicate (C 3 S) in the presence of a polycarboxylate (PC) superplasticizer was investigated by means of isothermal calorimetry, differential thermal analysis and X-ray diffraction. In addition, the adsorption characteristics of PC and morphology change of Ca(OH) 2 crystals were also examined, respectively. The results showed that initial hydration process of C 3 S was markedly retarded by PC and the retardation effect depended on the dosage of PC. The decomposition temperature of the Ca(OH) 2 was slightly lower after PC modification. Moreover, the size of Ca(OH) 2 crystals were found to be changed due to the adsorption of PC. The results obtained in this research allowed us to gain insights into the interactions between PC and cement

  19. Observation of microstructure of hydrated Ca3SiO5

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Sato, Takashi; Fukunaga, Toshiharu; Oishi, Koji; Kimura, Katsuhiko; Iwase, Kenji; Sugiyama, Masaaki; Itoh, Keiji; Shikanai, Fumihito; Wuernisha, Tuerxun; Yonemura, Masao; Sulistyanintyas, Dyah; Tsukushi, Itaru; Takata, Shinich; Otomo, Toshiya; Kamiyma, Takashi; Kawai, Masayoshi

    2006-01-01

    Quasi-elastic neutron scattering experiments were carried out to evaluate the hydration rate of tricalcium silicate (Ca 3 SiO 5 ). Furthermore, in the early hydration period, a variation in surface roughness of Ca 3 SiO 5 was observed in nano-scale by the small-angle neutron scattering. From these results, it was found that the hydration rate of Ca 3 SiO 5 is suppressed when the surface of Ca 3 SiO 5 becomes rough through the creation of hydration products C-S-H gel and Ca(OH) 2 , and this roughness is associated with changes in the Ca 3 SiO 5 hydration rate

  20. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Herná ndez-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid M.; Monteiro, Paulo J M

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  1. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  2. An estimation of applicable thermodynamic data for C-S-H gel to PHREEQC

    International Nuclear Information System (INIS)

    Kato, Hiroshige; Honda, Akira

    2004-07-01

    Cementitious materials will be used extensively in the TRU waste repository. The dissolution/precipitation of cementitious materials will affect the chemical condition of pore waster of TRU waste repository. Thus, it is important for estimation of chemical condition of pore water to apply the dissolution/precipitation of cementitious materials appropriately. A C-S-H gel (poorly crystallized calcium silicate hydrate) is a major component in cementitious materials which determined the mechanical characteristics of cementitious materials. The hydraulic condition of cementitious materials is strongly affected by the dissolution/precipitation of C-S-H gel due to the change of porosity accompanied with the dissolution/precipitation processes. Further, the chemical condition of pore water will be dominated by the dissolution/ precipitation of C-S-H gel for a long period. Therefore, an importance of the dissolution/precipitation of C-S-H gel has been recognized internationally, and several dissolution/precipitation models of C-S-H gel have been proposed. The principal scopes of the C-S-H gel models are description of an incongruent dissolution/precipitation behavior of C-S-H gel. On the other hand, PHREEQC is a compute program, which has been used generally for the geochemical calculation. PHREEQC can provide the state of chemical equilibrium of system defined by chemical equations and equilibrium constants (log K). In JNC, reference model groundwater determined by calculation using PHREEQC in HLW study will be also used in TRU waste study. In addition, PHREEQC will be used for calculation of the cement-water reaction. Therefore, applicability of the presented dissolution/precipitation models of C-S-H gel to PHREEQC was estimated. As a result of estimation of the applicability, Atkinson model and Reardon model were selected as suitable models to the PHREEQC. The chemical equations and log K values of C-S-H gel were derived from these models and tested using PHREEQC. The

  3. Effet de la poudre de verre sur le fluage du C-S-H

    Science.gov (United States)

    Danilova, Maryna

    Glass is a unique inert material that could be recycled many times without changing its physical and chemical properties. Nevertheless, for some reason, large quantities of glass are still not recycled and therefore are stored as a waste. Its alternative recycling has become, since long, a major environmental problem. Moreover, glass is a potentially useful material for the development of ecological concrete, consequently, this way valorization seems to be imminent. In this research, characterization of the creep of concrete incorporating waste glass in powder form, i.e. glass powder (GP) as a supplementary cementitious material (GP-concrete) was carried out at a macro- and nanolevels. First, results from experimental study on the under load behaviour of GP-concrete are presented. Different types of strain occurring under load or after unload were discussed: quasi-instantaneous deformation, total mechanical deformation due to the maintained uniaxial compressive load during 1 year, total creep, basic creep, elastic recovery and total recovery. Shrinkage under drying conditions and endogenous shrinkage were also studied. After 1 year creep, the effects of constant load and drying on residual strength were also examined. A comparison was made concerning the final state of the porosity. Afterwards, the thesis reveals the results of tests conducted on the cement paste, going down to its composition and properties of the hydrated phases, in particular of calcium silicate hydrates (C-S-H). All of this, in order to conclude on the harmlessness use of GP regarding to the creep. Keywords : Glass powder, Air-entrained concrete, Creep, Shrinkage, C-S-H, Nanoindentation

  4. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Science.gov (United States)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  5. Influence of pozzolana on C4AF hydratio n and the effects of chloride and sulfate io ns on the hydrates formed

    Directory of Open Access Journals (Sweden)

    RIMVYDAS KAMINSKAS

    2011-09-01

    Full Text Available This study investigated the influence of natural pozzolana additive on the hydration of C4AF (aluminoferrite and the effects of chloride and sulfate ions on the hydrates formed. In the samples, 25% (by weight of the C4AF was replaced with pozzolana. The mixture was then hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months, and then soaked in a 5% Na2SO4 solution for 3 months at 20°C. It is estimated that under normal conditions, pozzolana additive accelerates the formation of CO32-–AFm (monocarboaluminate and gibbsite, however, impede the formation of cubic aluminum hydrates. Also, part of the amorphous SiO2 penetrates into the structure of hydrates of C4AF and initiates the formation of hydrated alumino-silicate (gismondine. Monocarboaluminate affected by NaCl becomes unstable and takes part in reactions producing Ca2Al(OH6Cl·2H2O (hydrocalumite-M. After samples were transferred from a saturated NaCl solution to a 5% Na2SO4 solution, hydrocalumite-M was the source of aluminates for the formation of ettringite. In samples with pozzolana additive, the hydrated alumino-silicate and gibbsite compounds that were formed remained stable in an environment containing chloride and sulfate ions and retarded the corrosion reaction of C4AF hydrates.

  6. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate.

    Science.gov (United States)

    Zhao, Xiu-Lan; Masaihiko, Saigusa

    2007-01-01

    Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnO(x)), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnO(x)-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaCl2 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.

  7. Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology

    International Nuclear Information System (INIS)

    Yang, Mingjun; Zheng, Jianan; Liu, Weiguo; Liu, Yu; Song, Yongchen

    2015-01-01

    Hydrate-based technology has been developing for decades to meet the demands in industrial applications. With the global demands for reduced carbon dioxide (CO 2 ) emissions and more fresh water, CHBD (CO 2 hydrate-based desalination) was proposed and has developed rapidly. In this study, to provide basic data for the improvement of CHBD, the thermodynamic and kinetic characteristics of CO 2 and propane (C 3 H 8 ) mixed-gas hydrates in salt solution were experimentally investigated in which C 3 H 8 was chosen as the hydrate formation promoter. We studied nine experimental cases (54 cycles) with different C 3 H 8 proportions (ranging from 0 to 13%) and different initial solution saturations (30%, 40% and 50%). The hydrate phase equilibrium data were generated using the isochoric method, and the hydrate formation saturations were calculated using the relative gas uptake equation. The results indicated that the increase in the C 3 H 8 proportion significantly decreases the gas mixture hydrate equilibrium pressure. Additionally, the relative gas uptake was reduced as the C 3 H 8 proportion increased. A lower relative gas uptake was obtained at a lower gas pressure for the same gas mixture. The initial solution saturation exhibited an insignificant effect on the hydrate phase equilibrium conditions. When the initial solution saturations increased from 30% to 50%, the relative gas uptake decreased. - Highlights: • C 3 H 8 improves the thermodynamics and kinetics of CO 2 hydrates formation. • Hydrates equilibrium pressure decreases with the increase of C 3 H 8 proportion. • Higher C 3 H 8 proportion and/or solution saturation decrease relative gas uptake. • Initial pressure and solution saturation has interactive effect on gas uptake.

  8. Investigation of C3 S hydration mechanism by transmission electron microscope (TEM) with integrated Super-XTM EDS system.

    Science.gov (United States)

    Sakalli, Y; Trettin, R

    2017-07-01

    Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    Science.gov (United States)

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-04-01

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  10. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate

    International Nuclear Information System (INIS)

    Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.

    2004-01-01

    In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass

  11. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  12. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  13. C-A-S-H synthesis and thermodynamics modelling in CaO-Al2O3-SiO2-H2O system

    International Nuclear Information System (INIS)

    Haas, J.; Pochard, I.; Nonat, A.

    2015-01-01

    Ordinary Portland cement (OPC) is being increasingly replaced by blended cements, where part of the clinker is replaced by secondary cementitious materials (SCM) such as blast furnace or fly ash. The use of SCM enables to achieve various aims as the cost reduction by recovery of by-products, the CO 2 emission reduction, the obtaining of specific properties as low pH. So, blended cements are more and more current in different fields as civil engineering and nuclear waste repository. The use of silica and/or aluminium rich SCMs directly impacts the amount and the kind of hydrates formed, hence the volume and the porosity and finally the durability of these materials. Aluminates containing hydrates formation is not well understood. Al content can result from Al-uptake in C-S-H due to Al-substitution of Si-tetrahedra to well crystallised hydrates like straetlingite or katoite phases. This study proposes a surface dependant thermodynamic model to predict and to correlate the Al-uptake (substitution) of C-A-S-H with solutions representative of that of cement pores chemistry. For this purpose, pure C-A-S-H alkali-free were synthesized in diluted suspensions. On one hand, hydrates and their solutions were characterized at equilibrium. On the other hand, thermodynamics modelling were performed from these collected data to describe C-A-S-H in the equilibrium solutions. These results allowed evaluating the Al-availability in the cementitious system and especially for aluminates containing hydrates precipitation. (authors)

  14. Growth of a Hydrate Mound in the Sea of Japan over 300 ka as Revealed by U-Th Ages of MDAC and by H2S Concentrations of Massive Hydrates

    Science.gov (United States)

    Matsumoto, R.; Snyder, G. T.; Hiruta, A.; Kakizaki, Y.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    The geological and geophysical exploration of gas hydrate in the Sea of Japan has revealed that hydrates occur as thick massive deposits within gas chimneys which often give rise to pingo-like hydrate mounds on the seafloor. We examine one case in which LWD has demonstrated anomalous profiles including both very low natural gamma ray (<10 API) and high acoustic velocities (2.5 to 3.5 km/s) extending down to 120mbsf, the base of gas hydrate stability (BGHS)[1]. Both conventional and pressure coring have confirmed thick, massive deposits of pure-gas hydrates. Hydrates in the shallow subsurface (< 20mbsf) are characterized by high H2S concentrations corresponding to AOM-induced production of HS-. The deeper hydrates generally have negligible amounts of H2S, with occasional exceptions in which H2S is moderately high. These observations lead us to conclude that both the re-equilibration and growth of hydrates in high CH4 and low to zero H2S conditions has continued during burial, and that this ongoing growth is an essential processes involved in the development of massive hydrates in the Sea of Japan.Regardless of depth, the Japan Sea gas hydrates are closely associated with 13-C depleted, methane-derived authigenic carbonates (MDACs). These MDACs are considered to have been formed at near-SMT depths as a response to increased alkalinity caused by AOM and, as such, MDACs are assumed to represent approximate paleo-seafloor at times of enhanced methane flux and intensive accumulation of gas hydrate in shallow subsurface. U-Th ages of MDACs collected from various depths in a mound-chimney system in central Joetsu Spur have revealed that the paleo-seafloor of 300 ka is presently situated at 30 to 55 mbsf within the gas chimney, in contrast to off-mound sites where it is situated at 100 mbsf. This suggests that at 300 ka the mound stood as a "hydrate-pingo" of 70 m high relative to the surrounding sea floor. At this time, the BGHS shoaled upwards 10m due to eustatic sea

  15. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume

    International Nuclear Information System (INIS)

    Richardson, I.G.

    2004-01-01

    The purpose of this article is to discuss the applicability of the tobermorite-jennite (T/J) and tobermorite-'solid-solution' calcium hydroxide (T/CH) viewpoints for the nanostructure of C-S-H present in real cement pastes. The discussion is facilitated by a consideration of the author's 1992 model, which includes formulations for both structural viewpoints; its relationship to other recent models is outlined. The structural details of the model are clearly illustrated with a number of schematic diagrams. Experimental observations on the nature of C-S-H present in a diverse range of cementitious systems are considered. In some systems, the data can only be accounted for on the T/CH structural viewpoint, whilst in others, both the T/CH and T/J viewpoints could apply. New data from transmission electron microscopy (TEM) are presented. The 'inner product' (Ip) C-S-H in relatively large grains of C 3 S or alite appears to consist of small globular particles, which are ∼4-8 nm in size in pastes hydrated at 20 deg. C but smaller at elevated temperatures, ∼3-4 nm. Fibrils of 'outer product' (Op) C-S-H in C 3 S or β-C 2 S pastes appear to consist of aggregations of long thin particles that are about 3 nm in their smallest dimension and of variable length, ranging from a few nanometers to many tens of nanometers. The small size of these particles of C-S-H is likely to result in significant edge effects, which would seem to offer a reasonable explanation for the persistence of Q 0 (H) species. This would also explain why there is more Q 0 (H) at elevated temperatures, where the particles seem to be smaller, and apparently less in KOH-activated pastes, where the C-S-H has foil-like morphology. In blended cements, a reduction in the mean Ca/Si ratio of the C-S-H results in a change from fibrillar to a crumpled-foil morphology, which suggests strongly that as the Ca/Si ratio is reduced, a transition occurs from essentially one-dimensional growth of the C-S-H particles to

  16. The uptake of Cs, Cl, I, Co, U and Pu by C-S-H, portlandite and ettringite

    International Nuclear Information System (INIS)

    Le Callonnec, C.; Richet, C.; Ayache, R.

    2000-01-01

    The aim of this work is to study the retention of Pu, Cs, Cl, U, Co and I onto the three phases of a cement paste: calcium silicate hydrates or C-S-H (Ca/Si=1.65), portlandite (Ca(OH) 2 ) and ettringite (Ca 6 Al 2 S 3 O 21 .32H 2 O). C-S-H of Ca/Si molar ratio of 1.65 and ettringite were prepared in suspension, while portlandite was provided by an industrial laboratory. The sorptive power for each ion was determined by a batch model at 20 degrees Celsius. The uptake of ions onto the phases has been obtained by introducing a very small volume of radioactive Cs, Co, Cl, I, U and Pu solution in each batch. Aliquots of solution were periodically removed for analysis. The results show that there are two kinds of ions whatever the solid phase: those which are poorly sorbed: Cs, Cl, I and Co, U and Pu which are strongly sorbed (by a factor 100 to 10000). Elsewhere, the comparison between the sorptive power of each phase reveals that C-S-H develops a significant sorption potential for pluri-valent ions (Pu, U, Co) as well as for Cl. The retention capacity of portlandite mainly towards pluri-valent cations is one or two orders of magnitude weaker than C-S-H capacity. Ettringite only plays a sorptive role relatively to Cs. However, iodine does not have a strong affinity for any solid at all. The data allow us to calculate a global sorption coefficient Kd of the cement paste for each ion. Assuming that the proportion of C-S-H, portlandite, ettringite is respectively 65%, 15% and 5% in a Portland cement, the global sorption coefficient is in good agreement with literature regarding on U, Cs, I and Cl. Cementitious materials appear to be an interesting chemical barrier that can limit the diffusion of pluri-valent cations. As C-S-H represent from 60% to 75% of the cement paste, this study leads to underline that C-S-H is mainly responsible for the retention capacity of cementitious materials specially towards U, Pu, Co, Cl although its sorption power is limited concerning

  17. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...... is that the cement paste structure and porosity can be engineered by addition of selected layer silicates having specific particle shapes and surface properties (e.g., charge and specific surface area). This seems to be due to the growth of calcium-silicate hydrates (C-S-H) on the clay particle surfaces...

  18. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    International Nuclear Information System (INIS)

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Hernández-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid; Monteiro, Paulo J.M.

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C–S–H fibers are composed of particles that are 1.5–2 nm thick and several tens of nanometers long. 29 Si NMR shows 47.9% Q 1 and 52.1% Q 2 , with a mean SiO 4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C 3 S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L 3,2 -edge indicates that Ca 2+ in C–S–H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO 4 4− tetrahedron chain.

  19. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  20. The Temperature Dependence of the Partition of CH4 and C2H6 in Structure I Hydrates

    Science.gov (United States)

    Cheng, H.; Lu, W.

    2017-12-01

    At present, we mainly use hydrocarbon gas and carbon isotope composition to determine the gas source of natural gas hydrate. Judging the type of gas source plays a key role in the evaluation of hydrate reservoirs, but there is still controversy over this approach. Considering the crystal properties of hydrate, the process of aggregation and decomposition of natural gas hydrates may have an important effect on the gas composition. We used CH4 (C1), C2H6 (C2) and their mixture as gas sources to synthesize hydrates from aqueous solution in high-pressure capillary tubes. Gas concentration in hydrates grew at different temperatures was measured with quantitative Raman spectroscopy. The results show that concentrations of gas in pure methane and pure ethane hydrates increase with temperature. The results of the mixture are similar to pure gas below 288.15 K, the concentration of C1 in small cages (SC, 512) slowly increased, but the competitive relationship between methane and ethane in large cages (LC, 51262) become obvious after 288.15 K. From 278.15 K to 294.15 K, the value of C1/C2 decreased from 26.38 to 6.61, gradually closing to the original gas composition of 4. We find that gas hydrates are more likely to gather C1 when they accumulate. The lower the temperature is, the more obvious it will be, and the closer the value of C1/C2 is to the microbial gases.

  1. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    International Nuclear Information System (INIS)

    Tits, Jan; Laube, Andreas; Wieland, Erich; Gaona, Xavier

    2014-01-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO 2 ) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO 2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO 2 R d values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R d values for the three redox states are also identical at pH = 10. While the R d values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R d values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO 2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R d values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the

  2. A thermodynamic approach to the hydration of sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Wieland, Erich

    2006-01-01

    A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials

  3. A thermodynamic model for C-(N-)A-S-H gel: CNASH{sub s}s. Derivation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Rupert J.; Bernal, Susan A.; Provis, John L., E-mail: j.provis@sheffield.ac.uk

    2014-12-15

    The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na{sub 2}O,Al{sub 2}O{sub 3})–SiO{sub 2}–H{sub 2}O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials.

  4. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    Science.gov (United States)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  5. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature

  6. Radionuclides retention in C-S-H, main phases of cement matrices for low and intermediate-level wastes; Retencion de radionuclidos en C-S-H, principales fases de matrices de cemento para desechos de bajo y medio nivel

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V. E.; Lopez R, C.; Vidal M, J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Gutierrez B, O., E-mail: veronica.badillo@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Exrancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2014-10-15

    Knowing that the behavior of cementitious materials based on hydraulic binder called cement is essentially determined by the physicochemical evolution of the cement paste (water + cement) which constitutes it, the evolution of the cement paste in contact with different aqueous solutions is studied since one of the main risks in safety of systems is composed of surface and groundwater, which contribute to the alteration of the different barriers and represent the main way of radionuclides transport. The calcium silicates CSH are the main phases that compose the systems based on Portland cement. The hydrates calcium silicates possess a high degree of structural complexity which includes crystalline, partially crystalline and amorphous phases. In this study the microstructures of the CSH phases as well as the retention of radionuclide Sr (II) are studied through the {sup 87m}Sr in formulations of water/cement w/c = 0.55; experimental values of K d low around 20 ml g{sup -1} are obtained in function of hydration time of the cement paste in equilibrium with aqueous solutions. (Author)

  7. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  8. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  9. Radionuclides retention in C-S-H, main phases of cement matrices for low and intermediate-level wastes

    International Nuclear Information System (INIS)

    Badillo A, V. E.; Lopez R, C.; Vidal M, J.; Gutierrez B, O.

    2014-10-01

    Knowing that the behavior of cementitious materials based on hydraulic binder called cement is essentially determined by the physicochemical evolution of the cement paste (water + cement) which constitutes it, the evolution of the cement paste in contact with different aqueous solutions is studied since one of the main risks in safety of systems is composed of surface and groundwater, which contribute to the alteration of the different barriers and represent the main way of radionuclides transport. The calcium silicates CSH are the main phases that compose the systems based on Portland cement. The hydrates calcium silicates possess a high degree of structural complexity which includes crystalline, partially crystalline and amorphous phases. In this study the microstructures of the CSH phases as well as the retention of radionuclide Sr (II) are studied through the 87m Sr in formulations of water/cement w/c = 0.55; experimental values of K d low around 20 ml g -1 are obtained in function of hydration time of the cement paste in equilibrium with aqueous solutions. (Author)

  10. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen

    2016-01-01

    Highlights: • The structural sustainability of sII hydrate is demonstrated during the replacement. • The experimental evidence of isostructural replacement is revealed. • The cage-specific replacement in sII hydrates allows long-term CO 2 storage. • The compositions and extent of replacement are cross-checked by GC and NMR analyses. - Abstract: A replacement technique has been regarded as a promising strategy for both CH 4 exploitation from gas hydrates and CO 2 sequestration into deep-ocean reservoirs. Most research has been focused on replacement reactions that occur in sI hydrates due to their prevalence in natural gas hydrates. However, sII hydrates in nature have been also discovered in some regions, and the replacement mechanism in sII hydrates significantly differs from that in sI hydrates. In this study, we have intensively investigated the replacement reaction of sII (C 3 H 8 + CH 4 ) hydrate by externally injecting CO 2 /N 2 (50:50) gas mixture with a primary focus on powder X-ray diffraction, Raman spectroscopy, NMR spectroscopy, and gas chromatography analyses. In particular, it was firstly confirmed that there was no structural transformation during the replacement of C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas injection, indicating that sII hydrate decomposition followed by sI hydrate formation did not occur. Furthermore, the cage-specific replacement pattern of the C 3 H 8 + CH 4 hydrate revealed that CH 4 replacement with N 2 in the small cages of sII was more significant than C 3 H 8 replacement with CO 2 in the large cages of sII. The total extent of the replacement for the C 3 H 8 + CH 4 hydrate was cross-checked by NMR and GC analyses and found to be approximately 54%. Compared to the replacement for CH 4 hydrate with CO 2 /N 2 gas, the lower extent of the replacement for the C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas was attributable to the persistent presence of C 3 H 8 in the large cages and the lower content of N 2 in the feed gas. The

  11. Heavy ion beam measurement of the hydration of cementitious materials

    International Nuclear Information System (INIS)

    Livingston, R.A.; Schweitzer, J.S.; Spillane, T.; Zickefoose, J.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Castellote, M.; Viedma, P.G. de; Cheung, J.

    2008-01-01

    Full text: The setting and development of strength of Portland cement concrete depends upon the reaction of water with various phases in the Portland cement including dicalcium silicate (C 2 S), tricalcium silicate (C 3 S) and tricalcium aluminate (C 3 A). The early age hydration reaction and setting time are determined by surface layers on the cement grains that form a region that is only a few 100 nm thick. This has been difficult to observe with conventional methods. Ion beam techniques have been used to investigate these layers in detail at the Tandem Accelerator facility of the University of the Ruhr in Bochum, Germany. The primary method has been Nuclear Resonance Reaction Analysis (NRRA) involving the 1 H( 15 N,αγ) 12 C reaction to measure the hydrogen depth profile. This technique has an H detection sensitivity of about 10 ppm and an H-depth resolution of a few nm at the surface.. Freshly cleaved mica is used as a calibration standard for conversion of gamma-ray counts to H concentration. The beam energy to depth conversion factor is obtained by numerical simulation using the Monte Carlo code TRIM. NRRA with the 1 H( 19 F, αγ) 16 O reaction has also been used to measure the hydrogen depth profile. Some samples were implanted with a 131 Xe layer in order to measure the depth profile of other significant elements such as calcium with Rutherford Backscattering (RBS), and also to measure the erosion of the surface layers

  12. Experimental and modeling investigation on structure H hydrate formation kinetics

    International Nuclear Information System (INIS)

    Mazraeno, M. Seyfi; Varaminian, F.; Vafaie sefti, M.

    2013-01-01

    Highlights: • Applying affinity model for the formation kinetics of sH hydrate and two stage kinetics. • Performing the experiments of hydrate formation of sH with MCP. • A unique path for the SH hydrate formation. - Abstract: In this work, the kinetics of crystal H hydrate and two stage kinetics formation is modeled by using the chemical affinity model for the first time. The basic idea is that there is a unique path for each experiment by which the crystallization process decays the affinity. The experiments were performed at constant temperatures of 274.15, 275.15, 275.65, 276.15 and 277.15 K. The initial pressure of each experiment is up to 25 bar above equilibrium pressure of sI. Methylcyclohexane (MCH), methylcyclopentane (MCP) and tert-butyl methyl ether (TBME) are used as sH former and methane is used as a help gas. The parameters of the affinity model (A r and t k ) are determined and the results show that the parameter of (A r )/(RT) has not a constant value when temperature changes in each group of experiments. The results indicate that this model can predict experimental data very well at several conditions

  13. A thermodynamic model for C-(N-)A-S-H gel: CNASHss. Derivation and validation

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Bernal, Susan A.; Provis, John L.

    2014-01-01

    The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na 2 O,Al 2 O 3 )–SiO 2 –H 2 O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials

  14. Atomistic modeling of crystal structure of Ca{sub 1.67}SiH{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Kovačević, Goran; Persson, Björn [Theoretical Chemistry, P.O.B. 124, Lund University, Lund 22100 (Sweden); Nicoleau, Luc [BASF Construction Solutions GmbH, Advanced Materials and Systems Research, Albert Frank Straße 32, 83304 Trostberg (Germany); Nonat, André [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, F-21078 Dijon Cedex (France); Veryazov, Valera, E-mail: valera.veryazov@teokem.lu.se [Theoretical Chemistry, P.O.B. 124, Lund University, Lund 22100 (Sweden)

    2015-01-15

    The atomic structure of calcium-silicate-hydrate (C{sub 1.67}-S-H{sub x}) has been investigated by theoretical methods in order to establish a better insight into its structure. Three models for C-S-H all derived from tobermorite are proposed and a large number of structures were created within each model by making a random distribution of silica oligomers of different size within each structure. These structures were subjected to structural relaxation by geometry optimization and molecular dynamics steps. That resulted in a set of energies within each model. Despite an energy distribution between individual structures within each model, significant energy differences are observed between the three models. The C-S-H model related to the lowest energy is considered as the most probable. It turns out to be characterized by the distribution of dimeric and pentameric silicates and the absence of monomers. This model has mass density which is closest to the experimental one.

  15. Hydration of DNA by tritiated water and isotope distribution: a study by 1H, 2H, and 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-01-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent 3 HHO. The combined effects of temperature (-6 to -40 0 C) and H 2 O/ 2 H 2 O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by 3 HHO (internal radiation source) localizes close to 3 H due to the short range and low energy of 3 H β rays

  16. Hydrates of the alkali trioxidomonosulfidomolybdates and -tungstates. K{sub 2}[(Mo/W)O{sub 3}S] . 1.5 H{sub 2}O and (Rb/Cs){sub 2}[(Mo/W)O{sub 3}S] . H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Anna J.; Braitsch, Milan; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2012-11-01

    The trioxidomonosulfidomolybdate and -tungstate anions [(Mo/W)O{sub 3}S]{sup 2-} are the first products formed when passing H{sub 2}S gas through a solution of the oxidometalates. Their potassium, rubidium and cesium salt hydrates form as crystalline precipitates from these solutions depending on pH, the polarity of the solvent, educt concentrations and temperature. The structures of the sesqui- (K) and mono- (Rb, Cs) hydrates have been determined by means of X-ray single crystal diffraction data. The potassium sesquihydrates K{sub 2}[(Mo/W)O{sub 3}S] . 1.5 H{sub 2}O are isotypic and crystallize with a new structure type (monoclinic, space group C2/c, M = Mo/W: a = 987.0(2)/993.13(11), b = 831.75(14)/831.10(11), c = 1868.9(4)/1865.2(2) pm, {beta} = 99.34(2)/99.153(8) , R1 = 0.0352/0.0390). In the crystal structure the [(Mo/W)O{sub 3}S]{sup 2-} anions are connected via hydrogen bonds to form columns along the c direction. Channels containing only water molecules run along the [101] direction. The dehydration process proceeds in a topotactic reaction between 60 to 95 C and yields crystals of the anhydrous salts K{sub 2}[(Mo/W)O{sub 3}S]. The two different K+ cations exhibit a 5 + 3 and 5 + 2 O/S coordination. The heavier alkali metal cations form the four monohydrates (Rb/Cs){sub 2}[(Mo/W)O{sub 3}S] . H{sub 2}O (trigonal rhombohedral, space group R anti 3m) with lattice parameters for the Rb/Cs molybdates of a = 621.17(6)/624.62(10), c = 3377.9(4)/3388.6(8) pm (R1 = 0.0505/0.0734) and the tungstates of a = 642.80(3)/643.3(4), c = 3532.8(3)/3566(4) pm (R1 = 0.0348/0.0660). In the structures the 3m symmetrical tetrahedra are arranged to form double layers in such a way, that the O{sub 3} bases of the tetrahedra are pointing towards each other in a staggered conformation. These double layers are stacked in the c direction in a rhombohedral sequence. In these hydrates, there are no distinct hydrogen bonds. Instead, partially disordered pairs of H{sub 2}O molecules are

  17. Activation of Ca(OH){sub 2} using different siliceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, N.; Ersoy-Mericboyu, A.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey)

    1999-04-01

    Siliceous materials such as silica fume, bentonite and diatomite were mixed with Ca(OH){sub 2} and hydrated at different conditions to produce reactive SO{sub 2} sorbents. Two different hydration methods were used, namely atmospheric and pressure hydration. The effects of the hydration temperature, time and siliceous material/Ca(OH){sub 2} weight ratio on the physical properties of the activated sorbents wereinvestigated. A statistical design technique was applied by use of a two-level factorial design matrix to interpret experimental results. In atmospheric hydration, it was found that increasing the temperature and hydration time caused an increase in the total surface area of the sorbents. But, increasing the siliceous material/Ca(OH){sub 2} weight ratio caused a decrease in the total surface area of the sorbents. In pressure hydration, mathematical analysis showed that the surface area of the activated sorbents was positively affected by the hydration variables. Thermogravimetric measurements showed that increasing the amount of reacted Ca(OH){sub 2} during hydration caused an increase in the surface area of the sorbent. X-ray diffraction studies also indicated that calcium silicate hydrates were the principal Ca-containing species formed during hydration.

  18. Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Trueba, Alondra Torres; Kroon, Maaike C.; Peters, Cor J.; Moudrakovski, Igor L.; Ratcliffe, Christopher I.; Ripmeester, John A.; Alavi, Saman

    2014-01-01

    Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH 3 F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. 13 C NMR chemical shifts of a CH 3 F/CH 4 /TBME sH hydrate and a temperature analysis of the 2 H NMR powder lineshapes of a CD 3 F/THF sII and CD 3 F/TBME sH hydrate, displayed evidence that the populations of CH 4 and CH 3 F in the D and D ′ cages were in a state of rapid exchange. A hydrogen bonding analysis using molecular dynamics simulations on the TBME/CH 3 F and TBME/CH 4 sH hydrates showed that the presence of CH 3 F enhances the hydrogen bonding probability of the TBME molecule with the water molecules of the cavity. Similar results were obtained for THF/CH 3 F and THF/CH 4 sII hydrates. The enhanced hydrogen bond formation leads to the formation of defects in the water hydrogen bonding lattice and this can enhance the migration of CH 3 F molecules between adjacent small cages

  19. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Hong, S.

    2000-01-01

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, R d , was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. R d is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of R d indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant R d value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases R d , indicating enhancement of alkali binding. However, the dependence of R d on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH) 2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH) 2 is exsolved and occurs as nano-sized crystallites. (author)

  20. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  1. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  2. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  3. Obtención de silicatos de calcio utilizando el método de precipitación controlada

    OpenAIRE

    Rodríguez-Páez, J. E.; Ahumada, L. M.; Bustamante, J. M.; Ruiz de Murgueitio, J.

    2005-01-01

    Calcium silicate hydrates are compounds of SiO2 – CaO – H2O system. These materials are used to make lime-sand bricks concretes, or “cellular concretes”, lime-flint brices and as fillers in rubber, paint and plastic products industries, among others. Undoubtedly, the tobermoritas is the most interesting group given its important role in concrete hydration: hydrated calcium silicate (CS- H) is the main concrete hydration product and its primary bounding phase. The hydrothermal method is the...

  4. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  5. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Huen, E-mail: h_lee@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of EEWS, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-01-15

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: > New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. > Formation of gas hydrate with methane as help gas was confirmed. > NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. > We measured (L + H + V) phase equilibrium with proposed hydrate formers. > Tuning phenomena increase gas storage in (pyrrolidine + CH{sub 4}) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. {sup 13}C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  6. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    International Nuclear Information System (INIS)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong; Lee, Huen

    2012-01-01

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: → New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. → Formation of gas hydrate with methane as help gas was confirmed. → NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. → We measured (L + H + V) phase equilibrium with proposed hydrate formers. → Tuning phenomena increase gas storage in (pyrrolidine + CH 4 ) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13 C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  7. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  8. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials

    International Nuclear Information System (INIS)

    Zhang, Na; Li, Hongxu; Liu, Xiaoming

    2016-01-01

    Highlights: • Nanocrystalline regions in size of ∼5 nm were found in the amorphous C-A-S-H gel. • A hydration model was proposed to clarify the hydration mechanism. • The developed cementitious materials are environmentally acceptable. - Abstract: A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5 nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable.

  9. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-15

    Highlights: • Nanocrystalline regions in size of ∼5 nm were found in the amorphous C-A-S-H gel. • A hydration model was proposed to clarify the hydration mechanism. • The developed cementitious materials are environmentally acceptable. - Abstract: A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5 nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable.

  10. On the swelling behavior of cationic exchange resins saturated with Na+ ions in a C3S paste

    International Nuclear Information System (INIS)

    Lafond, E.; Cau Dit Coumes, C.; Chartier, D.; Gauffinet, S.; Le Bescop, P.; Stefan, L.

    2015-01-01

    Ion exchange resins (IERs) are widely used in the nuclear industry to decontaminate radioactive effluents. Spent resins are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na + form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C-S-H, and very heterogeneous microstructure with zones of high porosity. (authors)

  11. Properties and hydration of blended cements with steelmaking slag

    International Nuclear Information System (INIS)

    Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-01-01

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C 2 S and its low content in calcium silicates

  12. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature

    International Nuclear Information System (INIS)

    Jin, Fei; Al-Tabbaa, Abir

    2013-01-01

    Highlights: • The characteristics of reactive MgO vary significantly in terms of their impurity content and reactivity depending on their sources and calcination conditions. • The synthesis of magnesium silicate hydrate (MSH) is affected by the characteristics of the precursors, i.e., MgO and silica. • The reaction process in the MgO–SiO 2 –H 2 O system can be followed by TGA, and is essential to develop MSH-based materials. - Abstract: The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO–SiO 2 –H 2 O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO–SiO 2 –H 2 O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system

  13. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Kuhs, Werner F

    2009-04-16

    In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.

  14. Uranium-thorium silicates, with specific reference to the species in the Witwatersrand reefs

    International Nuclear Information System (INIS)

    Smits, G.

    1987-01-01

    (U,Th)-silicates form two complete series of anhydrous and hydrated species with general formulae (U,Th)SiO 4 and (U,Th)SiO 4 .nH 2 O respectively. The end-members of the anhydrous series are anhydrous coffinite and thorite, and those of the hydrated series, coffinite and thorogummite. Although the silicates are relatively rare in nature, coffinite is a common ore mineral in uranium deposits of the sandstone type. In the Witwatersrand reefs, (U,Th)-silicates are extremely rare in most reefs, except for the Elsburg Reefs on the West Rand Goldfield and the Dominion Reef. In these reefs detrital uraninite has been partly or entirely transformed to (U,Th)-silicates of coffinite composition, but thorite and thorogummite of detrital origin are also found in the Dominion Reef. In leaching tests on polished sections of rock samples containing (U,Th)-silicates, a dilute sulphuric acid solution, to which ferric iron had been added, was used as the lixiviant. It appeared that the dissolution of coffinite is less rapid than that of uraninite and uraniferous leucoxene. However, the reaction of silicates of high thorium content is much slower, and was not completed during the tests

  15. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  16. Formation and early hydration characteristics of C2.75B1.25A3$ in binary system of C2.75B1.25A3$-C2S

    Directory of Open Access Journals (Sweden)

    Wang, Shoude

    2016-09-01

    Full Text Available C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2O3• SO3 is one of the important minerals and it govern-directly the early-strength of belite-barium calcium sulphoaluminate cement. In this paper a binary system C2.75B1.25A3$-C2S is selected to investigate the formation of C2.75B1.25A3$. In the range of 1100 °C–1200 °C, the earlier formed C2S hinders the formation of C2.75B1.25A3$. On the contrary, when the temperature is in the range of 1200 °C–1350 °C, the initially formed C2S could provide a surface for the nucleation of C2.75B1.25A3$ and cut down the potential barrier (?Gk* for the heterogeneous nucleation of C2.75B1.25A3$, which contributes to its formation. Moreover, at 1350 °C, the large amount of previously formed C2S benefits the extent of formation of C2.75B1.25A3$. The possible reason was that it could prevent sulfur evaporation. In early hydration age, AFm and AFt originating from C2.75B1.25A3$ hydration are found within 2 h and 12 h under 95% RH at 1 °C, respectively, whereas C2S is unhydrated at this moment.En el cemento de sulfoaluminato de calcio y bario, el C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2 O3• SO3 es una de las principales fases, y regula directamente la resistencia inicial del cemento. En este trabajo, se ha seleccionado el sistema binario C2.75B1.25A3$-C2S para investigar la formación de C2.75B1.25A3$. En el rango de 1100 °C-1200 °C, el C2S formado anteriormente impide la formación de C2.75B1.25A3$, mientras que cuando la temperatura está entre 1200 °C-1350 °C, el C2S proporcionaría una superficie de nucleación de C2.75B1.25A3$ reduciendo la barrera de potencial (?Gk* para la nucleación heterogénea de C2.75B1.25A3$, lo que contribuye a su formación. Además, a 1350 °C, la gran cantidad de C2S formado beneficia la formación de C2.75B1.25A3$, ya que podía prevenir la evaporación del azufre. En las primeras etapas de la hidratación (entre 2 y 12h y 95% HR a 1 ºC se pueden encontrar AFM y AFt

  17. Crystal structure and thermochemical properties of n-decylammonium ethyl sulfate (C10H21NH3SO4C2H5)(s)

    International Nuclear Information System (INIS)

    Zhang, Li-Jun; Di, You-Ying; Dou, Jian-Min

    2013-01-01

    Graphical abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Molar enthalpies of dissolution of the compound at different concentrations were measured by an isoperibol solution–reaction calorimeter. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution and Pitzer parameters were obtained. The values of apparent relative molar enthalpies of the title compound and relative partial molar enthalpies of the solute and the solvent at different concentrations were derived. Finally, enthalpies of hydration of the compound and its anion were calculated. Highlights: ► Crystal structure of n-decylammonium ethyl sulfate was determined. ► Lattice potential energy was calculated. ► Molar enthalpy of dissolution at infinite dilution was determined. ► Enthalpies of hydration of the compound and its anion were derived. - Abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Ionic radius of the anion was calculated from the corresponding effective volume of the anion. Molar enthalpies of dissolution of the compound at different concentrations m /(mol · kg –1 ) were measured by an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution (Δ sol H m ∞ ) was determined to be (21.284 ± 0.042) kJ·mol –1 , and enthalpy of hydration of the anion SO 4 C 2 H 5 − was calculated to be ΔH – = −340.68 kJ·mol –1 . The values of apparent relative molar enthalpies ( Φ L) of the title compound and relative partial molar enthalpies (L 2 ¯ and L 1 ¯ ) of the solute and

  18. Retention of alkali ions by hydrated low-pH cements: Mechanism and Na+/K+ selectivity

    International Nuclear Information System (INIS)

    Bach, T.T.H.; Chabas, E.; Pochard, I.; Cau Dit Coumes, C.; Haas, J.; Frizon, F.; Nonat, A.

    2013-01-01

    Low-pH cements, also referred to as low-alkalinity cements, can be designed by replacing significant amounts of Portland cement by pozzolanic materials. Their pore solution is characterized by a pH near 11, and an alkali concentration much lower than that of Portland cement. This work investigates the retention of sodium and potassium by a hydrated low-pH cement comprising 60% Portland cement and 40% silica fume. It is shown that sorption of potassium is higher than that of sodium and mainly results from counterion charge balancing of the C-S-H negative surface charge. To explain the greater retention of potassium compared to sodium, it is postulated that potassium, unlike sodium, may enter the interlayer of C-S-H to compensate the negative charges in the interlayer, in addition to the external surfaces. This assumption is supported by structural characterization of C-S-H using X-ray diffraction

  19. Ultrafast phosphate hydration dynamics in bulk H2O

    Science.gov (United States)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-06-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4- ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ν S ( PO2 - ) ) and asymmetric ( ν A S ( PO2 - ) ) PO 2- stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S ( PO2 - ) and ν A S ( PO2 - ) transition frequencies with larger frequency excursions for ν A S ( PO2 - ) . The calculated frequency-time correlation function is in good agreement with the experiment. The ν ( PO2 - ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4-/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  20. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    International Nuclear Information System (INIS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-01-01

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO_x passivation layer and Al_2O_3 gate dielectric was fabricated. • The detrimental SiO_x interfacial layer could be effectively restrained by the LaSiO_x passivation layer. • The passivation mechanism of LaSiO_x was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO_x passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO_x) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO_x) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al_2O_3 gate dielectric. The interfacial LaSiO_x formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO_x passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO_x passivation interlayer can effectively restrain SiO_x formation and improve the Al_2O_3/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  1. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-15

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO{sub x} passivation layer and Al{sub 2}O{sub 3} gate dielectric was fabricated. • The detrimental SiO{sub x} interfacial layer could be effectively restrained by the LaSiO{sub x} passivation layer. • The passivation mechanism of LaSiO{sub x} was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO{sub x} passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO{sub x}) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO{sub x}) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al{sub 2}O{sub 3} gate dielectric. The interfacial LaSiO{sub x} formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO{sub x} passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO{sub x} passivation interlayer can effectively restrain SiO{sub x} formation and improve the Al{sub 2}O{sub 3}/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  2. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  3. In situ synchrotron X-ray powder diffraction study of the early hydration of α-tricalcium phosphate/tricalcium silicate composite bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, Loreley; Correa, Jose Raul, E-mail: lmorejon@fq.uh.cu [Departamento de Quimica General, Facultad de Quimica, Universidad de La Habana, UH (Cuba); Motisuke, Mariana [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Carrodeguas, Raul Garcia [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Laboratorio de Avaliacao e Desenvolvimento de Biomateriais do Nordeste; Santos, Luis Alberto dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais

    2015-01-15

    Bioactivity, osteogenicity and mechanical properties of α-tricalcium phosphate (α-TCP) based phosphates cements can be improved by adding tricalcium silicate (C{sub 3}S); however, the addition of C{sub 3}S delays the precipitation and growth of calcium deficient hydroxyapatite (CDHA). Thus, the aim of this work was the study of in situ setting reaction of α-TCP/C{sub 3}S composite bone cement under high energy X-ray generated by a synchrotron source within the first 72h. The results showed that the addition of C{sub 3}S induces the precipitation of nanosized CDHA at early times depending on the added content. Calculated crystallite sizes showed that the higher the content of C{sub 3}S, the smaller the crystal size at the beginning of the precipitation. These results are different from those obtained by conventional XRD method, suggesting that the proposed technique is a powerful tool in determining the composition and extent of reaction of CPCs surfaces in real time. (author)

  4. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  5. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    Science.gov (United States)

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  6. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    Science.gov (United States)

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  7. Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H

    KAUST Repository

    Battocchio, Francesco

    2012-11-01

    Low-Q region Rietveld analyses were performed on C-S-H synchrotron XRD patterns, using the software MAUD. Two different crystal structures of tobermorite 11 Å were used as a starting model: monoclinic ordered Merlino tobermorite, and orthorhombic disordered Hamid tobermorite. Structural modifications were required to adapt the structures to the chemical composition and the different interlayer spacing of the C-S-H samples. Refinement of atomic positions was done by using special constraints called fragments that maintain interatomic distances and orientations within atomic polyhedra. Anisotropic crystallite size refinement showed that C-S-H has a nanocrystalline disordered structure with a preferred direction of elongation of the nanocrystallites in the plane of the Ca interlayer. The quality of the fit showed that the monoclinic structure gives a more adequate representation of C-S-H, whereas the disordered orthorhombic structure can be considered a more realistic model if the lack of long-range order of the silica chain along the c-direction is assumed. © 2012 Elsevier Ltd. All rights reserved.

  8. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  9. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  10. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  11. Interaction of dispersed polyvynil acetate with silicate in finishing materials

    Directory of Open Access Journals (Sweden)

    Runova, R. F.

    1996-12-01

    Full Text Available This article focuses on the processes of interaction between calcium silicate hydrates and dispersed polyvinyl acetate in tight films with the aim of developing compounds meant for restoration and finishing works. The basis of this development relies on the concept concerning the determining role of the crystal-chemical factor of the silicate phase in the formation of organic-mineral compounds of increased durability. The characteristics of dispersed calcium silicate hydrates are portrayed. The preparation conditions, accounting for the synthesis of the product of submicrocrystalline structure, conforming with the stoichiometry CaO∙SiO2 =0.8-2.0 have been determined. The interaction has been studied for compounds achieved by mixing ingredients in a rapid whirling mixer, and subjected to hardening at T=20+2 T. With the aid of XRD, DTA and Infra-Red Spectrometry methods the formation process of the sophisticated polymer silicate phase in the material was observed for a period of 90 days. The properties of the film were investigated and its high resistance against the influence of external factors was established. On this basis a conclusion concerning the quite high effectiveness of substituting portland cement with dispersed calcium silicate hydrate in polymer cement compounds has been made. White colour and other various special properties determine the suitability for repair and finishing works on facades of buildings.

    Este artículo está orientado a estudiar los procesos de interacción entre los silicatos cálcicos hidratados y el acetato de polivinilo disperso en capas impermeables, con el objeto de desarrollar compuestos destinados para la restauración. El fundamento de estos estudios es determinar el papel que los factores cristaloquímicos de las fases silicato tienen en la formación de compuestos órganominerales de elevada durabilidad. Se han descrito las características de los silicatos cálcicos hidratados

  12. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  13. A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations.

    Science.gov (United States)

    Lee, Bor-Shiunn; Lin, Hong-Ping; Chan, Jerry Chun-Chung; Wang, Wei-Chuan; Hung, Ping-Hsuan; Tsai, Yu-Hsin; Lee, Yuan-Ling

    2018-01-01

    Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO 3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations.

  14. Ultrafast phosphate hydration dynamics in bulk H2O

    International Nuclear Information System (INIS)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-01-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H 2 PO 4 − ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν S (PO 2 − )) and asymmetric (ν AS (PO 2 − )) PO 2 − stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH) 2 ) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S (PO 2 − ) and ν AS (PO 2 − ) transition frequencies with larger frequency excursions for ν AS (PO 2 − ). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO 2 − ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H 2 PO 4 − /H 2 O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water

  15. Comparison of skin hydration in combination and single use of common moisturizers (cream, toner, and spray water).

    Science.gov (United States)

    Yuanxi, Li; Wei, Hua; Lidan, Xiiong; Li, Li

    2016-01-01

    This study aims to assess the moisturization in combination or single use (including seven general applications) of three common moisturizers: cream, toner, and spray water. Groups were set as C: cream only; T: toner only; C+T, T+C: cream or toner applied successively within a few minutes; C-T, C-S: cream applied with repeated toner or spray water every 2 h; T-T: toner applied with repeated toner every 2 h; and N: untreated group. Outcomes were the change in skin hydration from baseline at 2, 4, 6, and 8 h after applications. All treated zones displayed a significantly higher degree of hydration compared with the untreated zone ( p skin (hydration value at baseline >35 a.u.), C-T led to greatest hydration change rate compared with others, followed by C+T, T+C, and C. Those three applications exhibited analogous hydration at each test point ( p > 0.05). The hydration rate of C-S differed slightly from T-T, followed by those four mentioned above, with T being the last. For dry skin (hydration value at baseline 0.05), the other results were identical. When cream and toner were applied successively, the application order has little effect on skin hydration. The application of cream only was an effective and brief way to achieve favorable moisturization especially for dry skin. As a complement, repeated application of toner rather than spray water is efficacious for skin hydration.

  16. Hydration products of lime-metakaolin pastes at ambient temperature with ageing

    Energy Technology Data Exchange (ETDEWEB)

    Gameiro, A., E-mail: agameiro@lnec.pt [National Laboratory of Civil Engineering, Materials Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Santos Silva, A., E-mail: ssilva@lnec.pt [National Laboratory of Civil Engineering, Materials Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Veiga, R., E-mail: rveiga@lnec.pt [National Laboratory of Civil Engineering, Buildings Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Velosa, A., E-mail: avelosa@ua.pt [Department of Civil Engineering, Geobiotec, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer We study the compounds formed in lime/MK blended pastes and their stability over time. Black-Right-Pointing-Pointer Different mixes of lime/MK pastes show different reaction kinetics during curing time, being the pozzolanic compounds formed directly proportional to the lime by MK replacement. Black-Right-Pointing-Pointer Some pozzolanic products are found to be unstable during the hydration reaction employed in our study. - Abstract: Mortars constituted of lime mixtures with pozzolanic additions have been extensively used in the past for the construction of historic and traditional buildings. This paper presents the results of blended pastes of lime and metakaolin (MK), namely compounds formed and their stability over time. This research is part of an extensive study aiming at the formulation of lime based mortars for restoration purposes. It has been shown for several years that MK has been applied in inorganic binders due to its capacity to react vigorously with calcium hydroxide (CH). In the presence of water originating a series of major hydrated phases, namely tetra calcium aluminate hydrate (C{sub 4}AH{sub 13}), calcium silicates hydrates (CSH) and calcium aluminium silicate hydrates (stratlingite - C{sub 2}ASH{sub 8}). Several blended pastes of lime and MK, with different substitution rates of lime by MK (wt%) were prepared and cured at a temperature of 20 Degree-Sign C and relative humidity RH > 95%. The phase composition of the formed hydrated phases was determined by X-ray diffraction (XRD) and simultaneous thermal analysis (TG-DTA). The obtained results showed that lime/MK pastes compositions displayed different reaction kinetics during curing time, being the pozzolanic products content directly proportional to the substitution rate of lime by MK. Also, a relationship between the increase stratlingite content and the MK substitution rate of lime by MK was found.

  17. Compressive strength and microstructural characteristics of class C fly ash geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaolu; Shi, Huisheng; Dick, Warren A [Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Shanghai (China)

    2010-02-15

    Geopolymers prepared from a class C fly ash (CFA) and a mixed alkali activator of sodium hydroxide and sodium silicate solution were investigated. A high compressive strength was obtained when the modulus of the activator viz., molar ratio of SiO{sub 2}/Na{sub 2}O was 1.5, and the proper content of this activator as evaluated by the mass proportion of Na{sub 2}O to CFA was 10%. The compressive strength of these samples was 63.4 MPa when they were cured at 75{sup o}C for 8 h followed by curing at 23{sup o}C for 28 d. In FTIR spectroscopy, the main peaks at 1036 and 1400 cm{sup -1} have been attributed to asymmetric stretching of Al-O/Si-O bonds, while those at 747 cm{sup -1} are due to the Si-O-Si/Si-O-Al bending band. The main geopolymeric gel and calcium silicate hydrate (C-S-H) gel co-exist and bond some remaining unreacted CFA spheres as observed in XRD and SEM-EXDA. The presence of gismondine (zeolite) was also observed in the XRD pattern.

  18. Effect of hydration on the amide I band in the binary solvents dioxane-D2O and dioxane-H2O

    International Nuclear Information System (INIS)

    Kobayashi, M.; Kobayashi, M.

    1980-01-01

    Hydration of amides in aqueous solutions has been studied by measuring the infrared spectra of amides (benzamide, p-methoxybenzamide, and ropionamide) in dioxane-D 2 O and dioxane-H 2 O mixtures. The absorption due to the C=O stretching (or amide I band) exhibited a very remarkable red shift accompanied by a characteristic change of the band shape as the water content in the medium increased. The spectral change is attributed to the change of the hydration state at the carbonyl oxygen. In the aqueous mixtures, amide molecules participate in an equilibrium among various states of hydration. The weighted mean frequency of the ν/sub C = O/ absorption, anti ν/sub C = O/, varied in proportion to the water contained in the medium. The difference between the anti ν/sub C = O/ value in pure water and that in pure dioxane,Δ anti ν, was used as a measure of the maximum degree of hydration. It was larger for propionamide than for the aromatic amides, suggesting that the steric effect of the substituents is of major importance in hydration. The isotope effect, Δ anti ν/sub D 2 O//Δ anti ν/sub H 2 O/, in the range from 1.4 to 1.6 for all cases examined, indicated that stronger hydration of amides occurred with D 2 O than with H 2 O

  19. The Internal Recycle Reactor Enhances Porous Calcium Silicate Hydrates to Recover Phosphorus from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2017-01-01

    Full Text Available In this experiment, the porous calcium silicate hydrates (P-CSHs were prepared via a hydrothermal method and then modified by polyethylene glycol (PEG. The modified P-CSHs combined with an internal recycle reactor could successfully recover the phosphorus from electroplating wastewater. The modified P-CSHs were characterized by X-ray diffraction (XRD, N2 adsorption-desorption isotherms, and Fourier transform infrared spectroscopy (FT-IR. After compared with different samples, the modified P-CSHs-PEG2000 sample had larger specific surface area of 87.48 m2/g and higher pore volume of 0.33 cm3/g, indicating a high capacity for phosphorus recovery. In the process of phosphorus recovery, the pH value of solution was increased to 9.5, which would enhance the recovery efficiency of phosphorus. The dissolution rate of Ca2+ from P-CSH-PEG2000 was fast, which was favorable for phosphorus precipitation and phosphorus recovery. The effects of initial concentration of phosphorus, P-CSHs-PEG2000 dosage, and stirring speed on phosphorus recovery were analyzed, so the optimal operation conditions for phosphorus recovery were obtained. The deposition was analyzed by XRD, N2 adsorption-desorption, and SEM techniques; it was indicated that the pore volume and surface area of the P-CSHs-PEG2000 were significantly reduced, and the deposition on the surface of P-CSHs-PEG2000 was hydroxyapatite.

  20. Topotactic conversion of β-helix-layered silicate into AST-type zeolite through successive interlayer modifications.

    Science.gov (United States)

    Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

    2014-02-10

    AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of MXene (Nano-Ti3C2 on Early-Age Hydration of Cement Paste

    Directory of Open Access Journals (Sweden)

    Haibin Yin

    2015-01-01

    Full Text Available As a new two-dimensional material, MXene (nano-Ti3C2 has been widely applied in many fields, especially for reinforced composite materials. In this paper, mechanical testing, X-ray diffraction (XRD, hydration heat, scanning electron microscope (SEM, and EDS analysis were used to analyze the impact of MXene on cement hydration properties. The obtained results revealed that (a MXene could greatly improve the early compressive strength of cement paste with 0.04 wt% concentration, (b the phase type of early-age hydration products has not been changed after the addition of MXene, (c hydration exothermic rate within 72 h has small difference at different amount of MXene, and (d morphologies of hydration products were varied with the dosage of MXene, a lot of tufted ettringites appeared in 3 d hydration products when the content of MXene was 0.04 wt%, which will have a positive effect on improving the early mechanical properties of cement paste. MXene has inhibited the Portland cement hydration process; the main role of MXene in the cement hydration process is to promote the messy ettringite becoming regular distribution at a node and form network connection structure in the crystals growth process, making the mechanics performance of cement paste significantly improved.

  2. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements; Etude mecanistique et modelisation de la retention de radionucleides par les silicates de calcium hydrates (CSH) des ciments

    Energy Technology Data Exchange (ETDEWEB)

    Pointeau, I

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs{sup +}, Pb{sup 2+}, Eu{sup 3+}) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs{sup +} is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm{sup -2}), which accounts for the CSH unsaturation in high [CS{sup +}]. A strong site is also identified. - Pb{sup 2+} immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu{sup 3+} fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu{sup 3+} thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  3. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    Science.gov (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    ))(3-) species are incorporated in the interlayers of the calcium-silicate-hydrate (C-S-H) phase, the principal phase formed upon hydration of alite and belite.

  4. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  5. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    Science.gov (United States)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  6. Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O

    International Nuclear Information System (INIS)

    Matschei, Thomas; Lothenbach, Barbara; Glasser, Fredrik P.

    2007-01-01

    A database is presented for commonly-encountered cement substances including C-S-H, Ca(OH) 2 , selected AFm, AFt and hydrogarnet compositions as well as solid solutions. The AFm compositions include straetlingite. The data were obtained for the most part from experiment and many of the predicted reactions were confirmed by focussed experiments. The temperature-dependence of the thermodynamic data for the above phases, determined partly from experiment and partly from thermodynamic estimations, are also tabulated in the range 1 deg. C to 99 deg. C. Relative to previous databases, sulfate AFm is shown to have a definite range of stability range at 25 deg. C thus removing long-standing doubts about its stability in normal hydrated cement pastes. Carbonate is shown to interact strongly with stabilisation of AFm across a broad range of temperatures and, at low temperatures, to substitute into AFt. The new database enables the ultimate hydrate mineralogy to be calculated from chemistry: most solid assemblages, the persistence of C-S-H apart, correspond closely to equilibrium. This realisation means that hydrate assemblages can be controlled. The development of a thermodynamic approach also enables a fresh look at how mineralogical changes occur in response to environmentally-conditioned reactions; several papers showing applications are cited

  7. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  8. Vibrational spectroscopy of hydrated potassium hexauranate for the phase study of the UO3-KCl-H2O system

    International Nuclear Information System (INIS)

    Dothee, Daniel.

    1980-02-01

    In the study of the UO 3 -KCl-H 2 O system, a phase, called C phase, was isolated; it has a radiocrystallogram very close to the hexauranate K 2 U 6 O 19 ,11H 2 O, but K + and Cl - are found in its composition. Links between these two phases are studied and especially structure relationships. Hydrated potassium hexauranate structure was determined previously with a natural crystal. Position of potassium and uranium atoms only are known. As monocrystal preparation is impossible a direct structural study is impossible too. Vibrational spectroscopic analysis was selected for this study. Hexauranate structure is determined and results are extended for the study of the C phase. The hydrate UO 3 .0.8 H 2 O a stable and well defined compound is chosen for the hydrothermal synthesis of the different phases. Four main phases are evidenced: the chloro-uranate Ksub(x)UO 3 Clsub(x) (already known), a hydrated potassium uranate and two phases (one is the C phase) containing chloride ions are intermediaries between the chloro-uranate and the uranate [fr

  9. Solubility of apatite in H2O-NaCl and silicate-bearing solutions at 0.7-3.0 GPa, 800° C

    Science.gov (United States)

    Antignano, A.; Manning, C. E.

    2004-12-01

    Apatite is a major reservoir for the rare-earth elements (REE) in the earth's crust. However, little is known about its solubility in metamorphic fluids. We measured the solubility of apatite in H2O-NaCl and silicate bearing fluids at 800° C and 1.0-2.0 GPa using a piston-cylinder apparatus with NaCl-graphite furnaces. A single Durango fluor-apatite crystal was loaded into a 1.6 mm OD Pt inner capsule, which was crimped and then placed in a 3.5 OD Pt outer capsule with ultra pure H2O and NaCl or powdered albite. Solubility was determined by the weight loss of the apatite grain after 24 hrs. In the H2O-NaCl experiments, total dissolved solids (TDS) were initially below detection (0.4 millimolal) between XNaCl= 0 and XNaCl= 0.025. At XNaCl= 0.035, solubility was 3.3(0.2) millimolal (errors are 1s), and it increased to 57.5(0.4) millimolal at XNaCl= 0.526. Our results show that there is an enhancement in apatite solubility with increasing pressure in pure H2O. Solubility is initially below detection at bearing solutions. This probably explains textures in which monazite mantles apatite, which are common in granulite metamorphic terranes, such as the Kiirunavaara magnetite-apatite ore.

  10. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-01-01

    Highlights: • Al IV and Al VI both exist in the hydration products. • Increase of Ca/Si ratio promotes the conversion from [AlO 4 ] to [AlO 6 ]. • Polymerization degree of [SiO 4 ] in the hydration products declines. -- Abstract: In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, 27 Al MAS NMR and 29 Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si + Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al IV and Al VI , but mainly in the form of Al VI . Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO 4 ] to [AlO 6 ] and inhibits the combination between [AlO 4 ] and [SiO 4 ] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO 4 ] in the hydration products declines

  11. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  12. Material and elastic properties of Al-tobermorite in ancient roman seawater concrete

    KAUST Repository

    Jackson, Marie D.; Moon, Juhyuk; Gotti, Emanuele; Taylor, Rae; Chae, Sejungrosie; Kunz, Martin; Emwas, Abdul-Hamid M.; Meral, Cagla; Guttmann, Peter; Levitz, Pierre E.; Wenk, Hans Rudolf; Monteiro, Paulo José Meleragno

    2013-01-01

    . Even so, K0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous

  13. Microstructure of hydrated cement pastes as determined by SANS

    International Nuclear Information System (INIS)

    Sabine, T.; Bertram, W.; Aldridge, L.

    1999-01-01

    Full text: Technologists have known how to make concrete for over 2000 years but despite painstaking research no one has been able to show how and why concrete sets. Part of the problem is that the calcium silicate hydrate (the gel produced by hydrating cement) is amorphous and cannot be characterised by x-ray crystallographic techniques. Small angle neutron scattering on instrument V12a at BENSC was used to characterise the hydration reactions and show the growth of the calcium silicate hydrates during initial hydration and the substantial differences in the rate of growth and structure as different additives are used. SANS spectra were measured as a function of the hydration from three different types of cement paste: 1) Ordinary Portland Cement made with a water to cement ratio of about 0.4; 2) A blend of Ordinary Portland Cement(25%) and Ground Granulated Blast Furnace Slag (75%) with a water to cement ration of about 0.4; 3) A dense paste made from silica fume(24%), Ordinary Portland Cement (76%) at a water to powder ratio of 0.18. The differences in the spectra are interpreted in terms of differences between the microstructure of the pastes

  14. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements

    International Nuclear Information System (INIS)

    Pointeau, I.

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs + , Pb 2+ , Eu 3+ ) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs + is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm -2 ), which accounts for the CSH unsaturation in high [CS + ]. A strong site is also identified. - Pb 2+ immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu 3+ fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu 3+ thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  15. Role of Polycarboxylate-ether superplasticizers on cement hydration kinetics and microstructural development

    Directory of Open Access Journals (Sweden)

    Valentini L.

    2018-01-01

    Full Text Available Polycarboxylate-ether (PCE superplasticizers are a fundamental constituent of modern cementbased materials due to their impact on the rheology of the fresh mix and mechanical performance of the hardened material. The effect of PCEs on cement hydration kinetics has been known since their introduction in the early 1980s. However, detailed knowledge of the role played by PCE macromolecules on the basic mechanisms of cement hydration (dissolution, diffusion, precipitation is still lacking. A better understanding of how such mechanisms are influenced by the addition of PCE is no doubt beneficial to the design of novel superplasticizing admixtures. Here, I report on some recent findings about the role of PCE superplasticizers on cement hydration kinetics and microstructural development. The interaction between PCE and C3S pastes was investigated by an ad-hoc kinetic model based on a combination of generalized forms of the Avrami and BNG (Boundary Nucleation and Growth models. The model is used to fit the rate of C-S-H precipitation measured by in-situ X-ray powder diffraction combined with mass balance calculations. The results show that a switch from heterogeneous to homogeneous C-S-H nucleation occurs in the presence of PCEs and that the C-S-H growth rate decreases proportionally to the amount of PCE used. The predicted switch to homogeneous nucleation is in agreement with experimental results obtained by XRD-enhanced micro-tomography imaging, showing that, in the presence of PCE, C-S-H preferentially forms in the pore space rather than at the surface of clinker particles.

  16. An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Directory of Open Access Journals (Sweden)

    Fossey John S

    2010-03-01

    Full Text Available Abstract Background Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX, a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an ab initio study of the hydration of 2TX, revealing water can form seven hydrated complexes. Results Hydrogen-bond (H-bond interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p and B3LYP/6-311G(d, p levels. Seven 2TX...H2O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs of the O, S, and N atoms and deprotonantion enthalpies (DPEs of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed. Conclusion 2TX can interact with water by five different H-bonding regimes, N-H...O, O-H...N, O-H...O, O-H...S and C-H...O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7-H...O and O-H...O, whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.

  17. Corrosion of low Si-alloyed steels in aqueous solution at 90 deg. C. Inhibitive action of silicates; Corrosion d'aciers faiblement allies au silicium en solution aqueuse a 90 deg. C. Action inhibitrice des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, S

    2002-02-01

    Low-Si alloyed steels, with Si content ranging from 0.25 to 3.2 wt%, as potential candidate materials for high-level nuclear waste disposal containers, have been studied four the point of view of their corrosion behaviour at 90 deg C in an aqueous solution simulating groundwater (0.1 M NaCl borate-buffered solution with a pH of 8.5) both in reducing and in aerated conditions. The influence of silicate addition to the solution is examined so as to represent the silicon of groundwater, coming from the clay dissolution. When no silicate was added to the solution, silicon as an alloying element was proved to degrade in the first moments the steel ability to passivate. For longer immersion times, protective effects developed most efficiently on the steel containing 3.2 wt% silicon both in reducing an in aerating conditions, Infrared spectroscopy, EDSX, XRD and Raman microprobe were applied to characterise the oxide layer composition, which was found to be a mixture of magnetite and maghemite. In the presence of silicate in the solution, clay-like iron silicates appeared in the corrosion layer. Electrochemical tests results show that adding silicate into solution resulted in increasing the steel ability to passivate. In the short term, the inhibiting effect of silicate was confirmed by mass loss tests, but the tendency was inverse in the long term. Silicate iron layers were eventually less protective than the magnetite layers formed in the absence of silicate. (author)

  18. Formation of CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots with high quantum efficiency in silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mengling; Liu, Chao, E-mail: hite@whut.edu.cn; Han, Jianjun; Zhao, Xiujian

    2017-06-15

    CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots (QDs) were precipitated in silicate glasses with high quantum efficiency up to 53%. The QDs were composed by a CdS core with a Cd{sub 1−x}Zn{sub x}S shell of about 1–3 nm in thickness through heat-treatment at 550 °C for 10 h. With the increased heat-treatment temperature, the intensity ratio between the intrinsic emission and the defects emission increased and the Stokes shift decreased from 84 to 4 meV, which was caused by both the increased size and passivated surface defects of the QDs.

  19. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    Science.gov (United States)

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  20. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  1. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    International Nuclear Information System (INIS)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2016-01-01

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  2. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming [State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Na [Green Construction Materials and Circulation Economy Center, Architectural Design and Research Institute of Tsinghua University Co., Ltd., Beijing 100084 (China); Yao, Yuan, E-mail: yuanyaocas@163.com [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States); Sun, Henghu; Feng, Huan [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States)

    2013-11-15

    Highlights: • Al{sup IV} and Al{sup VI} both exist in the hydration products. • Increase of Ca/Si ratio promotes the conversion from [AlO{sub 4}] to [AlO{sub 6}]. • Polymerization degree of [SiO{sub 4}] in the hydration products declines. -- Abstract: In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, {sup 27}Al MAS NMR and {sup 29}Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si + Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al{sup IV} and Al{sup VI}, but mainly in the form of Al{sup VI}. Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO{sub 4}] to [AlO{sub 6}] and inhibits the combination between [AlO{sub 4}] and [SiO{sub 4}] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO{sub 4}] in the hydration products declines.

  3. Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan; Wildenschild, Dorthe

    2017-12-01

    The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydrated portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.

  4. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  5. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  6. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels

    International Nuclear Information System (INIS)

    Hill, J.; Harris, A.W.; Manning, M.; Chambers, A.; Swanton, S.W.

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 deg. C compared to those prepared at 25 deg. C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium

  7. Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H

    KAUST Repository

    Battocchio, Francesco; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf

    2012-01-01

    Low-Q region Rietveld analyses were performed on C-S-H synchrotron XRD patterns, using the software MAUD. Two different crystal structures of tobermorite 11 Å were used as a starting model: monoclinic ordered Merlino tobermorite, and orthorhombic

  8. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  9. Crystallization and Characterization of a New Magnesium Sulfate Hydrate MgSO4.11H2O

    NARCIS (Netherlands)

    Genceli, F.E.; Lutz, M.; Spek, A.L.; Witkamp, G.J.

    2007-01-01

    The MgSO4 crystal hydrate formed below approximately 0 °C was proven to be the undecahydrate, MgSO4 • 11H2O (meridianiite) instead of the reported dodecahydrate MgSO4 • 12H2O. The crystals were grown from solution by eutectic freeze and by cooling crystallization. The crystal structure analysis and

  10. The Effect of Green Inhibitor on strength and water permeability of ...

    African Journals Online (AJOL)

    ... present in the concrete evident from inductively coupled plasma-mass spectrometry (ICPMS) result. KOH is adequate for passivation and reduction of permeability, which serve as a chemical water barriers or hydrophobic agents. Keywords: Concrete; Calcium-Silicate-Hydrate (C-S-H); Compressive strength; Permeability; ...

  11. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  12. Anti-inflammatory drugs. X. Hydrated pyrrolidinium [2-[(2,6-dichlorophenyl)amino]phenyl]acetate(HP.D.H2O).

    Science.gov (United States)

    Castellari, C; Comelli, F; Ottani, S

    2001-10-01

    In the solid-state structure of the title compound, C(4)H(10)N(+).C(14)H(10)Cl(2)NO(2)(-).H(2)O, the asymmetric unit contains one cation, one anion and a water molecule. There is a network of hydrogen bonds which is similar to that found in the hydrated diethylammonium diclofenac salt. A comparison is made of the molecular conformation of the anions in the two related structures.

  13. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  14. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  15. Obtención de silicatos de calcio utilizando el método de precipitación controlada

    Directory of Open Access Journals (Sweden)

    Rodríguez-Páez, J. E.

    2005-12-01

    Full Text Available Calcium silicate hydrates are compounds of SiO2 – CaO – H2O system. These materials are used to make lime-sand bricks concretes, or “cellular concretes”, lime-flint brices and as fillers in rubber, paint and plastic products industries, among others. Undoubtedly, the tobermoritas is the most interesting group given its important role in concrete hydration: hydrated calcium silicate (CS- H is the main concrete hydration product and its primary bounding phase. The hydrothermal method is the most frequently used in the synthesis of these materials. This work shows the synthesis of hydrated calcium silicates through the controlled precipitation method using silicon dioxide SiO2, as raw material obtained from rice husk. The physicochemical phenomena that occur during the calcium silicates synthesis process were analized. The crystalline phases of the final product when exposed to thermic treatments were studied as well using x-ray diffraction and Infrared spectroscopy.

    Los silicatos de calcio hidratados son compuestos del sistema SiO2-CaO-H2O. Estos materiales se utilizan para fabricar ladrillos de cal-arena, hormigones aireados (espumados u “hormigón celular”, ladrillos de cal-flint, como material de relleno en las industrias de productos de caucho, pinturas y plásticos, entre otros posibles usos. Indudablemente el grupo de las tobermoritas es el más interesante debido a su papel importante en la hidratación del cemento: los silicatos tricálcico (3CaO. SiO2-C3S y dicálcico (2CaO, SiO2-C2S son los principales constituyentes del cemento Pórtland. En este trabajo se muestra la obtención de compuestos de silicato de calcio a través del método de precipitación controlada usando como fuente de silicio el dióxido de silicio, SiO2 obtenido de la cascarilla de arroz. Se analizan los fenómenos fisicoquímicos que ocurren durante el proceso de síntesis y se estudia la evolución de las fases cristalinas del producto

  16. Compressive strength and hydration of wastepaper sludge ash-ground granulated blastfurnace slag blended pastes

    International Nuclear Information System (INIS)

    Bai, J.; Chaipanich, A.; Kinuthia, J.M.; O'Farrell, M.; Sabir, B.B.; Wild, S.; Lewis, M.H.

    2003-01-01

    Compressive strength and hydration characteristics of wastepaper sludge ash-ground granulated blastfurnace slag (WSA-GGBS) blended pastes were investigated at a water to binder (w/b) ratio of 0.5. The strength results are compared to those of normal Portland cement (PC) paste and relative strengths are reported. Early relative strengths (1 day) of WSA-GGBS pastes were very low but a marked gain in relative strength occurred between 1 and 7 days and this increased further after 28 and 90 days. For the 50% WSA-50% GGBS blended paste, the strength achieved at 90 days was nearly 50% of that of the PC control paste. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric (TG) analysis were carried out to identify the mineral components in the WSA and the hydration products of WSA and WSA-GGBS pastes. The principal crystalline components in the WSA are gehlenite, calcium oxide, bredigite and α'-C 2 S (stabilised with Al and Mg) together with small amounts of anorthite and calcium carbonate and traces of calcium hydroxide and quartz. The α'-C 2 S and bredigite, which phase separate from liquid phase that forms a glass on cooling, are difficult to distinguish by XRD. The hydration products identified in WSA paste are CH, C 4 AH 13 , C 3 A.0.5CC-bar.0.5CH.H 11.5 and C-S-H gel plus possible evidence of small amounts of C 2 ASH 8 and C 3 A.3CS-bar.H 32 . Based upon the findings, a hydration mechanism is presented, and a model is proposed to explain the observed strength development

  17. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  18. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  19. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  20. Solubility data for cement hydrate phases (25oC)

    International Nuclear Information System (INIS)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  1. Solvation numbers and hydration constant for thorium(IV) in ethanol-water medium

    International Nuclear Information System (INIS)

    Sedaira, H.; Idriss, K.A.; Hashem, E.Y.

    1996-01-01

    The solvation number and hydration constant of Th 4+ in ethanol-water medium were determined at 25 degrees C using UV-spectral and electrochemical measurements. A solvate formation equilibrium is demonstrated and characterized. Three molecules of ethanol (S) can bond to the metal cation with strengths comparable to that for H 2 O to form ThS 3 (H 2 O) 3 4+ . Formation of thorium monochelate with lawsone (2-hydroxy-1.4-naphthoquinone) eliminates bonding with alcohol molecules. The dissociation constant of the chelating agent s K a and the formation contant of the monochelated metal ion s K f * that are essentially independent of the solution composition are evaluated. Hydration titrations involving thorium-lawsone monochlate are performed and the data obtained from the changes of pH with solvent composition are analyzed. The solution independent constant, s K f * for thorium-lawsone complex formation in mixed aqueous ethanol is given by log x K f * =vpK a + log s K h - log [LH] - vpH + 3 log v where vpK a is the dissociation constant of the chelating agent LH in the solvent system of v volume fraction of water and s K h is the solution-independent hydration constant of thorium (IV) in the solvent system. Log-values for the constants s K h , s K f * and s K z * are found to be 7.8 ±0.02, 11.38±0.04 and -0.753, respectively

  2. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  3. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  4. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A; Green, T H [Macquarie Univ., North Ryde, NSW (Australia)

    1994-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  5. Effect of Graphene Oxide (GO on the Morphology and Microstructure of Cement Hydration Products

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2017-12-01

    Full Text Available In this study, the effects of graphene oxide (GO on the microstructure of cement mortars were studied using scanning electron microscopy (SEM, thermogravimetric (TG, and X-ray diffraction (XRD techniques. Cement mortar samples with different proportions of GO (0.02, 0.04, 0.06, and 0.08 wt % based on the weight of cement were prepared. The test results showed that GO affected the crystallization of cement hydration products, C–S–H (calcium silicate hydrate is the main hydrate product and CH (calcium hydroxide. The morphology of hydration products changed with the increase of GO content. Furthermore, the results of XRD analyses showed that the diffraction peak intensity and the crystal grain size of CH (001, (100, (101, and (102 for GO samples increased considerably compared with the control sample. Based on the results, it can be understood that GO can modify the crystal surface of CH, leading to the formation of larger crystals.

  6. Trapped electron spectra in hydrates of sodium, potassium and tetraalkylammonium hydroxides of varying H2O content

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Grodkowski, J.; Bobrowski, K.

    1980-01-01

    Transient spectra of e - sub(t) in hydrates at room temperature obtained by pulse radiolysis with Cerenkov L.S.M. are presented. The decrease in number of H 2 O molecules n, in KOH.nH 2 O and NaOH.nH 2 O is accompanied by a blue shift of the absorption maximum. The same tendency is observed in concentrated solutions. The shifts in tetraalkylammonium hydroxides are not as extended as in KOH and NaOH systems, because TAAH's coordinate more H 2 O molecules and the preparation of solution of higher concentration is not possible. Freezing of hydrates does not change the e - sub(t) spectrum considerably. The concept of the trap containing one molecule of water and one electron is discussed in the general context of the phenomena. (author)

  7. A new molybdenum trioxide hydrate MoO3.1/3H2O and a new monoclinic form of MoO3

    International Nuclear Information System (INIS)

    Harb, F.; Gerand, B.; Nowogrocki, G.; Figlarz, M.

    1986-01-01

    A new hydrate of molybdenum trioxide MoO 3 .1/3H 2 O has been obtained by hydrothermal treatment at 110 0 C of either aqueous suspensions of MoO 3 .2H 2 O or aqueous molybdic acid solutions. The hydrate crystallizes in the orthorhombic system, lattice parameters are given; a structural model is proposed by comparison with the isostructural WO 3 .1/3H 2 O phase. The dehydration of MoO 3 .1/3H 2 O leads to a new anhydrous molybdenum trioxide, monoclinic, the structure of which is of ReO 3 type [fr

  8. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  9. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  10. Effects of substituting D2O for H2O on SANS measurements of hydrating cement

    International Nuclear Information System (INIS)

    Sabine, T.M.; Prior, M.J.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) measurements of cement have been found useful in the investigation of the shape and growth of particles formed during hydration. Calorimetric measurements of hydrating cement samples have shown that the substitution of D 2 O for H 2 O has the effect of slowing the hydration process. In order to throw some light on this phenomenon, we have measured SANS profiles from cement samples hydrating in H 2 O and D 2 O. This involved obtaining SANS profiles at half-hourly intervals during the initial stage of hydration. The only instruments capable of this at present are located at the Hahn-Meitner Institute in Berlin and at the Nuclear Physics Institute at Rez near Prague. Initial experiments carried out on the V12a UltraSANS diffractometer at The Hahn-Meitner Institute were only partially successful owing to excessive multiple scattering in the D 2 O samples. Subsequent measurements were therefore carried out on the similar instrument at Rez near Prague which operates at a shorter neutron wavelength. Results from these measurements show profound differences in the evolution of cements hydrating in D 2 O and those hydrating in H 2 O

  11. Relation between reactivity and electronic structure for α'L-, β- and γ-dicalcium silicate: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qianqian, E-mail: qqwangnj@gmail.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Li, Feng [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Shen, Xiaodong, E-mail: xdshen@njut.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Shi, Wujun [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093 (China); Li, Xuerun; Guo, Yanhua [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Xiong, Shijie [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093 (China); Zhu, Qing [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-03-01

    The effect of the electronic structures of α'L-, β-, and γ-dicalcium silicate (α'L-, β- and γ-C₂S, C = CaO, S = SiO₂) on hydration reactivity have been investigated by first-principles calculations. Active O atoms with larger charge densities are found in α'L- and β-C₂S, while they are absent in γ-C₂S. The local density of states of valence band maximum in α'L- and β-C₂S is highly localized around active O atoms, whereas that in γ-C₂S is homogeneously dispersed. For the active O-2p orbital in α'L- and β-C₂S, the highest orbital energy in the partial density of states is about 0.31 eV higher than that of the inactive O in γ-C₂S. These differences make the active O atoms of α'L- and β-C₂S more susceptible to electrophilic attack and result in higher hydration reactivity for α'L- and β-C₂S.

  12. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydrationH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  13. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    Science.gov (United States)

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  14. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Chrestensen, Inge Byg; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...... hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side...... chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose...

  15. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2012-01-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  16. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2012-02-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  17. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    Science.gov (United States)

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  18. Changes in structure and preferential cage occupancy of ethane hydrate and ethane-methane mixed gas hydrate under high pressure

    International Nuclear Information System (INIS)

    Hirai, H; Takahara, N; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    Structural changes and preferential cage occupancies were examined for ethane hydrate and ethane-methane mixed gas hydrates with five compositions in a pressure range of 0.2 to 2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed the following structural changes. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions, where sII and sH appeared. Above 2.1 GPa ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it was thought that ethane molecules were contained only in the large cage.

  19. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    Science.gov (United States)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  20. Crystal structure of ethylenedioxytetrathiafulvalene-4,5-bis(thiolbenzoic acid 0.25-hydrate

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2017-09-01

    Full Text Available In the title compound (systematic name: 4,4′-{[2-(5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dioxin-2-ylidene-1,3-dithiole-4,5-diyl]bis(sulfanediyl}dibenzoic acid 0.25-hydrate, C22H14O6S6·0.25H2O, the tetrathiafulvalene (TTF core adopts a boat conformation, where the central S2C=CS2 plane makes dihedral angles of 31.34 (4 and 26.83 (6°, respectively, with the peripheral S2C=CS2 and S2C2O2 planes. In the crystal, the benzoic acid molecules are linked via O—H...O hydrogen bonds, forming inversion dimers with R22(8 motifs. The dimers are linked through weak C—H...O hydrogen bonds into a chain structure along [-101]. The chains stack along the a axis through S...S and S...C short contacts, forming layers parallel to the ac plane.

  1. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  2. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    and the four Margules parameters (W H1 W H2 , W S1 and W S2 ) in the other hand, with the ionic potential of the interlayer cation are observed for alkaline and alkali-earth cations. Validation of standard state thermodynamic properties of hydration of end members has been done in two fields: - by comparing behaviour of hydration during exchange between two any end-members with experimental isotherms of Na/Ca Wyoming montmorillonite; - by plotting the dehydration of the four Wyoming Montmorillonite with temperature, showing a full dehydration in the temperature range 160-190 deg. C in the order 160 deg. < K ≅ Na< Ca< Mg< 190 deg. C. Then, the acquisition of standard state thermodynamic properties of hydration and the number of moles of interlayer water are then fully available for a given temperature and relative humidity and would imply to solve many questions like: the behavior of exchange between two cations and the number of moles of water transferred during exchange for a given temperature, the selectivity for a given relative humidity. However, from a limited number of measurements, it is possible to extend the results to different compositions, by using predictive models, to provide theoretical thermodynamic values of formation of some hydrated smectites and calibrated with measured data from both the literature and acquired within the framework of this project. (authors)

  3. Influence of Hydration on Proton Transfer in the Guanine-Cytosine Radical Cation (G•+-C) Base Pair: A Density Functional Theory Study

    Science.gov (United States)

    Kumar, Anil; Sevilla, Michael D.

    2009-01-01

    On one-electron oxidation all molecules including DNA bases become more acidic in nature. For the GC base pair experiments suggest that a facile proton transfer takes place in the G•+-C base pair from N1 of G•+ to N3 of cytosine. This intra-base pair proton transfer reaction has been extensively considered using theoretical methods for the gas phase and it is predicted that the proton transfer is slightly unfavorable in disagreement with experiment. In the present study, we consider the effect of the first hydration layer on the proton transfer reaction in G•+-C by the use of density functional theory (DFT), B3LYP/6-31+G** calculations of the G•+-C base pair in the presence of 6 and 11 water molecules. Under the influence of hydration of 11 waters, a facile proton transfer from N1 of G•+ to N3 of C is predicted. The zero point energy (ZPE) corrected forward and backward energy barriers, for the proton transfer from N1 of G•+ to N3 of C, was found to be 1.4 and 2.6 kcal/mol, respectively. The proton transferred G•-(H+)C + 11H2O was found to be 1.2 kcal/mol more stable than G•+-C + 11H2O in agreement with experiment. The present calculation demonstrates that the inclusion of the first hydration shell around G•+-C base pair has an important effect on the internal proton transfer energetics. PMID:19485319

  4. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.

    Science.gov (United States)

    Fiocco, L; Li, S; Stevens, M M; Bernardo, E; Jones, J R

    2017-03-01

    Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to

  5. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  6. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  7. Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair.

    Science.gov (United States)

    Ding, Zhengwen; Li, Hong; Wei, Jie; Li, Ruijiang; Yan, Yonggang

    2018-06-01

    Considering that the phospholipids and glycerophosphoric acid are the basic materials throughout the metabolism of the whole life period and the bone is composed of organic polymer collagen and inorganic mineral apatite, a novel self-setting composite of magnesium glycerophosphate (MG) and di-calcium silicate(C2S)/tri-calcium silicate(C3S) was developed as bio-cement for bone repair, reconstruction and regeneration. The composite was prepared by mixing the MG, C2S and C3S with the certain ratios, and using the deionized water and phosphoric acid solution as mixed liquid. The combination and formation of the composites was characterized by FTIR, XPS and XRD. The physicochemical properties were studied by setting time, compressive strength, pH value, weight loss in the PBS and surface change by SEM-EDX. The biocompatibility was evaluated by cell culture in the leaching solution of the composites. The preliminary results showed that when di- and tri-calcium silicate contact with water, there are lots of Ca(OH) 2 generated making the pH value of solution is higher than 9 which is helpful for the formation of hydroxyapatite(HA) that is the main bone material. The new organic-inorganic self-setting bio-cements showed initial setting time is ranged from 20 min to 85 min and the compressive strength reached 30 MPa on the 7th days, suitable as the bone fillers. The weight loss was 20% in the first week, and 25% in the 4th week. Meanwhile, the new HA precipitated on the composite surface during the incubation in the SBF showed bioactivity. The cell cultured in the leaching liquid of the composite showed high proliferation inferring the new bio-cement has good biocompatibility to the cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Computational Recreation of Carbon Dioxide Hydrates at Habitable Planetary Conditions

    Science.gov (United States)

    Recio, J. M.; Izquierdo-Ruiz, F.; Prieto-Ballesteros, O.

    2017-12-01

    Gas clathrate hydrates are proposed as constituents of the icy moons of the giant planets in the Solar System [1]. Carbon dioxide has been detected on the surface of the moons of Jupiter, supposedly originated by internal degasification. In Ganymede, an aqueous ocean is proposed to exist under a thick ice crust in coexistence with several forms of ice, with pressure reaching up to 1.3 GPa [2]. Due to the limited available data on these systems under these conditions, we propose a combination of computational and experimental studies to describe microscopically and macroscopically the structural and chemical behavior of CO2@H2O polymorphs. This will allow us to understand how their presence affects the geophysical structure and activity and their impact on the habitability of the icy moon. A transition from the sI cubic structure to a high pressure phase at around 0.7 GPa has been found for CO2@H2O. In spite of different attempts to characterize the new structure, a definite answer has not been provided yet. A MH-III Filled Ice Structure type was proposed after neutron diffraction experiments in contrast with an alternative structure similar to the hexagonal C0 type for H2 hydrates [3]. It has an estimated hydration level ratio up to 2H2O:1CO2 and 6 water molecules per unit cell. In the figure below, our optimized unit cell based on this hexagonal C0 structure is displayed. Ab initio calculations using the XDM approximation to include van der Waals effects are performed in our search for the pressure evolution of the equilibrium geometries of the C0-CO2@H2O phase and those of a close related structure to this one called Ih-C0, with 8 water molecules per unit cell. We obtain occupation energies at different hydration ratios, densities, equations of state parameters, and stability energies with respect to decomposition. Raman and IR frequencies are also computed in the 0-2 GPa range. High pressure experiments are also being done in a newly designed chamber able to

  9. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  10. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    OpenAIRE

    Jin-Rong Zhong; Xin-Yang Zeng; Feng-He Zhou; Qi-Dong Ran; Chang-Yu Sun; Rui-Qin Zhong; Lan-Ying Yang; Guang-Jin Chen; Carolyn A. Koh

    2016-01-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15?K), as determined by the stable C-H region Raman peaks and A L/A S value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to sm...

  11. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  12. Retrogressive hydration of calc-silicate xenoliths in the eastern Bushveld complex: evidence for late magmatic fluid movement

    Science.gov (United States)

    Wallmach, T.; Hatton, C. J.; De Waal, S. A.; Gibson, R. L.

    1995-11-01

    Two calc-silicate xenoliths in the Upper Zone of the Bushveld complex contain mineral assemblages which permit delineation of the metamorphic path followed after incorporation of the xenoliths into the magma. Peak metamorphism in these xenoliths occurred at T=1100-1200°C and P <1.5 kbar. Retrograde metamorphism, probably coinciding with the late magmatic stage, is characterized by the breakdown of akermanite to monticellite and wollastonite at 700°C and the growth of vesuvianite from melilite. The latter implies that water-rich fluids (X CO 2 <0.2) were present and probably circulating through the cooling magmatic pile. In contrast, calc-silicate xenoliths within the lower zones of the Bushveld complex, namely in the Marginal and Critical Zones, also contain melilite, monticellite and additional periclase with only rare development of vesuvianite. This suggests that the Upper Zone cumulate pile was much 'wetter' in the late-magmatic stage than the earlier-formed Critical and Marginal Zone cumulate piles.

  13. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  14. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  15. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    Science.gov (United States)

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  16. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  18. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements

  19. Atmospheric chemistry of perfluorinated aldehyde hydrates (n-C(x)F(2x+1)CH(OH)2, x = 1, 3, 4)

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Toft, A.; Nielsen, O.J.

    2006-01-01

    . Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source...

  20. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum

    Directory of Open Access Journals (Sweden)

    Bazaldúa-Medellín, M. E.

    2015-03-01

    Full Text Available The hydration, strength development and composition of hydration products of supersulphated cements were characterized from the first 48 hours up to 360 days. Two compositions of 80% Blast furnace slag, 10–15% Fluorgypsum and 10–5% Portland cement were cured in dry and wet conditions. The main hydration products were ettringite and C-S-H since the first hours and up to 360 days as evidenced by X-ray diffraction, thermal analysis and electron microscopy. The strength was favored by higher fluorgypsum contents and lower Portland cement contents. These cements generated heats of hydration of 40–57 KJ/Kg after 28 hours, which are lower than portland cement.Se realizó la caracterización de la hidratación, desarrollo de resistencia y la composición de los productos de hidratación de los cementos supersulfatados durante las primeras 48 horas y hasta 360 días. Se estudiaron dos composiciones de 80% de Escoria de alto horno, 10–15% de Fluoryeso y 10–5% de Cemento portland, se curaron en condiciones secas y húmedas. Los principales productos de hidratación fueron etringita y C-S-H desde las primeras horas y hasta 360 días, como se evidenció por difracción de rayos X, análisis térmico y microscopía electrónica de barrido. La resistencia se favoreció con mayor contenido de fluoryeso y bajos contenidos de cemento portland. Estos cementos generaron calores de hidratación de 40–57 KJ/Kg después de 28 horas, los cuales resultan más bajos que los generados por el cemento portland.

  1. Stability conditions and guest distribution of the methane + ethane + propane hydrates or semiclathrates in the presence of tetrahydrofuran or quaternary ammonium salts

    International Nuclear Information System (INIS)

    Lee, Seungmin; Lee, Youngjun; Park, Sungwon; Kim, Yunju; Cha, Inuk; Seo, Yongwon

    2013-01-01

    Highlights: • We examined the stability conditions and guest distributions of natural gas hydrates. • THF, TBAB, and TBAF could remarkably stabilize the hydrate dissociation conditions. • Preferential occupation of CH 4 molecules was observed at the stoichiometric concentrations. -- Abstract: In this study, the stability conditions and guest distributions of methane (CH 4 ) + ethane (C 2 H 6 ) + propane (C 3 H 8 ) hydrates or semiclathrates are examined in the presence of tetrahydrofuran (THF) and quaternary ammonium salts such as tetra-n-butylammonium bromide (TBAB) and tetra-n-butylammonium fluoride (TBAF) through thermodynamic and spectroscopic analyses. The three-phase equilibria of hydrate or semiclathrate (H), liquid water (L W ), and vapor (V) for the quinary CH 4 + C 2 H 6 + C 3 H 8 + THF + water, CH 4 + C 2 H 6 + C 3 H 8 + TBAB + water, and CH 4 + C 2 H 6 + C 3 H 8 + TBAF + water mixtures with various concentrations were experimentally measured in order to determine the hydrate or semiclathrate stability conditions. The experimental results demonstrated that all thermodynamic promoters such as THF, TBAB, and TBAF used in this study could remarkably stabilize the hydrate dissociation conditions even though the degree of stabilization was dependent on the type of promoters and on the concentrations of each promoter used. From the 13 C NMR analysis, preferential occupation of CH 4 molecules in the hydrate or semiclathrate lattices was observed at the stoichiometric concentrations of each hydrate or semiclathrate structure. However, at the THF mole fraction lower than 0.056, the large cages of structure II were shared by CH 4 , C 2 H 6 , C 3 H 8 , and THF molecules, whereas the small cages were occupied by only CH 4 molecules. The results given in this study are very useful in understanding the thermodynamic stability, structural characteristics, and guest distribution of the hydrates or semiclathrates with multi-components in the presence of

  2. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    Science.gov (United States)

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  3. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  4. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2012-01-01

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al 2 O 3 contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 ·5H 2 O. The formation of C(-A)–S–H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al 2 O 3 content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of strätlingite. Increasing Al 2 O 3 content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al 2 O 3 content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  5. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2011-01-01

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 .5H 2 O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  6. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  7. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. UTILIZATION OF RICE HUSK AS RAW MATERIAL IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2011-12-01

    Full Text Available The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2 was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB, 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.

  9. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  10. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  11. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    International Nuclear Information System (INIS)

    Smith, David E.

    2000-01-01

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing

  12. Thermodynamic and structural characteristics of cement minerals at elevated temperature

    International Nuclear Information System (INIS)

    Bruton, C.J.; Meike, A.; Viani, B.E.; Martin, S.; Phillips, B.L.

    1994-05-01

    We have instituted an experimental and including program designed to elucidate the structural and thermodynamic response of cement minerals to elevated temperature. Components of the program involve: (a) synthesis of hydrated Ca-silicates; (b) structural analysis of cement phases induced by heating and dehydration/rehydration; (c) mechanistic and thermodynamic descriptions of the hydration/dehydration behavior of hydrated Ca-silicates as a function of temperature, pressure and relative humidity; (d) study of naturally occurring hydrated Ca-silicates; and (e) measurements of thermodynamic data for hydrated Ca-silicates

  13. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    Science.gov (United States)

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  14. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  15. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  16. (S,S,S,S-Nebivolol hydrochloride hemihydrate

    Directory of Open Access Journals (Sweden)

    Yoann Rousselin

    2012-12-01

    Full Text Available The asymmetric unit of the title hydrated salt, C22H26F2NO4+·Cl−·0.5H2O, consists of an (S,S,S,S-nebivolol {nebivol = bis[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl-2-hydroxyethyl]ammonium} cation, a chloride anion and a half-occupancy water molecule. The dihedral angle between the mean planes of the benzene rings is 50.34 (12°. The pyran rings adopt half-chair conformations. The crystal packing features O—H...O hydrogen bonds and weak N—H...Cl, O—H...Cl, and O—H...Cl interactions, producing layers along (010.

  17. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  18. Multiple C-H Bond Activations and Ring-Opening C-S Bond Cleavage of Thiophene by Dirhenium Carbonyl Complexes.

    Science.gov (United States)

    Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D

    2018-06-14

    The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 3 (μ 3 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.

  19. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  20. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  1. An in situ synchrotron energy-dispersive diffraction study of the hydration of oilwell cement systems under high temperature/autoclave conditions up to 130 deg. C

    International Nuclear Information System (INIS)

    Colston, Sally L.; Barnes, Paul; Jupe, Andrew C.; Jacques, Simon D.M.; Hall, Christopher; Livesey, Paul; Dransfield, John; Meller, Nicola; Maitland, Geoffrey C.

    2005-01-01

    The technique of synchrotron energy dispersive diffraction has been developed for in situ studies of cement hydration under autoclave conditions. This has been applied to oilwell cements hydrating at typical oilwell temperatures up to 130 deg. C. The results show clearly the detailed interplay between 11 detectable phases, from which a phase transformation scheme has been derived; this illustrates the progression of hydration up to 130 deg. C for two extreme cases, with and without conservation of water content and autoclave pressure. The monosulphate hydrate phases are found to exhibit different stability bounds, with a surprising sequence of the 14-water, 10-water then 12-water monosulphate as temperature/time increases; the latter form is particularly associated with conditions of water/pressure loss. The effect of retarders on C 3 S dissolution and CH formation is negligible above 70 deg. C, whereas the effect on the calcium sulphoaluminate hydrates is more complex, and possible reasons for this are discussed

  2. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  3. Radiochemical investigations to the complex formation of uranium (VI) with silicic acid

    International Nuclear Information System (INIS)

    Hrnecek, E.

    1997-12-01

    The complexation of tracer amounts of UO 2 2+ by silicic acid was investigated by an extraction method using 2,5. 10 -3 M 1-(2-thenoyl)-3,3,3-trifloroacetone (IMA) in benzene as extractant at 25 degree C. The tracer used in the experiments was uranium-232, which has been separated from its daughter nuclides by ion exchange from 10 M HCl on Dowex 1x2. The ionic strength in the aqueous phase for the extractions was kept constant at 0,2 M (Na, H)ClO 4 and the pH was varied between pH 2,5 and pH 4,5. For the determination of the stability constants, a silicic acid concentration of 0,01 M, 0,03 M and 0,067 M in the (Na, H)ClO 4 solution was used. The time- and pH- dependence of the polymerization of these silicic acid solutions was determined by kinetical investigations with an ammoniumheptamolybdate-reagent. The uranium concentration in the aqueous and organic phases was determined by liquid scintillation counting using α/β -discrimination. The stability constants determined were log Q1, = -2,20 for the reaction UO 2 2+ Si(OH) 4 = UO 2 OSi(OH) 3 + + H + and Q 2 = -5,87 for the reaction of the polymeric silicate UO 2 2+ (-SiOH) j (-SiOH) j-2 (SiO) 2 UO 2 +2 H + . The influence of silicate on the speciation calculations for uranium in a model natural water is also discussed. (author)

  4. Isotopic effect in the hydration reactions of 2, 2, 2 - trichloro - 1 - arylethanones

    International Nuclear Information System (INIS)

    Marconi, D.O.M.; Zucco, C.; Tanaka, A.S.; Nome, F.

    1985-01-01

    The equilibrium constants and rate constants for hydration and de-hydration of 2, 2, 2 - trichloro - 1 - arylethanones in tetrahydrofurane (THF) / H 2 O - D 2 O e THF/H 2 O using the proton inventory technique involved in the transition state are studied. (M.J.C.) [pt

  5. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  6. A Study on the quantification of hydration and the strength development mechanism of cementitious materials including amorphous phases by using XRD/Rietveld method

    International Nuclear Information System (INIS)

    Yamada, Kazuo; Hoshino, Seiichi; Hirao, Hiroshi; Yamashita, Hiroki

    2008-01-01

    X-ray diffraction (XRD)/Rietveld method was applied to measure the phase composition of cement. The quantative analysis concerning the progress of hydration was accomplished in an error of about the maximum 2-3% in spite of including amorphous materials such as blast furnace slag, fly ash, silica fume and C-S-H. The influence of the compressive strength on the lime stone fine powder mixture material was studied from the hydration analysis by Rietveld method. The two stages were observed in the strength development mechanism of cement; the hydration promotion of C 3 S in the early stage and the filling of cavities by carbonate hydrate for the longer term. It is useful to use various mixture materials for the formation of the resource recycling society and the durability improvement of concrete. (author)

  7. HFE gene C282Y, H63D and S65C mutations frequency in the Transylvania region, Romania.

    Science.gov (United States)

    Trifa, Adrian P; Popp, Radu A; Militaru, Mariela S; Farcaş, Marius F; Crişan, Tania O; Gana, Ionuţ; Cucuianu, Andrei; Pop, Ioan V

    2012-06-01

    HFE-associated haemochromatosis is one of the most frequent autosomal recessive disorders in the Caucasian population. Although most of the cases are homozygous individuals for the C282Y mutation, another two mutations, H63D and S65C, have been reported to be associated with milder forms of the disease. This study was a first attempt to evaluate the distribution of these HFE gene mutations in the Transylvania region. Two-hundred and twenty-five healthy, unrelated volunteers originating from the Transylvania region, Romania, were screened for the HFE gene C282Y, H63D and S65C mutations, using molecular genetics assays (Polymerase Chain Reaction-Restriction Fragments Length Polymorphism). For the C282Y mutation, 7 heterozygotes (3.1%) were found, but no homozygous individual. In the case of the H63D mutation, 40 heterozygotes (17.8%) and 4 homozygotes (1.75%) for the mutant allele were evidenced. We found a compound heterozygous genotype (C282Y/H63D) in one individual (0.45%). Thus, the allele frequencies of the C282Y and H63D were 1.75% and 10.9%, respectively. Three individuals (1.3%) were found to harbour the S65C mutation in a heterozygous state, but none in a homozygous state: the allele frequency of the mutant allele was 0.75%. The distribution of the HFE gene C282Y, H63D and S65C mutations found in our group matches the tendencies observed in other European countries: a decreasing gradient from Northern to Southern Europe for the C282Y mutation; high frequency for the H63D mutation, and low frequency for the S65C mutation in most of the countries.

  8. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  9. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata

    2011-01-01

    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...... little effect on HGly-GlyEHEGly--Gly. This contrasts with our earlier studies on 1P–S–H2O in that Na+, F− and Cl− are found as hydration centers from the induced changes on HIP-IPEHEIP--IP in the presence of S, while Br−, I−, and SCN− are found to act as hydrophiles. In comparison with the Hofmeister...... ranking of these ions, the kosmotropes are hydration centers and the more kosmotropic the higher the hydration number, consistent with the original Hofmeister’s concept of “H2O withdrawing power.” Br−, I− and SCN−, on the other hand, acted as hydrophiles and the more chaotropic they are the more...

  10. Failure of cement hydrates: freeze-thaw and fracture

    Science.gov (United States)

    Ioannidou, Katerina; Del Gado, Emanuela; Ulm, Franz-Josef; Pellenq, Roland

    Mechanical and viscoelastic behavior of concrete crucially depends on cement hydrates, the ``glue'' of cement. Even more than the atomistic structure, the mesoscale amorphous texture of cement hydrates over hundreds of nanometers plays a crucial role for material properties. We use simulations that combine information of the nano-scale building units of cement hydrates and on their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles.Our mesoscale model was able to reconcile different experimental results ranging from small-angle neutron scattering, SEM, adsorption/desorption of N2, and water to nanoindentation and gain the new fundamental insights into the microscopic origin of the properties measured. Our results suggest that heterogeneities developed during the early stages of hydration persist in the structure of C-S-H, impacting the rheological and mechanical performance of the hardened cement paste. In this talk I discuss recent investigation on failure mechanism at the mesoscale of hardened cement paste such as freeze-thaw and fracture. Using correlations between local volume fractions and local stress we provide a link between structural and mechanical heterogeneities during the failure mechanisms.

  11. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  12. Hydration of Concrete: The First Steps.

    Science.gov (United States)

    Thissen, Peter; Natzeck, Carsten; Giraudo, Nicolas; Weidler, Peter; Wöll, Christof

    2018-04-12

    Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H 2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  14. Genesis of carbonate-siliceous-pelitic type uranium deposits in Baoyuan area

    International Nuclear Information System (INIS)

    Guo Baochi; Zhang Daishi; Li Shengxiang; Zhu Jiechen

    1995-01-01

    Based on systematic studies of the regional geology, the fundamental geological characteristics of uranium mineralizations, and according to the researches of uranium source, the REE characteristics, the H,O,C,S isotope compositions, as well as the chronology of uranium metallogenesis of the uranium deposits, the authors consider that the multistage accumulative metallogenesis (especially the hydrothermal superimposed and reworking metallogenesis) is the universal and important uranium metallogenesis in the formation of carbonate-siliceous-pelitic type uranium deposits in the area

  15. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  16. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert, E-mail: cernyr@fsv.cvut.cz

    2016-06-10

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  17. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    International Nuclear Information System (INIS)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert

    2016-01-01

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  18. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  19. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  20. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    International Nuclear Information System (INIS)

    Pena, P.; Rivas Mercury, J.M.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2008-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) y (OH) 12-4y -Al(OH) 3 mixtures, prepared by hydration of Ca 3 Al 2 O 6 (C 3 A), Ca 12 Al 14 O 33 (C 12 A 7 ) and CaAl 2 O 4 (CA) phases in the presence of silica fume, have been characterized by 29 Si and 27 Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca 3 Al 2 (OH) 12 and Al(OH) 3 phases were detected. From the quantitative analysis of 27 Al NMR signals, the Al(OH) 3 /Ca 3 Al 2 (OH) 12 ratio was deduced. The incorporation of Si into the katoite structure, Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x , was followed by 27 Al and 29 Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27 Al MAS-NMR components associated with Al(OH) 6 and Al(OSi)(OH) 5 environments. The 29 Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29 Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl 2 O 4 -microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca 3 Al 2.0±0.2 (SiO 4 ) 0.9±0.2 (OH) 1.8 crystal surrounded by unreacted amorphous silica spheres

  1. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  2. Molecular structure, dynamics and hydration studies of soybean storage proteins and model systems by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kakalis, L.T.

    1989-01-01

    The potential of high-resolution 13 C NMR for the characterization of soybean storage proteins was explored. The spectra of a commercial soy protein isolate as well as those of alkali-denatured 7S and 11S soybean globulins were well resolved and tentatively assigned. Relaxation measurements indicated fast motion for several side chains and the protein backbone. Protein fractions (11S and 7S) were also investigated at various states of molecular association. The large size of the multisubunit soybean storage proteins affected adversely both the resolution and the sensitivity of their 13 C NMR spectra. A comparison of 17 O and 2 H NMR relaxation rates of water in solutions of lysozyme (a model system) as a function of concentration, pH and magnetic field suggested that only 17 O monitors directly the hydration of lysozyme. Analysis of 17 O NMR lysozyme hydration data in terms of a two-state, fast-exchange, anisotropic model resulted in hydration parameters which are consistent with the protein's physico-chemical properties. The same model was applied to the calculation of the amount and mobility of bound water in soy protein dispersions by means of 17 O NMR relaxation measurements as a function of protein concentration. The protein concentration dependences of 1 H transverse NMR relaxation measurements at various pH and ionic strength values were fitted by a viral expansion. The interpretation of the data was based on the effects of protein aggregation, salt binding and protein group ionization on the NMR measurements. In all cases, relaxation rates showed a linear dependence on protein activity

  3. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  4. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Demirkiran, Hande; Hu Yongfeng; Zuin, Lucia; Appathurai, Narayana; Aswath, Pranesh B.

    2011-01-01

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts ( 5 (PO 4 ) 2 SiO 4 and Na 3 Ca 6 (PO 4 ) 5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L 2,3 -edge and calcium (Ca) K-edge XANES. Si L 2,3 -edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L 2,3 -edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na 3 Ca 6 (PO 4 ) 5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  5. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    Science.gov (United States)

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  6. Impact of welan gum on tricalcium aluminate–gypsum hydration

    International Nuclear Information System (INIS)

    Ma Lei; Zhao Qinglin; Yao Chukang; Zhou Mingkai

    2012-01-01

    The retarding effect of welan gum on tricalcium aluminate–gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate–gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV–VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate–gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate–gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C 3 A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate–gypsum hydration. Highlights: ► Adsorption characteristics of welan gum on C 3 A and ettringite have been studied. ► C 3 A–gypsum hydration behavior and the hydration products are examined in L/S = 3. ► Welan gum retards the process of C 3 A–gypsum hydration. ► The addition of welan gum changes the nucleation growth of ettringite.

  7. Investigation of the swelling behavior of cationic exchange resins saturated with Na{sup +} ions in a C{sub 3}S paste

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 place Jean Millier, 92084 Paris La Défense (France); Nonat, A. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2015-03-15

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. Spent products are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na{sup +} form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C–S–H, and very heterogeneous microstructure with zones of high porosity.

  8. Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition Étude de la formation de l'hydrate de méthane dans une conduite de recirculation : modélisation de la cinétique et tests d'efficacité d'additifs chimiques inhibiteurs d'hydrates de gaz

    Directory of Open Access Journals (Sweden)

    Peytavy J. L.

    2006-12-01

    Full Text Available Gas hydrates can be formed when light gases, such as the components of natural gas, come into contact with water under particular conditions of temperature and pressure. These solid compounds give rise to problems in natural gas and oil industry because they can plug pipelines and process equipment. To prevent hydrate formation methanol and glycols are commonly and extensively used as inhibitors. Today, the thermodynamic equilibria of hydrate formation are well known, but the kinetics of gas hydrate formation and growth has to be studied in order to find means of controlling these processes and to explore the mechanisms for hydrate formation that follows non equilibrium laws. The present work deals with the kinetics of methane hydrate formation studied in a laboratory loop where the liquid blend saturated with methane is circulated up to a pressure of 75 bar. Pressure is maintained at a constant value during experimental runs by means of methane gas make-up. First the effects of pressure (35-75 bar, liquid velocity (0. 5-3 m/s, liquid cooling temperature ramp (2-15°C/h, and liquid hydrocarbon amount (0-96%, on hydrate formation kinetics are investigated. Then a new method is proposed to predict firstly the thermodynamic conditions (pressure and temperature at the maximum values of the growth rate of methane hydrate and secondly the methane hydrate growth rate. A good agreement is found between calculated and experimental data. Finally the evaluation of the efficiency of some kinetic additives and some surfactants developed to avoid either nucleation or crystal growth and agglomeration of methane hydrates is tested based on the proposed experimental procedure. Les hydrates de gaz des composés légers du gaz naturel se forment lorsque ceux-ci entrent en contact avec l'eau dans certaines conditions de température et de pression. Ces composés solides sont nuisibles pour les industries gazière et pétrolière car des bouchons solides peuvent

  9. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  10. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    Meng Xiangxin; Shuai Qi; Chen Sanping; Xie Gang; Gao Shengli; Shi Qizhen

    2005-01-01

    Four solid ternary complexes of RE (C5H8NS2)3(C12H8N2) (RE=Eu, Gd, Tb, Dy) were synthesized in absolute ethanol by rare earth chloride low hydrate with the mixed ligands of ammonium pyrrolidinedi-thiocarbamate (APDC) and 1, 10-phenanthroline*H2O (o-phen*H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes show that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen*H2O. It was assumed that the coordination number of RE3+ is eight. The constant-volume combustion energies of the complexes, ΔcU, were determined as (-16937.88±9.79 ), (-17588.79±8.62 ), (-17747.14±8.25 ) and (-17840.37±8.87 ) kJ*mol-1, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated as (-16953.37±9.79), (-17604.28±8.62), (-17762.63±8.25), (-17855.86±8.87) kJ*mol-1 and (-857.04±10.52), (-282.43±9.58), (-130.08±9.13), (-55.75±9.83) kJ*mol-1.

  11. Skin hydration and cooling effect produced by the Voltaren® vehicle gel.

    Science.gov (United States)

    Hug, Agnes M; Schmidts, Thomas; Kuhlmann, Jens; Segger, Dörte; Fotopoulos, Grigorios; Heinzerling, Johanna

    2012-05-01

    Voltaren vehicle gel is the carrier substance of the topical Voltaren products. This vehicle gel is especially formulated to be easily applied on the skin, while providing some sensory benefits. The present study aims to substantiate the widely perceived hydrating and cooling effect of Voltaren vehicle gel. Volar forearm skin hydration and transepidermal water loss (TEWL) were measured and user satisfaction was evaluated by questionnaires, after application in 31 healthy, female volunteers. The cooling effect was investigated for 40 min with thermal imaging on 12 forearm sites of six healthy subjects. Voltaren vehicle gel application increased skin hydration by 13.1% (P = 0.0002) when compared with the untreated site, 8 h after the final treatment after 2 weeks. TEWL decreased on both treated (0.37 g/m(2) /h) and untreated (0.74 g/m(2) /h) forearm sites after 2 weeks (8 h after last treatment), demonstrating a relative increase of 6.5% in water loss. Voltaren vehicle gel application resulted in a rapid reduction of skin surface temperature by 5.1°C after only 3 min with an average maximum reduction of 5.8°C after 10 min. The cooling effect was experienced by 94% subjects, while 74% felt that their skin became softer. No adverse events, including skin irritation, were reported during the study and by the 37 participants. This study showed a statistically significant increase in skin hydration as well as a rapid cooling effect lasting approximately 30 min, after application of Voltaren vehicle gel. The small relative increase in water loss may be attributed to an additional skin surface water loss secondary to the increased water content brought into the skin by the Voltaren vehicle gel. The use did not induce any skin irritation and was found acceptable to use by the majority of participants. © 2011 John Wiley & Sons A/S.

  12. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  13. Synthesis of lithium silicates generators of tritium by a modified method of combustion

    International Nuclear Information System (INIS)

    Cruz G, D.

    2003-01-01

    The ceramics of lithium have been proposed as generating materials of tritium through the following reaction: 6 Li + 1 n → 4 He + 3 H . In previous works carried out by Pfeiffer and collaborators, the lithium silicates generators of tritium were prepared using the following methods: reactions of solid state, precipitation and sol-gel synthesis. Although those methods have advantages, it is required of heating at high temperatures (900 C during four hours) to be able to obtain the crystalline compounds. Those products found in these works were diverse crystallization forms of the lithium silicates and of SiO 2 , such as, Li 2 SiO 3 , Li 2 Si 2 0 5 , Li 4 SiO 4 , and quartz (SiO 2 ). The combustion method uses exothermic reactions to take place ceramic compounds. The precursor solutions are mixtures of the nitrate of metal oxidizer and the fuels (urea, glycine, carbohydrazide). However the reported method in the literature, it is not useful to prepare lithium silicates, for what was modified using non oxidizers compounds. The lithium hydroxide (LiOH) and the silicic acid (H 2 SiO 3 ) they were the compounds non oxidizers used, and the urea (CH 4 N 2 O) it was the one fuel. They were carried out two series of experiments; inside the series 1 of experiments are varied the molar ratio of lithium hydroxide and urea (LiOH : H 2 SiO 3 = 1, 2 and 3, LiOH : CH 4 N 2 O = 1, 2, 3, 4 and 5) and the prepared mixtures were taken to one muffle previously preheated to a temperature of 450 C during 5 minutes. In the series 2 of experiments was studied the effect of the temperature and of the washed with distilled water in the prepared samples with the following molar ratios: LiOH : H 2 SiO 3 : CH 4 N 2 O = 1:1:3, 2:1:3, 3:1:3 and 3:1:6, those which were heated to temperatures from 450 C up to 750 C and were washed. The obtained samples were characterized by X-ray diffraction (XRD), Infrared spectroscopy (I S), semiquantitative elemental analysis (EDS) and Thermal gravimetric

  14. Defect Generation for a Hydrated Layer and Thermal Stability Based on Ba0.7Sr0.3TiO3/SiO2 as H+ Sensitive Layer in Ion-Sensitive Field-Effect Transistor Devices

    Science.gov (United States)

    Chen, Chun-Yuan; Chou, Jung-Chuan; Chou, Hsueh-Tao

    2009-04-01

    In this paper, we present a novel sensitive ion-sensitive field-effect transistor (ISFET) membrane based on Ba0.7Sr0.3TiO3 (BST)/SiO2 fabricated by sputtering deposition. The proposed device exhibits a linear shift in acidic solutions in the pH range from 1 to 10. The device sensitivity was about 50-55 mV/pH for different deposition times. We also examined the trapping behavior of the surface hydrated layer using the metal-insulator-semiconductor (MIS) structure. Results show that the hydration layer gives rise to stress polarity dependence of electron injection when immersed in pH buffer solutions. Injection from the gate electrode produces larger positive charges and interface state densities in contrast to the substrate injection, which causes simultaneous positive and negative charge trapping. A physical model that quantitatively describes the asymmetry associated with the hydrated diffusion layer is presented, and the temperature effects of BST/SiO2 ISFET devices in the range from 25 to 65 °C were examined. We observed that pH sensitivity increases with increasing temperature. The temperature coefficient of sensitivity (TCS) can be divided into two different ranges: 0.08 mV/pH °C between 25 and 45 °C, and 0.57 mV/pH °C between 45 and 65 °C. A better thermal stability is produced in the 25 and 45 °C range in comparison with other sensitive layers.

  15. S,O-Ligand-Promoted Palladium-Catalyzed C-H Functionalization Reactions of Nondirected Arenes

    NARCIS (Netherlands)

    Naksomboon, K.; Valderas, C.; Gomez-Martinez, M.; Alvarez-Casao, Y.; Fernández Ibáñez, M.A.

    Pd(II)-catalyzed C-H functionalization of non directed arenes has been realized using an inexpensive and easily accessible type of bidentate S,O-ligand. The catalytic system shows high efficiency in the C-H olefination reaction of electron-rich and electron-poor arenes. This methodology is

  16. Probing cycle stability and reversibility in thermochemical energy storage – CaC_2O_4·H_2O as perfect match?

    International Nuclear Information System (INIS)

    Knoll, Christian; Müller, Danny; Artner, Werner; Welch, Jan M.; Werner, Andreas; Harasek, Michael; Weinberger, Peter

    2017-01-01

    Highlights: • CaC_2O_4·H_2O dehydration is fully reversible between 25 °C and 200 °C. • Isothermal cycling between hydrate and anhydrate phase can be triggered by the water vapour concentration. • High reaction rates and full reversibility demonstrated over 100 cycles. • Material shows no ageing effects or reactivity decrease. - Abstract: The dehydration and subsequent rehydration of calcium oxalate monohydrate has yet to find application in thermochemical energy storage. Unlike for many other salt hydrates, complete reversibility of the dehydration-rehydration reaction was observed. Additionally, it was found that the rehydration temperature is strongly affected by the water vapour concentration: Full reversibility is not only achieved at room-temperature, but, depending on the water vapour concentration, at up to 200 °C. This allows isothermal switching of the material between charging and discharging by a change of the H_2O-partial pressure. Cycle stability of the material was tested by a long-term stress experiment involving 100 charging and discharging cycles. No signs of material fatigue or reactivity loss were found. In-situ powder X-ray diffraction showed complete rehydration of the material within 300 s. The experimental findings indicate that the CaC_2O_4·H_2O/CaC_2O_4 system is perfectly suited for technical application as a thermochemical energy storage medium.

  17. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  18. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  19. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  20. [Effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals].

    Science.gov (United States)

    Roh, So Young; Kim, Kye Ha

    2013-12-01

    The purpose of this study was to examine the effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals. The participants were elders over 65 years old admitted to long-term care. They were assigned to the experimental group (26) or control group (28). Data were collected from May to August, 2012. Visual Analogue Scale and Verran and Snyder-Halpern Sleep scale were used to identify levels of pruritus and sleep. A skin-pH meter and moisture checker were used to measure skin pH and skin hydration. Aroma massage was performed three times a week for 4 weeks for elders in the experimental group. The data were analyzed using the SPSS Win 17.0 program. There were significant differences in pruritus, skin pH and skin hydration between the two groups. However there was no significant difference in sleep. The results indicate that aroma massage is effective in reducing pruritus, skin pH and increasing skin hydration in elders. Therefore, this intervention can be utilized in clinical practice as an effective nursing intervention to reduce pruritus in elders in long-term care hospitals.

  1. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Science.gov (United States)

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    OpenAIRE

    Tezuka, Kyoichi; Taguchi, Tatsuhiko; Alavi, Saman; Sum, Amadeu K.; Ohmura, Ryo

    2012-01-01

    This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the ...

  3. Les silicates alcalins, matière de base des mousses minérales isolantes. Etude bibliographique Alkaline Silicates, As a Basic Material for Insulating Mineral Foams. Bibliographie Study

    Directory of Open Access Journals (Sweden)

    Lesage J.

    2006-11-01

    Full Text Available Dans cette étude bibliographique, on décrit les méthodes d'obtention des silicates alcalins ainsi que leurs propriétés et les propriétés de leurs polymères en insistant sur l'influence du pH, de la concentration et de la température sur la polymérisation et les caractéristiques des polymères obtenus. On présente ensuite le mode d'obtention des mousses à partir de solutions aqueuses de silicates, ainsi que leurs propriétés et l'influence de divers additifs tels que les agents tensioactifs, moussants, gélifiants ou les agents de durcissement sur les propriétés des mousses. II ressort de cette bibliographie que des mousses polysilicates solubles peuvent être obtenues à partir de solutions de silicates à faible rapport molaire SiO2/Na2O. Par ailleurs, en faisant varier la composition des solutions de silicates alcalins et par l'emploi d'additifs, il est possible de produire une gamme très variée de mousses polysilicates dont les propriétés d'isolation, de solubilité et de résistance mécanique, voire de perméabilité, sont très variées, ce qui leur ouvre la voie à de nombreuses possibilités de débouchés industriels. This article gives a bibliographic description of methods for obtaining alkaline silicates as well as their properties and the properties of their polymers. Emphasis is placed on the influence of the pH, and on the influence of the concentration and temperature on the polymerization and the characteristics of the polymers obtained. Then a method is recommended for obtaining foams from aqueous silicate solutions together with the properties of such foams and the influence of different additives such as surfactants, foaming agents, gelling agents and hardening agents on the properties of foams. This bibliographic study shows that soluble polysilicate foams may be obtained from silicate solutions with a low SiO2/Na2O molar ratio. Furthermore, by varying the composition of alkaline silicate solutions and by

  4. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  5. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  6. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy

    2014-02-01

    Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.

    Science.gov (United States)

    Yamamoto, S; Han, L; Noiri, Y; Okiji, T

    2017-12-01

    To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population.

    Science.gov (United States)

    Man, M Q; Xin, S J; Song, S P; Cho, S Y; Zhang, X J; Tu, C X; Feingold, K R; Elias, P M

    2009-01-01

    Evidence suggests the importance of skin biophysical properties in predicting diseases and in developing appropriate skin care. The results to date of studies on skin surface pH, stratum corneum (SC) hydration and sebum content in both genders and at various ages have been inconclusive, which was in part due to small sample size. Additionally, little is known about the skin physical properties of Asian, especially Chinese, subjects. In the present study, we assess the difference in skin surface pH, sebum content and SC hydration at various ages and in both genders in a large Chinese population without skin diseases. 713 subjects (328 males and 385 females) aged 0.5-94 years were enrolled in this study. The subjects were divided by age into 5 groups, i.e., 0-12, 13-35, 36-50, 51-70 and over 70 years old. A multifunctional skin physiology monitor was used to measure SC hydration, skin surface pH and sebum content on both the forehead and the forearms. In males, the highest sebum content was found on the forearm and the forehead in the age groups 36-50 (93.47 +/- 10.01 microg/cm(2)) and 51-70 years (9.16 +/- 1.95 microg/cm(2)), while in females, the highest sebum content was found on the forearm and the forehead in the age groups 13-35 (61.91 +/- 6.12 microg/cm(2)) and 51-70 years (7.54 +/- 2.55 microg/cm(2)). The forehead sebum content was higher in males aged 13-70 years than in age-matched females; the sebum content on the forehead in both males and females was higher than that on the forearm. Skin surface pH on the forehead of both males and females over the age of 70 years was higher than that in younger groups. SC hydration on the forehead in both males and females was lower above the age of 70, and the one in males aged 13-35 was higher than that in females (43.99 +/- 1.88 vs. 36.38 +/- 1.67 AU, p pH, sebum content and SC hydration vary with age, gender and body site. Copyright 2009 S. Karger AG, Basel.

  9. Redox Reaction in Silicate Melts Monitored by ''Static'' In-Situ Fe K-Edge XANES up to 1180 deg. C

    International Nuclear Information System (INIS)

    Wilke, Max; Partzsch, Georg M.; Welter, Edmund; Farges, Francois

    2007-01-01

    A new experimental setup to measure in-situ kinetics of redox reactions in silicate melts is presented. To study the progress of the Fe-redox reaction, the variation of the signal is recorded at an energy, where the difference between the spectra of the oxidized and reduced Fe in the melt is largest (''static XANES''). To control the redox conditions, the gas atmosphere could be changed between to types of gases using computer-controlled valves (N2:H2 and air, respectively). In this way, a number of reduction/oxidation cycles can be monitored in-situ and continuously. Applied at the Fe K-edge in molten silicates, we obtained a set of high quality data, which includes the very first steps of the redox reaction. An Avrami-type equation is used to investigate rate-controlling parameters for the iron oxidation/reduction kinetics for two melts (basaltic and Na trisilicate) for temperatures up to 1180 deg. C

  10. Prevalence of H63D, S65C, and C282Y hereditary hemochromatosis gene variants in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, Carla; Brehm, António; Spínola, Hélder

    2011-01-01

    Hereditary HFE Hemochromatosis is an inherited disorder of iron metabolism that results from mutations in the HFE gene. Almost all patients with hereditary hemochromatosis show a C282Y mutation in homozygosity or in compound heterozygosity with H63D. Also, the mutation S65C has been shown to be associated to a milder iron overload. Since allele and genotype frequencies of these three variants of the HFE gene vary between populations, the determination of their prevalence in Madeira Island will clarify the population susceptibility to hereditary hemochromatosis. One hundred and fifty-four samples from Madeira Island were genotyped for the three most common HFE gene mutations, H63D, C282Y, and S65C, by polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results have shown a prevalence of 20.5%, 0.33%, and 1% for H63D, C282Y, and S65C, respectively. Accordingly to our estimates, both genotypes associated to hereditary hemochromatosis, C282Y homozygotes and C282/H63D compound heterozygotes, could be present in Madeira Island population in 1,648 individuals, which represents 0.65% of the total population.

  11. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  12. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis.

    Science.gov (United States)

    Knor, Tanja; Meholjić-Fetahović, Ajša; Mehmedagić, Aida

    2011-01-01

    Atopic dermatitis (AD) is a chronically relapsing skin disease with genetic predisposition, which occurs most frequently in preschool children. It is considered that dryness and pruritus, which are always present in AD, are in correlation with degradation of the skin barrier function. Measurement of hydration and pH value of the stratum corneum is one of the noninvasive methods for evaluation of skin barrier function. The aim of the study was to assess skin barrier function by measuring stratum corneum hydration and skin surface pH of the skin with lesions, perilesional skin and uninvolved skin in AD patients, and skin in a healthy control group. Forty-two patients were included in the study: 21 young and adult AD patients and 21 age-matched healthy controls. Capacitance, which is correlated with hydration of stratum corneum and skin surface pH were measured on the forearm in the above areas by SM810/CM820/pH900 combined units (Courage AND Khazaka, Germany). The mean value of water capacitance measured in AD patients was 44.1 ± 11.6 AU (arbitrary units) on the lesions, 60.2 ± 12.4 AU on perilesional skin and 67.2 ± 8.8 AU on uninvolved skin. In healthy controls, the mean value was 74.1 ± 9.2 AU. The mean pH value measured in AD patients was 6.13 ± 0.52 on the lesions, 5.80 ± 0.41 on perilesional skin, and 5.54 ± 0.49 on uninvolved skin. In control group, the mean pH of the skin surface was 5.24 ± 0.40. The values of both parameters measured on lesional skin were significantly different (capacitance decreased and pH increased) from the values recorded on perilesional skin and uninvolved skin. The same held for the relation between perilesional and uninvolved skin. According to study results, the uninvolved skin of AD patients had significantly worse values of the measured parameters as compared with control group. The results of this study suggested the skin barrier function to be degraded in AD patients, which is specifically expressed in lesional skin.

  13. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  14. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  15. Electron spin resonance study on γ-ray-induced radical species in ethylene hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi

    2007-01-01

    Electron spin resonance (ESR) study on γ-irradiated synthetic ethylene hydrate was performed to investigate induced radicals and their thermal stability. ESR spectra of induced 3-butenyl radical (.CH 2 C 2 H 3 =CH 2 ,g=2.0039±0.0005,A α =2.2±0.1mTandA β =3.0±0.1mT) and induced ethyl radical (.C 2 H 5 , g=2.0044±0.0005, A α =2.2±0.1mT and A β =2.7±0.1mT) were observed in irradiated ethylene hydrate. The decay of the 3-butenyl radicals was observed above 200 K with the activation energy of 51.9±4.4kJ/mol. The obvious decay of ethyl radicals starts above 240 K that is close to the dissociation temperature of ethylene hydrate at atmospheric pressure. The activation energy of the ethyl radical decay is estimated as 63.4±8.2kJ/mol and nearly equal to the enthalpy change of ethylene hydrate into liquid water and gaseous ethylene. It is suggested that the decay of ethyl radicals would be caused by the hydrate dissociation and that ethylene hydrate dissociates into water (supercooled) and ethylene at 240-265 K.

  16. Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa

    Science.gov (United States)

    Plyasunov, Andrey V.; Shock, Everett L.

    2000-02-01

    An extensive compilation of experimental data yielding the infinite dilution partial molar Gibbs energy of hydration Δ hGO, enthalpy of hydration Δ hHO, heat capacity of hydration Δ hCpO, and volume V2O, at the reference temperature and pressure, 298.15 K and 0.1 MPa, is presented for hydrocarbons (excluding polyaromatic compounds) and monohydric alcohols. These results are used in a least-squares procedure to determine the numerical values of the corresponding properties of the selected functional groups. The simple first order group contribution method, which in general ignores nearest-neighbors and steric hindrance effects, was chosen to represent the compiled data. Following the precedent established by Cabani et al. (1981), the following groups are considered: CH 3, CH 2, CH, C for saturated hydrocarbons; c-CH 2, c-CH, c-C for cyclic saturated hydrocarbons; CH ar, C ar for aromatic hydrocarbons (containing the benzene ring); C=C, C≡C for double and triple bonds in linear hydrocarbons, respectively; c-C=C for the double bond in cyclic hydrocarbons; H for a hydrogen atom attached to the double bond (both in linear and cyclic hydrocarbons) or triple bond; and OH for the hydroxyl functional group. In addition it was found necessary to include the "pseudo"-group I(C-C) to account for the specific interactions of the neighboring hydrocarbon groups attached to the benzene or cyclic ring (in the latter case only for cis-isomers). Results of this study, the numerical values of the group contributions, will allow in most cases reasonably accurate estimations of Δ hGO, Δ hHO, Δ hCpO, and V2O at 298.15 K, 0.1 MPa for many hydrocarbons involved in geochemical and environmental processes.

  17. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Synthesis of two S-(methyl-3H)-labelled enkephalins and S-(methyl-14C) substance P

    International Nuclear Information System (INIS)

    Naegren, K.; Laangstroem, B.; Franzen, H.M.; Ragnarsson, U.

    1988-01-01

    The synthesis of 3 H-labelled Met-enkephalin and Tyr-D-Ala-Gly-Phe-Met-NH 2 (DALA) and 14 C-labelled Substance P (SP) from previously described, fully protected intermediates is reported. The labelled peptides were prepared by methylation with ( 3 H)- or ( 14 C)methyl iodide of the sulphide anions formed on deprotection of the corresponding S-benzyl-homocysteine precursors with sodium in liquid ammonia. After purification by LC, the labelled peptides were obtained in radiochemical yields in the range of 9 to 24% with a radiochemical purity higher than 97%. The specific radioactivities of the 3 H- and 14 C- labelled products, corresponding to the labelled methyl iodides used, were 80 mCi/μmol and 60 μCi/μmol, respectively. (author)

  19. Managing Salmonella Typhimurium and Escherichia coli O157:H7 in soil with hydrated lime - An outdoor study in lysimeters and field plots.

    Science.gov (United States)

    Nyberg, Karin A; Vinnerås, Björn; Albihn, Ann

    2014-01-01

    An outbreak of Salmonella Typhimurium or E. coli O157:H7 among domestic animals can have great financial consequences for an animal enterprise but also be a threat for public health as there is a risk for transmission of the infection through the environment. In order to minimize disease transmission, it is important to treat not only the affected animals but also the areas on which they have been kept. In the present study, the effect of hydrated lime as a treatment for Salmonella Typhimurium or E. coli O157:H7 contaminated soil was investigated. The study was performed outdoors, in a lysimeter system and in field plots. The soils were spiked with Salmonella Typhimurium and/or E. coli O157:H7 and hydrated lime was added at three different concentrations (0.5, 1 and 2%). Sampling was performed over one month, and the levels of bacteria were analyzed by standard culture methods. In addition, the soil pH was monitored throughout the study. The results showed that application of 0.5-1 kg hydrated lime per m(2) reduced both Salmonella Typhimurium and E. coli O157:H7 numbers to below the detection limit (2 log10 CFU g-1 soil) in 3-7 days. Lower application rates of hydrated lime did not reduce pathogen numbers in the lysimeter study, but in the field plots no E. coli O157:H7 was detected at the end of the four-week study period regardless of hydrated lime application. A recommended strategy for treating a Salmonella Typhimurium or E. coli O157:H7 contaminated soil could therefore be to monitor the pH over the time of treatment and to repeat hydrated lime application if a decrease in pH is observed.

  20. Studies of protonic self-diffusion and conductivity in 12-tungstophophoric acid hydrates by pulsed field gradient 1H NMR and ac Conductivity

    International Nuclear Information System (INIS)

    Slade, R.C.; Pressman, H.A.; Barker, J.; Strange, J.H.

    1988-01-01

    Temperature dependent protonic conductivities σ and 1/H self-diffusion coefficients, D, are reported for polycrystalline hydrates of 12-tungstophosphoric acid (TPA). Conductivities were measured using ac admittane spectrometry and diffusion coefficients by the pulsed field gradient NMR technique. Conductivities for the hydrates TPA.nH 2 O (n=6, 14, 21) increase with n. Examination of σ and D values and of activation techniques shows self-diffusion and conduction to occur by different mechanisms in the higher hydrates. 25 refs.; 14 figs.; 1 table

  1. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  2. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  3. Some physical properties of anhydrous and hydrated Brownmillerite doped with NaF

    International Nuclear Information System (INIS)

    Hassaan, M.Y.; El Desoky, M.M.; Salem, S.M.; Yousif, A.A.

    2003-01-01

    Different samples of Brownmillerite (the ferrite phase of cement clinker) doped with 0, 1 or 3 wt.% NaF were prepared. At first, the oxide mixture of Brownmillerite was prepared according to the following composition: 4 mol CaO, 1 mol Al 2 O 3 and 1 mol Fe 2 O 3 in addition to 1 or 3 wt.% NaF. Each mixture was mixed very well, introduced into an electric furnace at 1300 deg. C for 1 h in a platinum crucible, and then quenched in air. The product was divided into four portions mixed with 40 wt.% distilled water to form Brownmillerite paste, except for one portion which was left dry. Each paste was molded into two molds; after 24 h, they were immersed in a distilled water and withdrawn after 1 or 3 days of hydration, respectively. The pastes were ground again. The anhydrous powders of Brownmillerites and the hydrated samples were prepared for a.c. conduction measurements by pressing it to be in pellets form. The two surfaces of each pellet were coated with silver paste. The a.c. conductivity and dielectric constant for different samples were measured using four-probe method. The data was collected from 320 up to 670 K. Moessbauer spectra and X-ray diffraction patterns were measured for each sample (anhydrous and hydrated) to confirm the formation of Brownmillerite, identify the iron states and the magnetic properties. The results showed that NaF addition to Brownmillerite expedites the hydration reaction rate. The superparamagnetic relaxation, which appeared in the anhydrous Brownmillerite spectra due to the small particle size, decreases with increasing the hydration time. Also, the Fe 3+ (Oh) state increases while Fe 3+ (Td) decreases with the time of hydration. The a.c. conductivity value at fixed frequency for anhydrous and hydrated samples was found to increase with NaF addition. The a.c. conductivity and Moessbauer measurements can be used as good tools to verify the purity of Brownmillerite phase and, accordingly, the purity of cement

  4. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  5. Measurement of 2J(H,C)- and 3J(H,C)-coupling constants by α/β selective HC(C)H-TOCSY

    International Nuclear Information System (INIS)

    Duchardt, Elke; Richter, Christian; Reif, Bernd; Glaser, Steffen J.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    2001-01-01

    A new heteronuclear NMR pulse sequence for the measurement of n J(C,H) coupling constants, the α/βselective HC(C)H-TOCSY, is described. It is shown that the S 3 E element (Meissner et al., 1997a,b) can be used to obtain spin state selective coherence transfer in molecules, in which adjacent CH moieties are labeled with 13 C. Application of the α/β selective HC(C)H-TOCSY to a 10nt RNA tetraloop 5'-CGCUUUUGCG-3', in which the four uridine residues are 13 C labeled in the sugar moiety, allowed measurement of two bond and three bond J(C,H) coupling constants, which provide additional restraints to characterize the sugar ring conformation of RNA in cases of conformational averaging

  6. Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate.

    Science.gov (United States)

    Smith, Graham

    2012-12-01

    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.

  7. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  8. Mechanisms and kinetics laws of inactive R7T7 reference glass dissolution in water at 90 deg C: initial dissolution rate measurements

    International Nuclear Information System (INIS)

    Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-02-01

    The initial dissolution rate of inactive R7T7 reference glass was measured at 90 deg C in dilute aqueous solutions first at unspecified pH, then with imposed pH values. In distilled water, R7T7 glass corrosion initially involved preferential extraction of boron and network modifier elements (Li, Na, Ca) as long as the solution pH remained acid. When the solution pH became alkaline, glass dissolution was stoichiometric. These two mechanisms were confirmed by dissolution tests in aqueous solutions at imposed pH values under acid and alkaline conditions. The initial dissolution rate r 0 in mole.cm -3 .s -1 also increased significantly in alkaline media when the pH of the aqueous phase increased: in slightly acid media, selective glass dissolution formed a residual, de-alkalinized, hydrated glass that was characterized by transmission electron microscopy and secondary ion mass spectrometry. Under steady-state dissolution conditions, the initial glass corrosion rate (in mole.cm -3 .s -1 ) was: in acid and alkaline media, amorphous and crystallized alteration products formed after complete dissolution of the silicated glass network. The first products formed consisted mainly of Zr, Rare Earths, Fe and Al. (author). 67 refs., 29 figs., 26 tabs., 21 plates

  9. Role of the H bond network in the radiation chemistry of hydrated systems

    International Nuclear Information System (INIS)

    Pommeret, S.; Renault, J.P.; Le Caer, S.; Vigneron, G.; Palmer, J.; Lima, M.; Righini, R.

    2006-01-01

    Introduction: In the present contribution, we want to address the influence of the H bond network on the observed reactivity of hydrated system. In radiation chemistry the primary species appear extremely simple and at the same time are very reactive. The comprehension of their dynamics is rather difficult since their reactivity involves the solvent molecules as reactant. Some of those species like the hydrated electron and the proton are highly hydrophilic, while others like the hydroxide radical and the H atom are rather hydrophobic. Both the hydrated electron and the H atom locate near a defect of the H bond network i.e. a cavity. As an example of the role of the environment in radical chemistry, when studying the radiation chemistry of porous media we noticed that the interface play a crucial role in the outcome of that chemistry. More particularly we observed that the silanol band of the silica/water interface was strongly affected by the irradiation even so no energy is directly absorbed by an interface. In this contribution, we will first review the recent work on the H bond dynamics, in absence of any reactant. We will then present recent results on the radiation chemistry of nanoporous media and its influence on the H bond network of an interface and will also present recent results obtained on the H bond dynamics at an alumina-water interface. All those results will be discussed in light of the H bonded nature of neat water. Radiation chemistry of an H bonded interface: A Fourier transformed infrared detection associated to an electron accelerator was developed so as to characterise in situ the effects of irradiation on various systems. The FT-IR spectrometer and the detector were moved out of the accelerator room to be protected against radiation. The infrared beam was guided on a distance of 6 meters by optical conduits and mirrors. The spectra were obtained from 100 scans accumulated with a Bruker Vertex 70 equipment operating with a 4 cm -1 resolution

  10. Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, Philippe, E-mail: philippe.knauth@univ-amu.fr [Madirel (UMR 7246), CNRS, Aix Marseille Université, Marseille (France); Di Vona, Maria Luisa [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy)

    2014-11-06

    The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used – the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c{sup −3} is observed, in agreement with the “universal” law for 3-dimensional percolation. The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The σ = f(c) plot allows to predict, which hydration conditions are necessary for a desired area specific resistance.

  11. Hydration and proton conductivity of ionomers: the model case of Sulfonated Aromatic Polymers

    Directory of Open Access Journals (Sweden)

    Philippe eKnauth

    2014-11-01

    Full Text Available The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used - the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c-3 is observed, in agreement with the universal law for 3-dimensional percolation. The proton conductivity  shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The  = f(c plot allows to predict which hydration conditions are necessary for a desired area specific resistance.

  12. Reactions between rocks and the hydroxides of calcium, sodium and potassium: progress report no. 1

    International Nuclear Information System (INIS)

    Van Aardt, J.H.P.; Visser, S.

    1982-01-01

    The reaction between the hydroxides of calcium, sodium and potassium, and clay minerals, feldspars, and some rocks (aggregates for use in concrete) was investigated. The reaction products were examined by means of x-ray diffraction and chemical analysis. The solid reaction products identified were hydrated calcium silicates,hydrated calcium aluminates, and hydrated calcium alumina silicates. It was found that, in the presence of water, calcium hydroxide liberated alkali into solution if the rocks and minerals contained alkali metals in their structure. Two crystalline hydrated sodium calcium silicates (12A and 16A) were prepared in the system Na 2 O-CaO-SiO 2 -H 2 O at 80 degrees Celsius. The one compound (12A) was also observed when sodium hydroxide plus calcium hydroxide and water reacted with silica- or silicate-containing rocks

  13. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  14. Ionic fragmentation of a natural product, limonene (C10H16), following core [C 1s] photoionization

    International Nuclear Information System (INIS)

    Castilho, R.B. de; Nunez, C.V.; Coutinho, L.H.; Lago, A.F.; Bernini, R.B.; Souza, G.G.B. de

    2007-01-01

    Photoionization of the limonene [C 10 H 16 ] molecule was studied for the first time following C 1s ionization, using synchrotron radiation and time-of-fight mass spectrometry. As a reference for further analysis of the photon induced fragmentation of the limonene molecule, the He(I) mass spectrum was also obtained. Previously unreported singly charged species have been observed at 310 eV: H + , C + , CH + , CH 2 + , CH 3 + . A close similarity has been observed between the high photon energy mass spectrum and the standard electron impact mass spectrum of limonene, obtained at 70 eV. In particular, the base peak [C 5 H 8 + , m/q = 68], known to result from a Retro Diels-Alder reaction, remains the same in both cases. Approximate values for the mean kinetic energy were determined for all ionic species

  15. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances

  16. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Roy, D.M.

    1996-01-01

    The formation, structure and chemistry of the ettringite and C-S-H phases of Portland cement have been reviewed as they relate to waste ion immobilization. The purpose of this review was to investigate the use of Portland cement as a host for priority metallic pollutants as identified by the Environmental Protection Agency and as a host for radioactive waste ions as identified in 40 CFR 191. Ettringite acts as host to a number of these ions in both the columnar and channel sections of the crystal structure. Substitutions have been made at the calcium, aluminum, hydroxide and sulfate sites. C-S-H also hosts a number of the waste species in both ionic and salt form. Immobilization mechanisms for C-S-H include sorption, phase mixing and substitution. The following ions have not apparently been reported as specifically immobilized by one of these phases: Ag, Am, Np, Pu, Ra, Tc, Th and Sn; however, some of these ions are immobilized by Portland cement

  17. Direct measurements of 3d structure, chemistry and mass density during the induction period of C3s hydration

    International Nuclear Information System (INIS)

    Hu, Qinang; Aboustait, Mohammed; Kim, Taehwan; Ley, M. Tyler; Bullard, Jeffrey W.; Scherer, George; Hanan, Jay C.; Rose, Volker; Winarski, Robert; Gelb, Jeffrey

    2016-01-01

    The reasons for the start and end of the induction period of cement hydration remain a topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them.

  18. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  19. Classification of extremely metal-poor stars: absent region in A(C)-[Fe/H] plane and the role of dust cooling

    Science.gov (United States)

    Chiaki, Gen; Tominaga, Nozomu; Nozawa, Takaya

    2017-11-01

    Extremely metal-poor (EMP) stars are the living fossils with records of chemical enrichment history at the early epoch of galaxy formation. By the recent large observation campaigns, statistical samples of EMP stars have been obtained. This motivates us to reconsider their classification and formation conditions. From the observed lower limits of carbon and iron abundances of Acr(C) ∼ 6 and [Fe/H]cr ∼ -5 for C-enhanced EMP (CE-EMP) and C-normal EMP (CN-EMP) stars, we confirm that gas cooling by dust thermal emission is indispensable for the fragmentation of their parent clouds to form such low mass, i.e. long-lived stars, and that the dominant grain species are carbon and silicate, respectively. We constrain the grain radius r_i^cool of a species i and condensation efficiency fij of a key element j as r_C^cool / f_C,C = 10 {μ m} and r_Sil^cool / f_Sil,Mg = 0.1 {μ m} to reproduce Acr(C) and [Fe/H]cr, which give a universal condition 10[C/H] - 2.30 + 10[Fe/H] > 10-5.07 for the formation of every EMP star. Instead of the conventional boundary [C/Fe] = 0.7 between CE-EMP and CN-EMP stars, this condition suggests a physically meaningful boundary [C/Fe]b = 2.30 above and below which carbon and silicate grains are dominant coolants, respectively.

  20. Dissolution kinetics of heulandite at pH 2--12 and 25 degrees C

    International Nuclear Information System (INIS)

    Ragnarsdottir, K.V.

    1993-01-01

    Because of their favourable cation exchange reactions, heulandite and clinoptilolite have been suggested as being capable of immobilizing radionuclides and therefore could possibly act as an important barrier for nuclear waste. Recent studies of laboratory-reacted minerals indicate, however, that hydrated surface layers tend to accumulate highly hydrolyzable heavy elements. These hydrated layers may therefore be the most important retardants for radionuclides. The dissolution rate of heulandite depends strongly on pH. Based on silica release, the logarithm of the steady-state dissolution rate at pH 2 is -13.1 mol cm -2 s -1 . The logarithm of the rate decreases to -15.8 mol cm -2 s -1 at pH 7.2 and increases again to -14.6 mol cm -2 s -1 at pH 12.2. At low pH, Al is released preferentially to silica; but at intermediate and high pH, the release of silica appears to be congruent relative to Al. The change in dissolution rate with pH indicates that at low pH, the dissolution mechanism is controlled by the detachment of a positively charged Al species, >Al-OH 2 + . Below pH 5, however, a silica-rich surface layer is formed requiring diffusion through the layer. At intermediate and high pH, it is likely that the dissolution rate is controlled by the detachment of a negatively charged silica species, >Si - O - . The reaction order of the hydrogen ion under low pH conditions is 0.7, and the reaction order of the OH - ion is 0.3 at high pH. The measured dissolution rates indicate that a 1 mm heulandite crystal would dissolve in 300,000 yrs if the solution composition is maintained undersaturated. 75 refs., 11 figs., 3 tabs

  1. Why alite stops hydrating below 80% relative humidity

    International Nuclear Information System (INIS)

    Flatt, Robert J.; Scherer, George W.; Bullard, Jeffrey W.

    2011-01-01

    It has been observed that the hydration of cement paste stops when the relative humidity drops below about 80%. A thermodynamic analysis shows that the capillary pressure exerted at that RH shifts the solubility of tricalcium silicate, so that it is in equilibrium with water. This is a reflection of the chemical shrinkage in this system: according to Le Chatelier's principle, since the volume of the products is less than that of the reactants, a negative (capillary) pressure opposes the reaction.

  2. Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C

    International Nuclear Information System (INIS)

    Weres, O.; Tsao, L.

    1988-01-01

    Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams

  3. The influence of reactivation by hydration of spent SO{sub 2} sorbents on their impact fragmentation in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, F.; Salatino, P.; Santoro, L.; Scala, F. [University of Naples Federico II, Naples (Italy)

    2010-09-01

    The relationship between calcination/sulphation and attrition/fragmentation of calcium-based SO{sub 2} sorbents in fluidized bed (FB) combustors has long been recognized, but only recently did attrition by impact receive due consideration. There is limited available information in the literature on the propensity of exhausted calcium-based sorbents to undergo high-velocity impact fragmentation after they have been reactivated by steam or water hydration. The present study addresses the relationship between hydration-induced reactivation of spent Ca-based sorbents and attrition by impact loading. The sorbent used in this work (a high-calcium Italian limestone) was pre-processed (sulphation at 850{sup o}C in a lab-scale FB, water hydration for 3 h at 25{sup o}C in a thermostatic bath, steam hydration for 3 h at 250 degrees C in a tubular reactor, dehydration at 850{sup o}C in the FB) and subjected to impact tests in a purposely designed impact test rig, operated with particle impact velocities ranging from 4 to 45 m s{sup -1}. The particle size distribution of the debris was worked out to define a fragmentation index and a probability density function of the size of generated fragments. The effect of hydration/reactivation of spent sorbent on propensity to undergo impact fragmentation was assessed, and results are discussed in the light of a mechanistic framework. It was observed that the prevailing particle breakage pattern was splitting/chipping for water-reactivated samples, disintegration for steam-reactivated samples. Characterization of sorbent microstructure by porosimetry and microscopic investigation on the reactivated samples highlighted a clear relationship between the extent of fragmentation and the cumulative specific volume of mesopores.

  4. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  5. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime

    KAUST Repository

    Kirchheim, A. P.; Fernà ndez-Altable, V.; Monteiro, P. J. M.; Dal Molin, D. C. C.; Casanova, I.

    2009-01-01

    Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.

  6. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime

    KAUST Repository

    Kirchheim, A. P.

    2009-02-26

    Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.

  7. The morphology of C–S–H: Lessons from {sup 1}H nuclear magnetic resonance relaxometry

    Energy Technology Data Exchange (ETDEWEB)

    Valori, A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Scrivener, K.L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-07-15

    {sup 1}H nuclear magnetic resonance has been applied to cement pastes, and in particular calcium silicate hydrate (C–S–H), for the characterisation of porosity and pore water interactions for over three decades. However, there is now renewed interest in the method, given that it has been shown to be non-invasive, non-destructive and fully quantitative. It is possible to make measurements of pore size distribution, specific surface area, C–S–H density and water fraction and water dynamics over 6 orders of magnitude from nano- to milli-seconds. This information comes in easily applied experiments that are increasingly well understood, on widely available equipment. This contribution describes the basic experiments for a cement audience new to the field and reviews three decades of work. It concludes with a summary of the current state of understanding of cement pore morphology from the perspective of {sup 1}H NMR.

  8. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    Science.gov (United States)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  9. Influence of aluminum hydroxide and lime on the hydration of tricalcium silicate

    NARCIS (Netherlands)

    de Jong, J.G.M.; Stein, H.N.; Stevels, J.M.

    1968-01-01

    The influence of amorphorous Al(OH)3 on the hydration of 3CaO.SiO2 in portland cement was studied with an isothermal calorimeter. The reaction mechanism was investigated qual. by x-ray diffraction, D.T.A., ir, and electron microscope methods and the course of Ca(OH)2 concn. was followed quant.

  10. Advances in understanding hydration of Portland cement

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-01-01

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C 3 A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed

  11. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  12. The Exchange Reaction Between Methane Hydrate and Carbon Dioxide: An Oceanic Feasibility Test

    Science.gov (United States)

    Dunk, R. M.; Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Hester, K. C.; Sloan, E. D.

    2006-12-01

    The conversion of CH4 hydrate to CO2 hydrate offers, in principle, a way of sequestering CO2, with the additional recovery of CH4 gas as an energy source. We report results from the first in-situ oceanic experiment on this reaction, carried out in August 2006 at the massive thermogenic hydrate mounds in 850 m water depth, Barkley Canyon, offshore from Vancouver Island (48° 18.642' N, 126° 3.903' W), using MBARI's ROV Tiburon deployed from the R/V Western Flyer. Two small cores (10 cm length, 4 cm diameter) of white hydrate were collected from exposed outcrops using an ROV operated tool and hydraulically ejected into a glass walled, closed top, reaction chamber. Approximately 2 L of liquid CO2 were dispensed into the chamber, and the chamber transferred to an aluminium base plate to seal the system. Under ambient conditions (P = 870 dbar, T = 4.0 °C, S = 34.2), the densities of natural gas hydrate and liquid CO2 are closely matched and less than that of seawater, where the hydrate cores floated at the top of the chamber fully immersed within the buoyant liquid CO2. Over the following ~48 hours, the system was inspected periodically with the ROV HDTV camera prior to examination with the sea-going laser Raman spectrometer, DORISS II. For this, the chamber was transferred to a Precision Underwater Positioner (PUP) that enabled focusing of the laser beam with sub- mm precision. Our choice of where to focus the laser was based upon the need to explore all phases the cored natural gas hydrate, liquid CO2, any created CO2 hydrate, and any liberated CH4 gas. The natural gas hydrate was composed primarily of CH4, with minor amounts of C2H6 and C3H8, indicating the presence of Structure II hydrate. To date, laboratory experiments have focused on the reaction between pure Structure I CH4 hydrate and CO2 vapour, where the difference in free energy between the CH4 and CO2 hydrate states provides a thermodynamic argument in favour of conversion. However for a Structure II

  13. Yttrium silicate as an oxidation protection layer for C/C-SiC materials. Synthesis, electrophoretic deposition and high temperature oxidation; Yttriumsilikat als Oxidationsschutzschicht fuer C/C-SiC-Werkstoffe. Synthese, elektrophoretische Abscheidung und Hochtemperaturoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Brauckmann, Jana

    2012-07-01

    Carbon fibre reinforced carbon composites are promising materials for high temperature applications. They exhibit excellent thermal shock resistance and nearly constant mechanical strength. A serious draw-back of this material is their poor resistivity towards oxidation at temperatures above 400 C. To make use of the very good thermal stability the material needs an outer oxidation protection coating. Silicon carbide has been successfully employed at temperatures up to 1300 C. To increase the application range towards higher temperatures an outer environmental barrier coating is needed. In the present work yttrium silicates were used to complement the silicon carbide coated carbon fibre reinforced carbon material. Both stable compounds in the quasi-binary system Y{sub 2}O{sub 3}-SiO{sub 2}, yttrium orthosilicate (Y{sub 2}SiO{sub 5}) and yttrium pyrosilicate (Y{sub 2}Si{sub 2}O{sub 7}), were separately applied to the test samples via electrophoretic deposition. Suitable suspensions were prepared in butanone with iodine as charging agent to adjust conductivity and particle charge. Galvanostatic deposition obeys a linear growth law for the selected deposition times. Alternatively the feasibility of direct electrophoretic deposition from an yttrium silicate precursor sol was tested. Emphasis was put on the development of a suitable sol-system based on alkoxide precursors. Samples coated either with Y{sub 2}SiO{sub 5} or Y{sub 2}Si{sub 2}O{sub 7} were investigated using thermogravimetric high temperature oxidation in the temperature range from 1450 C to 1650 C, respectively. The coated samples exhibited very good oxidation resistance up to temperatures of 1600 C, while the performance was reduced at 1650 C to a few hours. All samples showed a parabolic mass increase with time indicating a diffusion limited process governing the oxidation kinetics. The cross sections of the samples show a sharp border between the SiO{sub 2} that crystallizes to cristobalite and the

  14. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    International Nuclear Information System (INIS)

    Coleman, Nichola J.; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: ► This is the first study of Portland cement-based biomaterials by 27 Al and 29 Si NMR. ► 20 wt.% ZrO 2 radiopacifier accelerates the early cement hydration reactions. ► Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO 2 . ► Initial and final setting times are reduced by 25 and 22 min, respectively. ► ZrO 2 provides nucleation sites for the precipitation of early hydration products.

  15. Effects of bran pre-hydration on functional characteristics and bread baking quality of bran and flour blends

    Science.gov (United States)

    The effect of bran pre-hydration on the composition and bread baking quality was determined using bran and flour of two wheat varieties. Bran was hydrated in sodium acetate buffer (50 mM, pH 5.3) to 50% moisture at 25 or 55°C for 1.5 or 12 h. The soluble sugar content in bran increased with pre-hydr...

  16. Prevalence of C282Y, H63D, and S65C mutations in hereditary HFE-hemochromatosis gene in Lithuanian population.

    Science.gov (United States)

    Kucinskas, Laimutis; Juzenas, Simonas; Sventoraityte, Jurgita; Cedaviciute, Ruta; Vitkauskiene, Astra; Kalibatas, Vytenis; Kondrackiene, Jurate; Kupcinskas, Limas

    2012-04-01

    HFE-hemochromatosis is a common autosomal recessive disease caused by HFE gene mutations and characterized as iron overload and failure of different organs. The aim of this study was to determine the prevalence of C282Y (c.845 G>A), H63D (c.187 C>G), and S65C (c.193A>T) alleles of HFE gene in the Lithuanian population. One thousand and eleven healthy blood donors of Lithuanian nationality were examined in four different ethnic Lithuanian regions to determine HFE gene alleles and genotype frequencies. The samples of DNA were analyzed for the presence of restriction fragment length polymorphism and validated by DNA sequencing. Among 1,011 blood donors tested, the frequency of C282Y, H63D, and S65C alleles were 2.6%, 15.9%, and 1.9%, respectively. One third of the tested subjects (n = 336) had at least one of the C282Y or H63D HFE gene mutations. The screening of Lithuanian blood donors has detected 13 (1.3%) subjects with a genotype C282Y/C282Y or C282Y/H63D responsible for the development of HFE-hemochromatosis. The prevalence of C282Y mutation was significantly higher among the inhabitants of Zemaitija (Somogitia) at the Baltic Sea area (5.9%) in comparison to the regions of continental part of Lithuania (2.4% in Dzukija, 2.3% in Aukstaitija, and 2% in Suvalkija, p HFE gene mutations in ethnic Lithuanians showed that the frequencies of H63D, C282Y, and S65C of HFE gene alleles are similar to the other North-Eastern Europeans, especially in the Baltic region (Estonia, Latvia), Poland, and part of Russia (Moscow region).

  17. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  18. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Semmineh, Natenael; Bililign, Solomon; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2009-01-01

    Collisions of excited Li(4p) states with C 2 H 4 , C 2 H 6 and C 3 H 8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C 2 H 4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C 2 H 4 , C 2 H 6 and C 3 H 8 ) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C 2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  19. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    relationships between water intake, hydration, vasopressin, and health outcomes. Thus, this emerging field represents an excellent opportunity, particularly for young researchers, to develop relevant and novel lines of research. © 2017 The Author(s) Published by S. Karger AG, Basel.

  20. Adsorption and dissociation of H{sub 2}S on Mo{sub 2}C(001) surface-A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dianling; Guo, Wenyue, E-mail: wyguo@upc.edu.cn; Liu, Yunjie; Chi, Yuhua

    2015-10-01

    Highlights: • Adsorption of reactants, intermediates involved was investigated. • The Mulliken charge and partial density of states were analyzed. • The dissociation mechanism was investigated. • The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface was given. - Abstract: The adsorption and decomposition reaction mechanisms of H{sub 2}S on Mo{sub 2}C(001) has been systematically studied using self-consistent periodic density functional theory. Results show that the molecular of H{sub 2}S is adsorbed either on the Mo top site or bridge site. Mulliken population analysis and density of states for H{sub 2}S/Mo-terminated Mo{sub 2}C(001) adsorption system are examined to confirm the adsorption mechanism of H{sub 2}S with the Mo{sub 2}C(001) surface, which can involve the donation of charge from the “s lone pair electrons” that are LUMO orbitals into the surface and the back donation of electrons from the surface into the HOMO orbital. The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface can be H{sub 2}S{sub top} → SH{sub fcc} + H{sub fcc} → S{sub fcc} + H{sub fcc} + H{sub fcc}. The first step is the rate-determining step because it has the smallest rate constant among the possible reactions pathways.

  1. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6).

    Science.gov (United States)

    Ke, Haochen; Lisy, James M

    2015-10-14

    The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.

  2. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  3. A New Biphasic Dicalcium Silicate Bone Cement Implant

    Directory of Open Access Journals (Sweden)

    Fausto Zuleta

    2017-07-01

    Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  4. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p ceramic types used (p ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  5. Armouring of well cement in H2S–CO2 saturated brine by calcite coating – Experiments and numerical modelling

    International Nuclear Information System (INIS)

    Jacquemet, Nicolas; Pironon, Jacques; Lagneau, Vincent; Saint-Marc, Jérémie

    2012-01-01

    The active acid gas (H 2 S–CO 2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO 2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO 2 ) and ferrite sulfidation (by H 2 S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H 2 S–CO 2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral

  6. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO 2 ) and lithium silicate (Li 2 SiO 3 ) by the reaction: Li 6 + n → 4 He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100 0 C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T 2 ), while in laboratory extractions (300-1300 0 C), the tritium appeared primarily in the condensible form (HTO and T 2 O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H 2 O, CO 2 , CO, O 2 , H 2 , NO, SO 2 , SiF 4 and traces of hydrocarbons

  7. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    Science.gov (United States)

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen

    A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gases...... formation may be performed at pressures of approximately 20 MPa and temperatures below 280 K. Thermodynamic promoters are needed, to reduce the pressure requirement of the process, thereby making it competitive to existing capture technologies. A literature study is presented focusing mainly...... on thermodynamic gas hydrate promotion by hydrate formers stabilising the classical gas clathrate hydrate structures (sI, sII and sH) at low to moderate pressures. Much literature is available on this subject. Both experimental and theoretical studies presented in the literature have pointed out cyclopentane...

  9. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  10. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  11. Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane

    Science.gov (United States)

    Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.

  12. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    Directory of Open Access Journals (Sweden)

    Lijie Guo

    2018-01-01

    Full Text Available This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS on cemented tailing backfill (CTB that contains lead-zinc smelting slag. CTB and cemented paste (CP containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.

  13. Observation of interstitial molecular hydrogen in clathrate hydrates.

    Science.gov (United States)

    Grim, R Gary; Barnes, Brian C; Lafond, Patrick G; Kockelmann, Winfred A; Keen, David A; Soper, Alan K; Hiratsuka, Masaki; Yasuoka, Kenji; Koh, Carolyn A; Sum, Amadeu K

    2014-09-26

    The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior

    International Nuclear Information System (INIS)

    Carde, C.; Torrenti, J.M.; Francois, R.

    1996-01-01

    This paper deals with the effect of the leaching process of cement based materials on their mechanical properties. This process induces mainly a total leaching of Ca(OH) 2 and a progressive decalcification of C-S-H which leads to a gradient of C/S ratio in the leaching zone. In a previous work, the authors venture the hypothesis that the dissolution of calcium hydroxide was the essential parameter governing both decrease in strength and increase in porosity in the case of a paste sample made with an OPC cement which leads to a 20% content of calcium. In order to quantify the effect of the decrease of C/S ratio in C-S-H, the authors have performed experiments on paste samples with the admixture of silica fume to reduce the content of calcium hydroxide and thus emphasize the effect of C/S ratio decrease of the C-S-H. The leaching process was achieved by the use of a 50% concentrate solution of ammonium nitrate. Compression tests were conducted on micro-cylinder samples (10, 12, 14, 20 and 30 mm of diameter) because of the slow kinetics of degradation due to the leaching. The deterioration of the cement paste and the mortar exposed to the action of the ammonium nitrate was indicated by a peripheral zone of less resistance. The experimental results allow the modeling of the mechanical behavior of cement pastes in relation to the ratio of degraded area over total area of the sample A d /A t . The model thus defined allows separation of the effect of calcium hydroxide leaching and C-S-H leaching, and shows the importance of the first one. The current research program tries to characterize the deterioration of the mechanical properties of the concrete surrounding radioactive wastes, due to the water flow during storage

  15. The role of boric acid in the synthesis of Eni Carbon Silicates.

    Science.gov (United States)

    Zanardi, Stefano; Bellussi, Giuseppe; Parker, Wallace O'Neil; Montanari, Erica; Bellettato, Michela; Cruciani, Giuseppe; Carati, Angela; Guidetti, Stefania; Rizzo, Caterina; Millini, Roberto

    2014-07-21

    The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.

  16. A pilot study to investigate the effect of a hydration regime upon immediate and 24 h delayed MRI contrast agent reactions

    International Nuclear Information System (INIS)

    Bailey, William; Marshall, Gill; Coals, Jacqui

    2007-01-01

    Purpose: Adverse reaction rates to gadolinium based magnetic resonance imaging (MRI) contrast agents which occur immediately post-injection are well documented. However little research has investigated delayed reaction rates (i.e. 30 min-24 h). This study evaluated the rate of immediate and delayed adverse reaction rates to a gadolinium based MRI contrast agent (Dotarem) and investigated the effect of a hydration regime on the rate of adverse events. Method: Fifty-eight patients received no preparation, prior to administration of the contrast agent, whilst another 58 underwent a hydration protocol. The patients had their answers to a questionnaire recorded immediately after the scanning procedure and also via a follow-up telephone call 24 h later. Results: In the unprepared group 9 patients (15.5%) experienced immediate adverse events, i.e. within 0-30 min, whereas 24 (41.4%) experienced delayed reactions (30 min-24 h) after administration of the contrast agent. In the hydrated patient group 6 (10.3%) experienced an immediate adverse event, whilst 8 (13.7%) experienced delayed events post-injection. The difference in the total reaction rates for the unprepared and hydrated groups was statistically significant for immediate and delayed reactions. The difference in the rates of delayed headache, nausea, dizziness and problems with the injection site, for the unprepared and hydrated groups was statistically significant. Conclusion: An oral hydration regime administered to patients, both before and after MRI contrast agent administration significantly reduced the total number of immediate and delayed reactions. It also significantly reduced delayed headache, nausea, dizziness and problems at the injection site. Whilst this pilot study had methodological shortcomings, the strength of the relationship demonstrated are worthy of further investigation

  17. Microstructure and microanalysis of some ancient building materials

    International Nuclear Information System (INIS)

    Majumdar, A.J.; Rayment, D.L.; Pettifer, K.

    1988-12-01

    In order to assess the very long term of durability of modern Portland cements for encapsulating certain types of radioactive waste, the microstructure and microanalysis of concretes of various ages made from such cements are compared with those from similar materials of ancient origins with ages upto 2500 years used in early Greek, Roman and British Construction. Most of the historical 'concretes' examined were heavily carbonated and at best showed only traces of the calcium silicate hydrate (C-S-H) phase, the heart of modern Portland Cement concretes. The notable exception was the 1700 years old concrete from Hadrian's Wall - the mortar in this was rich in C-S-H. The modern concrete samples, from 10 to 140 years old, showed little carbonation and their compositions of the C-S-H phase were very similar to those found from Hadrian's Wall. From all the evidence examined, it is concluded that the C-S-H phase is capable of surviving intact for several thousands of years in the absence of external chemical attack. (author)

  18. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  19. Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage

    International Nuclear Information System (INIS)

    Thomas, Jeffrey J.; Allen, Andrew J.; Jennings, Hamlin M.

    2012-01-01

    Alkali-activated slag (AAS) paste was analyzed using small-angle neutron scattering (SANS). The scattering response indicates that the microstructure consists of a uniform matrix of hydration product with a high surface area studded with unhydrated cores of slag particles. In contrast with portland cement paste, no surface fractal scattering regime was detected, and elevated temperature curing (at 60 °C) had no detectable effect on the microstructure at any length scale studied. The specific surface area of the AAS pastes is about 25% higher than that of a portland cement paste cured under the same conditions. The composition and mass density of the nanoscale solid C–S–H phase formed in the AAS paste was determined using a previously developed neutron scattering method, in conjunction with a hydration model. The result ((CaO) 0.99 –SiO 2 –(Al 2 O 3 ) 0.06 –(H 2 O) 0.97 , d = (2.73 ± 0.02) g/cm 3 ) is significantly lower in calcium and in water as compared to portland cement or pure tricalcium silicate paste. These values were used to calculate the chemical shrinkage that would result from complete hydration of the AAS paste. The result, (12.2 ± 1.5) cm 3 of volumetric shrinkage per 100 g of unhydrated cement, is about twice the amount of chemical shrinkage exhibited by normal cement pastes.

  20. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    Science.gov (United States)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  1. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  2. Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass Gasification Products to Syngas

    Directory of Open Access Journals (Sweden)

    Scott L. Swartz

    2012-04-01

    Full Text Available Magnesium nickel silicate (MNS has been investigated as a catalyst to convert tars and light hydrocarbons to syngas (CO and H2 by steam reforming and CO2 reforming in the presence of H2S for biomass gasification process at NexTech Materials. It was observed that complete CH4 conversion could be achieved on MNS catalyst granules at 800–900 °C and a space velocity of 24,000 mL/g/h in a simulated biomass gasification stream. Addition of 10–20 ppm H2S to the feed had no apparent impact on CH4 conversion. The MNS-washcoated monolith also showed high activities in converting methane, light hydrocarbons and tar to syngas. A 1200 h test without deactivation was achieved on the MNS washcoated monolith in the presence of H2S and/or NH3, two common impurities in gasified biomass. The results indicate that the MNS material is a promising catalyst for removal of tar and light hydrocarbons from biomass gasified gases, enabling efficient use of biomass to produce power, liquid fuels and valuable chemicals.

  3. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  4. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  5. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.

    Science.gov (United States)

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md Rezaul; Weaver, James C; Arima, Jiro; Mori, Nobuhiro

    2015-09-15

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.

  6. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS

    International Nuclear Information System (INIS)

    Vernazza, P.; Marsset, M.; Groussin, O.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A.; Castillo-Rogez, J.; Beck, P.; Emery, J.; Brunetto, R.; Djouadi, Z.; Dionnet, Z.; Delbo, M.; Carry, B.; Marchis, F.; Zanda, B.; Borondics, F.

    2017-01-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D  ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm −3 ) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  7. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  8. Evidencing of collagen polypeptide sequences responsible of hydration by means of 13 C NMR spectra

    International Nuclear Information System (INIS)

    Trandafir, Viorica; Georgescu, Mariana; Albu, Bujor; Popescu, G.; Akutsu, Hiroshi; Nechifor, Gheorghe

    2000-01-01

    The aim of these studies is to prepare biomaterials of high biocompatibility to the human body, provided for a long lifetime. Among these important biomaterials also accounts the collagen, with a large application area in medicine, pharmaceutics, cosmetics, etc. Collagen biomaterials of various hydration levels (between 23 - 83%) were prepared by a particular technique, using a matrix of 23% initial humidity. In order to investigate the structural and conformational changes from the collagen macromolecules by denaturation - renaturation, hydration - dehydration, the high-resolution 13 C - NMR solid state and also pore size distribution analysis were carried out. The collagen biomaterials can be made in a large range of shapes and can have structures of mimesis, close to those of the live tissues, when hydrated. (authors)

  9. Frequency of the hemochromatosis HFE mutations C282Y, H63D, and S65C in blood donors in the Faroe Islands

    DEFF Research Database (Denmark)

    Milman, Nils; á Steig, Torkil; Koefoed, Pernille

    2004-01-01

    on the HFE gene was assessed by genotyping using the polymerase chain reaction (PCR) technique and calculated from direct allele counting. We found no C282Y homozygous subjects; 28 (14.0%) subjects were C282Y heterozygous and four subjects were C282Y/H63D compound heterozygous (2.0%). The C282Y allele......The aim of the study was to assess the frequencies of the hereditary hemochromatosis HFE mutations C282Y, H63D, and S65C in the population in the Faroe Islands. The series comprised 200 randomly selected blood donors of Faroese heritage. The frequency of the C282Y, H63D, and S65C mutations.......6%. Screening of larger groups of the Faroese population for HFE mutations especially C282Y should be considered in order to establish the penetrance....

  10. Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau

    International Nuclear Information System (INIS)

    Wu Qingbai; Jiang Guanli; Zhang Peng

    2010-01-01

    Permafrost accounts for about 52% of the total area of the Qinghai-Tibet Plateau, and the permafrost area is about 140 x 10 4 km 2 . The mean annual ground temperature of permafrost ranges from -0.1 to -5 deg. C, and lower than -5 deg. C at extreme high-mountains. Permafrost thickness ranges from 10 to 139.4 m by borehole data, and more than 200 m by geothermal gradients. The permafrost geothermal gradient ranges from 1.1 deg. C/100 m to 8.0 deg. C/100 m with an average of 2.9 deg. C/100 m, and the geothermal gradient of the soil beneath permafrost is about 2.8-8.5 deg. C/100 m with an average of 6.0 deg. C/100 m in the Qinghai-Tibet Plateau. For a minimum of permafrost geothermal gradients of 1.1 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated to be about 27.5% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For an average of permafrost geothermal gradients of 2.9 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated about 14% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For the sII hydrate, the areas of the potential occurrence of sII hydrate are more than that of sI methane hydrate.

  11. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  12. A new nonlinear optical silicate carbonate K2Ca[Si2O5](CO3) with a hybrid structure of kalsilite and soda-like layered fragments

    Science.gov (United States)

    Belokoneva, Elena L.; Stefanovich, Sergey Yu.; Volkov, Anatoly S.; Dimitrova, Olga V.

    2016-10-01

    Single crystals of a new silicate carbonate, K2Ca[Si2O5](CO3), have been synthesized in a multi-components hydrothermal solution with a pH value close to neutral and a high concentration of a carbonate mineralizer. The new compound has an axial structure (s.g. P6322) with unit cell parameters a = 5.04789 (15), c = 17.8668 (6) Å. Pseudosymmetry of the structure corresponds to s.g. P63/mmc which is broken only by one oxygen position. The structure consists of two layered fragments: one of the type of the mineral kalsilite (KAlSiO4) and the other of the high-temperature soda-like α-Na2CO3, Ca substituting for Na. The electro-neutral layer K2[Si2O5] (denoted K) as well as the layer Ca(CO3) (denoted S) may separately correspond to individual structures. In K2Ca[Si2O5](CO3) the S-K layers are connected together via Ca-O interactions between Ca atoms from the carbonate layer and apical O atoms from the silicate one, and also via K-O interlayer interactions. A hypothetical acentric structure, sp.gr. P-62c, is predicted on the basis of the order-disorder theory. It presents another symmetrical option for the arrangement of K-layers relative to S-layers. The K,Ca-silicate-carbonate powder produces a moderate SHG signal that is two times larger that of the α-quartz powder standard and close to other silicates with acentric structures and low electronic polarizability.

  13. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    Science.gov (United States)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  14. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  15. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  16. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kavita [Central University of Jharkhand, Ranchi (India); Bhattacharjee, Santanu, E-mail: santanu@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur (India)

    2017-06-15

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La{sub 2}Si{sub 2}O{sub 7}. • LaSPT sintered at 1200 °C is fairly conducting.

  17. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    International Nuclear Information System (INIS)

    Parmar, Kavita; Bhattacharjee, Santanu

    2017-01-01

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. • LaSPT sintered at 1200 °C is fairly conducting.

  18. Dietary controlled carcinogenicity study of chloral hydrate in male B6C3F1 mice

    International Nuclear Information System (INIS)

    Leakey, Julian E.A.; Seng, John E.; Latendresse, John R.; Hussain, Nursreen; Allen, Laura J.; Allaben, William T.

    2003-01-01

    Chloral hydrate, which is used as a sedative in pediatric medicine and is a by-product of water chlorination, is hepatocarcinogenic in B6C3F 1 mice, a strain that can exhibit high rates of background liver tumor incidence, which are associated with increased body weight. In this study, dietary control was used to manipulate body growth in male B6C3F 1 mice in a 2-year bioassay of chloral hydrate. Male B6C3F 1 mice were treated with water or 25, 50, or 100 mg/kg chloral hydrate by gavage. The study compared ad libitum-fed mice with dietary controlled mice. The latter received variably restricted feed allocations to maintain their body weights on a predetermined 'idealized' weight curve predictive of a terminal background liver tumor incidence of 15-20%. These mice exhibited less individual body weight variation than did their ad libitum-fed counterparts. This was associated with a decreased variation in liver to body weight ratios, which allowed the demonstration of a statistically significant dose response to chloral hydrate in the dietary controlled, but not the ad libitum-fed, test groups. Chloral hydrate increased terminally adjusted liver tumor incidence in both dietary controlled (23.4, 23.9, 29.7, and 38.6% for the four dose groups, respectively) and ad libitum-fed mice (33.4, 52.6, 50.6, and 46.2%), but a statistically significant dose response was observed only in the dietary controlled mice. This dose response positively correlated with markers of peroxisomal proliferation in the dietary controlled mice only. The study suggests that dietary control not only improves terminal survival and decreases interassay variation, but also can increase assay sensitivity by decreasing intra-assay variation

  19. Sulfur Concentration at Sulfide Saturation in Anhydrous Silicate Melts at Crustal Conditions

    Science.gov (United States)

    Liu, Y.; Samaha, N.; Baker, D. R.

    2006-05-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1250°C to 1450°C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic. All experiments were saturated with a FeS melt. Temperature was confirmed to have a positive effect on the SCSS and no measurable pressure effect was observed. Oxygen fugacity was controlled to be either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. A series of models were constructed to predict the SCSS as a function of temperature, pressure, melt composition, oxygen fugacity and sulfur fugacity of the system. The coefficients were obtained by the regression of experimental data from this study and from data in the literature. The best model found for the prediction of the SCSS is: ln S (ppm) = 996/T + 9.875 + 0.997 ln MFM + 0.1901 ln fO2 - 0.0722 (P/T) -0.115 ln f S2, where P is in bar, T is in K, and MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM = [Na + K + 2 (Ca + Mg+ Fe2+)]/[Si × (Al + Fe3+)]. This model predicts the SCSS in anhydrous silicate melts from rhyolitic to basaltic compositions at crustal conditions from 1 bar to 1.25 GPa, temperatures from ~1200 to 1400 C, and oxygen fugacities between approximately two log units below the fayalite-quartz-magnetite buffer and one log unit above the nickel-nickel oxide buffer. For cases where the oxygen and sulfur fugacities can not be adequately estimated a simpler model also works acceptably: ln S (ppm) = -5328/T + 8.431 + 1.244 ln MFM - 0.01704(P/T) + ln aFeS, where aFeS is the activity of FeS in the sulfide melt and is well approximated by a value of 1. Additional experiments were performed on other basalts in a temperature range from 1250 C to 1450 C at 1 GPa to test the models. The model

  20. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  1. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  2. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  3. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  4. Amorphous-crystalline transition studied in hydrated MoO3

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Lartundo-Rojas, L.; Livage, J.; Julien, C.M.

    2006-01-01

    In this work we study the thermal behavior of hydrated MoO 3 synthesized via acidification of sodium molybdate. MoO 3 .nH 2 O (n = 1.4) amorphous compound was heated in air at increasing temperatures in order to obtain the crystalline MoO 3 phase. We have studied the structural changes as a function of annealing temperature by Raman spectroscopy. A statistical study to determine the average size of the crystallites at each annealing step has been realized by scanning electron microscopy. Results show that the hydrated MoO 3 .1.4H 2 O glass transforms in an amorphous MoO 3 .0.7H 2 O phase prior to its crystallization, while the sample heated at 500 deg. C crystallizes into the orthorhombic α-MoO 3 phase with micro-crystallites having an average size of 6.8 μm

  5. Long distance run induced hydration and kidney function changes in marathoners

    Directory of Open Access Journals (Sweden)

    Luiz Guilherme Cruz Gonçalves

    2015-09-01

    Full Text Available AbstractThe aim of the study was to verify the hydration status and the kidney function in marathoners during the training season and after a marathon race. Nine male runners were investigated during 12 weeks of training. Urine was collected in four moments; in the beginning (C1 and during (C2 the training program, before (C3 and after (C4 the competition. Urine pH was measured using reagent tapes, urine density with a refractometer, protein excretion by Bradford assay and erythrocytes and leucocytes by microscopy. Changes were observed when C-4 was compared to the other collection times for all variables investigated. It is possible to conclude that physical exertion induced important changes in the hydration status and glomerular membrane selectivity to macromolecules, modifying the kidney function of the marathoners in C4.

  6. U-Th-He dating of diamond-forming C-O-H fluids and mantle metasomatic events

    Science.gov (United States)

    Weiss, Y.; Class, C.; Goldstein, S. L.; Winckler, G.; Kiro, Y.

    2017-12-01

    Carbon- and water-rich (C-O-H) fluids play important roles in the global material circulation, deep Earth processes, and have major impacts on the sub-continental lithospheric mantle (SCLM). Yet the origin and composition of C-O-H fluids, and the timing of fluid-rock interaction, are poorly constrained. `Fibrous' diamonds encapsulate C-O-H mantle fluids as μm-scale high-density fluid (HDF) inclusions. They can be directly sampled, and offer unique opportunities to investigate metasomatic events involving C-O-H fluids and the SCLM through Earth history. Until now no technique has provided reliable age constraints on HDFs. We applied a new in-vacuum crushing technique to determine the He abundances and 3He/4He ratios of HDFs in diamonds from the Kaapvaal lithosphere, South Africa. Three diamonds with saline HDFs have 3He/4He=3-4Ra. In 4He/3He vs 238U/3He space they define an `isochron' age of 96±45Ma, representing the first radiometric age reported for HDFs, and thus for C-O-H mantle fluids. In addition, a diamond with silicic HDFs and two that carry carbonatitic HDFs have low 3He/4He=0.07-0.6Ra. Using the measured U, Th, 4He and 3He contents of these diamonds, and the equation for 4He production from U-Th decay, we calculate 3He/4He as a function of time. Metasomatic fluids are derived from MORB, SCLM or subducted components with R/Ra=3-10, and this is assumed as the HDFs initial composition. The silicic and carbonatitic HDFs signify two older metasomatic events at 350 and 850 Ma, respectively. Thus, our new data reveal 3 metasomatic episodes in the Kaapvaal SCLM during the last 1 Ga, each by a different metasomatic agent. These 3 episodes correspond to late-Mesozoic kimberlite eruptions at 85 Ma, and the regional Namaqua-Natal and Damara Orogenies at 1 Ga and 500 Ma. We propose that the radioactive U-Th-He system in HDF-bearing diamonds can be used as a tool to provide meaningful radiometric ages of deep C-O-H fluids, and the timing of SCLM metasomatic events.

  7. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  8. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO/sub 2/) and lithium silicate (Li/sub 2/SiO/sub 3/) by the reaction: Li/sup 6/ + n ..-->.. /sup 4/He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100/sup 0/C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T/sub 2/), while in laboratory extractions (300-1300/sup 0/C), the tritium appeared primarily in the condensible form (HTO and T/sub 2/O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H/sub 2/O, CO/sub 2/, CO, O/sub 2/, H/sub 2/, NO, SO/sub 2/, SiF/sub 4/ and traces of hydrocarbons.

  9. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  10. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2008-08-01

    Full Text Available A aplicação de silicatos pode promover incrementos na capacidade de troca de cátions, favorecer a disponibilização de ânions, especialmente o H2PO4- (fosfato diácido, elevar o pH, amenizar a toxidez de Al e, de maneira geral, incrementar a disponibilidade de nutrientes para as plantas, apresentando, porém, uma eficiência agronômica inferior em comparação aos carbonatos. Com o objetivo de avaliar o efeito da substituição do carbonato de Ca por silicato de Ca sobre as propriedades químicas dos solos, especialmente em relação à disponibilidade de P, foram realizados quatro experimentos em casa de vegetação, num delineamento inteiramente casualizado, com quatro repetições. Os tratamentos consistiram de cinco níveis de substituição (0, 25, 50, 75 e 100 % do carbonato de Ca por silicato de Ca, mantendo uma relação estequiométrica Ca:Mg de 4:1 e o mesmo conteúdo de CaO, suficientes para elevar V = 60 %. Os tratamentos foram aplicados em amostras de 4 dm³ de Neossolo Quartzarênico órtico, Latossolo Vermelho-Amarelo textura média, Latossolo Vermelho-Amarelo textura argilosa e Latossolo Vermelho textura muito argilosa, sendo cada solo um experimento. Foram determinados os valores dos atributos químicos dos solos: pH em H2O, P, P remanescente (P-rem, K, Ca, Mg, Si, Al, H + Al, matéria orgânica (MO, Cu, Mn, Zn e B, soma de bases (S, a CTC efetiva (t, a CTC em pH 7,0 (T, a saturação por bases (V e a saturação por Al (m, os quais foram submetidos à analise de variância e ao ajuste de modelos de regressão simples, considerando os níveis de substituição de CaCO3 por CaSiO3. Verificou-se que a substituição de carbonato por silicato promoveu aumentos significativos nos valores de Si, Al, H + Al e m e redução nos valores de P-rem, pH, S, t e V; já os valores de P Mehlich-1, K, Mg, MO, T, Mn, Cu e B não foram influenciados significativamente. Houve declínio na disponibilidade de Zn somente no solo RQo. A efic

  11. Synthesis and complex study of the crystal hydrate Zn{sub 2}ZrF{sub 8}.12H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Elena; Didenko, Nina; Gayvoronskaya, Kseniya; Slobodyuk, Arseniy; Gerasimenko, Andrey [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok (Russian Federation)

    2016-05-15

    The synthesis and study of structure and properties of a crystal hydrate of the composition Zn{sub 2}ZrF{sub 8}.12H{sub 2}O were performed by XRD, DTA analysis as well as IR, Raman, and {sup 1}H, and {sup 19}F NMR, including {sup 19}F MAS NMR spectroscopy. The compound crystallizes in the monoclinic syngony with the following unit cell parameters: a = 20.9649 (12), b = 9.6851 (6), c = 24.0209 (14) Aa, β = 103.742 (2) , space group C2/c, Z = 12. The structure is built from monomeric complex [ZrF{sub 8}]{sup 4-} and [Zn(H{sub 2}O){sub 6}]{sup 2+} linked through hydrogen bonds of different lengths (O-H..F and O-H..O). The peculiarity of the structure consists in the presence of short hydrogen bonds (interatomic O..F distances 2.5-2.6 Aa). Analysis of the IR and Raman spectra allowed interpretation of bands corresponding to vibrations of the [ZrF{sub 8}]{sup 4-} anion and to describe hydrogen bonds in the structure of Zn{sub 2}ZrF{sub 8}.12H{sub 2}O. Phase transformations in the process of thermal dehydration were studied on the basis of changes in vibrational and NMR spectra. It has been established that the interligand exchange in the complex anion takes place as early as at -103 C, whereas no reorientation of hexaaquacations was observed up to 47 C. At 58 C, the compound undergoes an incongruent melting accompanied with formation of much more stable ZnZrF{sub 6}.6H{sub 2}O and an aqueous salty liquid phase characterized with high mobility of fluorine atoms and protons, in accordance with the NMR spectroscopic data. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Thermal decomposition of uranyl sulphate hydrate

    International Nuclear Information System (INIS)

    Sato, T.; Ozawa, F.; Ikoma, S.

    1980-01-01

    The thermal decomposition of uranyl sulphate hydrate (UO 2 SO 4 .3H 2 O) has been investigated by thermogravimetry, differential thermal analysis, X-ray diffraction and infrared spectrophotometry. As a result, it is concluded that uranyl sulphate hydrate decomposes thermally: UO 2 SO 4 .3H 2 O → UO 2 SO 4 .xH 2 O(2.5 = 2 SO 4 . 2H 2 O → UO 2 SO 4 .H 2 O → UO 2 SO 4 → α-UO 2 SO 4 → β-UO 2 SO 4 → U 3 O 8 . (author)

  13. Synthesis of tobermorite: A cement phase expected under repository conditions

    International Nuclear Information System (INIS)

    Martin, S.I.

    1994-11-01

    In this study I have synthesized tobermorite, Ca 5 Si 6 O l6 (OH) 2. 4H 2 0, a principal crystalline phase expected to form in cementitious materials subjected to elevated temperatures in a potential nuclear waste repository. Fluids interacting with these materials may have a profound effect on the integrity of the waste package and on transport of radionuclides. At ambient temperature, Portland cement reacts with water to form an amorphous calcium-silicate-hydrate (C-S-H) gel. At elevated temperatures, crystalline phases of various hydration states form. The C-S-H system has not been well characterized at elevated temperatures up to 250 degrees C, which has been considered a bounding temperature for the potential Yucca Mountain repository. Physical, chemical, and thermodynamic data for these cement minerals that are predicted to be stable at these temperatures must be obtained from synthetic or natural samples to help predict fluid chemistry. For some of these minerals natural samples are difficult to obtain in sufficient quantity and purity. Therefore, monomineralic phases must be synthesized in order to unambiguously define their behavior. The synthetic or natural phases will be characterized as part of a comprehensive study to define the behavior of cementitious materials in a repository environment

  14. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Science.gov (United States)

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016

  15. Modified tricalcium silicate cement formulations with added zirconium oxide.

    Science.gov (United States)

    Li, Xin; Yoshihara, Kumiko; De Munck, Jan; Cokic, Stevan; Pongprueksa, Pong; Putzeys, Eveline; Pedano, Mariano; Chen, Zhi; Van Landuyt, Kirsten; Van Meerbeek, Bart

    2017-04-01

    This study aims to investigate the effect of modifying tricalcium silicate (TCS) cements on three key properties by adding ZrO 2 . TCS powders were prepared by adding ZrO 2 at six different concentrations. The powders were mixed with 1 M CaCl 2 solution at a 3:1 weight ratio. Biodentine (contains 5 wt.% ZrO 2 ) served as control. To evaluate the potential effect on mechanical properties, the mini-fracture toughness (mini-FT) was measured. Regarding bioactivity, Ca release was assessed using ICP-AES. The component distribution within the cement matrix was evaluated by Feg-SEM/EPMA. Cytotoxicity was assessed using an XTT assay. Adding ZrO 2 to TCS did not alter the mini-FT (p = 0.52), which remained in range of that of Biodentine (p = 0.31). Ca release from TSC cements was slightly lower than that from Biodentine at 1 day (p > 0.05). After 1 week, Ca release from TCS 30 and TCS 50 increased to a level that was significantly higher than that from Biodentine (p  0.05). EPMA revealed a more even distribution of ZrO 2 within the TCS cements. Particles with an un-reacted core were surrounded by a hydration zone. The 24-, 48-, and 72-h extracts of TCS 50 were the least cytotoxic. ZrO 2 can be added to TCS without affecting the mini-FT; Ca release was reduced initially, to reach a prolonged release thereafter; adding ZrO 2 made TCS cements more biocompatible. TCS 50 is a promising cement formulation to serve as a biocompatible hydraulic calcium silicate cement.

  16. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  17. Determination of structural, thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump

    International Nuclear Information System (INIS)

    Boer, R. de; Haije, W.G.; Veldhuis, J.B.J.

    2002-01-01

    Structural, thermodynamic and phase properties in the Na 2 S-H 2 O system for application in a chemical heat pump have been investigated using XRD, TG/DTA and melting point and vapour pressure determinations. Apart from the known crystalline phases Na 2 S·9H 2 O, Na 2 S·5H 2 O and Na 2 S a new phase Na 2 S·2H 2 O has been proven to exist. Na 2 S·((1)/(2))H 2 O is not a phase but a 3:1 mixture of Na 2 S and Na 2 S·2H 2 O, presumably stabilised by very slow dehydration kinetics. The vapour pressure-temperature equilibria of the sodium sulphide hydrates have been determined and a consistent set of thermodynamic functions for these compounds has been derived. XRD measurements indicate the topotactic character of the transitions between the hydration states

  18. Observation of $S=+1$ Narrow Resonances in the System $pK^0_s$ from $p+\\rm {C_3H_8}$ Collision at 10 GeV/$c$

    CERN Document Server

    Aslanyan, P Zh; Rikhvitskaya, G G

    2004-01-01

    Experimental data from a 2 m propane bubble chamber have been analyzed to search for an exotic baryon state, the $\\Theta^+$ baryon, in the $pK^0_s$ decay mode for the reaction $p+{\\rm C_3H_8}$ at 10 GeV/$c$. The $pK^0_s$ invariant mass spectrum shows resonant structures with $M_{p K_s^0}=1540\\pm 8$, $1613\\pm10$, $1821\\pm11$ MeV/$c^2$ and $\\Gamma_{p K_s^0}= 9.2\\pm1.8$, $16.1\\pm4.1$, $28.0\\pm9.4$ MeV/$c^2$. The statistical significance of these peaks has been estimated as $5.5$, $4.8$ and $5.0$ s.d., respectively. There are also small peaks in mass regions of 1487 (3.0 s.d.), 1690 (3.6 s.d.) and 1980 (3.0 s.d.) MeV/$c^2$.

  19. Study on molecular controlled mining system of methane hydrate; Methane hydrate no bunshi seigyo mining ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyagawa, M; Saito, T; Kobayashi, H; Karasawa, H; Kiyono, F; Nagaoki, R; Yamamoto, Y; Komai, T; Haneda, H; Takahashi, Y [National Institute for Resources and Environment, Tsukuba (Japan); Nada, H [Science and Technology Agency, Tokyo (Japan)

    1997-02-01

    Basic studies are conducted for the collection of methane from the methane hydrate that exists at levels deeper than 500m in the sea. The relationship between the hydrate generation mechanism and water cluster structure is examined by use of mass spectronomy. It is found that, among the stable liquid phase clusters, the (H2O)21H{sup +} cluster is the most stable. Stable hydrate clusters are in presence in quantities, and participate in the formation of hydrate crystal nuclei. For the elucidation of the nucleus formation mechanism, a kinetic simulation is conducted of molecules in the cohesion system consisting of water and methane molecules. Water molecules that array near methane molecules at the normal pressure is disarrayed under a higher pressure for rearray into a hydrate structure. Hydrate formation and breakdown in the three-phase equilibrium state of H2O, CH4, and CO2 at a low temperature and high pressure are tested, which discloses that supercooling is required for formation, that it is possible to extract CH4 first for replacement by guest molecule CO2 since CO2 is stabler than CH4 at a lower pressure or higher temperature, and that formation is easier to take place when the grain diameter is larger at the formation point since larger grain diameters result in a higher formation temperature. 3 figs.

  20. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  1. Real-time synchrotoron radiation X-ray diffraction and abnormal temperature dependence of photoluminescence from erbium silicates on SiO2/Si substrates

    Directory of Open Access Journals (Sweden)

    H. Omi

    2012-03-01

    Full Text Available The erbium silicate formation processes during annealing in Ar gas were monitored by synchrotron radiation grazing incidence X-ray diffraction (GIXD in real time and the optical properties of the silicates were investigated by photoluminescence measurements in spectral and time-resolved domains. The GIXD measurements show that erbium silicates and erbium oxide are formed by interface reactions between silicon oxide and erbium oxides deposited on silicon oxide by reactive sputtering in Ar gas and O2/Ar mixture gas ambiences. The erbium silicates are formed above 1060 °C in Ar gas ambience and above 1010 °C in O2/Ar gas ambience, and erbium silicides are dominantly formed above 1250 °C. The I15/2-I13/2 Er3+ photoluminescence from the erbium oxide and erbium silicate exhibits abnormal temperature dependence, which can be explained by the phonon-assisted resonant absorption of the 532-nm excitation photons into the 2H11/2 levels of Er3+ ions of the erbium compounds.

  2. Effect of Exercise-induced Sweating on facial sebum, stratum corneum hydration, and skin surface pH in normal population.

    Science.gov (United States)

    Wang, Siyu; Zhang, Guirong; Meng, Huimin; Li, Li

    2013-02-01

    Evidence demonstrated that sweat was an important factor affecting skin physiological properties. We intended to assess the effects of exercise-induced sweating on the sebum, stratum corneum (SC) hydration and skin surface pH of facial skin. 102 subjects (aged 5-60, divided into five groups) were enrolled to be measured by a combination device called 'Derma Unit SSC3' in their frontal and zygomatic regions when they were in a resting state (RS), at the beginning of sweating (BS), during excessive sweating (ES) and an hour after sweating (AS), respectively. Compared to the RS, SC hydration in both regions increased at the BS or during ES, and sebum increased at the BS but lower during ES. Compared to during ES, Sebum increased in AS but lower than RS. Compared to the RS, pH decreased in both regions at the BS in the majority of groups, and increased in frontal region during ES and in zygomatic region in the AS. There was an increase in pH in both regions during ES in the majority of groups compared to the BS, but a decrease in the AS compared to during ES. The study implies that even in summer, after we sweat excessively, lipid products should be applied locally in order to maintain stability of the barrier function of the SC. The study suggests that after a short term(1 h or less) of self adjustment, excessive sweat from moderate exercise will not impair the primary acidic surface pH of the facial skin. Exercise-induced sweating significantly affected the skin physiological properties of facial region. © 2012 John Wiley & Sons A/S.

  3. Le problème des hydrates dans le contexte de la production et du transport polyphasiques des pétroles bruts et des gaz naturels. Deuxième partie : les solutions possibles aux difficultés d'exploitation générées par les hydrates Hydrates Problem Within the Framework of Multiphase Production and Transport of Crude Oils and Natural Gases. Part Two: Possible Solutions to Exploitation Difficulties Generated by Hydrates

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available L'exploitation en mer des gisements de combustibles fossiles fluides a amplifié le besoin d'accroître nos connaissances sur les hydrates qui sont susceptibles de boucher les installations de production, de traitement et de transport. La première partie rappelait la structure moléculaire des hydrates I, Il et H et décrivait ensuite succinctement l'analyse physico-chimique de leur formation, tant sur les plans thermodynamique que cinétique. Dans cette deuxième partie, les remèdes possibles aux problèmes rencontrés par les compagnies opératrices sont indiqués, essentiellement les inhibiteurs thermodynamiques classiques tels que les alcools ou les sels qui diminuent la température de formation des hydrates, et les additifs dispersants qui évitent la croissance et/ou l'agglomération des cristaux. Pour terminer, une boucle pilote de circulation originale est présentée, ses caractéristiques qui permettent la validation des additifs dispersants dans des conditions hydrodynamiques et physico-chimiques représentatives étant soulignées. Offshore exploitation of fossil fluid fuels has emphasized the need of improving our knowledge on hydrates which can plug production, treatment and transport facilities. The first part recalled the molecular structure of I, II and H hydrates, then the physical-chemistry of their formation was briefly reviewed from both the thermodynamic and the kinetic points of view. In this second part, the possible remedies to the problems met by operating companies are described, mainly classical thermodynamic inhibitors such as alcohols or salts which decrease the hydrates formation temperature, and dispersant additives which avoid crystals growth and/or agglomeration. At last an original circulation loop at pilot scale is presented, its characteristics which allow the testing of dispersant additives under representative hydrodynamic and physico-chemical conditions being outlined.

  4. Experiences with liquid scintillation counting of 3H, 14C and 35S from plant material

    International Nuclear Information System (INIS)

    Das, S.K.

    1974-01-01

    Relative merits of different methods in radioassay of three soft beta emitting isotopes like 3 H, 14 C and 35 S from plant material have been assessed. The methods used are: (1) combustion method (2) use of tissue solubilizing agents and (3) wet digestion method. Results show that determinations of 14 C by combustion method; 3 H by combustion and Mahin and Lofberg's method; and 35 S by wet digestion method are superior for plant material than the other methods tried. (author)

  5. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    Science.gov (United States)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  6. Modeling the hydration process of bean grains coated with carnauba wax

    Directory of Open Access Journals (Sweden)

    Aline Almeida da Paixão

    2017-08-01

    Full Text Available Edible waxes are widely used to maintain foodstuff until they are consumed. However, some products may be subjected to industrial procedures, such as hydration, prior to their consumption. Hydration of a material is a complex process, which aims to reconstitute the original characteristics of a product when in contact with a liquid phase. An important agricultural product that requires this procedure is beans. Thus, the purpose of this work is to study the hydration process of beans (cultivar BRSMG Majestoso in different temperatures and concentrations of carnauba wax, which is applied on the product surface. Beans with initial moisture content of 0.2015, 0.1972 and 0.1745 (d.b. corresponding to treatments 0 (witness, 1 (wax diluted in water in the ratio 1:1, and 2 (carnauba wax, without dilution were used. Later, these samples were imbibed in distilled water at temperatures of 20, 30 and 40 ºC, for 15 h. The temperature and the carnauba wax influenced the water absorption rate. The Peleg model described satisfactory experimental data and the Mitscherlich model presented biased residual distribution. The constants C1 and C2 of the Peleg model exhibited opposite behaviors with increasing temperatures in the hydration process.

  7. Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement

    International Nuclear Information System (INIS)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye; Choi, Sung-Woo; Hong, Seong-Hyeon

    2014-01-01

    Calcium zirconium aluminate (Ca 7 ZrAl 6 O 18 ) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca 7 ZrAl 6 O 18 was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO 3 coexisted with Ca 7 ZrAl 6 O 18 even at higher temperature (1400 °C). Unexpectedly, Ca 7 ZrAl 6 O 18 synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca 7 ZrAl 6 O 18 was similar to that of Ca 3 Al 2 O 6 (C3A), but the hydration products were Ca 3 Al 2 O 6 ·6H 2 O (C3AH6) and several intermediate products. Thus, Zr (or ZrO 2 ) stabilized the intermediate hydration products of C3A

  8. A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C3A and Their Hydration Products in the Presence of Gypsum

    Directory of Open Access Journals (Sweden)

    Vanessa Rheinheimer

    2016-08-01

    Full Text Available This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped polymorphs of tricalcium aluminate (C3A, which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM, X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C3A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C3A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C3A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C3A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments.

  9. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors

    Science.gov (United States)

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-09-01

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k

  10. Formation of 1D hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets on CNTs backbone for supercapacitors and photocatalytic H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting; Wu, Hao Bin; Wang, Yabo; Xu, Rong; Lou, Xiong Wen [David] [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2012-12-15

    One-dimensional (1D) hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets grown on carbon nanotube (CNT) backbone (denoted as CNT rate at Ni{sub 3}S{sub 2}) are fabricated by a rational multi-step transformation route. The first step involves coating the CNT backbone with a layer of silica to form CNT rate at SiO{sub 2}, which serves as the substrate for the growth of nickel silicate (NiSilicate) nanosheets in the second step to form CNT rate at SiO{sub 2} rate at NiSilicate core-double shell 1D structures. Finally the as-formed CNT rate at SiO{sub 2} rate at NiSilicate 1D structures are converted into CNT-supported Ni{sub 3}S{sub 2} nanosheets via hydrothermal treatment in the presence of Na{sub 2}S. Simultaneously the intermediate silica layer is eliminated during the hydrothermal treatment, leading to the formation of CNT rate at Ni{sub 3}S{sub 2} nanostructures. Because of the unique hybrid nano-architecture, the as-prepared 1D hierarchical structure is shown to exhibit excellent performance in both supercapacitors and photocatalytic H{sub 2} production. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Stability of sorbents based on hydrated TiO2 with different content of ZrO2

    International Nuclear Information System (INIS)

    Malykh, T.G.; Sharygin, L.M.

    1983-01-01

    The effect of ZrO 2 content in hydrated titanium dioxide on i s hydrothermat stabitity in the 120-350 deg C range, is investigated. It is shown that the specific surface of hydrated titanium dioxide in the process of hydrothermal treatment at different temperatures changes within a number of stages and depends on the zirconium dioxide contents in it. Sorbents are stable under hydrothermal conditions at temperatures not exceeding 300 deg C. The stabilizing effect of zirconiUm dioxide on the properties of hydrated titanium dioxide is most pronounced at 350 deg C

  12. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  13. Corneal refractive index-hydration relationship by objective refractometry.

    Science.gov (United States)

    Patel, Sudi; Alió, Jorge L

    2012-11-01

    To compare an objective (VCH-1) with a manual subjective Abbé refractometer (MSAR) and evaluate the refractive index (RI)-hydration (H) relationship for the corneal stroma. Epithelial and endothelial layers were removed from a fresh postmortem ovine corneal buttons. RI was measured at both surfaces using (i) MSAR then (ii) VCH-1. The sample was weighed, slowly dehydrated under controlled conditions (2 h), and RI measures were repeated. Sample was oven dried (90°C) for 3 d to obtain dry weight and hydration at each episode of RI measurement. Average difference between individual pairs of measurements obtained using the two refractometers (ΔRI) was 0.00071 (standard deviation ± 0.0029, 95% confidence interval ± 0.0058). Root mean square difference between measurements obtained by the refractometers was 0.0024. There was no relationship between ΔRI and the mean of each measurement pair (r = 0.201, n = 40, p = 0.214). Linear regression revealed a significant relationship between RI and reciprocal of H at both surfaces as follows: anterior (i) RI = 1.355 + 0.111/H (r = -0.852, n = 20, p = <0.001), (ii) RI = 1.357 + 0.105/H (r = -0.849, n = 20, p = <0.001) and posterior (i) RI = 1.353 + 0.085/H (r = -0.882, n = 20, p = <0.001), (ii) RI = 1.350 + 0.088/H (r = -0.813, n = 20, p = <0.001). VCH-1 measurements are in good agreement with MSAR. RI at the anterior stroma was consistently higher suggesting hydration is lower by 1.10 units (6%) compared with the posterior stroma. Dehydration increased RI at both surfaces by similar rates. Current hypothetical models are useful for predicting RI from H for the posterior, but not the anterior, stroma.

  14. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  15. Rice Hull Ash and Silicic Acid as Adsorbents for Concentration of Bacteriocins†

    OpenAIRE

    Janes, M. E.; Nannapaneni, R.; Proctor, A.; Johnson, M. G.

    1998-01-01

    A model procedure has been developed for the rapid extraction of five bacteriocins (nisin, pediocin RS2, leucocin BC2, lactocin GI3, and enterocin CS1) from concentrated freeze-dried crude culture supernatants by adsorption onto acid or alkaline rice hull ash (RHA) or silicic acid (SA). Bacteriocins were adsorbed onto RHA or SA by a pH-dependent method and desorbed by decreasing the pH to 2.5 or 3.0 and heating at 90°C for 5 min. The maximum adsorption and optimal pH range for different bacte...

  16. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  17. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requireme