WorldWideScience

Sample records for silica-magnetite nanocomposite facile

  1. Facile solvothermal synthesis of graphene-MnOOH nanocomposites

    International Nuclear Information System (INIS)

    Chen Sheng; Zhu Junwu; Huang Huajie; Zeng Guiyu; Nie Fude; Wang Xin

    2010-01-01

    In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites. - Graphical abstract: Manganese oxyhydroxide nanocrystals have been successfully attached onto the graphene sheets via an oriented attachment and dissolution-crystallization process, forming a nanocomposite with unusual catalytic capabilities. Display Omitted

  2. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  3. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  4. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Akir, Sana [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP73, 8027, Soliman (Tunisia); Hamdi, Abderrahmane [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif (Tunisia); Addad, Ahmed [UMET, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d' Ascq Cédex (France); Coffinier, Yannick [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); and others

    2017-04-01

    Highlights: • C-ZnO nanocomposite was successfully prepared via a facile and eco-friendly process. • C-ZnO NPs have excellent photocatalytic activity for RhB dye degradation under visible light irradiation compared with literature. • The visible photocatalytic properties originate from injection e{sup −} in CB of ZnO from RhB. - Abstract: The present study describes a facile route for synthesis of carbon-ZnO nanocomposites (C-ZnO) via hydrothermal process in presence of glucose as carbon precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. The results showed carbon uniformly coated on the surface of the ZnO nanoparticles to form the C-ZnO nanocomposites. Further investigation revealed that carbon could significantly protect ZnO NPs against the coalescence during high temperature treatment. The obtained C-ZnO nanocomposite showed excellent photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation, which was attributed to the repressed charge carrier recombination in the nanocomposite. Quenching experiments and photocurrent measurements revealed a photocatalytic mechanism occurring through photosensitization.

  5. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Low, Sze Shin [Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Division of Materials, Mechanics and Structures, Center of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Tan, Michelle T.T., E-mail: Michelle.Tan@nottingham.edu.my [Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Division of Materials, Mechanics and Structures, Center of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Loh, Hwei-San [School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Khiew, Poi Sim [Division of Materials, Mechanics and Structures, Center of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}) in a linear range of 1–15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM{sup −1} with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. - Highlights: • One step, green and facile exfoliation of graphite in ethanol/water mixture. • G/ZnO nanocomposite prepared via simple, green low temperature solvothermal method. • CV and amperometric study of G/ZnO nanocomposite towards H{sub 2}O{sub 2} with R{sup 2} of 0.9977.

  6. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe2O4 nanocomposite

    International Nuclear Information System (INIS)

    Maji, Pranabi; Choudhary, Ram Bilash

    2017-01-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe 2 O 4 ) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe 2 O 4 nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe 2 O 4 nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe 2 O 4 nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H 2 O 2 ) sensing. - Highlights: • PMMA-NiFe 2 O 4 nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe 2 O 4. • The H 2 O 2 detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H 2 O 2 was calculated 0.6727 μA mM -1 .

  7. Multifunctional Nanocomposites for Improved Sustainability and Protection of Facilities

    Science.gov (United States)

    2015-05-01

    ballistic-resistant panels. Equipment needed for cur- ing the epoxy is more expensive, and the viscosity of the epoxy material is too high for use in common...fracture. It was concluded that the lower V50 of the clay -modified Nylon 6 nanocomposite was brittle and had lower toughness than that of the neat...levels (0.5, 1.0, 2.0, and 3.0 wt%) in the polyester matrix. Higher load- ing of the CNTs was attempted but was constrained by the viscosity increase of

  8. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    Science.gov (United States)

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Science.gov (United States)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  10. Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Zhang, Zhiyong; Liu, Xingrui; Wei, Bingqing

    2017-01-01

    Prussian blue and its analogues are promising for energy storage devices owing to the rigid open framework, yet suffer from poor conductivity and relatively low energy density. Herein, we report a facile preparation of cobalt hexacyanoferrate/reduced graphene oxide nanocomposites (CoHCF/rGO) for supercapacitors with enhanced performance. The CoHCF nanoparticles with a size of around 50 nm are adhered onto the rGO nanosheets, which, in turn, not only prevent the agglomeration of the CoHCF nanoparticles but also provide conductive network for fast electron transport. The CoHCF/rGO nanocomposite delivers a maximum specific capacitance of 361 F g"−"1 in Na_2SO_4 aqueous electrolyte. Asymmetric supercapacitor cells are assembled by pairing up an optimized nanocomposite electrode with an activated carbon negative electrode, which exhibits a wide reversible operating voltage of 2.0 V and a high energy density of 39.6 Wh kg"−"1. The enhanced electrochemical performance of CoHCF/rGO benefits from the strong synergistic utilization of CoHCF nanoparticles and rGO nanosheets, rendering the nanocomposites a great promise for high-performance supercapacitors.

  11. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  12. Facile synthesis of MnO{sub 2}/CNT nanocomposite and its electrochemical performance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongjuan, E-mail: cehjwang@scut.edu.cn [School of Chemistry and Chemcial Engineering, South China University of Technology, Guangzhou, 510640 (China); Peng Cheng [School of Chemistry and Chemcial Engineering, South China University of Technology, Guangzhou, 510640 (China); Peng Feng, E-mail: cefpeng@scut.edu.cn [School of Chemistry and Chemcial Engineering, South China University of Technology, Guangzhou, 510640 (China); Yu Hao; Yang Jian [School of Chemistry and Chemcial Engineering, South China University of Technology, Guangzhou, 510640 (China)

    2011-08-25

    Highlights: > MnO{sub 2}/CNTs are prepared by direct redox reaction between KMnO{sub 4} and carbon nanotubes. > This preparation method is a simple and green without any other additives. > MnO{sub 2}/CNTs show specific capacitance of 162.2 F g{sup -1} at the current density of 0.2 A g{sup -1}. > MnO{sub 2}/CNTs exhibit excellent charge-discharge property. - Abstract: A nanocomposite of manganese dioxide coated on the carbon nanotubes (MnO{sub 2}/CNTs) was synthesized by a facile direct redox reaction between potassium permanganate and carbon nanotubes without any other oxidant or reductant addition. The morphology, microstructure and crystalline form of this MnO{sub 2}/CNT nanocomposite were characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties are characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD). The results show that the facile prepared MnO{sub 2}/CNTs nanocomposite shows specific capacitance of 162.2 F g{sup -1} at the current density of 0.2 A g{sup -1} and excellent charge/discharge property with 90% of its specific capacitance kept after 2000 cycles at the current density of 5 A g{sup -1}.

  13. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Science.gov (United States)

    Qing, Yongquan; Yang, Chuanning; Hu, Chuanbo; Zheng, Yansheng; Liu, Changsheng

    2015-01-01

    In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic sbnd CH3 and sbnd CH2sbnd groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  14. Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion.

    Science.gov (United States)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-09

    Cellulose nanofibril (CNF) is a promising nanofiller for polymer nanocomposite materials, and a critical challenge in designing these materials is organization of the nanostructure using a facile process. Here, we report a facile aqueous preparation process for nanostructured polystyrene (PS)/CNF composites via the formation of a CNF-stabilized Pickering emulsion. PS nanoparticles, with a narrow size distribution, were synthesized by free radical polymerization in water using CNF as a stabilizer. The nanoparticles were easily collected by filtration, and the resulting material had a composite structure of PS nanoparticles embedded in a CNF framework. The PS/CNF nanocomposite showed high optical transparency, strength, and thermal dimensional stability. Thus, this technique provides a simple and environmentally friendly method for the preparation of novel CNF/polymer nanocomposite materials.

  15. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    Science.gov (United States)

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  16. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    Science.gov (United States)

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  18. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe{sub 2}O{sub 4} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Pranabi; Choudhary, Ram Bilash, E-mail: rbcism@gmail.com

    2017-06-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe{sub 2}O{sub 4}) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe{sub 2}O{sub 4} nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe{sub 2}O{sub 4} nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe{sub 2}O{sub 4} nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H{sub 2}O{sub 2}) sensing. - Highlights: • PMMA-NiFe{sub 2}O{sub 4} nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe{sub 2}O{sub 4.} • The H{sub 2}O{sub 2} detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H{sub 2}O{sub 2} was calculated 0.6727 μA mM{sup -1}.

  19. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoWO 4 composites were successfully prepared through a facile hydrothermal method. • RGO/CoWO 4 composites show much higher specific capacitances than pure CoWO 4 . • Enhanced electrical conductivity leads to superior electrochemical performance. - Abstract: A facile one-pot hydrothermal method was provided for synthesis of the reduced graphene oxide-cobalt tungstate (RGO/CoWO 4 ) nanocomposites with the enhanced electrochemical performances for supercapacitors for the first time. The resulting nanocomposites are comprised of CoWO 4 nanospheres that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoWO 4 nanocomposites have been thoroughly characterized by Fourier–transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, and N 2 adsorption–desorption. Importantly, the prepared nanocomposites exhibit superior electrochemical performance to CoWO 4 as electrodes for supercapacitors. As a result, RGO/CoWO 4 nanocomposites with 91.6 wt% CoWO 4 content achieved a specific capacitance about 159.9 F g −1 calculated from the CV curves at 5 mV s −1 , which was higher than that of CoWO 4 (60.6 F g −1 ). The good electrochemical performance can be attributed to the increased electrical conductivity and the creation of new active sites due to the synergetic effect of RGO and CoWO 4 nanospheres. The cyclic stability tests demonstrated capacitance retention of about 94.7% after 1000 cycles, suggesting the potential application of RGO/CoWO 4 nanocomposites in energy-storage devices

  20. Facile Synthesis of Au Nanocube-CdS Core-Shell Nanocomposites with Enhanced Photocatalytic Activity

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Li, Min; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Qua

    2014-06-01

    Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic efficiency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.

  1. Facile Synthesis of Cu2O/RGO/Ni(OH)2 Nanocomposite and its Double Synergistic Effect on Supercapacitor Performance

    International Nuclear Information System (INIS)

    Wang, Kun; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-01-01

    ABSTRACT: A nanocomposite for supercapacitor electrode materials was designed and developed by integrating partially disabled Cu 2 O (low specific capacity, but high cycling ability) and Ni(OH) 2 (low cyclability and high specific capacity) in the presence of reduced graphene oxide (RGO) nanosheets. Nanocomposite of Cu 2 O/RGO/Ni(OH) 2 was directly grown on nickel foam (NF) through a facile one-pot hydrothermal process without any other reductant or oxidant, in which nickel foam acted as both a reductant of GO and Ni source, and a substrate for nanocomposite. The resultant Cu 2 O/RGO/Ni(OH) 2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The electrochemical performance of the as-synthesized Cu 2 O/RGO/Ni(OH) 2 /NF electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrometry (EIS) in 6 mol L −1 KOH aqueous solution. This Cu 2 O/RGO/Ni(OH) 2 nanocomposite exhibits superior capacitive performance: high capability (3969.3 mF cm −2 at 30 mA cm −2 , i.e., 923.1 F g −1 at 7.0 A g −1 ), excellent cycling stability (92.4% retention even after 4,000 cycles, for RGO/Ni(OH) 2 /NF, 92.3% after 1,000 cycles), and good rate capacitance (50.3% capacity remaining at 200 mA cm −2 )

  2. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

    Science.gov (United States)

    Vats, T.; Dutt, S.; Kumar, R.; Siril, P. F.

    2016-09-01

    Amazing conductivity, perfect honeycomb sp2 arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity.

  3. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    OpenAIRE

    Shaista Rafique; Rehana Sharif; Imran Rashid; Sheeba Ghani

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four pr...

  4. Facile charge transport in FeN x /Mo₂N/CNT nanocomposites for ...

    Indian Academy of Sciences (India)

    The nanocomposites were characterized using powder XRD, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ElectronDiffraction, ThermogravimetricAnalysis and FTIRSpectroscopy. The electrochemical investigations suggest that the electrocatalytic activity of the composite increases with ...

  5. A facile synthesis and spectral characterization of Cu{sup 2+} doped CdO/ZnS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Joyce Stella, R.; Thirumala Rao, G.; Babu, B.; Pushpa Manjari, V. [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, AP 522510 (India); Reddy, Ch. Venkata; Shim, Jaesool [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ravikumar, R.V.S.S.N., E-mail: rvssn@yahoo.co.in [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, AP 522510 (India)

    2015-06-15

    A facile two-step method is demonstrated for the preparation of Cu{sup 2+} doped CdO/ZnS nanocomposite. Systematic investigations like X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDS, transmission electron microscopy (TEM), FT-IR, electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and magnetic studies are carried out for the prepared material. From powder XRD, the nanocomposites are comprised for cubic phase of both CdO and ZnS in a close contact with each other. The ground state wave function of dopant ions has been estimated from EPR studies. Optical and EPR data confirm that doped Cu{sup 2+}ions occupy rhombically distorted octahedral sites with the host material. Due to doping, band gap has been changed and blue shifts occurred in PL. Magnetic measurements indicate a possible ferromagnetic response, associated to the exchange interaction between local spin-polarized electrons of Cu{sup 2+} ions and conductive electrons. - Graphical abstract: M–H curve of Cu{sup 2+} doped CdO–ZnS nanocomposites. The magnetic properties of Cu{sup 2+} doped CdO/ZnS nanocomposite has been investigated using vibrating sample magnetometer given as magnetization and hysteresis (M–H) curve. The magnetization curve with noticeable coercivity of M–H loop clearly indicate the existence of ferromagnetic ordering in Cu{sup 2+} doped CdO/ZnS nanocomposite at room temperature. According to the Ruderman–Kittel–Kasuya–Yosida (RKKY) theory, the exchange interaction between local spin-polarized electrons (such as the electrons of Cu{sup 2+} ions) and conductive electrons is the main cause that leads to the ferromagnetism. Coercivity (Hc) of the field is about 98 Oe, saturation magnetization (Ms) and remnant magnetization (Mr) of present sample is estimated to be 15.8×10{sup −3} and 1.43×10{sup −3} emu/g respectively. The ferromagnetism observed in the prepared material is not commencing with other impurities but expected to

  6. Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance

    International Nuclear Information System (INIS)

    Wang, Zhuo; Ma, Chunyan; Wang, Hailin; Liu, Zonghuai; Hao, Zhengping

    2013-01-01

    Graphical abstract: Fe 2 O 3 Graphene nanocomposite was synthesized in a simple hydrothermal way by using urea to adjust the system pH value, by this method the reduction of graphite oxide and the formation of Fe 2 O 3 nanocomposite are finished in one step. The specific capacitance of the Fe 2 O 3 Graphene electrode reached 226 F/g at a discharge current density of 1 A g –1 . Highlights: ► The Fe 2 O 3 –graphene nanocomposite was obtained by friendly method with urea in one step. ► The addition of Fe 2 O 3 composites has positive effect on the electrical performance of the graphene nanosheets. ► The specific capacitance of the Fe 2 O 3 –graphene electrode was 226 F/g at a discharge current density of 1 A g −1 . -- Abstract: Fe 2 O 3 –graphene nanocomposite with high capacitive properties had been prepared friendly and facilely by hydrothermal method in one-step. The morphology and structure of the obtained material were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and transmission electron microscope (TEM) techniques. It was revealed by TEM images that Fe 2 O 3 nanoparticles grow well on the surface of graphene and the formation of Fe 2 O 3 nanoparticles hinders the aggregation of graphene (reduced graphene oxide, namely, RGO). Electrochemical properties of the synthesized materials were characterized by serials of electrochemical measurements in 1 M Na 2 SO 4 electrolyte. Fe 2 O 3 –graphene nanocomposite electrode show higher specific capacitance than graphene, indicating an accelerative effect of Fe 2 O 3 and graphene on improving the electrochemical performance of the electrode. The specific capacitance of Fe 2 O 3 –graphene nanocomposite is 226 F/g at a current density of 1 A/g. These attractive results indicate it is possible to seek and develop the promising, environmentally benign and commercial electrodes material based on Fe 2 O 3 and graphene

  7. Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe3O4/PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deqing Zhang

    2013-01-01

    Full Text Available A facile method has been developed to synthesize light-weight CNTs/Fe3O4/PANI nanocomposites. The formation route was proposed as the coprecipitation of Fe2+ and Fe3+ and an additional process of in situ polymerization of aniline monomer. The structure and morphology of CNTs/Fe3O4/PANI were characterized by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared (FTIR spectroscopy. The TEM investigation shows that the CNTs/Fe3O4/PANI nanocomposites exhibit less intertwined structure and that many more Fe3O4 particles are attached homogeneously on the surface of CNTs, indicating that PANI can indeed help CNTs to disperse in isolated form. The wave-absorbing properties were investigated in a frequency of 2–18 GHz. The results show that the CNTs/Fe3O4/PANI nanocomposites exhibit a super absorbing behavior and possess a maximum reflection loss of −48 dB at 12.9 GHz, and the bandwidth below −20 dB is more than 5 GHz. More importantly, the absorption peak frequency ranges of the CNTs/Fe3O4/PANI composites can be tuned easily by changing the wax weight ratio and thickness of CNTs/Fe3O4/PANI paraffin wax matrix.

  8. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  9. Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Pei, Liyuan; Yang, Yang; Shen, Jianfeng; Ye, Mingxin

    2016-01-01

    NiWO 4 /reduced graphene oxide (NWG) nanocomposite was successfully synthesized through a facile one-pot solvothermal method for the first time. The resulting nanocomposite is composed of NiWO 4 nanoparticles that are uniformly attached on graphene sheets by in situ reducing. The as-prepared NWG composite has been systematically characterized by Powder X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectra, and Brunauer–Emmett–Teller analysis. The capacitive performances of the as-prepared NWG composite as electrode material are investigated. It is found that the NWG composite exhibits a high specific capacitance up to 1031.3 F g −1 at a current density of 0.5 A g −1 . The greatly enhanced capacitive performance of the NWG electrode can be attributed to the synergetic effect of NiWO 4 nanoparticles and RGO, which provides conducting channels and active sites. The cyclic stability tests demonstrated no decreases of its initial values after 5000 cycles, suggesting that such hybrid electrode possesses a great potential application in energy-storage devices. - Highlights: • NiWO 4 /RGO composite was successfully prepared through a facile solvothermal method. • The NiWO 4 /RGO composite shows a high specific capacitance of 1031.3 F g −1 . • Enhanced electrical conductivity leads to superior electrochemical performance.

  10. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  11. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    International Nuclear Information System (INIS)

    Wadhwa, Heena; Kumar, Devender; Mahendia, Suman; Kumar, Shyam

    2017-01-01

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO_3) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  12. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Science.gov (United States)

    Rafique, Shaista; Sharif, Rehana; Rashid, Imran; Ghani, Sheeba

    2016-08-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance Rct(2.50 Ω cm2) for I3-/I- redox solution. The four probe studies showed the large electrical conductivity (226S cm-1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm-2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  13. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba [Department of Physics, University of Engineering and Technology, Lahore, 54000 (Pakistan); Rashid, Imran, E-mail: f.imran.rashid@gmail.com [Department of Electrical Engineering, The University of Lahore, Islamabad, 44000 (Pakistan)

    2016-08-15

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. The four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  14. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Heena, E-mail: heenawadhwa1988@gmail.com; Kumar, Devender, E-mail: devkumsaroha@kuk.ac.in; Mahendia, Suman, E-mail: mahendia@gmail.com; Kumar, Shyam, E-mail: profshyam@gmail.com

    2017-06-15

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO{sub 3}) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  15. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba; Rashid, Imran

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R_c_t(2.50 Ω cm"2) for I_3"−/I"− redox solution. The four probe studies showed the large electrical conductivity (226S cm"−"1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm"−"2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  16. Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor

    International Nuclear Information System (INIS)

    Wang, Kun; Dong, Xiangmao; Zhao, Chongjun; Qian, Xiuzhen; Xu, Yunlong

    2015-01-01

    A reduced graphene oxide (RGO)-based nanocomposite of redox counterpart of the oxides of Cu(I)-Cu(II) pair for Faradaic reaction, Cu 2 O/CuO/RGO, was controllably synthesized through a facile, eco-friendly one-step hydrothermal-assisted redox reaction of elemental Cu and graphene oxide (GO) without the addition of any other reagents. The resultant Cu 2 O/CuO/RGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, Thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). It is found that, when dealloyed nanoporous Cu was used as a Cu source, the uniform spherical Cu 2 O/CuO nanoparticles with double size scales (∼25 nm and ∼5 nm) were anchored on RGO sheets. This Cu 2 O/CuO/RGO nanocomposite redox counterpart exhibits improved rate capability and excellent cycling stability, i.e., only ca. 21.4% of the capacity was lost when the discharge current density increases from 1 A g −1 (173.4 F g −1 ) to 10 A g −1 (136.3 F g −1 ). Especially, the capacity remains almost unchanged (98.2%) after 100,000 cycles at 10 A g −1 . The good electrochemical performance and simple accessibility prove that this Cu 2 O/CuO/RGO composite consisting of a pair of redox counterparts is a promising material for supercapacitor applications

  17. Silk Fiber as the Support and Reductant for the Facile Synthesis of Ag–Fe3O4 Nanocomposites and Its Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Xiaonan Liu

    2016-06-01

    Full Text Available We report a facile and environmentally friendly approach to prepare Ag–Fe3O4–silk fiber nanocomposites. The Ag–Fe3O4–silk fiber acts as: (i a biocompatible support for the silver nanoparticles; and (ii a reducing agent for the silver ions. Neither additional reducing agents nor toxic organic solvents were used during the preparation process. The Ag–Fe3O4–silk fiber nanocomposites can be actuated by a small household magnet and have high antibacterial activities against both Escherichia coli and Staphylococcus aureus. These nanocomposites could be easily recycled without a decrease in their antibacterial activities due to the synergistic effects between the Ag NPs and Fe3O4 NPs with large amounts of active sites.

  18. TiO{sub 2}/N-graphene nanocomposite via a facile in-situ hydrothermal sol–gel strategy for visible light photodegradation of eosin Y

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yingliang; Pei, Fuyun, E-mail: xusg@zzu.edu.cn; Lu, Ruijuan; Xu, Shengang; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2014-12-15

    Highlights: • TiO{sub 2}/N-graphene is synthesized via in-situ hydrothermal sol–gel strategy. • TiO{sub 2} nanoparticles are chemically anchored on N-graphene nanosheets. • The band gap of TiO{sub 2}/N-graphene is red-shifted from neat TiO{sub 2} nanoparticles. • 5-NGT nanocomposite has the best visible light photodegradation performance. - Abstract: TiO{sub 2}/N-graphene nanocomposites are synthesized via a facile in-situ hydrothermal sol–gel strategy in order to improve the photocatalytic efficiency for pollutant photodegradation under visible light irradiation. The as-prepared nanocomposites are respectively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance spectroscopy. Results indicated that neat TiO{sub 2} nanoparticles have an average diameter about 6.70 nm while TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites synthesized through in-situ hydrothermal sol–gel strategy bear an average diameter of ∼1 nm and are anchored on N-graphene nanosheets via chemical bonding. Both neat TiO{sub 2} nanoparticles and chemically anchored TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites take on the crystal type of anatase. The band gap of TiO{sub 2}/N-graphene nanocomposites is red-shifted compared with neat TiO{sub 2} nanoparticles. The evaluation of photodegradation performance under visible light irradiation suggested that the nanocomposite with 5 wt% N-graphene content has the best visible light photodegradation performance.

  19. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  20. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  1. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  2. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    Science.gov (United States)

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  3. Facile sonochemical synthesis of Zn2SnO4-V2O5 nanocomposite as an effective photocatalyst for degradation of Eosin Yellow.

    Science.gov (United States)

    Ramasamy Raja, V; Rosaline, D Rani; Suganthi, A; Rajarajan, M

    2018-06-01

    This study presents a novel method for the preparation of Zn 2 SnO 4 /V 2 O 5 nanocomposites via a sonochemical aqueous route. This method is mild, convenient, cheap and efficient. The as prepared samples were characterized by XRD, SEM, EDAX, TEM, BET, FT-IR and UV-DRS spectra. DRS spectrum shows the adsorption edge of Zn 2 SnO 4 -V 2 O 5 in visible region of spectrum. The structural and morphological features of the as synthesized Zn 2 SnO 4 -V 2 O 5 nanocomposites have been observed using both scanning and transmission electron microscopy. BET surface area analysis inferred that the prepared hetero-junctions are meso-porous in nature. The photocatalytic activity of Zn 2 SnO 4 -V 2 O 5 nanocomposites for the degradation of Eosin Yellow (EY) dye under visible light was investigated in detail. 3% Zn 2 SnO 4 -V 2 O 5 nanocomposite exhibited the highest photocatalytic performance (92% of EY degradation) when compared with 2% Zn 2 SnO 4 -V 2 O 5 and 5% Zn 2 SnO 4 -V 2 O 5 . The adsorption of Eosin Yellow followed the pseudo-first order kinetic model. Simultaneously, high stability of the sample was also investigated by four successive photodegradation of EY under visible light. The relationship between photocatalytic activity and the structure of 3% Zn 2 SnO 4 -V 2 O 5 nanocomposite is discussed, and possible reaction mechanisms are also proposed. Therefore, the facile sonochemical preparation process provides some insight into the application of Zn 2 SnO 4 -V 2 O 5 nanocomposites in photocatalytic degradation of organic pollutants. Copyright © 2018. Published by Elsevier B.V.

  4. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  5. A facile synthesis of a novel optoelectric material: a nanocomposite of SWCNT/ZnO nanostructures embedded in sulfonated polyaniline

    Directory of Open Access Journals (Sweden)

    Rajesh K. Agrawalla

    2014-07-01

    Full Text Available Functionalized single-walled carbon nanotubes (f-SWCNTs hybridized with freshly prepared zinc oxide (ZnO nanocrystals have been found to be good luminescent material with tuned emission properties. A three-phase nanocomposite of sulfonated polyaniline embedded with such SWCNT/ZnO nanostructures has been prepared by a simple solution mixing chemical process and characterized by using high-resolution transmission electron microscopy, X-ray diffractometry, Raman spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The study of UV-visible absorption and photoluminescence spectroscopies reveal that the ternary polymer nanocomposite is a luminescent material with enhanced emission intensity. Also an increase in DC conductivity indicates that the nanocomposite is also a good conductive material, satisfying Mott’s variable range hopping model for a two-dimensional conduction. Such a three-phase nanocomposite may find extensive application in dye-sensitized solar cells, sensors, and supercapacitors.

  6. Facilely synthesized Fe{sub 2}O{sub 3}–graphene nanocomposite as novel electrode materials for supercapacitors with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuo; Ma, Chunyan; Wang, Hailin [Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Zonghuai [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062 (China); School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Hao, Zhengping, E-mail: zpinghao@rcees.ac.cn [Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2013-03-05

    Graphical abstract: Fe{sub 2}O{sub 3}Graphene nanocomposite was synthesized in a simple hydrothermal way by using urea to adjust the system pH value, by this method the reduction of graphite oxide and the formation of Fe{sub 2}O{sub 3} nanocomposite are finished in one step. The specific capacitance of the Fe{sub 2}O{sub 3}Graphene electrode reached 226 F/g at a discharge current density of 1 A g{sup –1}. Highlights: ► The Fe{sub 2}O{sub 3}–graphene nanocomposite was obtained by friendly method with urea in one step. ► The addition of Fe{sub 2}O{sub 3} composites has positive effect on the electrical performance of the graphene nanosheets. ► The specific capacitance of the Fe{sub 2}O{sub 3}–graphene electrode was 226 F/g at a discharge current density of 1 A g{sup −1}. -- Abstract: Fe{sub 2}O{sub 3}–graphene nanocomposite with high capacitive properties had been prepared friendly and facilely by hydrothermal method in one-step. The morphology and structure of the obtained material were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and transmission electron microscope (TEM) techniques. It was revealed by TEM images that Fe{sub 2}O{sub 3} nanoparticles grow well on the surface of graphene and the formation of Fe{sub 2}O{sub 3} nanoparticles hinders the aggregation of graphene (reduced graphene oxide, namely, RGO). Electrochemical properties of the synthesized materials were characterized by serials of electrochemical measurements in 1 M Na{sub 2}SO{sub 4} electrolyte. Fe{sub 2}O{sub 3}–graphene nanocomposite electrode show higher specific capacitance than graphene, indicating an accelerative effect of Fe{sub 2}O{sub 3} and graphene on improving the electrochemical performance of the electrode. The specific capacitance of Fe{sub 2}O{sub 3}–graphene nanocomposite is 226 F/g at a current density of 1 A/g. These attractive results indicate it is possible to seek and develop the promising, environmentally benign and commercial

  7. Facile preparation of PbS nanostructures and PbS/f-CNT nanocomposites using xanthate as sulfur source: Thermal and optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Parisa; Akbarzadeh, Raziyeh; Dehghani, Hossein, E-mail: dehghani@kashanu.ac.ir

    2015-10-25

    PbS nanostructures with different morphologies were fabricated using a new sulfur source through a facile and low cost hydro(solvo)thermal method. The influence of different reaction factors such as sulfur source, temperature, reactant, solvent and surfactant on the size and morphology of the obtained PbS particles were investigated. Beside, a simple hydrothermal process at low temperature (60 °C) for little time (4 h), has been used for preparation of PbS nanoparticles (NPs)/functionalized multi wall carbon nanotubes (f-MWCNTs) nanocomposite. The as-prepared nanocomposite possesses excellent thermal and optical properties. Thermal stability increases by depositing PbS nanoparticles on the surface of CNT. The structure, morphology, thermal and optical properties of the as-prepared nanocompounds were studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy, Thermogravimetric analysis (TGA), Pl spectra and UV–Vis absorption spectra. Photoluminescence spectra of PbS NPs and nanocomposite are consist of two emission peaks which centered at around 402 and 423 nm, when excited at 350 nm. It was noteworthy that the blue luminescence intensity over PbS/f-CNT nanocomposite is very lower than that of pure PbS NPs. Remarkable blue-shift from bulk material was observed on the PbS nanoparticles using UV–Vis spectrum. Furthermore, possible growth mechanism of PbS nanostructures is presented. - Graphical abstract: PbS nanostructures with different morphologies were fabricated using xanthate as sulfide source. Also, PbS/f-CNT nanocomposites were synthesized by simple hydrothermal process at low temperature (60 °C) for little time (4 h). - Highlights: • Sodium tert-butyl xanthate was used as sulfur source for synthesis of PbS. • Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O salt was used for synthesis of PbS. • PbS/CNT nanocomposite was synthesized in deionized water for 4 h at 60

  8. Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution

    Science.gov (United States)

    Divya, K. S.; Chandran, Akash; Reethu, V. N.; Mathew, Suresh

    2018-06-01

    A series of RGO/Ag nanocomposites with different weight addition ratios of graphene oxide (GO) have been successfully prepared in situ through the simultaneous reduction of GO and AgNO3 via a facile microwave irradiation. X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, UV-vis diffuse reflectance spectra, Scanning electron microscopy, Photoluminescence spectra, Raman spectra, Atomic Force Microscopy, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy are employed to determine the properties of the samples. It is found that RGO/Ag nanocomposites with a proper weight addition ratios of GO exhibit higher photocatalytic activity toward liquid phase photodegradation of Rhodamine B under visible light irradiation. The improved photoactivity of RGO/Ag nanocomposites can be ascribed to the integrative synergestic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag nanoparticles. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate charge carriers from Ag nanoparticles.

  9. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    Science.gov (United States)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  10. Facile synthesis of gold-capped TiO2 nanocomposites for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Han, Di; Huang, Hao; Du, Deyang; Lang, Xianzhong; Long, Kailin; Hao, Qi; Qiu, Teng

    2015-01-01

    A convenient technique was developed to fabricate gold-capped TiO 2 nanocomposites as robust, cost-efficient and recyclable surface-enhanced Raman scattering (SERS) substrates. The morphologies of obtained nanocomposites exhibit nanotube, nanolace, and nanopore nanostructures by adjusting TiO 2 anodization parameters. As an illustration, dramatic enhancement is achieved using Rhodamine 6G as a molecular probe. Owing to activation by the incident laser beam, the localized electromagnetic field on the nanocomposite surface can be enhanced subsequently amplifying the Raman signal. The topography can be further tuned to optimize the enhancement factor by adjusting the time of gold evaporation. Finite-difference time-domain calculations indicate the nanopore structure may possess excellent SERS characteristic due to the high density of hot spots. In addition, the substrate can be self-cleaned under ultraviolet irradiation due to the superior photocatalytic capacity of the Au–TiO 2 nanocomposites. Our Au–TiO 2 nanocomposites with highly SERS-active properties and recyclability shows promising applications in the detection and treatment of pollutants. - Highlights: • Au–TiO 2 nanocomposites with different morphologies were fabricated. • Au–TiO 2 nanopore shows pronounced SERS compared with nanotube and nanolace. • The size of the gold nanocaps on Au–TiO 2 nanopore was tailored to optimize the SERS. • FDTD simulations indicate excellent SERS attributes to the high density of hot spots. • Au–TiO 2 nanocomposites prove to be recyclable substrates for SERS detection

  11. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  12. Facile synthesis of carbon/MoO 3 nanocomposites as stable battery anodes

    KAUST Repository

    Ding, Jiang

    2017-03-09

    Pristine MoO3 is a potential anode material for lithium-ion batteries (LIBs), due to its high specific capacity (1117 mA h g−1); it suffers, however, from poor cyclability, resulting from a low conductivity and large volume changes during lithiation/delithiation process. Here we adopt a facile two-step method in which pristine bulk MoO3 is first converted into MoO3 nanorods (MoO3 NR) through mechanical grinding, to buffer the continuous volume changes, and then coated with amorphous carbon through simple stirring and heating, to provide high electronic and ionic conductivities. Electrochemical tests reveal that the carbon-coated MoO3 nanorods (C-MoO3 NRs) exhibit outstanding specific capacity (856 mA h g−1 after 110 cycles at a current density of 0.1 C); remarkable cycle life, among the best reported for carbon-based MoO3 nanostructures (485 mA h g−1 after 300 cycles at 0.5 C and 373 mA h g−1 after 400 cycles at 0.75 C); and greatly improved capacity retention (up to 90.4% after various C-rates) compared to bulk MoO3. We confirm the versatility of the C-MoO3 NR anodes by preparing flexible batteries that display stable performance, even in bent state. This simple approach toward C-MoO3 NR anodes proceeds without rigorous chemical synthesis or extremely high temperatures, making it a scalable solution to prepare high-capacity anodes for next-generation LIBs.

  13. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yifan; Du, Ning, E-mail: dna1122@zju.edu.cn; Zhang, Hui; Yang, Deren

    2015-02-15

    Highlights: • A uniform SiO{sub 2} layer was deposited on multi-walled carbon nanotube. • Synthesis of uniform (MWCNT)@Si nanocomposites via the magnesiothermic reduction. • The MWCNT@Si nanocomposites show high reversible capacity and good cyclability. • Enhanced performance is attributed to porous nanostructure, introduction of MWCNTs. - Abstract: We demonstrate the synthesis of uniform multi-walled carbon nanotube (MWCNT)@Si nanocomposites via the magnesiothermic reduction of pre-synthesized MWCNT@SiO{sub 2} nanocables. At first, the acid vapor steaming is used to treat the surface, which can facilitate the uniform deposition of SiO{sub 2} layer via the TEOS hydrolysis. Then, the uniform MWCNT@Si nanocomposites are obtained on the basis of MWCNT@SiO{sub 2} nanocables via a simple magnesiothermic reduction. When used as an anode material for lithium-ion batteries, the as-synthesized MWCNT@Si nanocomposites show high reversible capacity and good cycling performance, which is better than bulk Si and bare MWCNTs. It is believed that the good electrochemical performance can be attributed to the novel porous nanostructure and the introduction of MWCNTs that can buffer the volume change, maintain the electrical conductive network, and enhance the electronic conductivity and lithium-ion transport.

  14. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.

    Science.gov (United States)

    Wang, Qihua; Wang, Dewei; Li, Yuqi; Wang, Tingmei

    2012-06-01

    Superparamagnetic magnetite nanocrystals-graphene oxide (FGO) nanocomposites were successfully synthesized through a simple yet versatile one-step solution-processed approach at ambient conditions. Magnetite (Fe3O4) nanocrystals (NCs) with a size of 10-50 nm were uniformly deposited on the surfaces of graphene oxide (GO) sheets, which were confirmed by transmission electron microscopy (TEM) and high-angle annular dark field scanning transmission election microscopy (HAADF-STEM) studies. FGO with different Fe3O4 loadings could be controlled by simply manipulating the initial weight ratio of the precursors. The M-H measurements suggested that the as-prepared FGO nanocomposites have a large saturation magnetizations that made them can move regularly under an external magnetic field. Significantly, FGO nanocomposites also exhibit enhanced electric double-layer capacitor (EDLC) activity compared with pure Fe3O4 NCs and GO in terms of specific capacitance and high-rate charge-discharge.

  15. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  16. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Sun, Yan'e; Li, Peng; Zhang, Yong

    2016-06-08

    An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.

  17. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  18. Facile Synthesis of SrCO3-Sr(OH2/PPy Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Alfredo Márquez-Herrera

    2016-01-01

    Full Text Available Pyrrole monomer was chemically polymerized onto SrCO3-Sr(OH2 powders to obtain SrCO3-Sr(OH2/polypyrrole nanocomposite to be used as a candidate for photocatalytic degradation of methylene blue dye (MB. The material was characterized by Fourier transform infrared (FTIR spectroscopy, UV/Vis spectroscopy, and X-ray diffraction (XRD. It was observed from transmission electronic microscopy (TEM analysis that the reported synthesis route allows the production of SrCO3-Sr(OH2 nanoparticles with particle size below 100 nm which were embedded within a semiconducting polypyrrole matrix (PPy. The SrCO3-Sr(OH2 and SrCO3-Sr(OH2/PPy nanocomposites were tested in the photodegradation of MB dye under visible light irradiation. Also, the effects of MB dye initial concentration and the catalyst load on photodegradation efficiency were studied and discussed. Under the same conditions, the efficiency of photodegradation of MB employing the SrCO3-Sr(OH2/PPy nanocomposite increases as compared with that obtained employing the SrCO3-Sr(OH2 nanocomposite.

  19. A facile one-pot hydrothermal approach for the preparation of CuO/rGO nanocomposites with different morphologies

    Science.gov (United States)

    Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan

    2018-05-01

    Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.

  20. Facile synthesis of core–shell structured PANI-Co_3O_4 nanocomposites with superior electrochemical performance in supercapacitors

    International Nuclear Information System (INIS)

    Hai, Zhenyin; Gao, Libo; Zhang, Qiang; Xu, Hongyan; Cui, Danfeng; Zhang, Zengxing; Tsoukalas, Dimitris; Tang, Jun; Yan, Shubin; Xue, Chenyang

    2016-01-01

    Graphical abstract: - Highlights: • PANI-Co_3O_4 is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co_3O_4 affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1. - Abstract: Core–shell structured PANI-Co_3O_4 nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co_3O_4 nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co_3O_4 nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  1. A facile synthesis of graphene oxide–ZnS/ZnO nanocomposites and observations of thermal quenching of visible photoluminescence emission and nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kole, A.K.; Biswas, S. [Nanoscience Laboratory, Dept. of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Kumbhakar, P., E-mail: pathik.kumbhakar@phy.nitdgp.ac.in [Nanoscience Laboratory, Dept. of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India)

    2016-11-15

    Here we have reported a facile synthesis of graphene oxide–ZnS/ZnO nanocomposite and the temperature dependent photoluminescence (PL) emissions in the synthesized materials, which are scarcely been available in the literature. In the present work PL emission in GO and its composites with ZnS and ZnO semiconductor quantum dots (QDs) have been measured at variable temperatures in 283–353 K temperature region. From the measured results it has been found that quenching of PL emission has been taken place in the composite sample and it has been proposed that as the temperature is increased, the excited electrons in the localized states formed by the sp{sup 2} clusters in GO can migrate to the nearby sp{sup 3} defects states, thereby the intensity of PL emission is reduced. Nonlinear Optical (NLO) properties as well as the optical limiting (OL) properties has also been studied by using an indigenously developed Z-scan technique with a 10 ns laser pulse at 1064 nm laser radiation. Two photon absorptions (2PA) behavior have been found to be the dominant mechanism in the synthesized samples. A suitable energy level scheme has been proposed to explain the observed PL emission behavior as well as the 2PA mechanism. The present report will open up a lot of prospects for synthesizing GO-semiconductor nanocomposites with semiconductor materials as well as for potential applications in future luminescent devices.

  2. Synthesis, characterization, and Fischer–Tropsch performance of cobalt/zinc aluminate nanocomposites via a facile and corrosion-free coprecipitation route

    International Nuclear Information System (INIS)

    Liu, Zhenxin; Xing, Yu; Xue, Yingying; Wu, Depeng; Fang, Shaoming

    2015-01-01

    Literature about ZnAl 2 O 4 -supported cobalt Fischer–Tropsch synthesis (FTS) catalytic materials is sparse. A series of cobalt-containing nanocomposites, supported by nanosized ZnAl 2 O 4 spinel (i.e., a complex oxide of about 6.4 nm) or alumina (i.e., a simple oxide of about 6.2 nm), were prepared via urea-gelation, coprecipitation, or impregnation methods followed by stepwise reduction. These materials were examined by XRD, TGA, nitrogen sorption, FESEM, and EDS. Effects of corrosion and pore size distributions on materials preparation were also investigated. The “coprecipitation/stepwise reduction” route is facile and suitable to prepare nanosized ZnAl 2 O 4 -supported Co 0 nanocomposites. At similar CO conversions, the coprecipitated Co/ZnAl 2 O 4 exhibits significantly lower C 1 hydrocarbon distribution, slightly lower C 5+ hydrocarbon distribution, significantly higher C 2 –C 4 hydrocarbon distribution, and significantly higher olefin/paraffin ratio of C 2 –C 4 than Co/γ-Al 2 O 3

  3. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor.

    Science.gov (United States)

    Wang, Huan; Zhang, Yong; Wang, Yulan; Ma, Hongmin; Du, Bin; Wei, Qin

    2017-01-15

    In this work, the assembly between one-dimensional (1D) nanomaterials and two-dimensional (2D) nanomaterials was achieved by a simple method. Cuprous oxide nanowires decorated graphene oxide nanosheets (Cu 2 O@GO) nanocomposites were synthesized for the first time by a simple electrostatic self-assembly process. The nanostructure was well confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Taking advantages of good electrocatalytic activity and high specific surface area of Cu 2 O@GO nanocomposites, a label-free electrochemical immunosensor was developed by employing Cu 2 O@GO as signal amplification platform for the quantitative detection of alpha fetoprotein (AFP). In addition, toluidine blue (TB) was used as the electron transfer mediator to provide the electrochemical signal, which was adsorbed on graphene oxide nanosheets (GO NSs) by electrostatic attraction. The detection mechanism was based on the monitoring of the electrochemical current response change of TB by the square wave voltammetry (SWV) when immunoreaction occurred on the surface of electrode. Under optimal conditions, the proposed immunosensor displayed a high sensitivity and a low detection limit. This designed method may provide an effective method in the clinical diagnosis of AFP and other tumor markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Facile, low temperature synthesis of SnO_2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-01-01

    Highlights: • Facile, one-pot, low temperature synthesis of SnO_2-RGO composite. • In-situ reduction of graphene oxide and growth of SnO_2 nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO_2-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO_2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO_2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO_2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g"−"1 at 3200 mA g"−"1) and stable capacitance (522 mAh g"−"1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO_2 nanoparticle aggregation and degrade the Li ion storage property.

  6. Facile, low temperature synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Chang, Chia-Chin [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China)

    2017-08-15

    Highlights: • Facile, one-pot, low temperature synthesis of SnO{sub 2}-RGO composite. • In-situ reduction of graphene oxide and growth of SnO{sub 2} nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO{sub 2}-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO{sub 2}-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO{sub 2} nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO{sub 2}-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g{sup −1} at 3200 mA g{sup −1}) and stable capacitance (522 mAh g{sup −1} after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO{sub 2} nanoparticle aggregation and degrade the Li ion storage property.

  7. TiO{sub 2} nanocomposite with reduced graphene oxide through facile blending and its photocatalytic behavior for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Fuyun; Liu, Yingliang; Zhang, Li; Wang, Shengping; Xu, Shengang, E-mail: xusg@zzu.edu.cn; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2013-08-01

    Graphical abstract: - Highlights: • TRG-COOH nanocomposite as a photocatalyst for hydrogen evolution is prepared. • The reduction of graphene oxide reconstructs a part of conjugated structure. • The band gap is red-shifted due to the reconstruction of conjugated structure. • RG-COOH covered and anchored by P25 blocks the aggregation and the stacking. • The photocatalytic efficiency of TRG-COOH was increased under 500 W Xenon lamp. - Abstract: TRG-COOH nanocomposite is prepared as a photocatalyst for hydrogen evolution by blending TiO{sub 2} with reduced graphene oxide (RG-COOH). TRG-COOH is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and photoluminescent spectra. XPS result shows the reduction of monolayer graphene oxide (GO). The band gap is red-shifted from 3.25 eV for P25, which consists of 20% rutile and 80% anatase, to 2.95 eV for TGO and then to 2.80 eV for TRG-COOH due to the introduction of GO and the reconstruction of conjugated structure. TEM image illustrates that RG-COOH in TRG-COOH is covered and anchored by P25, which blocks the aggregation of TiO{sub 2} nanoparticles and the stacking of monolayer graphene. This allows RG-COOH to take a good role of electron-sink and electron-transporting bridge. The photocatalytic efficiency of TRG-COOH is respectively increased under Xenon lamp about 8.9 and 2.7 times compared to P25 and TGO.

  8. A facile approach to fabrication of novel CeO2–TiO2 core–shell nanocomposite leads to excellent UV-shielding ability and lower catalytic activity

    International Nuclear Information System (INIS)

    Bahadur, Newaz Mohammed; Kurayama, Fumio; Furusawa, Takeshi; Sato, Masahide; Siddiquey, Iqbal Ahmed; Hossain, Md. Mufazzal; Suzuki, Noboru

    2013-01-01

    This study reports the development of a fast and facile route for the synthesis of novel CeO 2 –TiO 2 core–shell nanocomposite particles using microwave (MW) irradiation of the mixture of commercial CeO 2 , titanium-tetra-n-butoxide (TBOT) and aqueous ammonia. Solutions of TBOT in ethanol and ammonia were mixed with dispersed CeO 2 nanoparticles in ethanol, and the mixture was rapidly MW irradiated at 70 °C for 2 min. The resulting nanocomposite particles were characterized in terms of phase, shell thickness, composition, surface charge, morphology, and chemical state of the elements by XRD, TEM, XPS, SEM, Zeta potential analyzer, XRF, and FT-IR. Conventional methods of the synthesis of CeO 2 –TiO 2 nanocomposite require a long time, and TiO 2 is rarely found as a coated material. In contrast, the MW method was able to synthesize CeO 2 –TiO 2 core–shell nanocompsite particles within a very short time. CeO 2 –TiO 2 nanocomposite particles were fairly unaggregated with an average titania layer thickness of 2–5 nm. The obtained nanocomposites retained the crystalline cubic phase of CeO 2 , and the phase of coated TiO 2 was amorphous. The catalytic activities of uncoated and TiO 2 -coated CeO 2 nanoparticles for the oxidation of organic compounds were evaluated by the degradation study of methylene blue in air atmosphere at 403 K. The enhanced UV-shielding ability and visible transparency of the nanocomposite obtained by UV visible spectroscopic measurements suggested that the core–shell material has novel characteristics for using as a sunscreen material.

  9. A facile approach to fabrication of novel CeO{sub 2}-TiO{sub 2} core-shell nanocomposite leads to excellent UV-shielding ability and lower catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, Newaz Mohammed, E-mail: nmbahadur@yahoo.com [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan); Kurayama, Fumio [Utsunomiya University, Center for Optical Research and Education (Japan); Furusawa, Takeshi; Sato, Masahide [Utsunomiya University, Department of Advanced Interdisciplinary Sciences (Japan); Siddiquey, Iqbal Ahmed [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan); Hossain, Md. Mufazzal [University of Dhaka, Department of Chemistry (Bangladesh); Suzuki, Noboru [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan)

    2013-01-15

    This study reports the development of a fast and facile route for the synthesis of novel CeO{sub 2}-TiO{sub 2} core-shell nanocomposite particles using microwave (MW) irradiation of the mixture of commercial CeO{sub 2}, titanium-tetra-n-butoxide (TBOT) and aqueous ammonia. Solutions of TBOT in ethanol and ammonia were mixed with dispersed CeO{sub 2} nanoparticles in ethanol, and the mixture was rapidly MW irradiated at 70 Degree-Sign C for 2 min. The resulting nanocomposite particles were characterized in terms of phase, shell thickness, composition, surface charge, morphology, and chemical state of the elements by XRD, TEM, XPS, SEM, Zeta potential analyzer, XRF, and FT-IR. Conventional methods of the synthesis of CeO{sub 2}-TiO{sub 2} nanocomposite require a long time, and TiO{sub 2} is rarely found as a coated material. In contrast, the MW method was able to synthesize CeO{sub 2}-TiO{sub 2} core-shell nanocompsite particles within a very short time. CeO{sub 2}-TiO{sub 2} nanocomposite particles were fairly unaggregated with an average titania layer thickness of 2-5 nm. The obtained nanocomposites retained the crystalline cubic phase of CeO{sub 2}, and the phase of coated TiO{sub 2} was amorphous. The catalytic activities of uncoated and TiO{sub 2}-coated CeO{sub 2} nanoparticles for the oxidation of organic compounds were evaluated by the degradation study of methylene blue in air atmosphere at 403 K. The enhanced UV-shielding ability and visible transparency of the nanocomposite obtained by UV visible spectroscopic measurements suggested that the core-shell material has novel characteristics for using as a sunscreen material.

  10. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.

    Science.gov (United States)

    Wang, Lei; Yao, Zhongping; Jia, Fangzhou; Chen, Bin; Jiang, Zhaohua

    2013-07-21

    The sulfide solid solution has become a promising and important visible-light-responsive photocatalyst for hydrogen production nowadays. Zn(x)Cd(1-x)S/CNT nanocomposites were synthesized to improve the dispersion, adjust the energy band gap, and enhance the separation of the photogenerated electrons and holes. The as-prepared photocatalysts were characterized by scanning electron-microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-visible), respectively. And the effects of CNTs on structure, composition and optical absorption property of the sulfide solid solutions were investigated along with their inherent relationships. For Zn0.83Cd0.17S/CNTs, sulfide solid solution is assembled along the CNTs orderly, with a diameter of 100 nm or so. XPS analysis shows that there is bonding effect between the solid solutions and the CNTs due to the strong adsorption of Zn(2+) and Cd(2+) on the surface of CNTs. There are two obvious absorption edges for Zn0.83Cd0.17S/CNTs, corresponding to two kinds of sulfide solid solutions with different molar ratios of Zn/Cd. The hybridization of solid solutions with CNTs makes the absorption spectrum red shift. The photocatalytic property was evaluated by splitting Na2S + Na2SO3 solution into H2, and the highest rate of H2 evolution of 6.03 mmol h(-1) g(-1) was achieved over Zn0.83Cd0.17S/CNTs. The high activity of photocatalytic H2 production is attributed to the following factors: (1) the optimum band gap and a moderate position of the conduction band (which needs to match the irradiation spectrum of the Xe lamp best), (2) the efficient separation of photogenerated electrons and holes by hybridization, and (3) the improvement of the dispersion of nanocomposites by assembling along the CNTs as well.

  11. Facile fabrication of uniform hierarchical structured (UHS) nanocomposite surface with high water repellency and self-cleaning properties

    Science.gov (United States)

    Bagheri, H.; Aliofkhazraei, M.; Forooshani, H. Mojiri; Rouhaghdam, A. Sabour

    2018-04-01

    In the present study, two-stage process for the fabrication of superhydrophobic Ni-Cu-TiO2 nanocomposite coatings on the copper substrate has been introduced. Surface modification was performed on the electrodeposited coatings by myristic acid-ethanol solution to achieve superhydrophobicity. Additionally, in order to further study the roughness effect, instead of addition of copper ions in electrodeposition bath, three substrates were roughened by electrochemical etching method. Water repellency properties were studied through measurement of static and dynamic contact angles, and performing bouncing test, self-cleaning and water-jet evaluation. The samples were electrodeposited in various current densities, and the highest corrosion resistance and water repellency properties were obtained for the sample which was electrodeposited in two consecutive steps and modified by a fatty acid called myristic acid (which significantly reduces surface energy of the coating). The highest water contact angle (161°) and the lowest contact angle hysteresis (3°) were obtained for the sample which was coated by 10 mA/cm2 (144 min) and 20 mA/cm2 (18 min), respectively. Since this approach does not require any sophisticated equipment and materials, it shows promising future in the fabrication of superhydrophobic coatings.

  12. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites.

    Science.gov (United States)

    Li, Yan; Zhang, Han; Crespo, Maria; Porwal, Harshit; Picot, Olivier; Santagiuliana, Giovanni; Huang, Zhaohui; Barbieri, Ettore; Pugno, Nicola M; Peijs, Ton; Bilotti, Emiliano

    2016-09-14

    Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.

  13. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    International Nuclear Information System (INIS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-01-01

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  14. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karshenas, Azam [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  15. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  16. A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis.

    Science.gov (United States)

    Chen, Lu-Ya; Zhang, Wei-De; Xu, Bin; Yu, Yu-Xiang

    2012-09-01

    In this study, we report a facilely hydrothermal process for synthesizing SnO2 nanorods-graphene (SnO2 nanorods-GR) composite using graphite oxide and SnCl4 as raw materials. The SnO2 nanorods-GR composite was characterized by X-ray diffraction, electron microscopy, Xray photoelectron spectroscopy, and thermogravimetric analysis. Compared to commercial TiO2 nanoparticles P25 and neat SnO2 nanorods, the SnO2 nanorods-GR composite exhibits higher photocatalytic activity under UV light irradiation. The mechanism of its high photocatalytic activity is mainly ascribed to the synergy effect between SnO2 and graphene, in which graphene acts as an adsorbent and electron acceptor due to its large structure of pi-pi conjugation from sp2 hybrid carbon atoms. The results demonstrated in this study provide a promising way to enhance the photocatalytic activity by compounding semiconductive nanocrystals with graphene.

  17. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  18. Facile preparation of multifunctional carbon nanotube/magnetite/polyaniline nanocomposite offering a strong option for efficient solid-phase microextraction coupled with GC-MS for the analysis of phenolic compounds.

    Science.gov (United States)

    Tafazoli, Zahra; Azar, Parviz Aberoomand; Tehrani, Mohammad Saber; Husain, Syed Waqif

    2018-04-20

    The aim of this study the synthesis of a highly efficient organic-inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The prepared nanocomposite was immobilized on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The combination of headspace solid-phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01-500 ng mL -1 and the limits of detection of phenol, 4-chlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol were the lowest (0.008 ng mL -1 ) for three times. The coefficient of determination of all calibration curves was more than 0.990. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    Science.gov (United States)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  20. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  1. Facile synthesis and characterization of NiO-SnO2 ceramic nanocomposite and its unique performance in organic pollutants degradation

    Science.gov (United States)

    Nejati Moghadam, Laya; Salavati-Niasari, Masoud

    2017-10-01

    The ceramic nanocomposite of NiO-SnO2 has been known as a professional gas sensor in many fields. In this work, this nanocomposite was prepared with a simple in-situ method successfully. NiO-SnO2 was characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The obtained NiO-SnO2 is crystalline with a cubic structure. The photoluminescence measurement reveals one emission peak at about 3.18 eV at room temperature. In addition, this compound shows a good performance in degradation of organic dyes in a photo-catalytically reaction.

  2. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    International Nuclear Information System (INIS)

    Haldorai, Yuvaraj; Kim, Byung-Keuk; Jo, Youl-Lae; Shim, Jae-Jin

    2014-01-01

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology

  3. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  4. Facile synthesis of core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites with superior electrochemical performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Zhenyin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Gao, Libo [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, Kowloon 999077 (Hong Kong); Zhang, Qiang [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xu, Hongyan [School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051 (China); Cui, Danfeng; Zhang, Zengxing [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Tsoukalas, Dimitris [Department of Applied Physics, National Technical University of Athens, Zografou GR-15780 (Greece); Tang, Jun; Yan, Shubin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xue, Chenyang, E-mail: xuechenyang@nuc.edu.cn [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China)

    2016-01-15

    Graphical abstract: - Highlights: • PANI-Co{sub 3}O{sub 4} is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co{sub 3}O{sub 4} affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}. - Abstract: Core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  5. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive. Th...

  6. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  7. Facile synthesis of multifunctional attapulgite/Fe{sub 3}O{sub 4}/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua, E-mail: rhlu@cau.edu.cn

    2016-08-31

    In this study, the superparamagnetic attapulgite/Fe{sub 3}O{sub 4}/polyaniline (ATP/Fe{sub 3}O{sub 4}/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe{sub 3}O{sub 4} formed by the redox reaction between aniline and Fe (III). The ATP/Fe{sub 3}O{sub 4}/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r{sup 2}) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L{sup −1}, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe{sub 3}O{sub 4}/PANI nanocomposite was first introduced in MDSPE. • ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites exhibited fast adsorption and desorption

  8. Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    International Nuclear Information System (INIS)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2016-01-01

    In this study, the superparamagnetic attapulgite/Fe 3 O 4 /polyaniline (ATP/Fe 3 O 4 /PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe 3 O 4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe 3 O 4 /PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe 3 O 4 /PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe 3 O 4 /PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r 2 ) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L −1 , and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe 3 O 4 /PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe 3 O 4 /PANI nanocomposite was first introduced in MDSPE. • ATP/Fe 3 O 4 /PANI nanocomposites exhibited fast adsorption and desorption kinetics. • An excellent sorbent-to-sorbent reproducibility was demonstrated in the

  9. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye

    OpenAIRE

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-01-01

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe3O4 nanoparticles were simultaneously achieved via a one...

  10. Green and facile synthesis of graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposites with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongxun, E-mail: yhongxun@126.com [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002 (China); Liu, Xiaoyan; Sun, Shengnan; Nie, Yu; Wu, Huipeng; Yang, Tongyi; Zheng, Shaojun [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Lin, Shengling, E-mail: linshl5757@sina.com [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2016-06-15

    Highlights: • A new graphene/K{sub 3}PW{sub 12}O{sub 40} (GPW) composite was synthesized via photoreduction method. • Graphene in the GPW could reduce the recombination of electron-hole pairs. • Graphene in the GPW could increase adsorptive property. • GPW hybrid shows an enhancement photocatalytic activity. - Abstract: K{sub 3}PW{sub 12}O{sub 40} is a promising polyoxometalate photocatalyst for the removal of organic pollutants from water. However, two main disadvantages of poor adsorptive performance and high recombination rate of photogenerated electron-hole pair hinder its practical applications. In this paper, a new graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposite has been synthesized via a green photoreduction strategy, being low-cost and scalable production. Characterizations show that K{sub 3}PW{sub 12}O{sub 40} nanoparticles with 60 nm or so have been successfully deposited on the graphene nanosheets. As a kind of photocatalyst, the binary graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposite displays improved photocatalytic activity compared to pure K{sub 3}PW{sub 12}O{sub 40}. This improvement is ascribed to the introduction of graphene nanosheets in the nanocomposite, which could increase adsorptive property and reduce the recombination of electron-hole pairs.

  11. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors

    Science.gov (United States)

    Dong, Jinyang; Lu, Gang; Wu, Fan; Xu, Chenxi; Kang, Xiaohong; Cheng, Zhiming

    2018-01-01

    A flower-like MnO2 nanocomposite embedded in nitrogen-doped graphene (NG-MnO2) is fabricated by a hydrothermal method. It is a mesoporous nanomaterial with a pore size of approximately 0.765 cm3 g-1 and specific surface area of 201.8 m2 g-1. NG-MnO2 exhibits a superior average specific capacitance of 220 F g-1 at 0.5 A g-1 and a preferable capacitance of 189.1 F g-1, even at 10 A g-1. After 1000 cycles, over 98.3% of the original specific capacitance retention of the NG-MnO2 electrode is maintained, and it can even activate a red light emitting diode (LED) after being charged, which indicates that it has excellent cycling stability as an electrode material. This prominent electrochemical performance is primarily attributed to the nitrogen doping and mesoporous structures of NG-MnO2, which can be attributed to its numerous electroactive sites as well as faster ion and electron transfer for redox reactions than general graphene-MnO2 nanocomposites (G-MnO2).

  12. Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property.

    Science.gov (United States)

    Mallakpour, Shadpour; Khadem, Elham

    2017-11-01

    This work is focused on the fabrication and determination of physicochemical behaviors of new poly(vinyl alcohol) (PVA) nanocomposites (NCs) containing various contents of calcium carbonate (CC) nanoparticles modified with γ-aminopropyl triethoxy silane (ATS) (henceforth designated as CC-ATS) which could be a crucial treatment for their application as gas barrier to O 2 gas and uptake of metal ions in waste waters. Samples were produced through the solution casting method under ultrasound irradiation. Thermal and mechanical performances were also evaluated for all ultrasonically synthesized nanocomposites and the results indicated that thermal and mechanical stability are dramatically enhanced by addition of a small amount of modified CC-ATS within PVA up to 5wt% and higher amounts has low effect on the composite properties. The result of oxygen gas permeability of PVA showed a 25.44% reduction by adding of 5wt% of CC-ATS into polymer matrix. Experimental adsorption isotherm data indicated that PVA NC has more efficiency for Cu(II) adsorption relative to pure PVA and well simulated by Langmuir model with maximum adsorption capacity of 45.45mgg -1 . Moreover, study of sorption kinetic indicated that the solute adsorption on PVA/CC-ATS NC 5wt% was well modeled using the pseudo-second-order. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    Science.gov (United States)

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  14. Facile synthesis of MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites for enhanced CO{sub 2} photoreduction activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weili, E-mail: wldai81@126.com [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Yu, Juanjuan [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Deng, Yiqiang, E-mail: dyq3211@126.com [College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000 Guangdong (China); Hu, Xu; Wang, Tengyao; Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China)

    2017-05-01

    Highlights: • MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites (MB) were fabricated by a facile two-step approach. • MoS{sub 2} was first used as a cocatalyst coupling with Bi{sub 2}WO{sub 6} for CO{sub 2} photoreduction. • MoS{sub 2} significantly enhanced the photoelectric properties and photoactivity. • The CO{sub 3}{sup 2−}, HCO{sub 3}{sup −} and H{sub 2}CO{sub 3} in CO{sub 2} solution actually act as the reactive substrates. - Abstract: A novel composite material, MoS{sub 2}/Bi{sub 2}WO{sub 6}, has been fabricated via a facile two-step approach. The few layered MoS{sub 2} as a cocatalyst has intimate interactions with the hierarchical flower-like Bi{sub 2}WO{sub 6} microspheres, which boosts the visible light harvesting and charge transferring, and promotes the separation of electron-hole pairs, thus leading to the superior photocatalytic activity. It was found that the as-synthesized MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites exhibited significantly enhanced performance for the photoreduction of CO{sub 2} into hydrocarbons, i.e. methanol and ethanol, as compared with pure Bi{sub 2}WO{sub 6}. The yields of methanol and ethanol obtained over the composite with optimal content of MoS{sub 2} (0.4 wt%) were 36.7 and 36.6 μmol gcat{sup −1} after 4 h of visible light irradiation, respectively, which were 1.94 times higher than that over pure Bi{sub 2}WO{sub 6}. Furthermore, the mechanism of CO{sub 2} photoreduction was also investigated. It indicates that the CO{sub 3}{sup 2−}, HCO{sub 3}{sup −} and H{sub 2}CO{sub 3} generated in CO{sub 2} aqueous solution would be the reactive substrates during the photoreduction reaction, proving the thermodynamic feasibility of CO{sub 2} photoreduction. This work demonstrated that MoS{sub 2} is a very promising candidate for development of highly active photocatalysts, and supplied a facile and simple strategy for designing environmentally benign, cheap non-noble metal, and highly efficient semiconductor

  15. Electrochromic nanocomposite films

    Science.gov (United States)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  16. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Science.gov (United States)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  17. Facile fabrication of epoxy-TiO2 nanocomposites: A critical analysis of TiO2 impact on mechanical properties and toughening mechanisms.

    Science.gov (United States)

    Goyat, M S; Rana, S; Halder, Sudipta; Ghosh, P K

    2018-01-01

    Optimized ultrasonic assisted dispersion of un-functionalized titanium dioxide (TiO 2 ) nanoparticles (0.5-20wt%) into epoxy resin is reported. The investigation shows that there is a direct relation among nanoparticles content, inter-particle spacing and cluster size of the particles on the glass transition temperature (T g ) and tensile properties of the prepared nanocomposites. A significant improvement in tensile strength and modulus with minimal detrimental effect on the toughness was observed for the prepared composites, where compared to pristine epoxy resins, about 26% and 18% improvement in tensile strength and strain-to-break %, respectively, was observed for 10wt% particles loading, whereas a maximum improvement of about 54% for tensile toughness was observed for 5wt% particles loaded resins. The investigations found that a strong particle-matrix interface results in the enhancement of the mechanical properties due to leading toughening mechanisms such as crack deflection, particle pull out and plastic deformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Jegatheeswaran, S. [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India); Selvam, S. [Laser and Sensor Application Laboratory, Pusan National University, Busan 609735 (Korea, Republic of); Sri Ramkumar, V. [Deptartment of Environmental Biotechnology, School of Environmental, Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu (India); Sundrarajan, M., E-mail: sundrarajan@yahoo.com [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF{sub 4} ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  19. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    International Nuclear Information System (INIS)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-01-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  20. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Safiullah, S., E-mail: safichem@gmail.com [Department of Chemistry, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore District, Tamil Nadu 632509 (India); P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Abdul Wasi, K. [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Anver Basha, K., E-mail: kanverbasha@gmail.com [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India)

    2015-12-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  1. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    International Nuclear Information System (INIS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-01-01

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF_4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  2. Facile fabrication of hollow mesosphere of crystalline SnO2 nanoparticles and synthesis of SnO2@SWCNTs@Reduced Graphene Oxide nanocomposite as efficient Pt-Free counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun

    2018-06-01

    In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.

  3. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  4. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  5. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  6. Facile synthesis of flake-like TiO{sub 2}/C nano-composites for photocatalytic H{sub 2} evolution under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai, E-mail: suxintai827@163.com

    2017-01-15

    Highlights: • TiO{sub 2}/C nano-flakes were prepared by a facile phase-transfer strategy combined with salt-template calcination method. • The sub–10 nm of TiO{sub 2} NPs were uniformly dispersed on the carbon flakes. • The TiO{sub 2}/C nano-flakes showed a superior visible-light photocatalytic activity for H{sub 2} production. - Abstract: The production of H{sub 2} by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H{sub 2} by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO{sub 2}/C nano-flakes, which was used as an efficient visible-light photocatalyst for H{sub 2} evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO{sub 2} nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m{sup 2} g{sup −1} and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H{sub 2} production rate of 57.2 μmol h{sup −1} under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO{sub 2} and carbon in this hybrid catalyst. This work highlights the potential of TiO{sub 2}/C nano-flakes in the field of photocatalytic H{sub 2} evolution under visible-light irradiation.

  7. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites

    International Nuclear Information System (INIS)

    Chen, Yan; Xu, Jianhua; Mao, Yunwu; Yang, Yajie; Yang, Wenyao; Li, Shibin

    2013-01-01

    Highlights: • A facile vapor-phase polymerization method is used to deposit PEDOT on graphene. • The graphene-PEDOT composite films exhibit better capacitive retention capability. • This simple technique has been developed to produce highly ordered thin films. -- Abstract: We propose a facile vapor-phase polymerization (VPP) method used to deposit graphene (G)-polyethylene dioxythiophene (PEDOT) nanocomposite film for electrode materials of electrochemical capacitor. This type of conductive polymer nanocomposite improves the performance of electrochemical capacitor. The specific discharge capacitance of G-PEDOT film is higher than that of pure PEDOT electrode. The G-PEDOT electrode also exhibits better capacitive retention capability after 1000 charge–discharge cycles

  9. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour [Radiation Application Research School, Nuclear Science and Research Institute, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2009-07-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  10. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    International Nuclear Information System (INIS)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour

    2009-01-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  11. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  12. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  13. Microwave absorbing property and complex permittivity and permeability of graphene–CdS nanocomposite

    International Nuclear Information System (INIS)

    Zhang, Dong-Dong; Zhao, Dong-Lin; Zhang, Ji-Ming; Bai, Li-Zhong

    2014-01-01

    Graphical abstract: Graphene–CdS (G–CdS) nanocomposite with a good structural interface and enhanced microwave absorption has been successfully and directly synthesized from graphene oxide via a facile hydrothermal approach. The permittivity of G–CdS nanocomposite presents triple dielectric relaxations by constructing a good structural G–CdS interface. The triple dielectric relaxations are critical to improve the microwave absorption of the G–CdS nanocomposite. Highlights: • Graphene–CdS (G–CdS) nanocomposite was directly synthesized from graphene oxide. • The G–CdS nanocomposite exhibits enhanced microwave absorption. • The permittivity of G–CdS nanocomposite presents triple dielectric relaxations. -- Abstract: The graphene–CdS (G–CdS) nanocomposite with enhanced microwave absorption was directly synthesized from graphene oxide (GO) via a facile hydrothermal approach, during which the formation of CdS nanoparticles and the reduction of GO occured simultaneously. The morphology, structure, microwave absorbing property, complex permittivity and permeability of G–CdS nanocomposite were systematically investigated by transmission electron microscope, X-ray diffraction and the coaxial line method. The complex permittivity of G–CdS nanocomposite presents triple dielectric relaxations with constructing a good structural graphene–CdS interface. The triple dielectric relaxations were critical to improve the microwave absorption of G–CdS nanocomposite. The G–CdS nanocomposite achieved a reflection loss below –10 dB in the frequency range of 5.2–18 GHz when adjusting the thicknesses from 2 to 5 mm, which was mainly ascribed to the proper electromagnetic matching of the CdS nanoparticles and graphene sheets, and the triple dielectric relaxations. The G–CdS nanocomposite is promising as a lightweight and wide-frequency microwave absorber

  14. Green synthesis of graphene/Ag nanocomposites

    International Nuclear Information System (INIS)

    Yuan Wenhui; Gu Yejian; Li Li

    2012-01-01

    Graphical abstract: A facile and green approach to synthesis of GNS/AgNPs is reported by employing sodium citrate as reductant, and this study represents the use of biocompounds for nontoxic and scalable production of GNS/AgNPs under a suitable concentration of silver ions and the prepared GNS/AgNPs can be used in the field of disinfection. Highlights: ► Graphene/Ag nanocomposites were prepared by a green and facile strategy based on sodium citrate. ► The influence of AgNO 3 amount on particle size and size range of AgNPs was studied. ► The surface plasmon resonance properties of AgNPs on graphene was investigated. ► The antibacterial activity of silver nanoparticles was retained in the nanocomposites. - Abstract: Graphene/Ag nanocomposites (GNS/AgNPs) were fabricated via a green and facile method, employing graphite oxide (GO) as a precursor of graphene, AgNO 3 as a precursor of Ag nanoparticles, and sodium citrate as an environmentally friendly reducing and stabilizing agent. The synthesized GNS/AgNPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectra (RS), respectively. The results indicated that graphite oxide was completely reduced to graphene, and the silver ion was reduced by sodium citrate simultaneously. Under a suitable dosage of silver ions, well-dispersed AgNPs on the graphene sheets mostly centralized at 20–25 nm. The surface plasmon resonance property of AgNPs on graphene showed that there was a interaction between AgNPs and graphene supports. In addition, antibacterial activity of silver nanoparticles was retained in the nanocomposites, suggesting that they can be potentially used as a graphene-based biomaterial.

  15. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  16. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed; Li, Bodong; Kosel, Jü rgen

    2016-01-01

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field

  17. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  18. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Polyanthranilic acid (PANA) and polyanthranilic acid–gold (PANA–Au) nanocomposites have been synthesized through emulsion polymerization technique. Use of gold chloride as an oxidant for anthranilic acid not only provides a new route for chemical synthesis of PANA, but also explores a facile method for the formation ...

  19. Thermal Degradation of Nanocomposited PMMA/TiO2 Nanocomposites

    International Nuclear Information System (INIS)

    Hafizah, Nik Noor; Mamat, Mohamad Hafiz; Rusop, Mohamad; Said, Che Mohamad Som; Abidin, Mohd Hanafiah

    2013-01-01

    The polymer nanocomposite is a new choice to conventionally filled polymers. The lack of proper binding between the filler and the polymer can lead the decrease of the thermal and other properties of the nanocomposites. In this study, the nanocomposited PMMA/TiO 2 nanocomposites were prepared using sonication and solution casting method at different weight percent TiO 2 . The aims of adding TiO 2 in the PMMA is to study the effects of TiO 2 nanofiller on the thermal properties nanocomposites. FESEM results show the higher amounts of TiO 2 in PMMA increase the rough surface morphology of the samples. Further, the Raman results reveal that the TiO 2 nanofiller were successfully intercalated into the PMMA matrix. In addition, the thermal properties of nanocomposited PMMA/TiO 2 nanocomposites were increased with the addition of TiO 2 in the PMMA.

  20. Conducting polyamine nanocomposites development

    International Nuclear Information System (INIS)

    Nascimento, R.C.; Maciel, T.C.G.L.; Guimaraes, M.J.O.C.; Garcia, M.E.F.

    2010-01-01

    Polymeric nanocomposites are hybrid materials formed by the combination of inorganic nanoparticles dispersed in a polymeric matrix with, at least, one dimension in the nanometer range. It was used as nanoparticles layered and tubular clay minerals, and its insertion and dispersion were conducted through the in situ polymerization technique. As the polymer matrix, it was utilized a polyamine, which, later, will be inserted in a polyacrylamide gel for the development of a compound that aggregates both main characteristics. The nanocomposites were prepared in different polymerization conditions (temperature, concentration and nanoparticle type) and characterized by XRD and FTIR. It was observed that regarding the polymerization conditions, the temperature had influence on the kind of material obtained and on the reaction speed; the type of nanoparticle affected its interaction with the polymer matrix, predominantly providing the formation of nanocomposites by the intercalation mechanism in the layered clay. (author)

  1. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  2. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization.

    Science.gov (United States)

    Wang, X W; Zhang, C-A; Wang, P L; Zhao, J; Zhang, W; Ji, J H; Hua, K; Zhou, J; Yang, X B; Li, X P

    2012-05-08

    Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were facilely prepared via in situ polymerization. The properties of the nanocomposites were studied using FTIR, XRD, and (1)H NMR, and the state of dispersion of GO in the PBS matrix was examined by SEM. The crystallization and melting behavior of the PBS matrix in the presence of dispersed GO nanosheets have been studied by DSC and polarized optical microscopy. Through the mechnical testing machine and DMA, PBS/GO nanocomposites with 3% GO have shown a 43% increase in tensile strength and a 45% improvement in storage modulus. This high performance of the nanocomposites is mainly attributed to the high strength of graphene oxide combined with the strong interfacial interactions in the uniformly dispersed PBS/GO nanocomposites.

  3. Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper

    International Nuclear Information System (INIS)

    Li Lanyan; Xia Keqiang; Li Liang; Shang Songmin; Guo Qingzhong; Yan Guoping

    2012-01-01

    Flexible polypyrrole/graphene oxide (GO) nanocomposite paper was prepared via a facile and one-step chemical oxidation polymerization method. The morphology and microstructure of the obtained papers were characterized by SEM, FTIR, and XRD. GO was confirmed experimentally to be exfoliated and uniformly dispersed in the resulting nanocomposites. The specific capacitance value of the nanocomposite paper has been determined to be about 330 F/g at a scan rate of 100 mV/s, suggesting the possible application of the nanocomposite as a supercapacitor electrode. After 700 cycles at a scan rate of 100 mV/s, only 9 % decrease in specific capacitance as compared to initial value indicates the superior electrochemical cyclic stability of the nanocomposite paper.

  4. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  5. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  6. Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite

    Science.gov (United States)

    Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2017-09-01

    We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.

  7. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  8. Adsorption performance of CuFe2O4/rGO nanocomposites towards organic dye

    International Nuclear Information System (INIS)

    Tang, Mingyi; Li, Xichuan; Gao, Chunjuan; Li, Xianxian; Qiu, Haixia

    2017-01-01

    A facile and efficient approach was employed to synthesize CuFe 2 O 4 /rGO (reduced graphene oxide) nanocomposites. The morphology, crystal structure and properties of the prepared CuFe 2 O 4 /rGO nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction and thermo-gravimetric analysis. The CuFe 2 O 4 /rGO nanocomposites were applied as adsorbents to study their adsorption performance for Congo red. The adsorption capacity and recyclability, adsorption dynamics and adsorption models were investigated. The results show that the CuFe 2 O 4 /rGO nanocomposites are efficient and recyclable adsorbents. - Highlights: • CuFe 2 O 4 /rGO was synthesized by a facile hydrothermal route. • As an adsorbent it showed high adsorption capacity to CR. • It was magnetically removable and has high reusability.

  9. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  10. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  11. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  12. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  13. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine

    OpenAIRE

    R. Nurzulaikha; H.N. Lim; I. Harrison; S.S. Lim; A. Pandikumar; N.M. Huang; S.P. Lim; G.S.H. Thien; N. Yusoff; I. Ibrahim

    2015-01-01

    A graphene-tin oxide (G-SnO2) nanocomposite was prepared via a facile hydrothermal route using graphene oxide and Sn precursor solution without addition of any surfactant. The hydrothermally synthesized G-SnO2 nanocomposite was characterized using a field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). A homogeneous deposition of SnO2 nanoparticles with an average partic...

  14. The enhanced coercivity for the magnetite/silica nanocomposite at room temperature

    International Nuclear Information System (INIS)

    Wu Mingzai; Xiong Ying; Peng Zhenmeng; Jiang Nan; Qi Haiping; Chen Qianwang

    2004-01-01

    Magnetite/silica nanocomposite was synthesized by a facile solvothermal processing at 150 deg. C for about 10 h. X-ray diffraction (XRD) analysis revealed the effect of annealing on the crystallinity of silica. Transmission electron microscopy (TEM) images showed the good dispersion of magnetite in the silica matrix. Magnetic properties of the nanocomposite were characterized by vibration sample magnetometer (VSM), and the enhanced coercivity was explained by the intrinsic anisotropy of the particles enhanced by the interparticle dipolar fields

  15. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. (BS-Mn) nanocomposite

    African Journals Online (AJOL)

    Bamboo supported manganese (BS-Mn) nanocomposite was prepared in a single pot system via bottom-up approach using a chemical reduction method. Langmuir surface area, BET surface area, and Single pore surface area were 349.70 m2/g, 218.90 m2/g, and 213.50 m2/g, respectively. The pore size (24.34 Ȧ); pore ...

  17. Multilayer graphene rubber nanocomposites

    Science.gov (United States)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  18. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  19. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    Science.gov (United States)

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  20. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications

    International Nuclear Information System (INIS)

    Xiong, Guangyao; Luo, Honglin; Zuo, Guifu; Ren, Kaijing; Wan, Yizao

    2015-01-01

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA and HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts

  1. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang 330013 (China); Luo, Honglin [Research Institute of Biomaterials and Transportation, East China Jiaotong University, Nanchang 330013 (China); School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Zuo, Guifu [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, Hebei United University, Tangshan 063009 (China); Ren, Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Wan, Yizao, E-mail: yzwantju@126.com [Research Institute of Biomaterials and Transportation, East China Jiaotong University, Nanchang 330013 (China); School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA and HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts.

  2. Poly (Lactic Acid)/Layered Silicate Nanocomposite Films: Effect of Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dadbin, S.; Naimian, F.; Akhavan, A.; Hasanpoor, S., E-mail: sdadbin@yahoo.com, E-mail: sdadbin@aeoi.org.ir [Atomic Energy Organization of Iran (AEOI), Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, North Kargar (Iran, Islamic Republic of)

    2010-07-01

    Poly (Lactic acid) –layered silicate nanocomposite films were prepared by solution casting method. The films were irradiated with Co{sup 60} radiation facility at dose of 30 kGy. The effect of gamma irradiation on mechanical properties of the neat PLA and nanocomposites was evaluated by data obtained from tensile testing measurements. The tensile strength of the irradiated PLA films increased with addition of 1 wt% Triallyl Cyanurate (TAC) indicating crosslink formation. Significant ductile behavior was observed in the PLA nanocomposites containing 4 pph of nanoclay. Incorporation of nanoclay particles in the PLA matrix stimulated crystal growth as it was studied by differential scanning calorimetry (DSC). The morphology of the nanocomposites characterized by transmission electron microscopy (TEM) and X- ray diffraction (XRD) revealed an exfoliated morphology in the PLA nanocomposite films containing 4 pph of nanoclay. Only very small changes were observed in the chemical structure of the irradiated samples as it was investigated by Fourier transform infrared (FTIR) spectroscopy. Enzymatic degradation rate of PLA and its nanocomposite decreased with increasing crystallinity of the samples. The rate of weight loss was also affected by the morphology of the nanocomposites. (author)

  3. Poly (Lactic Acid)/Layered Silicate Nanocomposite Films: Effect of Irradiation

    International Nuclear Information System (INIS)

    Dadbin, S.; Naimian, F.; Akhavan, A.; Hasanpoor, S.

    2010-01-01

    Poly (Lactic acid) –layered silicate nanocomposite films were prepared by solution casting method. The films were irradiated with Co 60 radiation facility at dose of 30 kGy. The effect of gamma irradiation on mechanical properties of the neat PLA and nanocomposites was evaluated by data obtained from tensile testing measurements. The tensile strength of the irradiated PLA films increased with addition of 1 wt% Triallyl Cyanurate (TAC) indicating crosslink formation. Significant ductile behavior was observed in the PLA nanocomposites containing 4 pph of nanoclay. Incorporation of nanoclay particles in the PLA matrix stimulated crystal growth as it was studied by differential scanning calorimetry (DSC). The morphology of the nanocomposites characterized by transmission electron microscopy (TEM) and X- ray diffraction (XRD) revealed an exfoliated morphology in the PLA nanocomposite films containing 4 pph of nanoclay. Only very small changes were observed in the chemical structure of the irradiated samples as it was investigated by Fourier transform infrared (FTIR) spectroscopy. Enzymatic degradation rate of PLA and its nanocomposite decreased with increasing crystallinity of the samples. The rate of weight loss was also affected by the morphology of the nanocomposites. (author)

  4. An introduction to polymer nanocomposites

    International Nuclear Information System (INIS)

    Armstrong, Gordon

    2015-01-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites. (review)

  5. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Esmailzadeh, Hakimeh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sangpour, Parvaneh, E-mail: Sangpour@merc.ac.ir [Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Shahraz, Farzaneh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hejazi, Jalal [Department of Biochemistry and Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan (Iran, Islamic Republic of); Khaksar, Ramin [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. - Highlights: • ZnO containing nanocomposites decreased growth of both B. subtilis and E. aerogenes. • B. subtilis was more sensitive to ZnO containing nanocomposites. • The migration of Zn ions from nanocomposites was negligible.

  6. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  7. Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO 3 nanoparticles for energy storage applications

    KAUST Repository

    Almadhoun, Mahmoud Nassar Mahmoud

    2012-01-01

    A facile surface hydroxylation treatment using hydrogen peroxide to modify the surface of BaTiO 3 nanofillers dispersed in a ferroelectric copolymer host has been investigated. We demonstrate that the surface functionalization of the BaTiO 3 nanofillers (<100 nm) with hydroxyl groups results in as much as two orders of magnitude reduction in the leakage current of nanocomposite thin-film capacitors. This reduction is observed concurrently with the enhancement of the effective permittivity and breakdown strength of the thin-film nanocomposites. Surface modified BaTiO 3 particles display better dispersion within the polymer matrix, resulting in enhanced relative permittivity and reduced dielectric loss. The dielectric behavior of the nanocomposite films containing up to 30 vol.% BaTiO 3 agreed well with the Bruggeman model. These results demonstrate the potential of facile surface hydroxylation of nanoparticles towards the fabrication of higher energy-density nanocomposites. © 2012 The Royal Society of Chemistry.

  8. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films

  9. Facile synthesis of Z-scheme graphitic-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} nanocomposite for enhanced visible photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng; Geng, Lei [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Qiangchun; Zhu, Guangping; Chen, Chen [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2015-12-15

    Graphical abstract: - Highlights: • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} nanocomposite photocatalyst was prepared. • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} as a typical Z-scheme photocatalyst was proved. • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} showed long reusable life with irradiation of LED light. - Abstract: The band engineering of visible-light-driven photocatalysts is a promising route for harnessing of effective solar energy to perform high chemical reactions and to treat environmental pollution. In this study, two narrow band gap semiconductor nanomaterials, graphitic carbon nitride (g-C{sub 3}N{sub 4}) and Bi{sub 2}MoO{sub 6}, were selected and coupled to form series of g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts. Their structure, light absorption wavelength range, charge transport properties and energy level were investigated. Through perfect manipulation of their composition, enhanced photocatalytic activity of the Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts with efficient reduction of recombination of photogenerated electrons and holes was achieved. The optimized Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts with 25 wt%g-C{sub 3}N{sub 4} showed apparent pseudo-first-order rate constant k{sub app} as high as 0.0688 min{sup −1}, which was 4.8 times and 8.2 times higher than that of g-C{sub 3}N{sub 4} and Bi{sub 2}MoO{sub 6} photocatalyst, respectively.

  10. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  11. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    Science.gov (United States)

    Zhu, Jiahua

    Energy shortage and environmental pollution are the two most concerns right now for the long term sustainable development of human society. New technology developments are the key solutions to these challenges, which strongly rely on the continuous upgrading of advanced material performance. In this dissertation, sustainable nanocomposites with multifunctionalities are designed and fabricated targeting to the applications in high energy/power density capacitor electrodes and efficient heavy metal adsorbent for polluted water purification. Contrary to the helical carbon structure from pure cotton fabrics under microwave heating and radical oxidized ignition of nanoparticles from conventional heating, magnetic carbon tubular nanocomposite fabrics decorated with unifromally dispersed Co-Co3O4 nanoparticles were successfully synthesized via a microwave heating process using cotton fabric and inorganic salt as precursors, which have shown better anti-corrosive performance and demonstrated great potential as novel electrochemical pseudocapacitor electrode. Polyaniline nanofibers (PANI-NFs)/graphite oxide (GO) nanocomposites with excellent interfacial interaction and elongated fiber structure were synthesized via a facile interfacial polymerization method. The PANI-NFs/GO hybrid materials showed orders of magnitude enhancement in capacitance and energy density than that of individual GO and PANI-NF components. At the same weight loading of PANI in the composites, fibrous PANI demonstrated higher energy density and long term stability than that of particle-shaped PANI at higher power density. Besides the efforts focusing on the inside of the capacitor including new electrodes, electrolyte materials, and capacitor configuration designs. A significant small external magnetic field (720 Gauss) induced capacitance enhancement is reported for graphene and graphene nanocomposite electrodes. The capacitance of Fe2O3/graphene nanocomposites increases by 154.6% after appling

  12. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  13. Magnetoelectric polymer nanocomposite for flexible electronics

    International Nuclear Information System (INIS)

    Alnassar, M.; Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites

  14. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-03-06

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  15. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.; Alfadhel, Ahmed; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  16. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  17. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  18. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    International Nuclear Information System (INIS)

    Yang Jian; Tian Ming; Jia Qingxiu; Shi Junhong; Zhang Liqun; Lim Szuhui; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials

  19. Greatly enhanced Raman scattering and upconversion luminescence of Au–NaYF{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Li, Junpeng [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-12-15

    Novel dual function Au–NaYF{sub 4} nanocomposites were prepared by a facile wet chemical method. Hexagonal NaYF{sub 4} nanocrystals (NCs) were first produced by a hydrothermal method. Then, these NaYF{sub 4} NCs were decorated with gold nanoparticles (NPs) to form hybrid nanostructures. In this dual mode probe, surface enhanced Raman scattering (SERS) and field enhanced fluorescence can be generated independently by using different excitation wavelengths. It was found that the attached gold NPs on the rough surfaces of NaYF{sub 4} NCs might generate high density localized electric fields, which could lead to both efficient Raman scattering signal and upconversion (UC) luminescence. The enhancement factors of SERS signals from Au–NaYF{sub 4} nanocomposites were investigated using 4-mercaptobenzoic acid. The mechanism of enhanced UC luminescence from the nanocomposites was also discussed based on the population and photoluminescence processes of doped trivalent lanthanide ions. These dual mode nanocomposites may find potential applications in biological detection, imaging, and sensing. - Highlights: • Novel dual function Au–NaYF{sub 4} nanocomposites were successfully fulfilled by a facial wet chemical method. • Field enhanced fluorescence and SERS can be generated independently by using different excitation wavelengths. • The EF value of this Au–NaYF{sub 4} substrate was as high as 8.17×10{sup 7}. • The largest ER of UC emissions from Gd{sup 3+} ion in Au–NaYF{sub 4} nanocomposites appeared to be 76.

  20. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jian [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tian Ming [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Jia Qingxiu [Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Shi Junhong [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Zhang Liqun [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: zhanglq@mail.buct.edu.cn; Lim Szuhui; Yu Zhongzhen [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia); Mai Yiuwing [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia)], E-mail: y.mai@usyd.edu.au

    2007-10-15

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials.

  1. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    Science.gov (United States)

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  2. Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications

    International Nuclear Information System (INIS)

    Vanitha, M.; Keerthi; Cao, P.; Balasubramanian, N.

    2015-01-01

    Highlights: • Quasi spherical Ag and CeO 2 nanoparticles were decorated on rGO matrix. • The Ag/CeO 2 /rGO nanocomposite exhibits specific capacitance of 710 F g −1 . • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO 2 /reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO 2 nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g −1 at an applied current density of 0.2 A g −1 , which was nearly two fold higher than CeO 2 /rGO nanocomposite. This work endows a new route for building Ag/CeO 2 /rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications

  3. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoMoO 4 nanocomposites are prepared by microwave irradiation for the first time. • RGO/CoMoO 4 nanocomposites show a high specific capacitance of 322.5 F g −1 . • Enhanced electrical conductivity leads to superior electrochemical performance. • Low crystallinity of CoMoO 4 is favorable to improve the electrochemical performance. - Abstract: A facile and efficient strategy for preparing reduced graphene oxide–cobalt molybdate (RGO/CoMoO 4 ) nanocomposites assisted by microwave irradiation for the first time is demonstrated. The resulting nanocomposites are comprised of CoMoO 4 nanoparticles that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoMoO 4 nanocomposites have been thoroughly characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy and X-ray photoelectron spectroscopy. Importantly, the prepared nanocomposites exhibit excellent electrochemical performance for supercapacitors. Results show that RGO/CoMoO 4 nanocomposites exhibited much better electrochemical capability than pure-CoMoO 4 and RGO/CoMoO 4 for annealing. RGO/CoMoO 4 nanocomposites with 37.4 wt% CoMoO 4 content achieved a specific capacitance about 322.5 F g −1 calculated from the CV plots at 5 mV s −1 , which was higher than that of pure-CoMoO 4 (95.0 F g −1 ) and RGO/CoMoO 4 for annealing (102.5 F g −1 ). The good electrochemical performance can be attributed to the synergistic effects of the individual components

  4. Biopolymeric nanocomposites with enhanced interphases.

    Science.gov (United States)

    Yin, Yi; Hu, Kesong; Grant, Anise M; Zhang, Yuhong; Tsukruk, Vladimir V

    2015-10-06

    Ultrathin and robust nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution removal during dropping of solution on constantly spinning substrates resulted in largely unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril formation. The resulting laminated nanocomposites possess outstanding mechanical properties, significantly exceeding those previously reported for conventional LbL films with similar composition. The tensile modulus reached extremely high values of 170 GPa, which have never been reported for graphene oxide-based nanocomposites, the ultimate strength was close to 300 MPa, and the toughness was above 3.4 MJ m(-3). The failure modes observed for these membranes suggested the self-reinforcing mechanism of adjacent graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from individual backbones. This interphase reinforcement leads to the effective load transfer between the graphene oxide components in reinforced laminated nanocomposite materials with excellent mechanical strength that surpasses those known today for conventional flexible laminated carbon nanocomposites from graphene oxide and biopolymer components.

  5. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  6. Facile pyrolysis preparation of rosin-derived biochar for supporting silver nanoparticles with antibacterial activity

    DEFF Research Database (Denmark)

    Huang, Jian Fei; Shi, Qing Shan; Feng, Jin

    2017-01-01

    -step preparation process and a low loading capacity of nanoparticles. A facile preparation route for the preparation of antibacterial metallic nanocomposites would be especially beneficial for industrial fabrication. In this study, we provided a facile strategy for the preparation of a rosin-derived biochar matrix...... loaded with silver nanoparticles (Ag NPs) as the fillers. The results demonstrated that the preparation of these rosin-derived biochar silver nanocomposites (Rc/Ag nanocomposites) was achieved by a rapid pyrolysis process and a large amount of Ag NPs were in-situ obtained and homogeneously dispersed...

  7. Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-08-21

    A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

  8. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  9. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  10. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  11. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    International Nuclear Information System (INIS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-01-01

    Titanium dioxide (TiO 2 ) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO 2 -ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO 2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  12. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Science.gov (United States)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  13. Multiwalled carbon nanotubes@octavinyl polyhedral oligomeric silsesquioxanes nanocomposite preparation via cross-linking reaction in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Somasekharan, Lakshmipriya; Thomas, Sabu [Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology (India); Comoy, Corinne [Université de Lorraine, SRSMC, UMR 7565 (France); Sivasankarapillai, Anilkumar [NSS Hindu College (India); Kalarikkal, Nandakumar [Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology (India); Lamouroux, Emmanuel, E-mail: Emmanuel.Lamouroux@univ-lorraine.fr [Université de Lorraine, SRSMC, UMR 7565 (France)

    2016-11-15

    Multiwalled carbon nanotubes have unique properties allowing their use in a wide range of applications—from microelectronics to biomedical and polymer fields. Nevertheless, a crucial aspect for their use resides in the ease of handling them during the process. Here, we report a facile route to prepare multiwalled carbon nanotubes@octavinyl polyhedral oligomeric silsesquioxanes (MWCNT@POSS) nanocomposite. The method involves the formation of a covalent bond between carboxylated MWCNTs and OV-POSS using acid-catalyzed electrophilic addition reaction. The resulting nanocomposite have been characterized by Fourier transform infrared spectroscopy (FTIR), powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results confirmed that the formation of MWCNT@POSS nanocomposite did not deteriorate MWCNT structure or morphology. Here, we used a 1:1 ratio of carboxylated MWCNTs and OV-POSS and the POSS content in the nanocomposite was 39.5 wt%.

  14. Hydrothermal synthesis of TiO{sub 2}-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, S., E-mail: s.gayathri1010@gmail.com; Jayabal, P. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram-695016 (India)

    2015-06-24

    Titanium dioxide (TiO{sub 2}) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO{sub 2}-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO{sub 2} nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  15. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  16. Graphene oxide--MnO2 nanocomposites for supercapacitors.

    Science.gov (United States)

    Chen, Sheng; Zhu, Junwu; Wu, Xiaodong; Han, Qiaofeng; Wang, Xin

    2010-05-25

    A composite of graphene oxide supported by needle-like MnO(2) nanocrystals (GO-MnO(2) nanocomposites) has been fabricated through a simple soft chemical route in a water-isopropyl alcohol system. The formation mechanism of these intriguing nanocomposites investigated by transmission electron microscopy and Raman and ultraviolet-visible absorption spectroscopy is proposed as intercalation and adsorption of manganese ions onto the GO sheets, followed by the nucleation and growth of the crystal species in a double solvent system via dissolution-crystallization and oriented attachment mechanisms, which in turn results in the exfoliation of GO sheets. Interestingly, it was found that the electrochemical performance of as-prepared nanocomposites could be enhanced by the chemical interaction between GO and MnO(2). This method provides a facile and straightforward approach to deposit MnO(2) nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.

  17. Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lian-Hua Fu

    2016-09-01

    Full Text Available In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O, or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP, creatine phosphate disodium salt tetrahydrate (CP, or D-fructose 1,6-bisphosphate trisodium salt octahydrate (FBP through the microwave-assisted hydrothermal method. The effects of the phosphorus sources, heating time, and heating temperature on the phase, size, and morphology of the products were systematically investigated. The experimental results revealed that the phosphate sources played a critical role on the phase, size, and morphology of the minerals in the nanocomposites. For example, the pure HA was obtained by using NaH2PO4·2H2O as phosphorus source, while all the ATP, CP, and FBP led to the byproduct, calcite. The HA nanostructures with various morphologies (including nanorods, pseudo-cubic, pseudo-spherical, and nano-spherical particles were obtained by varying the phosphorus sources or adjusting the reaction parameters. In addition, this strategy is surfactant-free, avoiding the post-treatment procedure and cost for the surfactant removal from the product. We believe that this work can be a guidance for the green synthesis of cellulose/HA nanocomposites in the future.

  18. Metal oxide/polyaniline nanocomposites

    Indian Academy of Sciences (India)

    Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the ...

  19. Nanocomposites with biodegradable polycaprolactone matrix

    Czech Academy of Sciences Publication Activity Database

    Janigová, I.; Lednický, František; Jochec-Mošková, D.; Chodák, I.

    2011-01-01

    Roč. 301, č. 1 (2011), s. 1-8 ISSN 1022-1360. [Eurofillers /8./. Alessandria, 21.06.2009-25.06.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : melt mixing * nanocomposite s * organoclay Subject RIV: CD - Macromolecular Chemistry

  20. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor's high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  1. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  2. How Nano are Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Schafer, Dale W; Justice, Ryan S

    2007-01-01

    ...s (single and multi-walled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  3. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  4. Graphene-zinc oxide (G-ZnO nanocomposite for electrochemical supercapacitor applications

    Directory of Open Access Journals (Sweden)

    Murugan Saranya

    2016-12-01

    Full Text Available Graphene-ZnO nanocomposites (G-ZnO were prepared by a facile solvothermal approach. Well, crystalline ZnO nanoparticles with size in the range of 30–70 nm are uniformly deposited on the graphene sheets, as evidenced by different techniques. The electrochemical properties of the prepared nanocomposites were examined by measuring the specific capacitance in 6 M KOH solution using cyclic voltammetry and galvanostatic charge–discharge techniques. G-ZnO nanocomposites showed a good capacitive behavior with a specific capacitance of 122.4 F/g as compared to graphene oxide (2.13 F/g and rGO (102.5 F/g at 5 mV/s scan rate. Results demonstrated that such hybrid materials are promising electrode materials for high-performance supercapacitor applications.

  5. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  6. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  7. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  8. Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites

    International Nuclear Information System (INIS)

    Gu, Yongji; Xing, Mingyang; Zhang, Jinlong

    2014-01-01

    Graphical abstract: - Highlights: • Graphene based doped TiO 2 nanocomposites were prepared. • The intimate contact between doped TiO 2 and graphene is achieved simultaneously. • These nanocomposites showed higher photocatalytic activity than TiO 2 and doped TiO 2 . • Photocatalytic mechanism was explained thoroughly. - Abstract: The nanocomposites of reduced graphene oxide based nitrogen doped TiO 2 (N–TiO 2 –RGO) and reduced graphene oxide based nitrogen and vanadium co-doped TiO 2 (N, V–TiO 2 –RGO) were prepared via a facile hydrothermal reaction of graphene oxide and TiO 2 in a water solvent. In this hydrothermal treatment, the reduction of graphene oxide and the intimate contact between nitrogen doped TiO 2 (N–TiO 2 ) or nitrogen and vanadium co-doped TiO 2 (N,V–TiO 2 ) and the RGO sheet is achieved simultaneously. Both N–TiO 2 –RGO and N,V–TiO 2 –RGO nanocomposites exhibit much higher visible light photocatalytic activity than N–TiO 2 and N,V–TiO 2 , and the order of visible light photocatalytic activity is N,V–TiO 2 –RGO > N–TiO 2 –RGO > N,V–TiO 2 > N–TiO 2 > TiO 2 . According to the characterization, the enhanced photocatalytic activity of the nanocomposites is attributed to reasons, such as enhancement of adsorption of pollutants, light absorption intensity, minimizing the recombination of photoinduced electrons and holes and more excited states of these nanocomposites under visible light irradiation. Overall, this work provides a more marked contrast of graphene based semiconductor nanocomposites and a more comprehensive explanation of the mechanism

  9. The preparation and characteristic of poly (3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiling [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yang, Wenyao [School of Electrical and Electronic Engineering, Engineering Research Center of Electronic Information Technology and Application, Chongqing University of Arts and Sciences, Chongqing 402160 (China); He, Xin; Chen, Yan; Zhao, Yuetao; Zhou, Yujiu; Yang, Yajie [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Xu, Jianhua, E-mail: jianhuaxu8023@126.com [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-02-15

    Highlights: • A facile method to prepare PEDOT/rGO nanocomposite. • Taking full advantages of electrochemical polymerization and laser-writing methods. • The PEDOT/rGO nanocomposite possesses excellent electrochemical properties. - Abstract: Here we demonstrate a facile electrochemical polymerization and laser induction process to fabricate poly (3,4-ethylenedioxythiophene)/reduced graphene oxide (PEDOT/rGO) nanocomposite, which can be used as supercapacitor electrode material. Firstly, a PEDOT film is deposited on ITO substrate using an electrochemical polymerization method and a graphene oxide (GO) film is successively deposited on as-prepared PEDOT film through a spin-coating method. Then, by using a laser-writing method, the GO film is transformed into the rGO and a PEDOT/rGO nanocomposite is obtained. The resulting nanocomposite shows high areal capacitance about 43.75 mF/cm{sup 2}, which is nearly 3 times higher than that of the PEDOT film at a current density of 0.2 mA/cm{sup 2}. The PEDOT/rGO nanocomposite exhibits excellent cyclic stability, which can retain 83.6% of its initial capacitance after 1000 charge-discharge cycles. Furthermore, this nanocomposite can be deposited on varied substrates as electrode materials, which shows promising application to prepare high performance energy storage materials.

  10. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  11. Liquid-Phase Co-Exfoliated Graphene/MoS2 Nanocomposite for Methanol Gas Sensing.

    Science.gov (United States)

    Zhang, Shao-Lin; Yue, Hongyan; Liang, Xishuang; Yang, Woo-Chul

    2015-10-01

    We developed an efficient method to co-exfoliate graphite and MoS2 to fabricate graphene/MoS2 nanocomposite. The size, morphology, and crystal structure of the graphene/MoS2 nanocomposite were carefully examined. The as-prepared graphene/MoS2 nanocomposite was fabricated into thin film sensor by a facile drop casting method and tested with methanol gas in various concentrations. The sensitivity, response time, and repeatability of the graphene/MoS2 nanocomposite sensor towards methanol gas were systematically investigated. A pure MoS2 based thin film sensor was also prepared and compared with the nanocomposite sensor to better understand the synergetic effect in the sensing performance. Our research demonstrated that compositing MoS2 with graphene could overcome the shortcoming of MoS2 as a sensor material and bring in a promising gas-sensing performance with a quicker response/recovery time and an enhanced sensitivity. Moreover, this composited material with a distinct structure and an excellent electronic property is expected to have potential application in various fields, such as optoelectronic.

  12. Bilayer-structured nanocomposite of Ag and crosslinked polyelectrolyte for the detection of humidity

    International Nuclear Information System (INIS)

    Li, Yang; Wu, Taotao; Yang, Mujie

    2015-01-01

    Nanocomposites of quaternized and crosslinked poly(4-vinylpyridine) (QC-P4VP) and silver nanoparticles were prepared by a two-step procedure, and characterized by Fourier-transform infrared spectroscopy, Ultraviolet–visible spectroscopy and scanning electron microscopy. Bilayer-structured humidity sensors based on the nanocomposites were fabricated, and the effects of the concentration of silver salt precursor and poly(4-vinylpyridine), the method for the reduction of silver salt, the deposition order of the sensitive layers and environmental temperature on the humidity sensing characteristics of the composite sensor have been examined at room temperature. The composite sensor exhibited low impedance under dry atmosphere due to the introduction of Ag nanoparticles, and could detect very low relative humidity (RH) (down to 1% RH) with good sensitivity (impedance change of 2000% from 1% to 30% RH). In addition, the composite sensor demonstrated very wide measuring range (1–98% RH), and revealed faster response and smaller hysteresis than the sensor based on QC-P4VP alone. The complex impedance spectra of the composite sensor in the environments with different RH levels were investigated to explore its humidity sensing mechanism. - Highlights: • Bilayer-structured nanocomposite of Ag and polyelectrolyte are facilely prepared. • Nanocomposite could measure humidity as low as 1% RH and show small hysteresis. • Nanocomposite is capable of detecting full-range humidity with high sensitivity

  13. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  14. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  15. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  16. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  17. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  18. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  19. Hydrothermal growth of Cobalt germanate/reduced graphene oxide nanocomposite as superior anode materials for Lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Ruihan; Zhang, Zhen; Wang, Hongkuan; Feng, Jinkui; Xiong, Shenglin; Qian, Yitai

    2014-01-01

    Highlights: • The nanosized Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites were prepared by a facile one pot hydrothermal route. • The Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites could be used as novel high capacity anodes with both alloying and conversion reactions. • The RGO incorporation can improve the electrochemical performance of Co 2 GeO 4 by buffering the volume changes and enhancing the conductivity of the electrodes. • The CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. - Abstract: Well dispersed Co 2 GeO 4 (CGO) nanoplates and CGO/reduced graphene oxide (RGO) nanocomposites are prepared via hydrothermal method and characterized as novel lithium anode materials for the first time. Electrochemical measurements demonstrate that the CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. The superior electrochemical performance of the CGO/RGO nanocomposites electrode compared to the pure CGO electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodate the volume change during the conversion reactions

  20. An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System

    Science.gov (United States)

    Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar

    2018-04-01

    Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.

  1. One-pot synthesis of porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites used as recyclable magnetic antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weijun, E-mail: wjfang81@gmail.com [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Zheng, Jun; Chen, Cheng [Center of Modern Experimental Technology, Anhui University, Hefei 230039, Anhui (China); Zhang, Huabing; Lu, Yunxia [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Ma, Ling [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian (China); Chen, Guangjun [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China)

    2014-05-01

    Porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites featuring sustainable and recyclable antibacterial activity have been successfully prepared via a facile one-pot hydrothermal method. The unique structural feature of the Ag@Fe{sub 3}O{sub 4} nanocomposites with Ag embedded in porous Fe{sub 3}O{sub 4} shell endows them with the ability of sustained-release of silver ions. Their antimicrobial activity studies were investigated on both Gram negative Escherichia coli and Gram positive Bacillus subtilis, which demonstrate that the nanocomposites are highly toxic to microorganisms and exhibit sustainable antibacterial activity. Besides, the Ag@Fe{sub 3}O{sub 4} nanocomposites can be separated easily from the medium by a small magnet, which provided an effective way to eliminate the residual nanosilver from the surroundings. We finally demonstrate that the recovered nanocomposites exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Highlights: • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites have been successfully prepared via a simple one-pot hydrothermal method. • The as-prepared Ag@Fe{sub 3}O{sub 4} nanocomposites exhibit high antibacterial activity against both Gram-positive and Gram-negative bacteria. • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites show a stronger antibacterial ability than the solid Fe{sub 3}O{sub 4} shell/silver core nanocomposites. • The recovery nanocomposites still have antibacterial activity and can be reused.

  2. Visible light photocatalytic disinfection of E. coli with TiO_2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    International Nuclear Information System (INIS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-01-01

    Graphical abstract: TiO_2–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO_2, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO_2–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO_2–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO_2–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO_2–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO_2

  3. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  4. Targeted delivery of polyoxometalate nanocomposites.

    Science.gov (United States)

    Geisberger, Georg; Paulus, Susann; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R

    2011-10-04

    Polyoxometalate/carboxymethyl chitosan nanocomposites with an average diameter of 130 nm are synthesized and labeled with fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring approach. [Eu(β(2) -SiW(11) O(39) )(2) ](13-) /CMC nanospheres as a representative example do not display cytotoxicity for POM concentrations up to 2 mg mL(-1) . Cellular uptake of fluoresecently labelled {EuSiW(11) O(39) }/FITC-CMC nanoparticles is monitored with confocal laser scanning microscopy. Nanoparticle uptake occurs after incubation times of around 1 h and no cyctotoxic effects are observed upon prolonged treatment. The preferential location of the POM/CMC nanocomposites in the perinuclear region is furthermore verified with transmission electron microscopy investigations on unlabeled nanoparticles. Therefore, this approach is a promising dual strategy for the safe cellular transfer and monitoring of bioactive POMs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  6. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  7. Bitumen nanocomposites with improved performance

    KAUST Repository

    Kosma, Vasiliki

    2017-11-29

    Bitumen-clay nanocomposite binders with styrene-butadienestyrene triblock copolymer, SBS, and combinations of SBS and crumb rubber (CR) with different CR/SBS ratios have been synthesized and characterized. In addition to the binder, samples containing the binder and concrete sand (with a weight ratio 1:9) were prepared. The modified binders were studied in terms of filler dispersion, storage stability, mechanical performance and water susceptibility. We demonstrate that the samples containing nanoclays consistently outperform those based only on the polymer additives. We also find that nanocomposite samples based on a combination of SBS and CR are best, since in addition to other improvements they show excellent storage stability. Our work shows that substituting CR with SBS as a bitumen additive and combining it with inexpensive nanoclays leads to new materials with enhanced performance and improved stability for practical asphalt applications.

  8. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  9. Radiolytic Synthesis of Magnetic Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grdanovska, Slavica; Tissot, Chanel; Barkatt, Aaron; Al-Sheikhly, Mohamad [Nuclear Engineering Program – Department of Materials Science and Engineering, University of Maryland, College Park, MD (United States)

    2011-07-01

    Magnetic nanocomposites, in which magnetic nanoparticles are encapsulated in polymeric matrices, have important applications in medicine, electronics and mechanical devices. However, the development of processes leading to magnetic nanocomposites with desirable, predictable and reproducible properties has turned out to be a difficult challenge. To date, most studies have concentrated on a magnetic oxide, primarily magnetite (Fe{sub 3}O{sub 4}), as the encapsulated phase. However, the synthesis of batches of magnetite with homogeneous properties at reasonably low temperature is a delicate operation. Indeed, commercial lots of magnetite powder, despite having bulk Fe{sub 3}O{sub 4} stoichiometry, turn out to have large variations in structure and in magnetic properties. The difficulties in controlling the product are greatly magnified when the particle size is in the nanometer range.

  10. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  11. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  12. Irradiation induced crossover from 1D to 3D transport behaviors of PEDOT-titanium dioxide hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sarmah, Smritimala [Department of Physics, Girijananda Chowdhury Institute of Management and Technology, Guwahati 781017, Assam (India); Kumar, A. [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2012-12-15

    Conductive poly(3,4-ethylenedioxythiophene)/TiO{sub 2} nanocomposites were synthesized via a facile oxidative polymerization approach using dodecylbenzene sulfonic acid as a dopant and ammonium peroxydisulfate as an oxidant and irradiated with 90 MeV O{sup 7+} ions at the fluences of 5 x 10{sup 10}, 1 x 10{sup 11}, 5 x 10{sup 11}, and 1 x 10{sup 12} ions cm{sup -2} using 15UD Pelletron accelerator under high vacuum. X-ray diffraction studies show that microstrain and domain crystallite size of the nanocomposites increases with the increase of ion fluence resulting in highly ordered PEDOT-TiO{sub 2} nanocomposites. Thermogravimmetric analysis shows that the thermal stability of the nanocomposites increases with the increase of irradiation fluences which can be attributed to the crosslinking of polymer chains due to high electronic energy deposition. Scanning electron micrographs show that there is grain growth after swift heavy ion (SHI) irradiation resulting highly dense and less porous microstructure of nanocomposite films. DC conductivity of unirradiated nanocomposites exhibits Mott's 1D variable range hopping (VRH) mechanism. However, there is cross over to 3D VRH mechanism at higher irradiation fluence of 5 x 10{sup 11} and 1 x 10{sup 12} ions cm{sup -2}. There is an enhancement in the electrical conductivity of the nanocomposites upon SHI irradiation correlating crosslinking with DC conductivity of the nanocomposites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  14. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  15. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  16. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    Science.gov (United States)

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  17. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  18. High-frequency magnetoimpedance in nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, Alexey [Moscow State Institute of Radioengineering, Electronics and Automation (Technical University), Moscow 117454 (Russian Federation)]. E-mail: alexey_yurasov@mail.ru; Granovsky, Alexander [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Tarapov, Sergey [Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkov 61085 (Ukraine); Clerc, Jean-Pierre [Ecole Polytechnique Universitaire de Marseille, Technopole de Chateau-Gombert, Marseille 13453 (France)

    2006-05-15

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment.

  19. High-frequency magnetoimpedance in nanocomposites

    International Nuclear Information System (INIS)

    Yurasov, Alexey; Granovsky, Alexander; Tarapov, Sergey; Clerc, Jean-Pierre

    2006-01-01

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment

  20. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  1. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  2. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    NICOLAAS

    Physical and chemical characterization of the mesoporous nanocomposites from ... On the other hand, nanocomposites from sol-gel synthetic method had larger surface areas, were more defective ... This highlights the great potential of typical nanomaterials in ... various options available, especially for a developing world.

  3. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  4. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  5. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  6. Advances in rubber/halloysite nanotubes nanocomposites.

    Science.gov (United States)

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  7. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  8. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-04-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  9. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-02-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  10. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-06-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  11. Synthesis, characterization and optical properties of polymer-based ZnS nanocomposites.

    Science.gov (United States)

    Tiwari, A; Khan, S A; Kher, R S; Dhoble, S J; Chandel, A L S

    2016-03-01

    Nanostructured polymer-semiconductor hybrid materials such as ZnS-poly(vinyl alcohol) (ZnS-PVA), ZnS-starch and ZnS-hydroxypropylmethyl cellulose (Zns-HPMC) are synthesized by a facile aqueous route. The obtained nanocomposites are characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/vis spectroscopy and photoluminescence (PL). XRD studies confirm the zinc blende phase of the nanocomposites and indicate the high purity of the samples. SEM studies indicate small nanoparticles clinging to the surface of a bigger particle. The Energy Dispersive Analysis by X-rays (EDAX) spectrum reveals that the elemental composition of the nanocomposites consists primarily of Zn:S. FTIR studies indicate that the polymer matrix is closely associated with ZnS nanoparticles. The large number of hydroxyl groups in the polymer matrix facilitates the complexation of metal ions. The absorption spectra of the specimens show a blue shift in the absorption edge. The spectrum reveals an absorption edge at 320, 310 and 325 nm, respectively. PL of nanocomposites shows broad peaks in the violet-blue region (420-450 nm). The emission intensity changes with the nature of capping agent. The PL intensity of ZnS-HPMC nanocomposites is found to be highest among the studied nanocomposites. The results clearly indicate that hydroxyl-functionalized HPMC is much more effective at nucleating and stabilizing colloidal ZnS nanoparticles in aqueous suspensions compared with PVA and starch. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Ag nanocrystals anchored CeO{sub 2}/graphene nanocomposite for enhanced supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanitha, M.; Keerthi [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India); Cao, P. [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India)

    2015-09-25

    Highlights: • Quasi spherical Ag and CeO{sub 2} nanoparticles were decorated on rGO matrix. • The Ag/CeO{sub 2}/rGO nanocomposite exhibits specific capacitance of 710 F g{sup −1}. • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO{sub 2}/reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO{sub 2} nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g{sup −1} at an applied current density of 0.2 A g{sup −1}, which was nearly two fold higher than CeO{sub 2}/rGO nanocomposite. This work endows a new route for building Ag/CeO{sub 2}/rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications.

  13. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  14. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  15. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  16. Ag−TiO_2 nanocomposite for environmental and sensing applications

    International Nuclear Information System (INIS)

    Hussain, Muhammad; Tariq, Saima; Ahmad, Mashkoor; Sun, Hongyu; Maaz, Khan; Ali, Ghafar; Hussain, Syed Zahid; Iqbal, Munawar; Karim, Shafqat; Nisar, Amjad

    2016-01-01

    Anatase Ag−TiO_2 nanostructures are synthesized by combining facile hydrothermal and co-precipitation methods. The photocatalytic and electrochemical activities of the product have been investigated. X-ray diffraction and microscopic results demonstrate that Ag nanoparticles of 15–20 nm size are well dispersed on the TiO_2 surface and confirm the formation of Ag−TiO_2 nanocomposite. The photocatalytic properties of the composite are evaluated in term of its capability to degrade both model organic dyes, such as rhodamine B, methylene blue and methyl orange, and dyes collected from textile industry under UV irradiation. The results indicate that the Ag−TiO_2 nanocomposite exhibits excellent photocatalytic activity as compared to pure anatase TiO_2. Moreover, the Ag−TiO_2 nanocomposite modified glassy carbon electrode demonstrates the abilities to electrocatalyze the hydrogen peroxide and substantially raise the response current. The modified electrode exhibits a reproducible sensitivity of 73.35 μA mM"−"1 cm"−"2 to H_2O_2 with a response time less than 3 s. The electrode also shows a linear range from 2 to 30 mM with a low limit of detection of 0.5 mM (S/N = 3). Furthermore, it has been revealed that the electrode exhibits a favorable stability over relatively long-term storage (more than 75 days). All these results illustrate that Ag−TiO_2 nanocomposite exhibits a great prospect for the development of efficient environmental remediator and non-enzymetic biosensor. - Highlights: • Multifunctional Ag−TiO_2 nanocomposite is synthesized by a facile method. • The composite exhibits enhanced photocatalytic and sensing properties. • Ag−TiO_2 enhanced properties are due to synergistic behavior of the composites.

  17. Ag−TiO{sub 2} nanocomposite for environmental and sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Muhammad [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan); Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan); Tariq, Saima [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan); Allama Iqbal Open University, Islamabad 44000 (Pakistan); Ahmad, Mashkoor [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan); Sun, Hongyu [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials and The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Maaz, Khan; Ali, Ghafar [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan); Hussain, Syed Zahid [Materials Division, PINSTECH, Islamabad 44000 (Pakistan); Iqbal, Munawar [Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan); Karim, Shafqat [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan); Nisar, Amjad, E-mail: chempk@hotmail.com [Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000 (Pakistan)

    2016-09-15

    Anatase Ag−TiO{sub 2} nanostructures are synthesized by combining facile hydrothermal and co-precipitation methods. The photocatalytic and electrochemical activities of the product have been investigated. X-ray diffraction and microscopic results demonstrate that Ag nanoparticles of 15–20 nm size are well dispersed on the TiO{sub 2} surface and confirm the formation of Ag−TiO{sub 2} nanocomposite. The photocatalytic properties of the composite are evaluated in term of its capability to degrade both model organic dyes, such as rhodamine B, methylene blue and methyl orange, and dyes collected from textile industry under UV irradiation. The results indicate that the Ag−TiO{sub 2} nanocomposite exhibits excellent photocatalytic activity as compared to pure anatase TiO{sub 2}. Moreover, the Ag−TiO{sub 2} nanocomposite modified glassy carbon electrode demonstrates the abilities to electrocatalyze the hydrogen peroxide and substantially raise the response current. The modified electrode exhibits a reproducible sensitivity of 73.35 μA mM{sup −1} cm{sup −2} to H{sub 2}O{sub 2} with a response time less than 3 s. The electrode also shows a linear range from 2 to 30 mM with a low limit of detection of 0.5 mM (S/N = 3). Furthermore, it has been revealed that the electrode exhibits a favorable stability over relatively long-term storage (more than 75 days). All these results illustrate that Ag−TiO{sub 2} nanocomposite exhibits a great prospect for the development of efficient environmental remediator and non-enzymetic biosensor. - Highlights: • Multifunctional Ag−TiO{sub 2} nanocomposite is synthesized by a facile method. • The composite exhibits enhanced photocatalytic and sensing properties. • Ag−TiO{sub 2} enhanced properties are due to synergistic behavior of the composites.

  18. A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Min Fu

    2013-01-01

    Full Text Available Novel graphitic carbon nitride (g-C3N4 coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

  19. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  20. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  1. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  2. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  4. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films

    International Nuclear Information System (INIS)

    Liu, Haitao; Zeng, Xiaofei; Kong, Xiangrong; Bian, Shuguang; Chen, Jianfeng

    2012-01-01

    Highlights: ► A simple two-step method without further surface modification step was employed. ► ITO nanoparticles were easily to be uniformly dispersed in polymer matrix. ► ITO/polymer nanocomposite film had high transparency and UV/IR blocking properties. - Abstract: Transparent functional indium tin oxide (ITO)/polymer nanocomposite films were fabricated via a simple approach with two steps. Firstly, the functional monodisperse ITO nanoparticles were synthesized via a facile nonaqueous solvothermal method using bifunctional chemical agent (N-methyl-pyrrolidone, NMP) as the reaction solvent and surface modifier. Secondly, the ITO/acrylics polyurethane (PUA) nanocomposite films were fabricated by a simple sol-solution mixing method without any further surface modification step as often employed traditionally. Flower-like ITO nanoclusters with about 45 nm in diameter were mono-dispersed in ethyl acetate and each nanocluster was assembled by nearly spherical nanoparticles with primary size of 7–9 nm in diameter. The ITO nanoclusters exhibited an excellent dispersibility in polymer matrix of PUA, remaining their original size without any further agglomeration. When the loading content of ITO nanoclusters reached to 5 wt%, the transparent functional nanocomposite film featured a high transparency more than 85% in the visible light region (at 550 nm), meanwhile cutting off near-infrared radiation about 50% at 1500 nm and blocking UV ray about 45% at 350 nm. It could be potential for transparent functional coating materials applications.

  5. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    International Nuclear Information System (INIS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-01-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  6. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Jingwei, E-mail: jwzhang@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Jiwei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Gong, Chunhong [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou, Jingfang, E-mail: jingfang.zhou@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Zhijun [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2015-12-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  7. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  8. Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Da; Yi, Ran; Chen, Shuru; Xu, Terrence; Gordin, Mikhail L.; Lv, Dongping; Wang, Donghai

    2014-01-01

    Highlights: • A homogeneous V 2 O 5 /graphene nanocomposite is successfully synthesized. • V 2 O 5 nanoparticles are highly encapsulated in the 2D graphene matrix. • V 2 O 5 /graphene nanocomposite shows much better performance than bare V 2 O 5 . - Abstract: In this work, V 2 O 5 /graphene nanocomposites have been synthesized by a facile solvothermal approach. The V 2 O 5 nanoparticles, around 20–40 nm in size, were encapsulated in the 2D graphene matrix. The reversible Li-cycling properties of V 2 O 5 /graphene have been evaluated by galvanostatic discharge–charge cycling, cyclic voltammetry, and impedance spectroscopy. Compared with the bare V 2 O 5 nanoparticles, the V 2 O 5 /graphene nanocomposites exhibited enhanced electrochemical performance with higher reversible capacity and improved cycling stability and rate capability. The graphene nanosheets act not only as an electronically conductive matrix to improve the electronic and ionic conductivity of the composite electrode, but also as a flexible buffer matrix to maintain the structural integrity of the composite electrodes by preventing particle agglomeration, thus leading to the improvement of the electrochemical performance of V 2 O 5

  9. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine

    Directory of Open Access Journals (Sweden)

    R. Nurzulaikha

    2015-09-01

    Full Text Available A graphene-tin oxide (G-SnO2 nanocomposite was prepared via a facile hydrothermal route using graphene oxide and Sn precursor solution without addition of any surfactant. The hydrothermally synthesized G-SnO2 nanocomposite was characterized using a field emission scanning electron microscope (FESEM, high resolution transmission electron microscope (HRTEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS. A homogeneous deposition of SnO2 nanoparticles with an average particle size of 10 nm on the graphene was observed in the FESEM and HRTEM images. The G-SnO2 nanocomposite was used to fabricate a modified electrode for the electrochemical detection of dopamine (DA in the presence of ascorbic acid (AA. Differential pulse voltammetry (DPV showed a limit of detection (LoD of 1 μM (S/N = 3 in the presence of ascorbic acid (AA. Keywords: Graphene, Tin oxide, Nanocomposite, Electrochemical sensor, Biosensor, Dopamine

  10. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    Science.gov (United States)

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  11. Nanocomposite Materials for the Sodium-Ion Battery: A Review.

    Science.gov (United States)

    Liang, Yaru; Lai, Wei-Hong; Miao, Zongcheng; Chou, Shu-Lei

    2018-02-01

    Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. ZnS-Graphene nanocomposite: Synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pan Shugang [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2012-07-15

    A ZnS-Graphene nanocomposite was prepared by a facile one-step hydrothermal method using zinc nitrate hexahydrate, ethylenediamine and carbon disulfide as precursors, graphene oxide as a template. The composite was characterized by X-ray power diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier transform infrared, Raman spectra and fluorescence spectroscopy. The results show that graphene oxide was reduced to graphene in the hydrothermal reaction process. Simultaneously, the graphene sheets in the composite are exfoliated and decorated with ZnS nanoparticles. Furthermore, Raman and fluorescence properties of the composite were observed. ZnS-Graphene nanocomposite displays surface-enhanced Raman scattering activity for graphene oxide, and fluorescence enhancement property compared with pure ZnS sample. - Graphical abstract: Approach of reaction makes the reduction of grapheme oxide and the deposition of Zns on the grapheme sheets occur simultaneously and overcomes the aggregation of the grapheme sheets and Zns. Highlights: Black-Right-Pointing-Pointer Graphene oxide is reduced to graphene in the hydrothermal reaction process. Black-Right-Pointing-Pointer ZnS nanoparticles are attached onto the almost transparent graphene sheets. Black-Right-Pointing-Pointer ZnS-Graphene system shows surface-enhanced Raman scattering (SERS) activity. Black-Right-Pointing-Pointer ZnS-Graphene system displays relatively better fluorescence property than pure ZnS.

  13. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    Science.gov (United States)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  14. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  15. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  16. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to...

  17. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  19. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  20. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  1. Graphene oxide nanocomposites and their electrorheology

    International Nuclear Information System (INIS)

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-01-01

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed

  2. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    Physical and chemical characterization of the mesoporous nanocomposites from the two synthetic methods were investigated using Raman spectroscopy, thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission ...

  3. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  4. Electrical conduction of a XLPE nanocomposite

    Science.gov (United States)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  5. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  6. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  7. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... insights for the use of technologies for polymer nanocomposites for commercial application, and features chapters from the most experienced researches in the field"-- "The purpose of this edited book...

  8. Investigation of sol-gel processed CuO/SiO2 nanocomposite as a potential photoanode material

    Directory of Open Access Journals (Sweden)

    Tenkyong Tenzin

    2015-12-01

    Full Text Available Synthesis and characterization of a highly efficient photoconductive nanocomposite comprising of two common metal oxides: copper oxide (CuO and silicon dioxide (SiO2 are being reported in this paper. The CuO/SiO2 nanocomposite has been synthesized using a cost-effective and facile sol gel route. The structural, chemical and optical properties of the prepared samples have been studied using various characterization techniques. The UV-Vis analysis revealed better absorption in the case of the nanocomposite as compared to its parent materials. X-ray diffraction (XRD analysis has been employed to determine the structural formation of the nanocomposite and the crystallite size with the use of Scherrer’s formula. The photo conductivity study of the sample showed enhanced photocurrent in the case of nanocomposite as compared to its single components, thus, presenting it as a potential candidate for solar cell applications, especially as photoanode material in the dye-sensitized solar cells (DSSC.

  9. Conducting polymer nanocomposite-based supercapacitors

    OpenAIRE

    Liew, Soon Yee; Walsh, Darren A.; Chen, George Z.

    2016-01-01

    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summa...

  10. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  11. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  12. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  13. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Administrator

    PANA–Au nanocomposites are characterized by SEM, equipped with EDS, TGA, FT–IR, XRD and electrochemical techniques. XRD of ... Polyanthranilic acid; nanocomposite; in situ polymerization; emulsion polymerization; nano- particles. 1.

  14. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  15. Characterization of PAN/ATO nanocomposites prepared by solution ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Materials and Chemical Engineering, Zhongyuan University of Technology, ... The storage modulus of the nanocomposites increased with increasing content of ATO, ... Thermal stability of the nanocomposites was found remarka-.

  16. Plasma deposition of nanocomposite thin films : process concept and realisation

    NARCIS (Netherlands)

    Alcott, G.R.

    2004-01-01

    Recent developments in materials technology, fuelled by the growing hype surrounding nanotechnology, have given rise to a new breed of materials known as nanocomposites. Nanocomposite materials (a subgroup of hybrid materials) are formed from standard polymers impregnated with nanometre sized

  17. Unique morphology of dispersed clay particles in a polymer nanocomposite

    CSIR Research Space (South Africa)

    Malwela, T

    2011-02-01

    Full Text Available This communication reports a unique morphology of dispersed clay particles in a polymer nanocomposite. A nanocomposite of poly[butylene succinate)-co-adipate] (PBSA) with 3 wt% of organically modified montmorillonite was prepared by melt...

  18. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  19. MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China); Dong, Meng; Zhu, Shijin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Chuanpu, E-mail: liuchuanpu@163.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wen, Zhongquan [National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2014-01-01

    Graphical abstract: - Highlights: • MnO{sub 2}@CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g{sup −1}) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO{sub 2} nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior.

  20. MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Yuxin; Dong, Meng; Zhu, Shijin; Liu, Chuanpu; Wen, Zhongquan

    2014-01-01

    Graphical abstract: - Highlights: • MnO 2 @CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO 2 @colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g −1 ) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO 2 nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior

  1. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  2. Nanocomposites: The End of Compromise

    Science.gov (United States)

    van Damme, H.

    Increase the Young's modulus of a glassy resin by a factor of ten without making it heavier, for a new ski design, for example? Triple the rupture strength of an elastomer? Improve the thermal behaviour of an object made from a thermoplastic polymer by 100 degrees, to make a car dashboard, for example, or a part for the engine? Double the fire resistance time for the sheath around an electricity cable? Reduce the oxygen permeability of a film by a factor of ten, to make long conservation food packaging? All these things have been made possible by incorporating a few percent of inorganic nanoparticles in a polymer matrix. Figures 14.1 and 14.2 illustrate two such nanocomposites: the first was obtained by incorporating lamellar clay particles, and the second by incorporating fibrous nanoparticles, in fact, carbon nanotubes.

  3. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  4. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  5. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  6. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  7. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  8. Adsorption performance of CuFe{sub 2}O{sub 4}/rGO nanocomposites towards organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Xichuan [School of Science, Tianjin University, Tianjin 300072 (China); Gao, Chunjuan [State Ocean Adm, Inst Tianjin Seawater Desalinat & Multipurpose Ut, Tianjin 300192 (China); Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia, E-mail: haixiaqiuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2017-01-01

    A facile and efficient approach was employed to synthesize CuFe{sub 2}O{sub 4}/rGO (reduced graphene oxide) nanocomposites. The morphology, crystal structure and properties of the prepared CuFe{sub 2}O{sub 4}/rGO nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction and thermo-gravimetric analysis. The CuFe{sub 2}O{sub 4}/rGO nanocomposites were applied as adsorbents to study their adsorption performance for Congo red. The adsorption capacity and recyclability, adsorption dynamics and adsorption models were investigated. The results show that the CuFe{sub 2}O{sub 4}/rGO nanocomposites are efficient and recyclable adsorbents. - Highlights: • CuFe{sub 2}O{sub 4}/rGO was synthesized by a facile hydrothermal route. • As an adsorbent it showed high adsorption capacity to CR. • It was magnetically removable and has high reusability.

  9. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Zhang, Sai; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile and efficient approach to synthesize Fe 3 O 4 @Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe 3 O 4 @Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe 3 O 4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe 3 O 4 @Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe 3 O 4 @Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe 3 O 4 @Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe 3 O 4 @Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe 3 O 4 @Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe 3 O 4 @Cu display high catalytic activity after 13 cycles

  10. Fabrication of magnetically recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Zhang, Sai; Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-15

    A facile and efficient approach to synthesize Fe{sub 3}O{sub 4}@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe{sub 3}O{sub 4}@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe{sub 3}O{sub 4} contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe{sub 3}O{sub 4}@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe{sub 3}O{sub 4}@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe{sub 3}O{sub 4}@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe{sub 3}O{sub 4}@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe{sub 3}O{sub 4}@Cu display high catalytic activity after 13 cycles.

  11. Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: Enhanced dielectric and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aepuru, Radhamanohar [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Bhaskara Rao, B.V.; Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025 (India); Panda, H.S., E-mail: himanshusp@diat.ac.in [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2015-11-01

    Flower like radial zinc oxide (RZnO) was prepared by using a facile solvothermal method and used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. Structural informations of the samples are analyzed by X-ray diffraction and correlated with high resolution transmission electron microscopy along with high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). For the first time, stability studies are carried out by solvent relaxation nuclear magnetic resonance experiments. Dielectric studies of the PVDF and PVDF-RZnO nanocomposites are reported over the wide range of frequency (0.01 Hz–1 MHz) and temperature (25–90 °C). Dielectric property of the PVDF-RZnO nanocomposites was significantly improved wrt filler percentage in PVDF. Unique negative permittivity was observed in the composites having higher filler content (>40 wt%) typically at low frequencies. First time, it is observed that the higher RZnO content in PVDF results the formation of pseudo conducting network and hence improved the electromagnetic shielding efficiency (85%) than PVDF and PVDF-commercial ZnO composites. - Highlights: • Radial ZnO-PVDF nanocomposites were fabricated by using solution casting. • Pseudo conducting network is confirmed through cryo-fracture morphology study. • Stability study of the nano fillers was performed in the polymer matrix. • Unique negative permittivity behavior of the nanocomposites was observed. • EMI shielding property of the radial ZnO-PVDF nanocomposites was performed.

  12. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  13. Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries

    Science.gov (United States)

    Ni, Dan; Sun, Wang; Xie, Liqiang; Fan, Qinghua; Wang, Zhenhua; Sun, Kening

    2018-01-01

    Bismuth oxyfluoride impregnated CMK-3 nanocomposite is synthesized by a facile nanocasting approach. Mesoporous carbon CMK-3 can suppress the aggregation and growth of bismuth oxyfluoride particles and offer rapid electron and Li ion passageways. Bismuth oxyfluoride nanoparticles are embedded in the mesoporous channels with particle size less than 20 nm. The bismuth oxyfluoride@CMK-3 nanocomposite maintains 148 mA h g-1 after 40 cycles with the capacity from both the bismuth oxyfluoride and the functional groups on the mesoporous carbon. The hybrid with confined bismuth oxyfluoride nanoparticles, conductive carbon network, and oxygen functional groups on the carbon matrix exhibits higher capacity and cycling stability than bulk bismuth oxyfluoride particles when used as lithium ion batteries cathode.

  14. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  15. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  16. Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wang, Ke; Xu, Dazhuang; Deng, Fengjie; Huang, Hongye; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • The synthesis of SiO2 nanocomposites has been inspired by mussel chemistry. • Amino-terminated PAA can be linked onto SiO 2 nanoparticles through a Michael addition reaction. • The anionic polymer PAA can enhance the adsorption capability of SiO 2 nanocomposites towards MB. • The method described can be also used for fabrication of other functional nanocomposites. - Abstract: Surface modification of nanomaterials with polymers is an effective route to render new functions and improve the performance of the final nanocomposites. Here, a facile method was developed to fabricate polyacrylic acid (PAA)-grafted monodisperse SiO 2 nanoparticles (SiO 2 -PDA-PAA) through a combination of mussel inspired chemistry and Michael addition reaction. To obtain the products, the SiO 2 nanoparticles were first coated with polydopamine (PDA) through self-polymerization of dopamine under rather mild conditions. The PDA thin films can then be further conjugated with amino-terminated PAA, which was synthesized by chain transfer free radical polymerization using cysteamine hydrochloride as a chain transfer agent and acrylic acid as a monomer. The SiO 2 -PDA-PAA nanocomposites were characterized via transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The effects of contact time, solution pH, temperature and methylene blue (MB) concentration on the removal of MB were investigated. The results demonstrated that SiO 2 -PDA-PAA showed significant improvement in adsorption efficiency towards MB. The kinetics and isotherm studies showed that pseudo-second-order and Langmuir isotherm models were well fitted the experimental data. The values of thermodynamics parameters such as entropy change (ΔS 0 ), enthalpy change (ΔH 0 ) and Gibbs free energy (ΔG 0 ) were calculated based on the Van’t Hoff equation. The negative values of thermodynamic parameters indicated that the adsorption

  17. Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Chen, Junyu [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang; Deng, Fengjie; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-11-30

    Highlights: • The synthesis of SiO2 nanocomposites has been inspired by mussel chemistry. • Amino-terminated PAA can be linked onto SiO{sub 2} nanoparticles through a Michael addition reaction. • The anionic polymer PAA can enhance the adsorption capability of SiO{sub 2} nanocomposites towards MB. • The method described can be also used for fabrication of other functional nanocomposites. - Abstract: Surface modification of nanomaterials with polymers is an effective route to render new functions and improve the performance of the final nanocomposites. Here, a facile method was developed to fabricate polyacrylic acid (PAA)-grafted monodisperse SiO{sub 2} nanoparticles (SiO{sub 2}-PDA-PAA) through a combination of mussel inspired chemistry and Michael addition reaction. To obtain the products, the SiO{sub 2} nanoparticles were first coated with polydopamine (PDA) through self-polymerization of dopamine under rather mild conditions. The PDA thin films can then be further conjugated with amino-terminated PAA, which was synthesized by chain transfer free radical polymerization using cysteamine hydrochloride as a chain transfer agent and acrylic acid as a monomer. The SiO{sub 2}-PDA-PAA nanocomposites were characterized via transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The effects of contact time, solution pH, temperature and methylene blue (MB) concentration on the removal of MB were investigated. The results demonstrated that SiO{sub 2}-PDA-PAA showed significant improvement in adsorption efficiency towards MB. The kinetics and isotherm studies showed that pseudo-second-order and Langmuir isotherm models were well fitted the experimental data. The values of thermodynamics parameters such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were calculated based on the Van’t Hoff equation. The negative values of

  18. Self-assembled ZnGa2O4–RGO nanocomposites and their enhanced adsorption and photocatalytic performance in water treatment

    International Nuclear Information System (INIS)

    Huang, K.; Zhao, X.S.; Li, Y.F.; Xu, X.; Liang, C.; Fan, D.Y.; Yang, H.J.; Zhang, R.; Wang, Y.G.; Lei, M.

    2014-01-01

    Highlights: • ZnGa 2 O 4 –RGO nanocomposites by a self-assembly approach under facile solvothermal condition. • ZnGa 2 O 4 NPs have a well-controlled size and uniform distribution. • The water treatment process is formed by two successive parts: adsorption and photocatalytic degradation. • The content of RGO sheets is crucial for optimizing the photocatalytic activity with a key value of 5%. - Abstract: ZnGa 2 O 4 nanoparticles (NPs) have been successfully anchored onto reduced graphene oxide (RGO) nanosheets by a self-assembly approach under facile solvothermal condition. The as-synthesized ZnGa 2 O 4 –RGO nanocomposites were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results reveal that ZnGa 2 O 4 NPs with a well-controlled size and uniform distribution were successfully assembled onto RGO sheets. Moreover, both methylene blue (MB) and rhodamine B (RhB) were employed as model pollutants to evaluate the ability of as-prepared ZnGa 2 O 4 –RGO nanocomposites for wastewater treatment. The content of RGO sheets was found to be crucial for optimizing the photocatalytic activity of various nanocomposites with a key value of 5% beyond which the adsorption ability of ZnGa 2 O 4 –RGO nanocomposites for dyes dominates the process of water treatment

  19. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    Science.gov (United States)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  20. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  1. Systematic comparison of model polymer nanocomposite mechanics.

    Science.gov (United States)

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-09-13

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites.

  2. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  3. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani [School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia.43600 Bangi, Selangor (Malaysia)

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  4. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives

    Science.gov (United States)

    Wang, Zhiqiang; Ren, Ruirui; Song, Haojie; Jia, Xiaohua

    2018-01-01

    Carbon nanotubes (CNTs) decorated with uniform copper nanoparticles (Cu NPs) were successfully prepared via a facile approach towards surface modification of CNTs with spontaneous polydopamine (PDA). The structures and morphologies of the nanocomposites were investigated by different kinds of techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Cu/PDA/CNTs nanocomposites were fabricated by growing the Cu NPs with an average diameter of 5 nm on the surfaces of PDA-modified CNTs. The CNTs functionalized with PDA layer not only provide an anchoring platform for the Cu NPs immobilization, but also endow Cu/PDA/CNTs with good dispersion stability when Cu/PDA/CNTs nanocomposites were used as lubricant additive. The tribological performance of the nanocomposites as the rapeseed oil lubricant additive, as well as Cu NPs, CNTs, and Cu/CNTs, was also investigated using a MS-T3000 ball-on-disk tribometer. Results show that the 0.2 wt% Cu/PDA/CNTs nanoadditive simultaneously reduce the friction and wear by 33.5% and 23.7%, respectively, outperformed the tribological performance of Cu NPs, CNTs, and Cu/CNTs nanoadditives. In addition, the presence of active sites in Cu/PDA/CNTs was beneficial to reduce the time of running-in period, give rise to the fastest speed to be stable of the friction coefficient curve as compared to the other nanoadditives. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy of the worn surfaces lubricated by the soybean oil with Cu/PDA/CNTs nanocomposites showed that formation of low shear strength tribofilms containing Cu/PDA/CNTs nanocomposites and its self-lubricating property was key factor in reduction of the friction and protection against wear and deformation.

  5. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  6. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  7. Tangible nanocomposites with diverse properties for heart valve application

    Science.gov (United States)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  8. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  9. Au Based Nanocomposites Towards Plasmonic Applications

    Science.gov (United States)

    Panniello, A.; Curri, M. L.; Placido, T.; Reboud, V.; Kehagias, N.; Sotomayor Torres, C. M.; Mecerreyes, D.; Agostiano, A.; Striccoli, M.

    2010-06-01

    Incorporation of nano-sized metals in polymers can transfer their unique features to the host matrix, providing nanocomposite materials with improved optical, electric, magnetic and mechanical properties. In this work, colloidal Au nanorods have been incorporated into PMMA based random co-polymer, properly functionalized with amino groups and the optical and morphological properties of the resulting nanocomposite have been investigated by spectroscopic and AFM measurements. Au nanorods have demonstrated to preserve the plasmon absorption and to retain morphological features upon the incorporation, thus making the final metal modified polymer composite exploitable for the fabrication of plasmonic devices. The prepared nanocomposites have been then patterned by Nano Imprint Lithography technique in order to demonstrate the viability of the materials towards optical applications.

  10. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  11. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  12. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    Science.gov (United States)

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  14. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  15. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  16. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries.

    Science.gov (United States)

    Liang, Junfei; Wei, Wei; Zhong, Da; Yang, Qinglin; Li, Lidong; Guo, Lin

    2012-01-01

    A facile one-step solution-based process to in situ synthesize SnO(2)/graphene (SG) nanocomposites was developed, by using the mixture of dimethyl sulfoxide (DMSO) and H(2)O as both solvent and reactant. The reduction of graphene oxide (GO) and the in situ formation of SnO(2) nanoparticles were realized in one step. The electrochemical experiments showed the composites provided a better Li-storage performance. The method presented in this paper may provide an effective, economic, and green strategy for the preparation of metal-oxide/graphene nanocomposites. © 2011 American Chemical Society

  17. Thermomechanical properties of polymer nanocomposites: Exploring a unified relationship with planar polymer films

    Science.gov (United States)

    Bansal, Amitabh

    The thermal and mechanical response of polymers, which provide limitations to their practical use, are greatly improved by the addition of a small fraction of an inorganic nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. This research explores the properties of polystyrene filed with silica nanoparticles and illustrates for the first time that the thermodynamic properties of "polymer nanocomposites" are quantitatively equivalent to the well-understood case of planar polymer films with a uniform thickness. These ideas are quantified by drawing a direct analogy between thin film thickness and an appropriate average ligament thickness measured using electron microscopy. The change in polymer glass transition temperatures with decreasing ligament thickness were found to be quantitatively equivalent to the corresponding thin film data. In combination with viscoelastic properties of the nanocomposites that are in quantitative agreement with data from thin films, these conclusions provide a facile means of understanding and predicting the thermomechanical properties and, potentially, the engineering properties of practically relevant polymer nanocomposites. Grafting of high molecular weight polystyrene onto the silica nanoparticles greatly improves the dispersion quality of nanofillers and also provides a means to tailor the thermo-mechanical properties in nanocomposites. It is concluded that the grafted polystyrene is akin to polymer brushes on flat surfaces. The mobility and stiffness of these grafted chains are expected to be low as compared to the free polymer. In this context a mechanism for the increase in glass transition is proposed: (1) the stiff grafted chains will tend to decrease mobility and thus increase glass transition, (2) the extent of interdigitation of the grafted polystyrene into the matrix will determine the extent to which the nanocomposite

  18. Fe_3O_4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications

    International Nuclear Information System (INIS)

    Sinan, Neriman; Unur, Ece

    2016-01-01

    Fe_3O_4 nanoparticles with ∼10 nm diameters were synthesized by an extremely low-cost, scalable and relatively biocompatible chemical co-precipitation method. Magnetic measurements revealed that Fe_3O_4 nanoparticles have bifunctional superparamagnetic and ferromagnetic character with saturation magnetization (M_s) values of 64 and 71 emu g"−"1 at 298 K and 10 K, respectively. Pseudocapacitive Fe_3O_4 nanoparticles were then integrated into hazelnut shells - an abundant agricultural biomass - by an energy efficient hydrothermal carbonization method. Presence of magnesium oxide (MgO) ceramic template or its precursor in the hydrothermal reactor allowed simultaneous introduction of pores into the composite structure. Hierarchically micro-mesoporous Fe_3O_4/C nanocomposite possesses a high specific surface area of 344 m"2 g"−"1. Electrochemical properties of Fe_3O_4/C nanocomposite were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in a conventional three-electrode cell. The Fe_3O_4/C nanocomposite is able to operate in a large negative potential window in 1 M Na_2SO_4 aqueous electrolyte (−1.2–0 V vs. Ag/AgCl). Synergistic effect of the Fe_3O_4 and carbon leads to enhanced specific capacitance, rate capability and cyclability making Fe_3O_4/C nanocomposite a very promising negative electrode material for asymmetric supercapacitors. - Highlights: • Fe_3O_4 (magnetite) particles with ∼10 nm dia. were prepared by a facile chemical co-precipitation. • Fe_3O_4 nanospheres are superparamagnetic at 298K with high saturation magnetization of 64 emu g"−"1. • Porous Fe_3O_4/C nanocomposite was also prepared by a green HTC method combined with MgO templating. • Electrochemical properties of Fe_3O_4/C were studied in 1 M Na_2SO_4 (between −1.2 and 0 V vs. Ag/AgCl). • Nanocomposite electrode showed high energy density of 27.2 Wh kg"−"1 at 1 A g"−"1.

  19. Preparation of Zeolite/Zinc Oxide Nanocomposites for toxic metals removal from water

    Directory of Open Access Journals (Sweden)

    Abdullah A. Alswata

    Full Text Available This research work has proposed preparation of Zeolite/Zinc Oxide Nanocomposite (Zeolite/ZnO NCs by using a co-precipitation method. Then, the prepared Nanocomposite has been tested for adsorption of Lead Pb (II and Arsenic As (V from aqueous solution under the room pressure and temperature. After that, the prepared adsorbent has been studied by several techniques. For adsorption process; the effect of the adsorbent masses, contact time, PH and initial metals concentration as well as, the kinetics and isotherm for adsorption process have been investigated. The results revealed that; ZnO nanoparticles (NPs with average diameter 4.5 nm have successfully been loaded into Zeolite. The optimum parameters for the removal of the toxic metals 93% and 89% of Pb (II and As (V, respectively, in 100 mg/L aqua solutions were pH4, 0.15 g and 30 min. According to the obtained results; pseudo second-order kinetic and Langmuir isotherm model have higher correlation coefficients and provided a better agreement with the experimental data. The prepared sorbent showed an economical and effective way to remove the heavy toxic metals due to its ambient operation conditions, low- consumption energy and facile regeneration method. Keywords: Zeolite, ZnO, Nanocomposites, Adsorbent, Kinetic, Isotherm

  20. Synergistic properties of graphitic carbon nitride/cerium molybdate nanocomposites for enhanced photocatalytic activity

    Science.gov (United States)

    Bhargava, V. S.; Singh, Gajendar; Sharma, Manu

    2018-05-01

    A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.

  1. Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Using graphene oxide as substrate and stabilizer for the silver nanoparticles, silver nanoparticles-graphene oxide (Ag NPs/GO composites with different Ag loading were synthesized through a facile solution-phase method. During the synthesis process, AgNO3 on GO matrix was directly reduced by NaBH4. The structure characterization was studied through X-ray diffraction (XRD, atomic force microscopy (AFM, high-resolution transmission electron microscope (HRTEM, ultraviolet-visible spectroscopy (UV-Vis, and selected area electron diffraction (SAED. The results show that Ag nanoparticles (Ag NPs with the sizes ranging from 5 to 20 nm are highly dispersed on the surfaces of GO sheets. The shape and size of the Ag NPs are decided by the volume of initial AgNO3 solution added in the GO. The antibacterial activities of Ag NPs/GO nanocomposites were investigated and the result shows that all the produced composites exhibit good antibacterial activities against Gram-negative (G− bacterial strain Escherichia coli (E. coli and Gram-positive (G+ strain Staphylococcus aureus (S. aureus. Moreover, the antibacterial activities of Ag NPs/GO nanocomposites gradually increased with the increasing of volume of initial AgNO3 solution added in the GO and this improvement of the antibacterial activities results from the combined action of size effect and concentration effect of Ag NPs in Ag NPs/GO nanocomposites.

  2. Preparation of BiVO4-Graphene Nanocomposites and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B.

  3. Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Jun; Zhang, Long, E-mail: zhanglongzhl@163.com

    2015-01-15

    In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications in the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium.

  4. High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wang, Jin; Wu, Zongchao; Hu, Kunhong; Chen, Xiangying; Yin, Huabing

    2015-01-01

    Highlights: • A facile synthesis method of MoS 2 /PANI intercalated nanocomposites is developed. • There is synergistic effect between PANI and MoS 2 layer in the MoS 2 /PANI composites. • Intercalation is benefit for electrons transportation and conductivity increase. • The well-defined MoS 2 /PANI have good specific capacitances and long cyclic life. - Abstract: High conductivity nanocomposites of molybdenum disulfide (MoS 2 )/polyaniline (PANI) were prepared via direct intercalation of aniline monomer and doped with dodecyl benzene sulfonic acid (DBSA). The intercalated interaction between PANI and MoS 2 improves the conductivity and thermal stability of MoS 2 /PANI nanocomposites with the increasing fraction of MoS 2 . The conductivity and maximum weight loss velocity temperature of PANI/MoS 2 -38 sample are 2.38 S cm −1 and 353 °C, respectively. This architecture is also advantageous for enhancing the capacitance properties and cyclic stabilities of MoS 2 /PANI electrodes. In comparison to the specific capacitance of 131 F/g and 42% retained capacitance over 600 cycles of PANI electrode, the MoS 2 /PANI-38 electrode provides a specific capacitance up to 390 F/g and 86% retained capacitance over 1000 cycles. Thus it provides an improved capacitance method which synergistically combines pseudocapacitance and double-layer capacitance for supercapacitor electrodes

  5. Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Mei, Jun; Zhang, Long

    2015-01-01

    In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g −1 in 1 M Na 2 SO 4 and 165 F g −1 in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications in the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g −1 in 1 M Na 2 SO 4 and 165 F g −1 in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium

  6. Cu₂O-Au nanocomposites for enzyme-free glucose sensing with enhanced performances.

    Science.gov (United States)

    Hu, Qiyan; Wang, Fenyun; Fang, Zhen; Liu, Xiaowang

    2012-06-15

    A facile method for the synthesis of Cu(2)O-Au nanocomposites has been reported by injecting Cu(2)O nanocubes into Au precursor directly with the assistance of ultrasound radiation at room temperature. The ultrasound radiation is not a necessary requirement but can make the distribution of Au nanoparticles more homogenous. The formation of Cu(2)O-Au nanocomposites is attributed to following two reasons. The first one is the difference in the reduction potential between Cu(2+)/Cu(2)O and AuCl(4)(-)/Au, which can also be considered as the driving force for the redox reaction. The other one is the low lattice mismatch between (200) planes of Cu(2)O and (200) facets of Au, which is favorable for the formation of heterostructure. The electrochemical investigation demonstrates that the performances of Cu(2)O nanocubes in enzyme-free glucose sensing have been improved significantly after the decoration of Au nanoparticles which may be derived from the polarization effect provided by Au nanoparticles. As-prepared Cu(2)O-Au nanocomposites have great potential in enzyme-free glucose sensing. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    International Nuclear Information System (INIS)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming

    2015-01-01

    Graphical abstract: - Highlights: • Metal sulfide (CdS, ZnS, Ag 2 S)/GO nanocomposites were prepared by electrostatic adherence. • Ionic liquid was used to link the metal sulfide and GO in the electrostatic adherence process. • The as-prepared samples showed enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation. - Abstract: Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron–hole pairs

  8. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    Science.gov (United States)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-02-01

    Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV-vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  9. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Alice Tesarikova

    2016-01-01

    Full Text Available Two ethylene-octene copolymers with 17 and 45 wt.% of octene (EOC-17 and EOC-45 were compared in nanocomposites with Cloisite 93A. EOC-45 nanocomposites have a higher elongation at break. Dynamical mechanical analysis (DMA showed a decrease of tan⁡δ with frequency for EOC-17 nanocomposites, but decrease is followed by an increase for EOC-45 nanocomposites; DMA showed also increased modulus for all nanocomposites compared to pure copolymers over a wide temperature range. Barrier properties were improved about 100% by addition of organoclay; they were better for EOC-17 nanocomposites due to higher crystallinity. X-ray diffraction (XRD together with transmission electron microscopy (TEM showed some intercalation for EOC-17 but much better dispersion for EOC-45 nanocomposites. Differential scanning calorimetry (DSC showed increased crystallization temperature Tc for EOC-17 nanocomposite (aggregates acted as nucleation agents but decrease Tc for EOC-45 nanocomposite together with greatly influenced melting peak. Accelerated UV aging showed smaller C=O peak for EOC-45 nanocomposites.

  10. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    Science.gov (United States)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-01-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm−3 at 530 MV m−1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm−3 at 600 MV m−1). A gratifying high energy density of 9.12 J cm−3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m−1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm−3 at 360 MV m−1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications. PMID:28225047

  11. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    Science.gov (United States)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-02-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm-3 at 530 MV m-1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm-3 at 600 MV m-1). A gratifying high energy density of 9.12 J cm-3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m-1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm-3 at 360 MV m-1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

  12. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  13. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  14. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  15. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Probing polymer nanocomposite morphology by small angle ...

    Indian Academy of Sciences (India)

    Polyamide nanocomposite films were prepared from nanometer-sized silica particles having particle radius of gyration (g) of about 66 Å and trimesoyl chloride--phenylene diamine-based polyamides having macromolecular units of about 100-140 Å. The nanoscale morphology of the samples was characterized using ...

  17. Polymer nanocomposites for lithium battery applications

    Science.gov (United States)

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  18. Development of nanocomposites based on potato starch

    International Nuclear Information System (INIS)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno

    2013-01-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  19. Poly(.epsilon.-caprolactone)-clay nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Sedničková, M.; Jochec-Mošková, D.; Janigová, I.; Kronek, J.; Jankovič, L.; Šlouf, Miroslav; Chodák, I.

    2017-01-01

    Roč. 13, č. 1 (2017), s. 111-112 ISSN 1336-7242. [Zjazd chemikov /69./. 11.09.2017-15.09.2017, Horný Smokovec] Institutional support: RVO:61389013 Keywords : nanocomposites * montmorillonite Subject RIV: CD - Macromolecular Chemistry

  20. A new luminescent montmorillonite/borane nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Kolská, Z.; Matoušek, J.; Čapková, P.; Braborec, Jakub; Benkocká, M.; Černá, H.; Londesborough, Michael Geoffrey Stephen

    2015-01-01

    Roč. 118, DEC (2015), s. 295-300 ISSN 0169-1317 Institutional support: RVO:61388980 Keywords : Luminophore * Montmorillonite/borane nanocomposite * X-ray photoelectron spectroscopy * X-ray diffraction * UV–Vis spectra Subject RIV: CA - Inorganic Chemistry Impact factor: 2.586, year: 2015

  1. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  2. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  3. PCL/MWCNT Nanocomposites as Nanosensors

    Science.gov (United States)

    Grozdanov, Anita; Buzarovska, Alexandra; Avella, Maurizio; Errico, Maria E.; Gentile, Gennaro

    Due to the unique electronic, metallic and structural properties of carbon nanotubes (CNTs) as compared to other materials, researchers focused on utilizing these characteristics for engineering applications such as actuators, hydrogen storage materials, chemical sensors and nanoelectronic devices. Many papers have been published utilizing CNTs as the sensing material in pressure, flow, thermal, gas, optical, mass, strain, stress, chemical and biological sensors. Amongst many of their superior electro-mechanical properties, the piezoresistive effect in CNTs is attractive for designing strain sensors. When CNTs are subjected to a mechanical strain, a change in their chirality leads to modulation of the conductance. In this paper, a novel carbon nanotube/biopolymer nanocomposite was used to develop a piezoresistive strain nano bio-sensor. A biocompatible polymer matrix has been used to provide good interfacial bonding between the carbon nanotubes. Multi-walled carbon nanotubes (MWCNT, diameter d = 30-50 nm, purity >95%) have been used for the preparation of polycaprolactone (PCL)-based nanocomposites (PCL/MWCNT). The nanocomposites were prepared by mixing the MWCNTs and PCL in a tetrahydrofuran solution for 24 h. Characterization of the PCL/MWCNTs nanocomposite films was performed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM), as well as by mechanical and electrical measurements.

  4. Cycloolefin copolymer/fumed silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Dorigato, A.; Pegoretti, A.; Fambri, L.; Šlouf, Miroslav; Kolařík, Jan

    2011-01-01

    Roč. 119, č. 6 (2011), s. 3393-3402 ISSN 0021-8995 R&D Projects: GA ČR GA106/09/1348 Institutional research plan: CEZ:AV0Z40500505 Keywords : creep * nanocomposites * polyolefins Subject RIV: JI - Composite Materials Impact factor: 1.289, year: 2011

  5. Nanocomposites in food packaging – A review

    Science.gov (United States)

    A nanocomposite is a multiphase material derived from the combination of two or more components, including a matrix (continuous phase) and a discontinuous nano-dimensional phase with at least one nano-sized dimension (i.e. less than 100 nm). The main types of nanostructures are presented in this ch...

  6. octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites ...

    Indian Academy of Sciences (India)

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the ...

  7. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  8. Cyclic olefin copolymer-silica nanocomposites foams

    Czech Academy of Sciences Publication Activity Database

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  9. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  10. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto

    2015-01-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  11. Visible light photocatalytic disinfection of E. coli with TiO{sub 2}–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: rahimi_rah@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Zargari, Solmaz [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yousefi, Azam [School of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Morsali, Ali [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175 (Iran, Islamic Republic of)

    2015-11-15

    Graphical abstract: TiO{sub 2}–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO{sub 2}, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO{sub 2}–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO{sub 2}–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO{sub 2}–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO{sub 2}–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore

  12. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    Science.gov (United States)

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

  13. Microwave-assisted synthesis of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    She, Xiao; Zhang, Xinmin; Liu, Jingya [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Xianghua; Huang, Zhiliang [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shang, Songmin, E-mail: shang.songmin@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-10-15

    Highlights: • Mn{sub 3}O{sub 4}@rGO nanocomposites were prepared by one-step microwave-assisted method. • The growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide occurred simultaneously. • Specific capacitance of the nanocomposite is higher than those of rGO and Mn{sub 3}O{sub 4}. • The nanocomposites have good rate capability and cycling stability. - ABSTRACT: One-step microwave-assisted synthetic route for the fabrication of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide (Mn{sub 3}O{sub 4}@rGO) nanocomposites has been demonstrated. The morphological structures of the nanocomposites are characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM), respectively. All of the results indicate that the microwave-assisted synthesis results in the growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide simultaneously in ethylene glycol-water system. The specific capacitance of the as-prepared Mn{sub 3}O{sub 4}@rGO nanocomposite is higher than those of rGO and pure Mn{sub 3}O{sub 4}, which indicates the synergetic interaction between rGO and Mn{sub 3}O{sub 4}. The nanocomposites also have good rate capability and cycling stability in electrochemical experiments. This facile technique may be extended to the large scale and cost effective production of other composites based on graphene and metal oxide for many applications.

  14. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Ursachi, Irina; Vasile, Aurelia; Ianculescu, Adelina; Vasile, Eugeniu; Stancu, Alexandru

    2011-01-01

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g -1 . An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  15. Fullerene (C{sub 60})/CdS nanocomposite with enhanced photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiang [Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Hu, Zhuofeng, E-mail: st04hzhf@gmail.com [Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Zhang, Qian; Li, Boyuan [Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Shen, Zhurui, E-mail: shenzhurui@tju.edu.cn [Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2017-05-01

    Highlights: • C{sub 60}/CdS nanocomposite has been fabricated as a novel visible-light-driven photocatalyst. • It exhibits enhanced photocatalytic activity and photostability than that of pure CdS reference. • The C{sub 60} improved the charge separation and transfer of nanocomposite due to its high electron affinity. - Abstract: Herein, the fullerene (C{sub 60})/CdS nanocomposite has been fabricated by a facile one-pot hydrothermal method. Its photocatatlytic hydrogen (H{sub 2}) evolution rate and degradation efficiency of Rhodamine B (Rh B) are evaluated under visible light irradiation (λ ≥ 420 nm). The content of C{sub 60} has been changed from 0.4 wt% to 8 wt%, and the optimal value for photocatalytic activity is determined to be 0.4 wt%. The H{sub 2} evolution rate over this optimal sample reaches 1.73 mmol h{sup −1} g{sup −1} and its apparent degradation rate of Rh B is 0.089 min{sup −1} (degradation efficiency of 97% within 40 min), which is 2.3 times and 1.5 times compared to that of pure CdS reference. Moreover, the photocorrosion of CdS in composite is effectively suppressed, and its photocatalytic activity can be well maintained after three recycles (97.8% retaining for composite vs. 84.4% retaining for CdS). Then, the enhanced photocatalytic activity and stability of C{sub 60}/CdS nanocomposite are further studied by spectroscopic and electrochemical methods. Results show that the C{sub 60} species covering on the surface of CdS can efficiently accelerate the separation and transfer of photoexcited charge carriers, which can improve its activity, and reduce the photocorrosion of CdS.

  16. One-dimensional magnetic nanocomposites with attapulgites as templates: Growth, formation mechanism and magnetic alignment

    Science.gov (United States)

    Fu, Meng; Li, Xiangming; Jiang, Rui; Zhang, Zepeng

    2018-05-01

    Magnetic nanocomposite composed of attapulgite and Fe3O4 was synthesized by a simple and facile co-precipitation method. Its structure and morphology was verified using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Although the difficulty of forming uniform Fe3O4 on the attapulgite surface was discussed in detail in this study, one-dimensional magnetic nanorod with attapulgites as core and Fe3O4 as uniform shell was implemented for the first time using a cationic polymer surfactant, polyethylenimine. Polyethylenimine concentration, Fe3+/Fe2+ concentration and temperature were controlled to investigate the morphological evolutions of this nanocomposite. It was found that a uniform shell could be available with thickness tuning from 10 nm to 40 nm when Fe3+ concentration ranged from 0.01 mol/L to 0.03 mol/L meanwhile the polyethylenimine concentration was kept at 0.2 mg/mL and the temperature was kept at 60-80 °C. Finally, a possible mechanism for the formation of the Fe3O4 shell was suggested. The polyethylenimine on the surface of the attapulgites first adsorbed Fe3+/Fe2+ and then released under the action of alkali. It acted as a linker for the Fe3O4 nanoparticles nucleation in situ. The synthesized one-dimensional nanocomposites exhibit the superparamagnetism and fast response to an external magnetic field. The alignment of attapulgite-Fe3O4 one-dimensional nanocomposite along the external magnetic field was demonstrated. It provides promising candidates for building blocks and functional devices, which are low cost, non-toxic and eco-friendly, and opens the door for the application of attapulgite as one-dimensional nanomaterials.

  17. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    International Nuclear Information System (INIS)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv

    2013-01-01

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device

  18. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  19. One-step solution-phase synthesis of a novel RGO–Cu2O–TiO2 ternary nanocomposite with excellent cycling stability for supercapacitors

    International Nuclear Information System (INIS)

    Luo, Dongming; Li, Yaping; Liu, Jinlong; Feng, Haibo; Qian, Dong; Peng, Sanjun; Jiang, Jianbo; Liu, Youcai

    2013-01-01

    Highlights: •A novel RGO–Cu 2 O–TiO 2 was fabricated via a facile one-step solution-phase route. •The ternary nanocomposite displays excellent cycling stability for supercapacitors. •The introduction of TiO 2 to RGO–Cu 2 O can markedly improve supercapacitor properties. -- Abstract: A novel reduced graphene oxide (RGO)–Cu 2 O–TiO 2 ternary nanocomposite was successfully fabricated via a facile one-step solution-phase method. The synthesized RGO–Cu 2 O–TiO 2 nanocomposite was characterized by X-ray powder diffraction, transmission electron microscopy, atomic force microscopy and Raman spectroscopy, and its electrochemical properties as an active electrode material for supercapacitors were investigated through cyclic voltammetry (CV) and galvanostatic charge/discharge measurements in a 6 M KOH aqueous electrolyte. The obtained RGO–Cu 2 O–TiO 2 nanocomposite exhibits a specific capacitance of 80 F g −1 at a current density of 0.2 A g −1 in the 6 M KOH electrolyte, nearly twice the value of 41.4 F g −1 for the RGO–Cu 2 O nanocomposite and 2.5 times the value of 32.7 F g −1 for the RGO–TiO 2 nanocomposite. Furthermore, the specific capacitance of RGO–Cu 2 O–TiO 2 increases from 80 to 91.5 F g −1 after 1000 cycles, which can be said the least that the capacitance has not changed within error, while the specific capacitances of RGO–Cu 2 O and RGO–TiO 2 decrease from 41.4 to 34.5 F g −1 and from 32.7 to 25.2 F g −1 , respectively

  20. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  1. Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance

    Science.gov (United States)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2017-11-01

    TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.

  2. One-step route to a hybrid TiO2/TixW1−xN nanocomposite by in situ selective carbothermal nitridation

    Directory of Open Access Journals (Sweden)

    Zoë Schnepp, Martin J Hollamby, Masahiko Tanaka, Yoshitaka Matsushita, Yoshio Katsuya and Yoshio Sakka

    2012-01-01

    Full Text Available Metal oxide/nitride nanocomposites have many existing and potential applications, e.g. in energy conversion or ammonia synthesis. Here, a hybrid oxide/nitride nanocomposite (anatase/TixW1−xN was synthesized by an ammonia-free sol–gel route. Synchrotron x-ray diffraction, complemented with electron microscopy and thermogravimetric analysis, was used to study the structure, composition and mechanism of formation of the nanocomposite. The nanocomposite contained nanoparticles (<5 nm diameter of two highly intermixed phases. This was found to arise from controlled nucleation and growth of a single oxide intermediate from the gel precursor, followed by phase separation and in situ selective carbothermal nitridation. Depending on the preparation conditions, the composition varied from anatase/TixW1−xN at low W content to an isostructural mixture of Ti-rich and W-rich TixW1−xN at high W content. In situ selective carbothermal nitridation offers a facile route to the synthesis of nitride-oxide nanocomposites. This conceptually new approach is a significant advance from previous methods, which generally require ammonolysis of a pre-synthesized oxide.

  3. A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite

    Science.gov (United States)

    Heydari, Hamid; Gholivand, Mohammad Bagher

    2017-03-01

    In this work, we have developed a novel nanocomposite via deposition of ceria (CeO2) on nitrogen-doped reduced graphene (CeO2/NRGO). NRGO was synthesized through a facile, safe, and scalable method to achieve simultaneous thermal reduction along with nitrogen doping of graphene oxide (GO) in air at much lower reaction temperature. CeO2/NRGO was prepared via a sonochemical method in which ceria nanoparticles were uniformly distributed on NRGO sheets. The structure and morphology of CeO2/NRGO nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and Raman spectroscopy. Electrochemical properties of the proposed nanocomposite electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, continuous cyclic voltammetry (CCV), and electrochemical impedance spectroscopy (EIS) measurements. CeO2-NRGO nanocomposite electrodes showed excellent supercapacitive behavior, including much higher specific capacitance (230 F g-1 at 2 mV s-1) and higher rate capability compared to pure N-graphene. The cycling stability of the electrodes was measured by continues cyclic voltammetry (CCV) technique. The CCV showed that the specific capacitance of the CeO2/NRGO and NRGO nanocomposite maintained at 94.1 and 93.2% after 4000 cycles. The results suggest its promising potential as efficient electrode material for supercapacitors.

  4. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    Science.gov (United States)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  5. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    Science.gov (United States)

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  6. Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties

    International Nuclear Information System (INIS)

    Balakrishnan, Harintharavimal; Hassan, Azman; Wahit, Mat Uzir; Yussuf, A.A.; Razak, Shamsul Bahri Abdul

    2010-01-01

    The objective of the study is to develop a novel toughened polylactic acid (PLA) nanocomposite. The effects of linear low density polyethylene (LLDPE) and organophilic modified montmorillonite (MMT) on mechanical, thermal and morphological properties of PLA were investigated. LLDPE toughened PLA nanocomposites consisting of PLA/LLDPE blends, of composition 100/0 and 90/10 with MMT content of 2 phr and 4 phr were prepared. The Young's and flexural modulus improved with increasing content of MMT indicating that MMT is effective in increasing stiffness of LLDPE toughened PLA nanocomposite even at low content. LLDPE improved the impact strength of PLA nanocomposites with a sacrifice of tensile and flexural strength. The tensile and flexural strength also decreased with increasing content of MMT in PLA/LLDPE nanocomposites. The impact strength and elongation at break of LLDPE toughened PLA nanocomposites also declined steadily with increasing loadings of MMT. The crystallization temperature and glass transition temperature dropped gradually while the thermal stability of PLA improved with addition of MMT in PLA/LLDPE nanocomposites. The storage modulus of PLA/LLDPE nanocomposites below glass transition temperature increased with increasing content of MMT. X-ray diffraction and transmission electron microscope studies revealed that an intercalated LLDPE toughened PLA nanocomposite was successfully prepared at 2 phr MMT content.

  7. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  8. Development of polymer nanocomposites with regional bentonite clay

    International Nuclear Information System (INIS)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A.; Barbosa, Josiane D.V.; Barbosa, Renata

    2011-01-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  9. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    Science.gov (United States)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  10. Multifunctional Nanocomposites for Breast Cancer Imaging and Therapy

    National Research Council Canada - National Science Library

    Gayen, Swapan K; Balogh-Nair, Valeria

    2008-01-01

    The objective of the research was to explore the feasibility of concomitant detection and of breast cancer through the development of multifunctional nanocomposites that will enable early detection...

  11. Photonic structures based on hybrid nanocomposites

    Science.gov (United States)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  12. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  13. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  14. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    -Z inorganic nanoparticles. A facile single-precursor method is first developed to synthesize HfO2 nanoparticles, the highest-Z simple oxide with band gap larger than polyvinyltoluene, with uniform size distribution around 5 nm. A nanoparticle-surface-modification protocol is then developed for the fabrication of transparent nanocomposite monoliths with high nanoparticle loadings (up to 40 wt%). Using this method, transparent HfO2-loaded blue-emitting nanocomposite scintillators (2 mm thick, transmittance at 550 nm >75%) have been fabricated capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution production. The resulting nanocomposites thus exhibit unprecedented simultaneous enhancements in both light yield (visible photons produced per MeV of gamma photon energy) and gamma attenuation power. In a best demonstration, a 60 wt% quantum-dot nanocomposite scintillator exhibits a light yield of 9255 photons/MeV and a photopeak resolution of 9.8% under 662 keV Cs-137 gamma irradiation, demonstrating the potential of this model system for future high-performance low-cost spectroscopic gamma detectors.

  15. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yijie [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Jiang, Xiaoyu; Zhang, Jing [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Lin, Ming [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tang, Xiaosheng [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Zhang, Jie, E-mail: zhangj@imre.a-star.edu.sg [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Liu, Hongjun, E-mail: hjliu@henu.edu.cn [Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004 (China); AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore)

    2017-02-28

    Highlights: • Nanosilver diatomite has been developed with a facile, easy and effective in–situ reduction method. • The nanosilver diatomite demonstrated great antibacterial properties to gram positive and gram–negative bacterial. • A small amount of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. • Low cost nano–composite antimicrobial material for water purification industry. - Abstract: Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV–vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  16. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    International Nuclear Information System (INIS)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-01-01

    Highlights: • Nanosilver diatomite has been developed with a facile, easy and effective in–situ reduction method. • The nanosilver diatomite demonstrated great antibacterial properties to gram positive and gram–negative bacterial. • A small amount of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. • Low cost nano–composite antimicrobial material for water purification industry. - Abstract: Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV–vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  17. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    Lu, Jinlin; Song, Hua; Li, Suning; Wang, Lin; Han, Lu; Ling, Han; Lu, Xuehong

    2015-01-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO 2 ) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO 2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO 2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO 2 and the synergistic effect between the inorganic nano-TiO 2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO 2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO 2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO 2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO 2 film displays a good stability for electrochromic application

  18. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinlin, E-mail: jinlinlu@hotmail.com [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Song, Hua [School of Mechanical Engineering and Automation, University of Science and Technology, Liaoning, Anshan 114051 (China); Li, Suning; Wang, Lin; Han, Lu [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Ling, Han; Lu, Xuehong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-06-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO{sub 2}) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO{sub 2} nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO{sub 2} nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO{sub 2} and the synergistic effect between the inorganic nano-TiO{sub 2} and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO{sub 2} nanocomposite film by electropolymerization • PEDOT:PSS/TiO{sub 2} film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO{sub 2} film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO{sub 2} film displays a good stability for electrochromic application.

  19. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  20. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  1. Characterization of SWNT based Polystyrene Nanocomposites

    Science.gov (United States)

    Mitchell, Cynthia; Bahr, Jeffrey; Tour, James; Arepalli, Sivaram; Krishnamoorti, Ramanan

    2003-03-01

    Polystyrene nanocomposites with functionalized single walled carbon nanotubes (SWNTs), prepared by the in-situ generation and addition of organic diazonium compounds, were characterized using a range of structural and dynamic methods. These were contrasted to the properties of polystyrene composites prepared with unfunctionalized SWNTs at the same loadings. The functionalized nanocomposites demonstrated a percolated SWNT network structure at concentrations of 1 vol SWNT based composites at similar loadings of SWNT exhibited behavior comparable to that of the unfilled polymer. This formation of the SWNT network structure is because of the improved compatibility between the SWNTs and the polymer matrix due to the functionalization. Further structural evidence for the compatibility of the modified SWNTs and the polymer matrix will be discussed in the presentation.

  2. Investigation on Curcumin nanocomposite for wound dressing.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Anusuya, T

    2017-05-01

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  4. Metal-polymer nanocomposites for functional applications

    Energy Technology Data Exchange (ETDEWEB)

    Faupel, Franz; Zaporojtchenko, Vladimir; Strunskus, Thomas [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Materialverbunde; Elbahri, Mady [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Nanochemistry and Engineering

    2010-12-15

    Nanocomposites combine favorable features of the constituents on the nanoscale to obtain new functionalities. The present paper is concerned with the preparation of polymer-based nanocomposites consisting of metal nanoparticles in a polymer matrix and the resulting functional properties. Emphasis is placed on vapor phase deposition which inter alia allows the incorporation of alloy clusters with well defined composition and tailored filling factor profiles. Examples discussed here include optical composites with tuned particle surface plasmon resonances for plasmonic applications, magnetic high frequency materials with cut-off frequencies well above 1 GHz, sensors that are based on the dramatic change in the electronic properties near the percolation threshold, and antibacterial coatings which benefit from the large effective surface of nanoparticles and the increased chemical potential which both strongly enhance ion release. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  6. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  7. Characterization of organobentonite used for polymer nanocomposites

    International Nuclear Information System (INIS)

    Lee, J.Y.; Lee, H.K.

    2004-01-01

    Montmorillonite-rich clay was fractionated from bentonite mined from Kampo area in Korea, and it was treated with many cationic organo-surfactant. The chemical and physical characteristics of them are investigated, and epoxy nanocomposites were also studied. To calculate the exchanged content of organo-surfactant, thermogravimetric was carried out and interlayer distance was measured by wide-angle X-ray diffractometer. The interlayer distance for MMT-III, HDA-M, ODA-M, CTMA-M, and ODTMA-M were 1.21, 1.53, 1.57, 2.04, and 2.07 nm. All organobentonites were delaminated in the epoxy matrix forming the epoxy/organobentonite nanocomposites with various contents. Tensile strength and Young's modulus were modified by loading the organobentonite

  8. Mullins' effect in polymer/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Klitkou, Rasmus

    2012-01-01

    of memory of deformation history: when two samples are subjected to loading programs that differ along the first n ¡ 1 cycles and coincide afterwards, their stress– strain diagrams coincide starting from the nth cycle. Constitutive equations are developed in cyclic viscoelasticity and viscoplasticity...... of nanocomposites, and adjustable parameters in the stress–strain relations are found by fitting the experimental data. Ability of the model to predict the fading memory phenomenon is confirmed by numerical simulation.......Abstract. Experimental data are reported on polypropylene/clay nanocomposites in uniaxial cyclic tensile tests at room temperature (oscillations between maximum strains and the zero minimum stress with maximum strains increasing monotonically with number of cycles). Observations reveal fading...

  9. Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gh. Nabiyouni

    2013-06-01

    Full Text Available Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO32 and Fe(NO33. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magnetic properties of the samples were investigated using an alternating gradient force magnetometer (AGFM. The copper ferrite nanoparticles exhibited ferromagnetic behavior at room temperature, with a saturation magnetization of 29emu/g and a coercivity of 136 Oe. The distribution of the CuFe2O4 nanoparticles into the polymeric matrixes decreases the coercivity (136 Oe to 66 Oe. The maximum coercivity of 82 Oe was found for 15% of CuFe2O4 distributed to the starch matrix.

  10. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  11. Graphitic carbon nitride based nanocomposites: a review

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  12. Reactive Nanocomposites for Controllable Adhesive Debonding

    Science.gov (United States)

    2011-08-01

    technologies include shape memory alloy (SMA)-based approach, a chemical foaming agent (CFA) approach, and a reactive nanocomposite (RNC) approach. SMA...anofoil (a) Component 1 Thermoset Adhesive Component 2 Nano-coating (b) Figure 2. Debonding approach where (a) freestanding...J. Controlled Adhesive Debonding of RAH-66 Comanche Chines Using Shape Memory Alloys ; ARL-TR-2937; U.S. Army Research Laboratory: Aberdeen Proving

  13. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  14. Maghemite polymer nanocomposites with modulated magnetic properties

    International Nuclear Information System (INIS)

    Millan, A.; Palacio, F.; Falqui, A.; Snoeck, E.; Serin, V.; Bhattacharjee, A.; Ksenofontov, V.; Guetlich, P.; Gilbert, I.

    2007-01-01

    A method is presented for the production of maghemite polymer nanocomposites with modulated magnetic properties. Magnetic nanocomposites prepared using this method show regular variation in the magnetic blocking temperature from 2 K to 300 K, and variation in the saturation magnetization from 0 to 50 emu g -1 (Fe 2 O 3 ). The method is based on the in situ formation of maghemite nanoparticles in nitrogen-base polymer matrixes. The particle size can be varied regularly from 1.5 nm to 16 nm by changing the ratio of iron loading in the polymer and/or the Fe(II)/Fe(III) ratios. The particles are isolated and uniformly distributed within the matrix. The materials were characterized by electron microscopy, electron energy loss spectroscopy, Moessbauer spectroscopy, infrared spectroscopy, small angle X-ray scattering, wide angle X-ray scattering and magnetic measurements. The nanocomposites obtained are useful model material for the study of the magnetic behavior of magnetic nanoparticles, as well as for use in many industrial and biomedical applications

  15. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  16. Magnetic polymer nanocomposites for sensing applications

    KAUST Repository

    Alfadhel, Ahmed

    2014-11-01

    We report the fabrication and characterization of magnetic polymer nanocomposites for a wide range of sensing applications. The composites are made of magnetic nanowires (NWs) incorporated into polymers such as polydimethylsiloxane (PDMS) or UV sensitive SU-S. The developed composites utilize the permanent magnetic behavior of the NWs, allowing remote operation without an additional magnetic field to magnetize the NWs, which simplifies miniaturization and integration in microsystems. In addition, the nanocomposite benefits from the easy patterning of the polymer leading to a corrosion resistant, highly elastic, and permanent magnetic material that can be used to develop highly sensitive systems. Nanocomposite pillars are realized and integrated on magnetic sensor elements to achieve highly sensitive and power efficient flow and tactile sensors. The developed flow sensor can detect air and water flow at a power consumption as little as SO nW and a resolution up to 15 μm/s with easily modifiable performance. A tactile sensor element prototype is realized using the same concept, where a pressure range of 0-169 kPa is detected with a resolution of up to 1.3 kPa. © 2014 IEEE.

  17. Synthesis of poly(furfuryl alcohol)/montmorillonite nanocomposites ...

    Indian Academy of Sciences (India)

    The purpose of this study was to obtain poly(furfuryl alcohol) nanocomposites with Algerian organically modified clay (termed 12-montmorillonite). The formation of poly(furfuryl alcohol) was confirmed by infrared spectroscopy (IR); the prepared nanocomposites were characterized by X-ray diffraction (XRD), transmission ...

  18. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  19. Ultrasound assisted synthesis of PMMA/clay nanocomposites: Study ...

    Indian Academy of Sciences (India)

    The Young's modulus, breaking stress, elongation at break, toughness, yield stress and yield strain of the nanocomposites as a function of different clay concentrations and ultrasonic power were measured. Particle diameter of the nanocomposites was measured by laser diffraction technique. Oxygen permeability of the ...

  20. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    Science.gov (United States)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  1. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  2. Synthesis and Investigation of Carbon-Based Nanocomposites for Supercapacitors

    OpenAIRE

    LI WAN

    2018-01-01

    Carbon-based nanocomposites were synthesized for high-performance supercapacitors. The coalition between each of the constituent in the nanocomposites and the performance was investigated. Continuous efforts have been put to improve the supercapacitor assembly techniques from conventional supercapacitor to all-solid-state supercapacitor and to binder-free supercapacitor.

  3. Characterization of PAN/ATO nanocomposites prepared by solution ...

    Indian Academy of Sciences (India)

    Conducting nanocomposites of polyacrylonitrile (PAN) and antimony-doped tin oxide (ATO) were prepared by solution blending. Electrical properties of the nanocomposites were characterized by means of electrical conductivity measurements and the phase structures were investigated via scanning electron microscopy ...

  4. Synthesis and characterization of nanocomposites based on poly(3 ...

    Indian Academy of Sciences (India)

    The structure and morphologies of LNMO/P3HT- g -CNTs nanocomposites have also been performed by SEM, XRD and TEM. The electrochemical performance of LNMO/P3HT- g -CNTs nanocomposites as cathode materials of lithium-ion batteries were investigated by cyclic voltammetry and electrochemical impedance ...

  5. Environmental and Cost Assessment of a Polypropylene Nanocomposite

    NARCIS (Netherlands)

    Roes, A.L.|info:eu-repo/dai/nl/303022388; Marsili, E.; Nieuwlaar, E.|info:eu-repo/dai/nl/073931373; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2007-01-01

    This paper describes a study on the use of a polypropylene (PP)/layered silicate nanocomposite as packaging film, agricultural film, and automotive panels. The study’s main question was “Are the environmental impacts and costs throughout the life cycle of nanocomposite products lower than those of

  6. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    Science.gov (United States)

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  7. Ecoefficiency indicators for development of nano-composites

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Laurent, Alexis

    nanocomposites (5 wt%-nanofiller) were investigated; PU/CNT (in-situ polymerization), PP/CNT (in-situ polymerization), PU/clay (bulk polymerization), and PP/clay nanocomposites (bulk polymerization). Due to of lack of information, only the material stages (extraction of materials) and the production...

  8. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters in...

  9. Carbon-Nickel oxide nanocomposites: Preparation and charecterisation

    CSIR Research Space (South Africa)

    Tile, N

    2011-07-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C-NiO nanocomposite coatings are prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater. The coatings are prepared...

  10. A biodegradable polymer nanocomposite: Mechanical and barrier properties

    Science.gov (United States)

    Lilichenko, N.; Maksimov, R. D.; Zicans, J.; Merijs Meri, R.; Plume, E.

    2008-01-01

    The preparation of an environmentally friendly nanocomposite based on plasticized potato starch and unmodified montmorillonite clay is described. Data on the influence of montmorillonite concentration on the mechanical properties of the materials obtained are reported. The effective elastic constants of the nanocomposites are calculated. The calculation results are compared with experimental data. The influence of montmorillonite content on the moisture permeability is also investigated.

  11. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  12. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  13. Wellbore Seal Repair Using Nanocomposite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheath cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus

  14. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  15. Scattering, absorption and transmittance of experimental graphene dental nanocomposites

    Science.gov (United States)

    Pérez, María. M.; Salas, Marianne; Moldovan, Marionara; Dudea, Diana; Yebra, Ana; Ghinea, Razvan

    2017-08-01

    Optical properties of experimental graphene dental nanocomposites were studied. Spectral reflectance was measured and S and K coefficients as well as transmittance of samples were calculated using Kubelka-Munk's equations. The spectral behavior of S, K and T experimental graphene exhibited different trends compared with the commercial nanocomposites and they were statistically different. Experimental nanocomposites show higher scattering and lower transmittance when compared with commercial nanocomposite, probably, due to the shape, type and size of the filler. K for short wavelength of the pre-polymerized experimental nancomposites was very low. According to our results, hidroxypatite with graphene oxide used in dental nanocomposites needs to be improved to reproduce esthetic properties of natural dental tissues and to have potentially clinical applications.

  16. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    Science.gov (United States)

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  17. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    Science.gov (United States)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  18. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  19. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui

    2016-08-01

    Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.

  20. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  1. Eco-friendly polymer nanocomposites processing and properties

    CERN Document Server

    Thakur, Vijay Kumar

    2015-01-01

    This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The co...

  2. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    International Nuclear Information System (INIS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • A novel green synthesis of AgI-RGO nanocomposites. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Additive promoted photocatalytic performance in AgI-RGO composites. • AgI-RGO nanocomposites may find applications in luminescent and catalytic devices. - Abstract: Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron–hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL −1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H 2 O 2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H 2 O 2 ) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs

  3. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  4. Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Bashar

    2014-01-01

    Full Text Available The effects of organic modifier and processing method on morphology and mechanical properties of epoxy-clay nanocomposites were investigated. In this study, the preparation of nanocomposites by exfoliation-adsorption method involved an ultrasonic mixing procedure, and mechanical blending was used for in situ intercalative polymerization. The microstructure study revealed that the organoclay, which was ultrasonically mixed with the epoxy, partially exfoliated and intercalated. In contrast, organoclay remained in phase-separated and flocculated state after the mechanical blending process. Tensile stiffness increased significantly for the nanocomposite prepared by ultrasonic dispersion method through realizing the reinforcing potential of exfoliated silicate layers. Nanocomposites with exfoliated and intercalated nanoclay morphology were ineffective in enhancing the fracture toughness whereas nanocomposites with phase-separated and flocculated morphology have improved crack resistance predominantly by crack deflecting and pinning mechanisms.

  5. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  6. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  7. The Role of Nanofillers in Polymer Nanocomposites

    Science.gov (United States)

    Xu, Di

    Polymer nanocomposites have been widely used in many fields. By introducing nanoparticles as fillers, researchers are able to get reinforced materials and new materials with novel properties, such as stronger mechanics, enhanced optical properties and improved conductivity. Though experimental techniques have rapidly advanced to enable better control of materials at atomic level, there is still a lack of a fundamental understanding of the dynamics and structure-properties relations in polymer nanocomposites. In this thesis, we use computer simulations to study the molecular structure and connections between microstate to macro properties of a variety of nanocomposites. Our goal is to understand the role of nanofillers in complex nanocomposite systems and to assist nanocomposite design. Nanoplatelet fillers, such as clays, have shown superior effects on the properties of polymer gels. We used molecular dynamic simulation to study nanoplatelet-filled composite gel system, in which short-range attraction exists between the polymer and nanoplatelet fillers. We show that the polymers and nanoplatelet fillers formed organic-inorganic networks with nanoplatelets acting as crosslink junctions, and the network eventually percolates the system as fillers reached a critical concentration. Stress auto-correlation and step-strain test were applied to investigate the mechanical properties; the results show the simulated composites changed from fluid-like to solid-like. The mechanical changes were consistent with the percolation transition, and gelation mechanism was therefore believed to be similar to those pure polymer physical gels. It was observed platelets aggregated into a local intercalation structure, which significantly differs from typical spherical fillers. This unique intercalation structure was examined by radial distribution function and ordering parameters. We discussed how intercalation would affect the properties of the platelet composites by comparing them with

  8. Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites

    International Nuclear Information System (INIS)

    Dadbin, Susan; Kheirkhah, Yahya

    2014-01-01

    Poly(D-L lactide) PDLLA/hydroxyapatite (HAP) nanocomposites at various compositions were prepared by melt-compounding process and then subjected to gamma irradiation at a dose of 30 kGy. The morphology of the nanocomposites, characterized by transmission electron microscopy (TEM), displayed HAP nanoparticles at various sizes ranging from 10 to 100 nm distributed almost evenly within the polymer matrix. Differential scanning calorimetric (DSC) analysis of the irradiated nanocomposites showed an increase in the degree of crystallinity along with a melting peak split. The double melting peak suggested formation of different crystalline structures in the radiation exposed nanocomposites. Also the cold crystallization peak shifted to lower temperatures and became much sharper upon irradiation, indicating higher crystallization rate. The irradiated nanocomposites showed lower tensile strength and elongation at break, suggesting occurrence of some chain scission reactions in the PLA. - Highlights: • Biomedical polylactic acid/hydroxyapatite nanocomposites prepared by melt-compounding were gamma irradiated. • Transmission electron microscopy showed hydroxyapatite nanoparticles evenly distributed within polylactic acid ranging from 10 to 100 nm. • A halo appeared around hydroxyapatite particles showing interfacial interactions between polylactic acid and the particles. • Double melting peak appeared for polylactic acid in DSC thermograms upon gamma irradiation of the nanocomposites

  9. Modification of PMMA/graphite nanocomposites through ion beam technique

    Science.gov (United States)

    Singhal, Prachi; Rattan, Sunita; Avasthi, Devesh Kumar; Tripathi, Ambuj

    2013-08-01

    Swift heavy ion (SHI) irradiation is a special technique for inducing physical and chemical modifications in bulk materials. In the present work, the SHI hs been used to prepare nanocomposites with homogeneously dispersed nanoparticles. The nanographite was synthesized from graphite using the intercalation-exfoliation method. PMMA Poly(methyl methacrylate)/graphite nanocomposites have been synthesized by in situ polymerization. The prepared PMMA/graphite nanocomposite films were irradiated with SHI irradiation (Ni ion beam, 80 MeV and C ion beam, 50 MeV) at a fluence of 1×1010 to 3×1012 ions/cm2. The nanocomposite films were characterized by scanning electron microscope (SEM) and were evaluated for their electrical and sensor properties. After irradiation, significant changes in surface morphology of nanocomposites were observed as evident from the SEM images, which show the presence of well-distributed nanographite platelets. The irradiated nanocomposites exhibit better electrical and sensor properties for the detection of nitroaromatics with marked improvement in sensitivity as compared with unirradiated nanocomposites.

  10. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  11. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  12. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  13. Load transfer of nanocomposite film on aluminum substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2018-01-01

    Nanocomposite films have attracted much attention in recent years. Depending on the composition of the film and fabrication method, a large range of applications has been employed for nanocomposite films. In this study, nanocomposite films reinforced with multi-walled carbon nanotubes (MWCNTs) were deposited on the aluminum substrate through hot press processing. A shear lag model and Euler beam theory were employed to evaluate the stress distribution and load carrying capability of the nanocomposite film subjected to tensile load and bending moment. The influence of MWCNT on the Young's modulus and load carrying capability of the nanocomposite film was investigated through a parametric study. The theoretical predictions were verified by comparison with experimental tests. A close agreement with difference less than 6% was achieved between the theoretical prediction and experimental measurements. The Young's modulus and load transfer of the nanocomposite film reinforced with MWCNTs increases with the increase of the MWCNT loading. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 20% in both the Young's modulus and load carrying capability.

  14. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  15. Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)]. E-mail: michele.penza@brindisi.enea.it; Tagliente, M.A. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Aversa, P. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Cassano, G. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Capodieci, L. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)

    2006-07-15

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.

  16. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dimitrios Bikiaris

    2010-04-01

    Full Text Available In the last few years, great attention has been paid to the preparation of polypropylene (PP nanocomposites using carbon nanotubes (CNTs due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  17. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  18. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    Science.gov (United States)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  19. Tangible nanocomposites with diverse properties for heart valve application

    International Nuclear Information System (INIS)

    Vellayappan, Muthu Vignesh; Balaji, Arunpandian; Subramanian, Aruna Priyadarshini; John, Agnes Aruna; Jaganathan, Saravana Kumar; Supriyanto, Eko; Yusof, Mustafa; Murugesan, Selvakumar; Mohandas, Hemanth

    2015-01-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases. (review)

  20. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  1. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  2. Cellulose whisker/epoxy resin nanocomposites.

    Science.gov (United States)

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  3. Tin Oxide/Graphene Aerogel Nanocomposites Building Superior Rate Capability for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Fan, Linlin; Li, Xifei; Cui, Yanhua; Xu, Hui; Zhang, Xianfa; Xiong, Dongbin; Yan, Bo; Wang, Yufen; Li, Dejun

    2015-01-01

    Highlights: • The SnO 2 /GA nanocomposites were successfully synthesized via a hydrothermal method. • The performance of nanocomposite anodes highly depended on the hydrothermal time. • The 3-4 nm-sized SnO 2 /GAs showed enhanced cycling performance and rate performance. - Abstract: SnO 2 has attracted intense interest for use as an anode material for lithium ion batteries because of various advantages of the high theoretical capacity and low-cost. Unfortunately, SnO 2 anode material suffers from the huge volume change and poor electrical conductivity. In order to address these problems, in this work, SnO 2 /graphene aerogel composites have been successfully synthesized by a facile hydrothermal approach. 3-4 nm-sized SnO 2 nanoparticles are uniformly dispersed over graphene aerogels. Our results indicate that the hydrothermal reaction time highly affects the electrode performance of the anodes. The nanocomposite electrode with reaction time of 3 h shows increased electrochemical performance with high energy capacity, long cycle life, and superior rate capability. After 100 cycles, it can deliver a high discharge capacity of 662 mAh g −1 at 100 mA g −1 . At 500 mA g −1 , it can still yield a discharge capacity of 619.7 mAh g −1 after 723 cycles. The performance improvement can attribute to the graphene aerogel, which can suppress the aggregation of SnO 2 nanoparticles, enhance the conductivity of SnO 2 , and increase their structural stability during cycling. This study strongly demonstrates that the SnO 2 /graphene aerogel composite is a promising anode material building high performance lithium ion batteries

  4. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Saranya, Murugan; Kollu, Pratap; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2015-01-01

    Highlights: • ZnS/G nanocomposites were prepared by a simple solvothermal process. • Electrochemical measurements were carried out in 6 M KOH electrolyte. • Cyclic voltammetry showed the excellent capacitive behavior of the composites. • A specific capacitance of 197.1 F/g was observed for ZnS/G-60 nanocomposites. - Abstract: Zinc sulfide decorated graphene nanocomposites are synthesized by a facile solvothermal approach and the prepared composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Photoluminescence spectroscopy (PL) and Raman spectrum. Results show the effective reduction of graphene oxide (GO) to graphene and decoration of ZnS nanoparticles on graphene sheets. Towards supercapacitor applications, the electrochemical measurements of different electrodes are performed in 6 M KOH electrolyte. A series of composites with different loadings of graphene is synthesized and tested for its electrochemical properties. The specific capacitance of the electrodes are evaluated from cyclic voltammetry (CV) studies and a maximum specific capacitance of 197.1 F/g is achieved in ZnS/G-60 electrode (60 indicates the weight ratio of GO) at scan rate of 5 mV s"−"1. A capacitance retention of about 94.1% is observed even after 1000 cycles for ZnS/G-60 electrode, suggesting the long time cyclic stability of the composite electrode. Galvanostatic charge–discharge curves show the highly reversible process of ZnS/G-60 electrode. Electrochemical Impedance Spectrum (EIS) shows a high conductivity of composite electrode suggesting that the composites are good candidates for energy storage.

  5. Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites

    Science.gov (United States)

    Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi

    Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  6. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available because of their multi-functionality, ease of process-ability, potential for large-scale manufacturing, significantly lighter than metals, ease of synthesis when compared to the oxide/noble metal multi-layers (Gass et al., 2006; Lee et al., 2003.... their easy aggregation arising from their high surface free energy (Lee et al., 2006). In the design of nanocomposites, one must consider the properties of the polymer matrix as well as the stability of the nanoparticles and more importantly...

  7. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  8. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    Science.gov (United States)

    Liang, Yu Teng

    Over the past couple decades, fundamental research into carbon nanomaterials has produced a steady stream of groundbreaking physical science. Their record setting mechanical strength, chemical stability, and optoelectronic performance have fueled many optimistic claims regarding the breadth and pace of carbon nanotube and graphene integration. However, present synthetic, processing, and economic constraints have precluded these materials from many practical device applications. To overcome these limitations, novel synthetic techniques, processing methodologies, device geometries, and mechanistic insight were developed in this dissertation. The resulting advancements in material production and composite device performance have brought carbon nanomaterials ever closer to commercial implementation. For improved materials processing, vacuum co-deposition was first demonstrated as viable technique for forming carbon nanocomposite films without property distorting covalent modifications. Co-deposited nanoparticle, carbon nanotube, and graphene composite films enabled rapid device prototyping and compositional optimization. Cellulosic polymer stabilizers were then shown to be highly effective carbon nanomaterial dispersants, improving graphene production yields by two orders of magnitude in common organic solvents. By exploiting polarity interactions, iterative solvent exchange was used to further increase carbon nanomaterial dispersion concentrations by an additional order of magnitude, yielding concentrated inks. On top of their low causticity, these cellulosic nanomaterial inks have highly tunable viscosities, excellent film forming capacity, and outstanding thermal stability. These processing characteristics enable the efficient scaling of carbon nanomaterial coatings and device production using existing roll-to-roll fabrication techniques. Utilizing these process improvements, high-performance gas sensing, energy storage, transparent conductor, and photocatalytic

  9. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  10. Ordered mesoporous silica-based inorganic nanocomposites

    International Nuclear Information System (INIS)

    Wang Qingqing; Shantz, Daniel F.

    2008-01-01

    This article reviews the synthesis and characterization of nanoparticles and nanowires grown in ordered mesoporous silicas (OMS). Summarizing work performed over the last 4 years, this article highlights the material properties of the final nanocomposite in the context of the synthesis methodology employed. While certain metal-OMS systems (e.g. gold in MCM-41) have been extensively studied this article highlights that there is a rich set of chemistries that have yet to be explored. The article concludes with some thoughts on future developments and challenges in this area. - Graphical abstract: HAADF TEM image of gold nanoparticles in amine-functionalized MCM-41 (from Ref. [22])

  11. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P. [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, UdR INSTM di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-05-18

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  12. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    Science.gov (United States)

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  13. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  14. Fe{sub 3}O{sub 4}/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Sinan, Neriman, E-mail: sinanneriman@gmail.com [Department of Advanced Technologies, Materials Science and Engineering Program, Bursa Technical University, Yildirim 16310, Bursa (Turkey); Unur, Ece, E-mail: eceunur@yahoo.com [Department of Energy Systems Engineering, Bursa Technical University, Yildirim 16310, Bursa (Turkey)

    2016-11-01

    Fe{sub 3}O{sub 4} nanoparticles with ∼10 nm diameters were synthesized by an extremely low-cost, scalable and relatively biocompatible chemical co-precipitation method. Magnetic measurements revealed that Fe{sub 3}O{sub 4} nanoparticles have bifunctional superparamagnetic and ferromagnetic character with saturation magnetization (M{sub s}) values of 64 and 71 emu g{sup −1} at 298 K and 10 K, respectively. Pseudocapacitive Fe{sub 3}O{sub 4} nanoparticles were then integrated into hazelnut shells - an abundant agricultural biomass - by an energy efficient hydrothermal carbonization method. Presence of magnesium oxide (MgO) ceramic template or its precursor in the hydrothermal reactor allowed simultaneous introduction of pores into the composite structure. Hierarchically micro-mesoporous Fe{sub 3}O{sub 4}/C nanocomposite possesses a high specific surface area of 344 m{sup 2} g{sup −1}. Electrochemical properties of Fe{sub 3}O{sub 4}/C nanocomposite were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in a conventional three-electrode cell. The Fe{sub 3}O{sub 4}/C nanocomposite is able to operate in a large negative potential window in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte (−1.2–0 V vs. Ag/AgCl). Synergistic effect of the Fe{sub 3}O{sub 4} and carbon leads to enhanced specific capacitance, rate capability and cyclability making Fe{sub 3}O{sub 4}/C nanocomposite a very promising negative electrode material for asymmetric supercapacitors. - Highlights: • Fe{sub 3}O{sub 4} (magnetite) particles with ∼10 nm dia. were prepared by a facile chemical co-precipitation. • Fe{sub 3}O{sub 4} nanospheres are superparamagnetic at 298K with high saturation magnetization of 64 emu g{sup −1}. • Porous Fe{sub 3}O{sub 4}/C nanocomposite was also prepared by a green HTC method combined with MgO templating. • Electrochemical properties of Fe{sub 3}O{sub 4}/C were studied in 1 M Na{sub 2}SO{sub 4} (between −1.2 and 0 V vs. Ag

  15. Highly sensitive and selective detection of Bis-phenol A based on hydroxyapatite decorated reduced graphene oxide nanocomposites

    International Nuclear Information System (INIS)

    Alam, Mohammad K.; Rahman, Mohammed M.; Elzwawy, Amir; Torati, Sri Ramulu; Islam, Mohammad S.; Todo, Mitsugu; Asiri, Abdullah M.; Kim, Dojin; Kim, CheolGi

    2017-01-01

    Highlights: •Simple chemical reduction method was used for preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. •The rGO/HAp nanocomposites exhibited good biocompatibility with hMSCs. •Selective chemical sensor based on rGO/HAp nanocomposites was developed for detection of Bis-phenol A. •The fabricated rGO/HAp/Nafion/GCE sensor exhibited good detection limit of 60 pmol L −1 . -- Abstract: A facile and cost effective chemical reduction method is employed for the preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. The transmission electron microscopy images revealed that the HAp flakes are well decorated on the surface of rGO. The morphological structure of the as-synthesized rGO/HAp nanocomposites was confirmed through X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy, while the composition and thermal stability were analyzed by energy dispersive spectra and thermogravimetric analysis, respectively. Furthermore, the effect of rGO/HAp nanocomposites for the proliferation of Human Mesenchymal Stem Cell (hMSC) was performed to confirm the biocompatibility. A selective chemical sensor based on rGO/HAp modified glassy carbon electrode (GCE) for sensitive detection of Bis-phenol A (BPA) has been developed. Several important parameters controlling the performance of the BPA chemi-sensor were investigated and optimized at room conditions. The rGO/HAp/Nafion/GCE sensor offers a fast response and highly sensitive BPA detection. Under the optimal conditions, a linear range from 0.2 nmol L −1 to 2.0 mmol L −1 for the detection of BPA was observed with the detection limit of 60.0 pmol L −1 (signal-to-noise ratio, at an SNR of 3) and sensitivity of 18.98 × 10 4 μA.L/μmol.m 2 . Meanwhile, the fabricated chemi-sensor showed an excellent, specific and selective recognition to target BPA molecules among coexistence of other analytes in the buffer system. This novel effort initiated

  16. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method

    Science.gov (United States)

    Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.

    2017-11-01

    Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.

  17. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Ezzaldeen Younes Jomma

    2016-02-01

    Full Text Available In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability.

  18. One-step preparation of N-doped graphene/Co nanocomposite as an advanced oxygen reduction electrocatalyst

    International Nuclear Information System (INIS)

    Bai, Fo; Huang, Hao; Tan, Yanlei; Hou, Changmin; Zhang, Ping

    2015-01-01

    Graphical abstract: N-doped graphene/Co nanocomposites were synthesized through one-step pyrolysis process and the product exhibits high performance for ORR and excellent stability in alkaline medium. - Highlights: • N-doped graphene/Co nano-composite is directly synthesized by a one-step method from Co(NO3)2∙6H2O, glucose and dicyandiamide (DCDA). • The electrocatalytic performance of as-prepared NG/Co-0.5 shows the peak potential positively shifts about 10 mV than commercial Pt/C electrode. • The material shows an excellent stability and tolerance to methanol poisoning effects in alkaline medium. - Abstract: N-doped graphene/Co nanocomposites (NG/Co NPs) have been prepared by a simple one-step pyrolysis of Co(NO 3 ) 2 ∙6H 2 O, glucose and dicyandiamide (DCDA). The products with nitrogen doped and suitable graphitic degree perform high electrocatalytic activity (with the reduction peak at −0.099 V vs Ag/AgCl) and near four-electron selectivity for the oxygen reduction reaction (ORR), with excellent stability and durability in alkaline medium comparable to a commercial Pt/C catalyst. Owing to the superb ORR performance, low cost and facile preparation, the catalysts of NG/Co NPs have great potential applications in fuel cells, metal-air batteries and ORR-related electrochemical industries

  19. Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications.

    Science.gov (United States)

    Zhang, Hongbo; Qu, Xiangmeng; Chen, Hong; Kong, Haixin; Ding, Ruihua; Chen, Dong; Zhang, Xu; Pei, Hao; Santos, Hélder A; Hai, Mingtan; Weitz, David A

    2017-10-01

    DNA origami is designed by folding DNA strands at the nanoscale with arbitrary control. Due to its inherent biological nature, DNA origami is used in drug delivery for enhancement of synergism and multidrug resistance inhibition, cancer diagnosis, and many other biomedical applications, where it shows great potential. However, the inherent instability and low payload capacity of DNA origami restrict its biomedical applications. Here, this paper reports the fabrication of an advanced biocompatible nano-in-nanocomposite, which protects DNA origami from degradation and facilities drug loading. The DNA origami, gold nanorods, and molecular targeted drugs are co-incorporated into pH responsive calcium phosphate [Ca 3 (PO 4 ) 2 ] nanoparticles. Subsequently, a thin layer of phospholipid is coated onto the Ca 3 (PO 4 ) 2 nanoparticle to offer better biocompatibility. The fabricated nanocomposite shows high drug loading capacity, good biocompatibility, and a photothermal and pH-responsive payload release profile and it fully protects DNA origami from degradation. The codelivery of DNA origami with cancer drugs synergistically induces cancer cell apoptosis, reduces the multidrug resistance, and enhances the targeted killing efficiency toward human epidermal growth factor receptor 2 positive cells. This nanocomposite is foreseen to open new horizons for a variety of clinical and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  1. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    Science.gov (United States)

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  2. Enhanced selective photocatalytic CO{sub 2} reduction into CO over Ag/CdS nanocomposites under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zezhou; Qin, Jiani; Jiang, Min; Ding, Zhengxin; Hou, Yidong, E-mail: ydhou@fzu.edu.cn

    2017-01-01

    Highlights: • Ag/CdS nanocomposites were prepared by a facile photodeposition method. • Ag/CdS was more effective as a photocatalyst for CO{sub 2} reduction than CdS. • Ag as cocatalyst served as electron trap as well as active site for CO{sub 2} reduction reaction. - Abstract: Photocatalytic reduction of carbon dioxide can convert chemically inert carbon dioxide into useful chemical fuel in a mild manner. Herein, Ag-CdS nanocomposites were prepared by photodeposition method and examined for photocatalytic CO{sub 2} reduction under visible light. Meanwhile, the nanocomposites were characterized by XRD, SEM, TEM, XPS, DRS and PL in detail. The results show that, the deposition of Ag improves the photocatalytic performance of CdS, especially in the selectivity of CO{sub 2}-to-CO. The highest photocatalytic activity is achieved over 1.0 wt.% Ag/CdS, with an increase by 3 times in comparison to CdS. In this reaction system, Ag can serve as electron trap as well as active site for CO{sub 2} reduction, which is probably responsible for the enhanced activity and selectivity of CO{sub 2} to CO over Ag/CdS. The possible mechanism of CO{sub 2} photoreduction over Ag/CdS was proposed in view of the abovementioned analysis.

  3. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    Science.gov (United States)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  4. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  5. Polymer nanocomposite of laponite RD prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Silva, Estefania O.; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes, E-mail: mariajhho@yahoo.com.br, E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Amato, Valdir S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital de Clinicas. Divisao de Doencas Infecciosas e Parasitarias

    2012-07-01

    Nanocomposite hydrogels based on polyvinyl alcohol (PVAl) and polyvinylpyrrolidone (PVP) containing 0-5 wt % of the synthetic laponite RD clay were prepared by gamma irradiation process. The morphology of the nanocomposite hydrogel was observed by characterizations techniques using: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The structural properties crosslinking was determined by measuring the crosslink gel content extraction on mesh 500 sizes and swelling kinetics at 22 °C. The results showed that crosslinks have inverse dependence on the clay level in the nanocomposite hydrogels, while swelling shows direct dependence. (author)

  6. Development and synthesis nanocompositions DLC coatings with orientation effect

    International Nuclear Information System (INIS)

    Levchenko, V.A.; Novoselova, N.V.; Matveenko, V.N.

    2008-01-01

    On the basis of volume modelling and a detailed experimental research of physical and chemical properties nanocompositions DLC with one-dimensional highly orientationally the carbon structure on interphase border of section with lubricant as models tribological knot, proves typical models of synthesis new nanocompositions the DLC possessing high tribological properties (by high wear resistance, low of a friction, etc.). The influence mechanism orientation properties of a surface of the synthesized coatings on molecular in a boundary lubricant layer is investigated. On basis tribological experimental batch tests nanocompositions the carbon coatings possessing orientation effect, the synthesis mechanism highly orientationally DLC coatings with optimum tribological properties is developed.

  7. Effect of irradiation in nanocomposite films of LLDPE

    International Nuclear Information System (INIS)

    Jagtap, R.N.; Shaikh, J.; Anandakrishnan, R.; Sharma, A.K.; Varier, P.S.

    2009-01-01

    Melt compounding was used for the preparation of LLDPE/MMT nanocomposite. The films were irradiated with gamma irradiation to study its mechanical, optical, thermal properties, barrier properties. Montmorillonite clay was treated with cationic emulsifier, to modify the surface properties by HCl and functionalizing with acetic acid. These treated clays were then incorporated in LLDPE to prepare nanocomposite films and then it is irradiated with gamma rays for different dosages of irradiation varying from 0 to 30 kGy, which can be used for food packaging applications. These nanocomposites were characterized by XRD and FTIR. (author)

  8. Morphology study of polyamide 6/bentonite clay nanocomposites

    International Nuclear Information System (INIS)

    Paz, Rene A.; Araujo, Edcleide M.; Melo, Tomas J.A.; Leite, Amanda M.D.; Medeiros, Vanessa Nobrega; Pessan, Luiz A.; Passador, Fabio R.

    2011-01-01

    Polymer/clay nanocomposites have had much attention in recent years, especially those developed with layered silicates, due to the need for engineering materials more efficient than pure polymers for certain applications. The level of exfoliation of layered silicates in the crystalline structure of polymer matrices has been studied and it has been observed that it affects the behavior of crystalline and therefore the mechanical and physical properties. In this study, polyamide 6 nanocomposites were obtained by the melt intercalation technique, using regional bentonite clay modified with a quaternary ammonium salt in an amount of 3% by weight. XRD and TEM tests showed obtaining nanocomposites with exfoliated structures (author)

  9. Magneto optical properties of silver doped magnetic nanocomposite material

    Directory of Open Access Journals (Sweden)

    N. Abirami

    2017-11-01

    Full Text Available Magnetic composite materials challenge traditional materials in broad applications such as transformer, sensors and electrical motors. In this work by studying the permittivity and permeability spectra of silver doped magnetic nanocomposite system, the variation of the effective refractive index with frequency is investigated for different filling factor. It is found that the value of resonance frequency decrease with filling factor. The polariton dispersion of the system is also studied. This study of the nanocomposite system can be exploited in designing modern optical devices.PACS: 75.50-y, 71.36.+c, 78.67.Sc, 78.20.Ci. Keywords: Permittivity, Permeability, Nanocomposite system, Polariton

  10. Research Progress in Graphene/Rubber Conducting Nanocomposites

    Directory of Open Access Journals (Sweden)

    DONG Hui-min

    2017-03-01

    Full Text Available The conductive mechanism of graphene/rubber nanocomposites was introduced.Advances in the synthesis and properties of graphene and its derivatives, modifications of graphene, along with its hybrid fillers, as well as fabrication of related rubber conducting nanocomposites were reviewed.Many factors affecting the electrical properties, such as fabrication method, vulcanization, temperature, pressure, frequency and media etc. were also summarized.It was pointed out that the further research should be focused on multi-component graphene/rubber nanocomposites and its double percolation phenomenon.

  11. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  12. Microstructure of polymer-clay nanocomposites studied by positrons

    International Nuclear Information System (INIS)

    Wang, S.J.; Liu, L.M.; Fang, P.F.; Chen, Z.; Wang, H.M.; Zhang, S.P.

    2007-01-01

    The epoxy-rectorite nanocomposites with different rectorite contents, epoxide equivalent were prepared and its microstructure was studied by positron annihilation and X-ray diffraction (XRD). At low rectorite content (0-2.0%), the free volume size in nanocomposites is nearly the same, but its concentration decreases with increasing content; the exfoliated structure was observed by XRD and interfacial layer formation between rectorite platelets and epoxy matrix was probed by positrons. Comparing with epoxy-montmorillonite, the exfoliated structure and interfacial layers are easier formed in epoxy-rectorite nanocomposites

  13. Polymer nanocomposite of laponite RD prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Silva, Estefania O.; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes; Amato, Valdir S.

    2012-01-01

    Nanocomposite hydrogels based on polyvinyl alcohol (PVAl) and polyvinylpyrrolidone (PVP) containing 0-5 wt % of the synthetic laponite RD clay were prepared by gamma irradiation process. The morphology of the nanocomposite hydrogel was observed by characterizations techniques using: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The structural properties crosslinking was determined by measuring the crosslink gel content extraction on mesh 500 sizes and swelling kinetics at 22 °C. The results showed that crosslinks have inverse dependence on the clay level in the nanocomposite hydrogels, while swelling shows direct dependence. (author)

  14. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Analytical and Testing Center, Sichuan University of Science & Engineering, Zigong, Sichuan 643000 (China); Xu, Yi [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Wang, Chunyan [Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Zhao, Huazhou; Wang, Renjie; Liao, Xin [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Chen, Li; Chen, Gang [Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044 (China)

    2015-09-15

    Highlights: • A novel structure of ITO-rGO/Ag NPs substrate was developed for SERS application. • Two-step chronoamperometry deposition method was used to prepare SERS substrate. • The SERS substrate had high SERS activity, good uniformity and reproducibility. - Abstract: A novel composite structure of reduced graphene oxide (rGO)–Ag nanoparticles (Ag NPs) nanocomposite, which was integrated on the indium tin oxide (ITO) glass by a facile and rapid two-step chronoamperometry electrodeposition route, was proposed and developed in this paper. SERS-activity of the rGO/Ag NPs nanocomposite was mainly affected by the structure and size of the fabricated rGO/Ag NPs nanocomposite. In the experiments, the operational conditions of electrodeposition process were studied in details. The electrodeposited time was the important controllable factor, which decided the particle size and surface coverage of the deposited Ag NPs on ITO glass. Under the optimized conditions, the detection limit for rhodamine6G (R6G) was as low as 10{sup −11} M and the Raman enhancement factor was as large as 5.9 × 10{sup 8}, which was 24 times higher than that for the ITO–Ag NPs substrate. Apart from this higher enhancement effect, it was also illustrated that extremely good uniformity and reproducibility with low standard deviation could be obtained by the prepared ITO-rGO/Ag NPs nanocomposite for SRES detection.

  15. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate

    International Nuclear Information System (INIS)

    Wang, Rong; Xu, Yi; Wang, Chunyan; Zhao, Huazhou; Wang, Renjie; Liao, Xin; Chen, Li; Chen, Gang

    2015-01-01

    Highlights: • A novel structure of ITO-rGO/Ag NPs substrate was developed for SERS application. • Two-step chronoamperometry deposition method was used to prepare SERS substrate. • The SERS substrate had high SERS activity, good uniformity and reproducibility. - Abstract: A novel composite structure of reduced graphene oxide (rGO)–Ag nanoparticles (Ag NPs) nanocomposite, which was integrated on the indium tin oxide (ITO) glass by a facile and rapid two-step chronoamperometry electrodeposition route, was proposed and developed in this paper. SERS-activity of the rGO/Ag NPs nanocomposite was mainly affected by the structure and size of the fabricated rGO/Ag NPs nanocomposite. In the experiments, the operational conditions of electrodeposition process were studied in details. The electrodeposited time was the important controllable factor, which decided the particle size and surface coverage of the deposited Ag NPs on ITO glass. Under the optimized conditions, the detection limit for rhodamine6G (R6G) was as low as 10 −11 M and the Raman enhancement factor was as large as 5.9 × 10 8 , which was 24 times higher than that for the ITO–Ag NPs substrate. Apart from this higher enhancement effect, it was also illustrated that extremely good uniformity and reproducibility with low standard deviation could be obtained by the prepared ITO-rGO/Ag NPs nanocomposite for SRES detection

  16. One-pot synthesis of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposites via electrical wire pulse for Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk-Hee; Seo, Seung-Deok; Lee, Gwang-Hee [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Hong, Hyun-Seon [Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin 449-863 (Korea, Republic of); Kim, Dong-Wan, E-mail: dwkim1@korea.ac.kr [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2014-09-01

    Highlights: • Synthesis of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocolloids using an electrical wire explosion process. • Electrical connection of Fe{sub 3}O{sub 4} to a current collector by the conducting networks. • Improved electrochemical performance of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposite electrodes. - Abstract: Nanocomposites containing Fe{sub 3}O{sub 4}/Fe/multiwalled carbon nanotubes (MWCNT) were prepared via an electrical wire pulse process (a top-down approach) using Fe wire and dispersed, functionalized MWCNT in deionized water (DIW) at room temperature. The structural and electrochemical characteristics of the resulting nanocomposites were investigated in detail. When used as an anode for Li ion batteries, the Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposites exhibited greater cycle stability and rate performance than plain Fe{sub 3}O{sub 4}/Fe composites, with a capacity of 460 mA h g{sup −1} at a rate of 168 mA g{sup −1} after 50 cycles. The enhanced performance was attributed to superior electrical conductivity and buffering effect of the MWCNTs on volume changes of the anodes. This process is a promising facile method for lithium ion battery anode material synthesis.

  17. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    Science.gov (United States)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  18. Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts.

    Science.gov (United States)

    Liang, Ruowen; Shen, Lijuan; Jing, Fenfen; Qin, Na; Wu, Ling

    2015-05-13

    In this work, MIL-53(Fe)-reduced graphene oxide (M53-RGO) nanocomposites have been successfully fabricated by a facile and efficient electrostatic self-assembly strategy for improving the interfacial contact between RGO and the MIL-53(Fe). Compared with D-M53-RGO (direct synthesis of MIL-53(Fe)-reduced graphene oxide nanocomposites via one-pot solvothermal approach), M53-RGO nanocomposites exhibit improved photocatalytic activity compared with the D-M53-RGO under identical experimental conditions. After 80 min of visible light illumination (λ ≥ 420 nm), the reduction ratio of Cr(VI) is rapidly increased to 100%, which is also higher than that of reference sample (N-doped TiO2). More significantly, the M53-RGO nanocomposites are proven to perform as bifunctional photocatalysts with considerable activity in the mixed systems (Cr(VI)/dyes) under visible light, which made it a potential candidate for industrial wastewater treatment. Combining with photoelectrochemical analyses, it could be revealed that the introduction of RGO would minimize the recombination of photogenerated electron-hole pairs. Additionally, the effective interfacial contact between MIL-53(Fe) and RGO surface would further accelerate the transfer of photogenerated electrons, leading to the enhancement of photocatalytic activity of M53-RGO toward photocatalytic reactions. Finally, a possible photocatalytic reaction mechanism is also investigated in detail.

  19. Investigation of superior electro-optical properties of SnO{sub 2}/SiO{sub 2} nanocomposite over its individual counterpart SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naveen Kumar, P.; Sahaya Selva Mary, J.; Chandrakala, V.; Jothi Jeyarani, W.; Merline Shyla, J., E-mail: jmshyla@gmail.com

    2017-06-01

    A comparative investigation of SnO{sub 2}/SiO{sub 2} nanocomposite with SnO{sub 2} nanoparticles has been conducted in the present study with the intent of learning the probable enhancement of the properties of the nanocomposite over those of the bare nanoparticles which has not been widely reported before. SnO{sub 2} nanoparticles and SnO{sub 2}/SiO{sub 2} nanocomposite have been synthesized via the facile and versatile sol-gel method. The samples were characterized with X-Ray Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM), Brunauer Emmett Teller (BET) studies, Fourier Transform Infra-Red spectroscopy (FT-IR), UV–Visible (UV–Vis) spectroscopy and Field-dependent photo conductivity technique for the evaluation of their crystallite size, structure & morphology, surface, chemical, optical and electrical properties respectively. Scherrer’s equation was used to determine the crystallite size of the as-synthesized samples from the XRD data. The particle size of SnO{sub 2}/SiO{sub 2} nanocomposite as observed through HRSEM was found to be reduced when compared with the bare SnO{sub 2} nanoparticles suggesting a possible increase in the optical band gap of the former which has been further confirmed in the optical studies. The surface area of SnO{sub 2}/SiO{sub 2} nanocomposite revealed a remarkable enrichment by approximately 5 folds in comparison with that of SnO{sub 2} nanoparticles which suggests an enhancement in its corresponding optical and electrical properties. The SnO{sub 2}/SiO{sub 2} nanocomposite recorded appreciated values of field-dependent photo and dark currents with several folds of augmentation thereby qualifying as an efficient photoconducting material. Attributed with an improved surface area and increased photoconducting nature, the SnO{sub 2}/SiO{sub 2} nanocomposite could be presented as an excellent photoanode material for nanomaterials based Dye Sensitized Solar Cells (DSSCs). - Highlights: • SnO{sub 2}/SiO{sub 2

  20. Use of MMT and MMT organoclay in production of starch nanocomposites

    International Nuclear Information System (INIS)

    Schlemmer, D.; Sales, M.J.A.; Macedo, J.L. de; Angelica, R.S.

    2010-01-01

    Starch can be used to replace petrochemical plastics for short shelf life. However, starch films have poor mechanical strength and sensitivity to moisture. This can be improved through the incorporation of nanoclays, such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using pequi oil as plasticizer. The clay was also modified with a quaternary ammonium salt. The clays were characterized by XRF, XRD, IR and TG. Results confirmed the organophilization. The nanocomposites diffractograms showed that the addition of small amounts of clay produces delaminated nanocomposites. Already the addition of larger amount of clay does not form nanocomposites, or leads to the formation of intercalated nanocomposites. (author)

  1. Graphene-SnO2 nanocomposites decorated with quantum tunneling junctions: preparation strategies, microstructures and formation mechanism.

    Science.gov (United States)

    Wang, Qingxiu; Wu, Xianzheng; Wang, Lijun; Chen, Zhiwen; Wang, Shilong

    2014-09-28

    Tin dioxide (SnO2) and graphene are versatile materials that are vitally important for creating new functional and smart materials. A facile, simple and efficient ultrasonic-assisted hydrothermal synthesis approach has been developed to prepare graphene-SnO2 nanocomposites (GSNCs), including three samples with graphene/Sn weight ratios = 1 : 2 (GSNC-2), 1 : 1 (GSNC-1), and graphene oxide/Sn weight ratio = 1 : 1 (GOSNC-1). Low-magnification electron microscopy analysis indicated that graphene was exfoliated and adorned with SnO2 nanoparticles, which were dispersed uniformly on both the sides of the graphene nanosheets. High-magnification electron microscopy analysis confirmed that the graphene-SnO2 nanocomposites presented network tunneling frameworks, which were decorated with the SnO2 quantum tunneling junctions. The size distribution of SnO2 nanoparticles was estimated to range from 3 to 5.5 nm. Comparing GSNC-2, GSNC-1, and GOSNC-1, GOSNC-1 was found to exhibit a significantly better the homogeneous distribution and a considerably smaller size distribution of SnO2 nanoparticles, which indicated that it was better to use graphene oxide as a supporting material and SnCl4·5H2O as a precursor to synthesize hybrid graphene-SnO2 nanocomposites. Experimental results suggest that the graphene-SnO2 nanocomposites with interesting SnO2 quantum tunneling junctions may be a promising material to facilitate the improvement of the future design of micro/nanodevices.

  2. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  3. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  4. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  5. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  6. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-20

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  7. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Carbon-polyaniline nanocomposites as supercapacitor materials

    Science.gov (United States)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  9. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation.

    Science.gov (United States)

    Homaeigohar, Shahin; Elbahri, Mady

    2014-02-10

    Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency) and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc. , nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper.

  10. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2014-02-01

    Full Text Available Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc., nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper.

  11. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Kosel, Jü rgen

    2016-01-01

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  12. Characterization of nanocomposites PHBV/attapulgite organophilic

    International Nuclear Information System (INIS)

    Silva, L.C.A.; Barreto, L.S.; Thire, R.M.S.M.

    2010-01-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) - PHBV is a biodegradable polyester which have been studied as an option for the production of disposable goods. This thermoplastic has some disadvantages that limit its use in industrial scale applications: the relative difficulty of processing, high degree of crystallinity and high cost of production relative to conventional polymers. An alternative to improve the properties of PHBV is the incorporation of small amounts of clay to the polymer. The aim of this work was to produce and characterize PHBV nanocomposites reinforced with organophilic attapulgite in different compositions. Natural attapulgite was modified with hexadecylmethylammonium chloride. The nanocomposites were characterized by XRD, SEM and Thermal analysis. It was observed reduction of the degree of crystallinity, melting and glass transition temperatures and the thermal stability of polymer in function on the addition of clay to the matrix of the PHBV. The best results were obtained for PHBV films containing 3% and 5% attapulgite. These films presented a slight increasing in processing window and decreasing in crystalline temperature and in degree of crystallinity as compared to pure PHBV. (author)

  13. Mechanical and Thermal Characterization of Silica Nanocomposites

    Science.gov (United States)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  14. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    International Nuclear Information System (INIS)

    Song Ping’an; Liu Lina; Fu Shenyuan; Yu Youming; Jin Chunde; Wu Qiang; Zhang Yan; Li Qian

    2013-01-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O 2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers. (paper)

  15. Porous Fe-Mn-O nanocomposites: Synthesis and supercapacitor electrode application

    Directory of Open Access Journals (Sweden)

    Guoxing Zhu

    2016-06-01

    Full Text Available Transition metal oxide micro-/nanostructures demonstrate high potential applications in energy storage devices. Here, we report a facile synthesis of highly homogeneous oxide composites with porous structure via a coordination polymer precursor, which was prepared with the assistance of tartaric acid. The typical product, Fe-Mn-O composite was demonstrated here. The obtained Fe-Mn-O product was systemically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping analysis, and X-ray photoelectron spectroscopy. It was demonstrated that the Fe-Mn-O nanocomposite shows interconnected porous structure, in which iron, manganese, and oxygen are uniformly distributed. In addition, the Fe-Mn-O nanocomposite was then fabricated as capacitor electrodes. Operating in an aqueous neutral solution, the Fe-Mn-O composite electrodes showed an wide working potential window from −0.2 to 1.0 V (vs. SCE, and a specific capacitance of 86.7 Fg−1 or 0.4 Fcm−2 at a constant current density of 1 Ag−1 with good cycle life. This study offers a new precursor approach to prepare porous metal oxide composites, which would be applied in energy-storage/conversion devices, catalysts, sensors, and so on.

  16. Transparent ‘solution’ of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films

    International Nuclear Information System (INIS)

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Zeng, Xiao-Fei; Zhang, Cong; Chen, Jian-Feng; Wu, Xi; Zou, Hai-Kui

    2015-01-01

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1–2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells. (paper)

  17. Inorganic-Macroion-Induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus.

    Science.gov (United States)

    Zhang, Liying; Cui, Tingting; Cao, Xiao; Zhao, Chengji; Chen, Quan; Wu, Lixin; Li, Haolong

    2017-07-24

    A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS-b-P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi-charged POMs can electrostatically cross-link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm -1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS-b-P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  19. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  20. Nanocomposite permanent magnetic materials Nd-Fe-B type: The influence of nanocomposite on magnetic properties

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2005-01-01

    Full Text Available The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others – the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.