WorldWideScience

Sample records for silica sol consisting

  1. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  2. Fluorescence metrology of silica sol-gels

    Indian Academy of Sciences (India)

    We have developed a new method for measuring in-situ the growth of the nanometre-size silica particles which lead to the formation of sol-gel glasses. This technique is based on the decay of fluorescence polarisation anisotropy due to Brownian rotation of dye molecules bound to the particles. Results to date give near ...

  3. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  4. Modified silica sol coatings for surface enhancement of leather.

    Science.gov (United States)

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  5. Dynamics Research on the Gelling Course of Silica Sol

    Institute of Scientific and Technical Information of China (English)

    LUYi-chun; LIZai-geng

    1995-01-01

    Dreipping electrolytes into silica sol ,gelling reaction will occur,The research indicates:this is a complicated physicemistry course,which consists of a pre-reaction and a polymerizaion,The former controls the whole course,and in which electronic layers of the sol's particles be-come more and more thiner,but with incresing of the sol concentration,its control force will be diminished ,till the fast-coagulation ,the gelling couse becomes o-controlled,The latter is an in-finite polymeric chani-reaction.The result of gelatination is to produce a very big plymeric molecule-gel,which involves in all space,includes all water ,and its molecular weight is in-definite big.The researh also indicates:the dy-namic course of the gelling could be described quantitaively by an experience formula:lgt=-nlgc+B,All of the characteristic values have definite physical meaning,Electronic value of the contrary-inos is the biggest influential factor ,the natures of the contrary-ions and the natures of the same-electronic-inos have a few influential forces on the characteristic values,The temperature increasing makes the gelling reaction fast.

  6. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  7. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones

    Directory of Open Access Journals (Sweden)

    Dongjiang Pan

    2016-11-01

    Full Text Available The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD, the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  8. Structural evolution of silica sols modified with formamide

    Directory of Open Access Journals (Sweden)

    Lenza R.F.S.

    2001-01-01

    Full Text Available In this work we investigated the influence of formamide on the acid-catalyzed sol-gel process by Fourier transform infrared spectroscopy (FTIR. Three silica sols were studied: Sol catalyzed with nitric acid without formamide, sol catalyzed with nitric acid containing formamide and sol catalyzed with a mixture of nitric acid and hydrofluoric acid and modified with formamide. Following the time evolution of both the Si-(OH stretching vibration at around 950 cm-1 and the Si-O-(Si vibration between 1040 cm-1 and 1200 cm-1 we were able to describe the structural evolution of each sol. The curve of evolution of Si-(OH stretching vibration corresponding to sol A has a simple asymptotic evolution. In the case of formamide containing sol, we observed a two-step structural evolution indicating that for the system containing formamide the polymerization goes through a temporary stabilization of oligomers, which can explain the non-variation of the Si-O(H bond wavenumber for a certain time. Gelation times were of several days for gels without formamide and few hours for gels containing additive. The presence of additive resulted in a highly interconnected gel.

  9. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  10. Preparation, purification, and characterization of aminopropyl-functionalized silica sol.

    Science.gov (United States)

    Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila

    2013-01-15

    A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Study of silica sol-gel materials for sensor development

    Science.gov (United States)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  12. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  13. The Influence of Microgravity on Silica Sol-Gel Formation

    Science.gov (United States)

    Sibille, L.; Smith, D. D.; Cronise, R.; Hunt, A. J.; Wolfe, D. B.; Snow, L. A.; Oldenberg, S.; Halas, N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We discuss space-flight experiments involving the growth of silica particles and gels. The effect of microgravity on the growth of silica particles via the sol-gel route is profound. In four different recipes spanning a large range of the parameter space that typically produces silica nanoparticles in unit-gravity, low-density gel structures were instead formed in microgravity. The particles that did form were generally smaller and more polydisperse than those grown on the ground. These observations suggest that microgravity reduces the particle growth rate, allowing unincorporated species to form aggregates and ultimately gel. Hence microgravity favors the formation of more rarefied structures, providing a bias towards diffusion-limited cluster-cluster aggregation. These results further suggest that in unit gravity, fluid flows and sedimentation can significantly perturb sol-gel substructures prior to gelation and these deleterious perturbations may be "frozen" into the resulting microstructure. Hence, sol-gel pores may be expected to be smaller, more uniform, and less rough when formed in microgravity.

  14. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  15. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  16. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  17. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  18. Long-Term Mechanical Behavior of Nano Silica Sol Grouting

    Directory of Open Access Journals (Sweden)

    Dongjiang Pan

    2018-01-01

    Full Text Available The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength.

  19. Long-Term Mechanical Behavior of Nano Silica Sol Grouting

    Science.gov (United States)

    Zhang, Nong; Zhang, Chenghao; Qian, Deyu; Han, Changliang; Yang, Sen

    2018-01-01

    The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength. PMID:29337897

  20. SAXS study of silica sols, gels and glasses obtained by the sol gel process

    International Nuclear Information System (INIS)

    Santos, D.I. dos; Aegerter, M.A.

    1988-01-01

    Systematic SAXS studies have been performed at the LURE Synchrotron, Orsay, using an intense beam of point like cross-section to obtain information about the sol -> humid gel -> dried gel -> silica glass transformation. The intensity curves have been analysed in term of power law in log-log plots, whose exponent is related to mass and surface fractal dimensions of the structure. It was found that almost all phases present fractal structures and for the case of basic gels, is of hierarchical nature. The aerogels are formed by a dense matrix, with a smooth surface and exhibit a very narrow auto-similarity range that gives a mass fractal dimension. (author) [pt

  1. Radiation hardening in sol-gel derived Er3+-doped silica glasses

    International Nuclear Information System (INIS)

    Hari Babu, B.; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu; Ibarra, Angel

    2015-01-01

    The aim of the present paper is to report the effect of radiation on the Er 3+ -doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er 3+ -doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′ δ point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er 3+ to Er 2+ ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects

  2. Sol-Gel processing of silica nanoparticles and their applications.

    Science.gov (United States)

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-06

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model

    International Nuclear Information System (INIS)

    Song Meirong; Song Junling; Ning Aimin; Cui Baoan; Cui Shumin; Zhou Yaobing; An Wankai; Dong Xuesong; Zhang Gege

    2010-01-01

    The aim of this study was to determine the feasibility of using silica sol to carry a hydrophobic drug in aqueous solution. Enrofloxacin, which was selected as the model drug because it is a broad-spectrum antibiotic drug with poor solubility in water, was adsorbed onto silica sol in aqueous solution during cooling from 60 deg. C to room temperature. The drug-loaded silica sol was characterized by transmission electron microscopy, Fourier transform infrared spectrum, thermal gravimetric analysis and ultraviolet-visible light spectroscopy. The results showed that enrofloxacin was adsorbed by silica sol without degradation at a loading of 15.23 wt.%. In contrast to the rapid release from pure enrofloxacin, the drug-loaded silica sol showed a slower release over a longer time. Kinetics analysis suggested the drug release from silica sol was mainly a diffusion-controlled process. Therefore, silica sol can be used to carry a hydrophobic drug in aqueous solution for controlled drug delivery.

  4. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  5. Influence of p H on optical properties of nano structure sol-gel-derived silica films

    International Nuclear Information System (INIS)

    Heshmatpuor, F.; Adelkhani, H.; Nahavandi, M.; Noorbakhsh Shourabadi, M.

    2006-01-01

    Sol-gel derived silica films were fabricated by dip-coating onto glass microscope substrates. Film properties such as transmission and surface morphology were monitored as function of dip speed and sol p H. Film transmission was increased with increasing of p H in visible range. The surface morphology of films were investigated with scanning electron microscopy.

  6. Synthesis of Titania-Silica Materials by Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rubia F. S. Lenza

    2002-10-01

    Full Text Available In this work TiO2-SiO2 glasses containing as much as 20 mol % of TiO2 were prepared via sol-gel process using titanium and silicon alkoxides, in the presence of chlorine, in the form of titanium tetrachloride or HCl. The gels were heat-treated until 800 °C. X-ray diffraction and Fourier transform infrared spectroscopy were used to understand the structural properties of TiO2-SiO2 oxides calcined at different temperatures and to evaluate the homogeneity of these materials. The degree of the compactness of the silica network is inferred from the frequency of the asymmetric stretching vibrations of Si-O-Si bonds. Formation of Si-O-Ti bridges, as monitored by the intensity of characteristic 945 cm-1 ¾ 960 cm-1 vibration, is particularly prominent if the method of basic two-step prehydrolysis of silicon alkoxide, addition of titanium alkoxide and completion of hydrolysis was used.

  7. Sílica solúvel em solos Soluble silica in soils

    Directory of Open Access Journals (Sweden)

    Bernardo van Raij

    1973-01-01

    Full Text Available Determinou-se a silica solúvel nos horizontes superficial e B2 de 44 perfis de solos do Estado de São Paulo. A extração da silica com solução 0,0025M de cloreto de cálcio evitou a dispersão dos solos e forneceu resultados em média apenas 8% menores do que a silica solúvel em água. Os resultados variaram de 2,2 a 92,2 ppm de SiO2. Verificou-se que, para solos com teores semelhantes de argila, os teores de silica solúvel foram maiores para solos com horizonte B textural, quando comparados com solos de horizonte B latossólico. Dentro dos agrupamentos de solos com horizonte B textural e horizonte B latossólico, os teores de silica solúvel foram maiores para os solos mais argilosos. Não foi observada relação entre silica solúvel e o pH dos solos.The extraction of soluble silica of soils with 0.0025M calcium chloride solution avoided dispersion of clay and results were on the average only 8% lower than water soluble silica. The results for surface and B2 horizons of 44 soil profiles of the State of São Paulo varied between 2.2 and 92.9 ppm of SiO2. For soils with similar clay contents, soluble silica was higher for soil with argillic B horizons as compared with soils with oxic B horizons. Within each group of soils, higher soluble silica results were associated with higher clay contents. Soluble silica apparently was not related to soil pH.

  8. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  9. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  10. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  11. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  12. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    Science.gov (United States)

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  13. Silica sol as grouting material: a physio-chemical analysis.

    Science.gov (United States)

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  14. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  15. Durable flame retardant finish for silk fabric using boron hybrid silica sol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang [National Engineering Laboratory for Modern Silk, Soochow University (China); Xing, Tie-ling, E-mail: xingtieling@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University (China); Jiangsu HuaJia Group (China)

    2016-11-30

    Highlights: • Highly homogeneous boron hybrid silica sol flame retardant system was prepared through sol-gel method. • The silk samples treated and cross-linked by this hybrid sol and BTCA solution showed a higher limiting oxygen index (LOI) more than 31.0% and a better washing durability for more than 30 times washing. • The smoke suppression, combustion performance and thermal stability properties of the treated samples have a significant improvement. - Abstract: A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H{sub 3}BO{sub 3}) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated

  16. Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.

    Science.gov (United States)

    Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna

    2018-02-15

    The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

  17. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    International Nuclear Information System (INIS)

    Le Guevel, X.

    2006-03-01

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  18. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  19. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  20. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  1. Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    International Nuclear Information System (INIS)

    Ganjoo, S; Azimirad, R; Akhavan, O; Moshfegh, A Z

    2009-01-01

    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 deg. C and then annealed in a temperature range of 200-500 deg. C. The average water contact angle of the silica films prepared with low water content and annealed at 300 deg. C measured about 5 deg. for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle greater than 60 deg. Atomic force microscopic analysis revealed that the silica films prepared with low water had a rough surface (∼30 nm), while the films prepared with high water had a smoother surface (∼2 nm). Using x-ray photoelectron spectroscopy, we have shown that with a decrease in the surface water on the film, its hydrophilicity increases logarithmically.

  2. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    Science.gov (United States)

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  3. Foliar application of two silica sols reduced cadmium accumulation in rice grains

    International Nuclear Information System (INIS)

    Liu Chuanping; Li Fangbai; Luo Chunling; Liu Xinming; Wang Shihua; Liu Tongxu; Li Xiangdong

    2009-01-01

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls

  4. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  5. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    Science.gov (United States)

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  6. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  7. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  8. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  9. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  10. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  11. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    Science.gov (United States)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  13. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  14. Gamma ray irradiation induced optical band gap variations in silica sol-gel doped sucrose

    International Nuclear Information System (INIS)

    Marzouki, F.; Farah, K.; Hamzaoui, A.H; Ben Ouada, H

    2015-01-01

    The silica xerogels doped sucrose was prepared via sol-gel process and exposed at room temperature to different doses of high energy ("6"0Co) gamma irradiation. Changes in the UV-visible and FTIR spectra of pristine and irradiated xerogels with varying of gamma doses rays show variation in the gap energy. It was found that energy gap of the investigated silica xerogels decreases with increasing the gamma irradiation doses. Thereby the irradiated samples reveal behaviour changes, from an insulator (Eg ∼5,8 eV) towards a semiconductor with (Eg ∼ 3.5 eV).

  15. Sol-gel-derived mesoporous silica films with low dielectric constants

    Energy Technology Data Exchange (ETDEWEB)

    Seraji, S.; Wu, Yun; Forbess, M.; Limmer, S.J.; Chou, T.; Cao, Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2000-11-16

    Mesoporous silica films with low dielectric constants and possibly closed pores have been achieved with a multiple step sol-gel processing technique. Crack-free films with approximately 50% porosity and 0.9 {mu}m thicknesses were obtained, a tape-test revealing good adhesion between films and substrates or metal electrodes. Dielectric constants remained virtually unchanged after aging at room temperature at 56% humidity over 6 days. (orig.)

  16. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  17. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil.

    Science.gov (United States)

    Abolghasemi Mahani, A; Motahari, S; Mohebbi, A

    2018-04-01

    Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  19. Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method

    Science.gov (United States)

    Ngoc Thi Le, Hien; Jeong, Hae Kyung

    2014-01-01

    Spin coating and sol-gel methods are proposed for the preparation of silica nanoparticles on a nickel substrate using silicon tetrachloride, 2-methoxyethanol, and four different types of alkaline solutions. The effects of the type of alkaline solution, concentration of silica solution, and speed of spin coating on the properties of silica nanoparticles are investigated systematically. Uniform spherical shape of silica nanoparticles on Ni with the smallest size are obtained with sodium carbonate among the alkaline solutions after stirring at 70 °C for 6 h and spin-coating at 7000 rpm. Physical and electrochemical properties of the silica particles are investigated.

  20. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  1. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  2. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  3. Effect of sol aging time on the anti-reflective properties of silica coatings templated with phosphoric acid

    Directory of Open Access Journals (Sweden)

    Wen Wen

    Full Text Available Silica anti-reflective coatings have been prepared by a sol–gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate. Keywords: Thin films, Anti-reflective coatings, Aging, Dip-coating, Sol–gel preparation

  4. Thickness controlled sol-gel silica films for plasmonic bio-sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Figus, Cristiana, E-mail: cristiana.figus@dsf.unica.it; Quochi, Francesco, E-mail: cristiana.figus@dsf.unica.it; Artizzu, Flavia, E-mail: cristiana.figus@dsf.unica.it; Saba, Michele, E-mail: cristiana.figus@dsf.unica.it; Marongiu, Daniela, E-mail: cristiana.figus@dsf.unica.it; Mura, Andrea; Bongiovanni, Giovanni [Dipartimento di Fisica - University of Cagliari, S.P. Km 0.7, I-09042 Monserrato (Canada) (Italy); Floris, Francesco; Marabelli, Franco; Patrini, Maddalena; Fornasari, Lucia [Dipartimento di Fisica - University of Pavia, Via Agostino Bassi 6, I-27100 Pavia (PV) (Italy); Pellacani, Paola; Valsesia, Andrea [Plasmore S.r.l. -Via Grazia Deledda 4, I-21020 Ranco (Vatican City State, Holy See) (Italy)

    2014-10-21

    Plasmonics has recently received considerable interest due to its potentiality in many fields as well as in nanobio-technology applications. In this regard, various strategies are required for modifying the surfaces of plasmonic nanostructures and to control their optical properties in view of interesting application such as bio-sensing, We report a simple method for depositing silica layers of controlled thickness on planar plasmonic structures. Tetraethoxysilane (TEOS) was used as silica precursor. The control of the silica layer thickness was obtained by optimizing the sol-gel method and dip-coating technique, in particular by properly tuning different parameters such as pH, solvent concentration, and withdrawal speed. The resulting films were characterized via atomic force microscopy (AFM), Fourier-transform (FT) spectroscopy, and spectroscopic ellipsometry (SE). Furthermore, by performing the analysis of surface plasmon resonances before and after the coating of the nanostructures, it was observed that the position of the resonance structures could be properly shifted by finely controlling the silica layer thickness. The effect of silica coating was assessed also in view of sensing applications, due to important advantages, such as surface protection of the plasmonic structure.

  5. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  6. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  7. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    Energy Technology Data Exchange (ETDEWEB)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti,, E-mail: widi@chem-eng.its.ac.id; Winardi, Sugeng [Chemical Engineering Department, Institute of Technology Sepuluh Nopember, Surabaya 60111 (Indonesia)

    2016-02-08

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  8. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica -based sols with nanoparticles of copper

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  9. Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Hiroyo; Yoshimizu, Hisato; Hirosaki, Naoto; Inoue, Satoru, E-mail: SEGAWA.Hiroyo@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-06-15

    We have prepared silica glass by the sol-gel method and studied its ability to disperse the Ca-{alpha}-SiAlON:Eu{sup 2+} phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.

  10. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  11. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ionic liquids as dynamic templating agents for sol-gel silica systems: synergistic anion and cation effect on the silica structured growth

    Czech Academy of Sciences Publication Activity Database

    Donato, K. Z.; Donato, Ricardo Keitel; Lavorgna, M.; Ambrosio, L.; Matějka, Libor; Mauler, R. S.; Schrekker, H. S.

    2015-01-01

    Roč. 76, č. 2 (2015), s. 414-427 ISSN 0928-0707 R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : silica * imidazolium ionic liquid * sol-gel Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.473, year: 2015

  13. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  14. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  15. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  16. Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde

    OpenAIRE

    Carlos Alberto Guerrero Fajardo; Francisco José Sánchez Castellanos; Anne Cécile Roger; Claire Courson

    2010-01-01

    Iron materials supported on silica were prepared by the sol-gel method for evaluating catalytic activity in selective o-xidation of methane to formaldehyde. Four catalysts were prepared, one corresponding to the silica support (catalyst 1S), another to the titanium support (catalyst 1T) and two more having 0.5% weight iron loads, one for the silica su-pport (catalyst 2FS) and the last one the titanium support (catalyst 2FT). The higher BET areas were 659 and 850 m2/g for catalysts 1S and 2FS,...

  17. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  18. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  19. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    Directory of Open Access Journals (Sweden)

    Josef Trögl

    2015-02-01

    Full Text Available The phospholipid fatty acid (PLFA content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS. Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm of the input microbial suspension (R2 = 0.99. After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0 to their metabolic precursors (16:1ω7 + 18:1ω7, an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

  20. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique

    Science.gov (United States)

    Riccò, R.; Nizzero, S.; Penna, E.; Meneghello, A.; Cretaio, E.; Enrichi, F.

    2018-05-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. [Figure not available: see fulltext.

  1. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    Science.gov (United States)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  2. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    Science.gov (United States)

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  3. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    Science.gov (United States)

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  4. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 4. The Main Approaches to Modeling the Kinetics of the Sol-Gel Transition

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-08-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for description of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the methods of fractal theory. The method of fractal polymer can be applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  5. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  6. Polymeric-silica-based sols for membrane modification applications: sol-gel synthesis and characterization with SAXS

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1995-01-01

    Polymeric SiO2 and binary SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 sols, for ceramic membrane modification applications, have been prepared by acid-catalyzed hydrolysis and condensation of alkoxides in alcohol. The sols were characterized with small angle X-ray scattering, using synchrotron radiation.

  7. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  8. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  9. Effect of SiO2 concentration in silica sol on interface reaction during titanium alloy investment casting

    Directory of Open Access Journals (Sweden)

    Ya-meng Wei

    2018-01-01

    Full Text Available Using silica sol as a binder for titanium investment casting is very attractive due to its good stability and reasonable cost as compared with yttrium sol and zirconium sol. However, the mechanism of interface reaction in the related system remains unclear. In this investigation, the interface reaction between Y2O3-SiO2 (Y-Si shell mold and titanium alloys was studied. A group of shell molds were prepared by using Y2O3 sand and silica sol with different contents of SiO2. Ti-6Al-4V alloy was cast under vacuum by gravity casting through cold crucible induction melting (CCIM method. Scanning electron microscopy (SEM and energy dispersive x-ray spectroscopy (EDS were employed to characterize the micromorphology and composition of the reaction area, respectively. X-ray photoelectron spectroscopy (XPS was used to confirm the valence state of relevant elements. White light interferometer (WLI was used to obtain the surface topography of Y-Si shells. The results show that the thickness of reaction layers is below 3 μm when the SiO2 content of silica sol is below 20wt.%. Whereas, when the SiO2 content increases to 25wt.%, the thickness of the reaction layer increases sharply to about 15 μm. There is a good balance between chemical inertness and mechanical performance when the SiO2 content is between 15 and 20wt.%. Moreover, it was found that the distribution of SiO2 and the roughness at the surface of the shell are the key factors that determine the level of reaction.

  10. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    International Nuclear Information System (INIS)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve; Berthier, Serge

    2008-01-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C

  11. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    Energy Technology Data Exchange (ETDEWEB)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve [Unite mixte CNRS/Saint Gobain Saint Gobain Recherche, BP135, 93303 Aubervilliers (France); Berthier, Serge [Institut des Nanosciences de Paris, UMR 7588, CNRS, Universite Pierre et Marie Curie-Paris 6, 140 rue Lourmel, 75015 Paris (France)], E-mail: cperoz@lbl.gov

    2008-12-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C.

  12. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  13. Solid-phase microextraction Ni-Ti fibers coated with functionalised silica particles immobilized in a sol-gel matrix.

    Science.gov (United States)

    Azenha, Manuel; Ornelas, Mariana; Fernando Silva, A

    2009-03-20

    One of the possible approaches for the development of novel solid-phase microextraction (SPME) fibers is the physical deposition of porous materials onto a support using high-temperature epoxy glue. However, a major drawback arises from decomposition of epoxy glue at temperatures below 300 degrees C and instability in some organic solvents. This limitation motivated us to explore the possibility of replacing the epoxy glue with a sol-gel film, thermally more stable and resistant to organic solvents. We found that functionalised silica particles could be successfully attached to a robust Ni-Ti wire by using a UV-curable sol-gel film. The particles were found to be more important than the sol-gel layer during the microextraction process, as shown by competitive extraction trials and by the different extraction profiles observed with differently functionalised particles. If a quality control microscopic-check aiming at the rejection of fibers exhibiting unacceptably low particle load was conducted, acceptable (6-14%) reproducibility of preparation of C(18)-silica fibers was observed, and a strong indication of the durability of the fibers was also obtained. A cyclohexyldiol-silica fiber was used, as a simple example of applicability, for the successful determination of benzaldehyde, acetophenone and dimethylphenol at trace level in spiked tap water. Recoveries: 95-109%; limits of detection: 2-7 microg/L; no competition effects within the studied range (

  14. Stability of erbium and silver implanted in silica-titania sol-gel films

    International Nuclear Information System (INIS)

    Ramos, A.R.; Marques, C.; Alves, E.; Marques, A.C.; Almeida, R.M.

    2005-01-01

    We implanted silica-titania sol-gel films with 3 x 10 15 at./cm 2 , 180 keV Er + and 6 x 10 16 at./cm 2 , 140 keV Ag + ions. The energies were chosen so that the profiles of Ag and Er overlap. RBS and ERDA were used to study the behaviour of Ag, Er and H during the heat treatments used to density the films. Implantation causes H depletion at the film surface and an increase in H concentration just beneath the implanted Ag and Er profiles. The total H content decreases by 27% to 75% during implantation. During annealing the H content decreases, with an almost complete H loss after annealing for 35 min at 800 deg. C. The Ag profile remains stable up to 600 deg. C. Above 700 deg. C Ag becomes increasingly mobile. Annealing at 800 deg. C for 35 min results in a nearly constant Ag distribution in the film. The Er profile remains unchanged with heat treatment up to the maximum temperature used (800 deg. C)

  15. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    Science.gov (United States)

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Strong visible-light emission of ZnS nanocrystals embedded in sol-gel silica xerogel

    International Nuclear Information System (INIS)

    Yang Ping; Lue, M.-K.; Song, C.-F.; Zhou, G.-J.; Ai, Z.-P.; Xu Dong; Yuan, D.-R.; Cheng, X.-F.

    2003-01-01

    ZnS nanoparticles embedded in novel porous phosphor silica xerogel have been synthesized by sol-gel processing. Their fluorescence properties have been evaluated and compared with those of the Na + -doped and un-doped silica xerogels. Stable and strong visible-light emission of the doped samples has been observed. The relative fluorescence intensities of the samples doped with ZnS nanoparticles (S 2- ions have been obtained by the water solution of NaS) are the highest among all of the doped samples. Its relative fluorescence intensity is about 7.5 times of that of the un-doped silica xerogel and about 300 times of that of pure ZnS nanoparticles. The emission wavelength of the ZnS-doped and Na + -doped samples is the same as that of the un-doped silica xerogel and ZnS nanoparticles (λ em =440-450 nm). This high efficiency luminescence of the doped silica xerogels has been assigned to the luminescence centers of ZnS nanoparticles and Na + in the porous phosphorescence silica xerogel

  17. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method

    Science.gov (United States)

    Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting

    2006-07-01

    The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.

  18. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes

    Directory of Open Access Journals (Sweden)

    Kim Young Ho

    2015-01-01

    Full Text Available Despite exhibiting a wide spectrum of cosmeceutical properties, flavonoids and related compounds have some limitations related to their stability and solubility in distilledwater. In this project, we prepared silica microspheres using a novel method that uses polyol-in-oil-in-water (P/O/W emulsion and sol-gel methods as techniques for stabilizing quercetin. A stable microsphere suspension was successfully preparedusing a mixed solvent system comprising a polyol-phase medium for performing the sol-gel processing of tetraethyl orthosilicate (TEOS as an inorganic precursor with outer water phase. The morphology of the microsphere was evaluated using a scanning electron microscope (SEM, which showed a characteristic spherical particle shape with a smooth surface. Furthermore, SEM/EDSanalysis of a representative microsphere demonstrated that the inner structure of the silica microspheres was filled with quercetin. The mean diameter of the microsphere was in the range 20.6-35.0 μm, and the encapsulation efficiency ranged from 17.8% to 27.5%. The free and encapsulated quercetin samples were incubated in separateaqueous solutions at 25 and 42°C for 28 days. The residualcontent of the quercetin encapsulated by silica microspheres was 82% at 42°C. In contrast, that of the free quercetin stored at 42°C decreased to ~24%.

  19. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  20. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of Silica Sol on Boric-sulfuric Acid Anodic Oxidation of LY12CZ Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LIU Hui-cong

    2016-07-01

    Full Text Available Aluminum alloy anodizing coatings were prepared for LY12CZ in the boric-sulfuric acid solution (45g/L sulfuric acid,8g/L boric acid with the addition of 10%,20%,30% (volume fractionsilica sol,with the gradient voltage of 15V. The current and voltage transients of the anodizing process were collected by data collection instrument. The surface morphologies,microstructure and chemical composition of the anodic coatings were characterized by scanning electron microscopy (SEM. The corrosion resistance was examined by neutral salt spray,electrochemical impedance spectroscopy (EIS test and titrating test. The results show that the different concentration of silica sol addition can influence the forming and dissolution of anodizing coatings,improve the compactness smoothness and corrosion resistance during the anodizing process in the boric-sulfuric acid solution.

  2. Defect-induced luminescence in sol-gel silica samples doped with Co(II) at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Sandoval, S. [Centro de Investigacion y Estudios Avanzados, Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Estevez, M. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Pacheco, S. [Instituto Mexicano del Petroleo, Av. 100 metros (Mexico); Vargas, S. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Rodriguez, R. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico)], E-mail: rogelior@servidor.unam.mx

    2007-12-20

    The defect-induced luminescence properties of silica samples prepared by the sol-gel method and doped with Co(II) are reported. Silica monoliths doped with different concentrations of Co(II) were laser irradiated (He-Ne 632.8 nm) producing fluorescence. However, this fluorescence is exponentially reduced with the irradiation time, to practically disappear. The rate the fluorescence decays can be well modeled with a double exponential function of the irradiation time, containing two different relaxation times; a baseline is also required to take into account some residual fluorescence. The characteristic times involved in this luminescence quenching process are in the range of seconds. This luminescence suppression can be associated to the local heating produced by the laser irradiation when focused in a small area (2 {mu}m in diameter) on the sample. This heating process reduces physical (grain boundaries, surface states) and chemical (oxygen vacancies produced by the dopant) defects in the sample.

  3. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  4. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement.

    Science.gov (United States)

    Hafezeqoran, Ali; Koodaryan, Roodabeh

    2017-09-21

    Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide

  5. Surface Behavior of Rhodamin and Tartrazine on Silica-Cellulose Sol-Gel Surfaces by Thin Layer Elution

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2016-05-01

    Full Text Available Physical and chemical interactions are the principles for different types of separation systems as the equillibrium dynamics on surface plays a key-role. Surface modification is a way for selective separation at interfaces. Moreover, synthesis of gel silica by a sol-gel method is preferred due to the homogeneity and surface feature easily controlled. Cellulose can be added in situ to modified the silica features during the process. Further application for to study interaction of rhodamin and tartrazine in its surface and their solubilities in mobile phase explains the possibility for their separation. This paper devoted to evaluate the surface behavior in term of adsorption and desorption of tartrazine and rhodamin on silica-cellulose thin layer in different mobile phase. Some carrier liquids applied such as methanol, acetone, n-hexane and chloroform. The result proves tartrazine and rhodamin is separated and have different behavior in different mobile phase. The retardation factors (Rf of the mixtures suggest complexity behavior on silica-cellulose surface.

  6. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shear flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.

  7. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  8. Submicrometric gratings fabrication from photosensitive organo-silica-hafnia thin films elaborated by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Janyce [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Barnier, Vincent, E-mail: barnier@emse.fr [Ecole Nationale Superieure des Mines, SMS-EMSE, CNRS:UMR 5146, LCG, F-42023 Saint-Etienne (France); Vocanson, Francis, E-mail: francis.vocanson@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Gamet, Emilie; Lesage, Maryline [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jamon, Damien [Universite de Lyon, F-42023 Saint-Etienne (France); Laboratoire Claude Chappe, Telecom Saint-Etienne, 42000 Saint-Etienne Cedex 2 (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jourlin, Yves [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France)

    2012-07-31

    The aim of this study is the elaboration of a high index sol-gel material in order to prepare submicrometric grating. The gratings were obtained after few seconds of UV exposure in one step using an organically modified silica-hafnia matrix. The chemical composition of thin films after UV and annealing treatments were studied using Fourier Transform Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy. The study of optical properties revealed that the annealed films are transparent from 200 to 1000 nm and have a refractive index from 1.550 to 1.701 depending on the hafnium concentration. - Highlights: Black-Right-Pointing-Pointer Silica-hafnia matrix with high refractive index was prepared using sol-gel process. Black-Right-Pointing-Pointer Organic and inorganic networks formation of thin films was investigated. Black-Right-Pointing-Pointer Optical properties are influenced by annealing treatment and initial hafnium amount. Black-Right-Pointing-Pointer The use of high Si:Hf molar ratio can lead to a loss transmittance below 300 nm. Black-Right-Pointing-Pointer Submicrometric grating period can be prepared using a holographic method.

  9. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  10. Extraction of Silica from Cassava Periderm using Modified Sol-Gel ...

    African Journals Online (AJOL)

    Akorede

    6School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built ... glycol as capping agent in modified sol-gel method for ..... Effect of Organic Acid Treatment on the Properties of ... Journal of Analytical and Applied.

  11. A silica sol-gel design strategy for nanostructured metallic materials

    NARCIS (Netherlands)

    Warren, S.C.; Perkins, M.R.; Adams, A.M.; Kamperman, M.M.G.

    2012-01-01

    Batteries, fuel cells and solar cells, among many other high-current-density devices, could benefit from the precise meso- to macroscopic structure control afforded by the silica sol–gel process. The porous materials made by silica sol–gel chemistry are typically insulators, however, which has

  12. Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene

    Science.gov (United States)

    Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.

    2017-05-01

    Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.

  13. Thermal and Mechanical Properties of Novolac-Silica Hybrid Aerogels Prepared by Sol-Gel Polymerization in Solvent-Saturated Vapor Atmosphere

    Directory of Open Access Journals (Sweden)

    Mohamad Mehdi Seraji1, Seraji

    2015-05-01

    Full Text Available Nowadays organic–inorganic hybrid aerogel materials have attracted increasing interests due to improved thermal and mechanical properties. In the present research, initially, novolac type phenolic resin-silica hybrid gels with different solid concentrations were synthesized using sol-gel polymerization in solvent-saturatedvapor atmosphere. The hybrid gels were dried at air atmosphere through ambient drying process. This method removed the need for costly and risky supercritical drying process. The yields of the obtained hybrid aerogels increased with less shrinkage in comparison with conventional sol-gel process. The precursor of silica phase in this study was tetraethoxysilane and inexpensive novolac resin was used as a reinforcing phase. The results of FTIR analysis confirmed the simultaneous formation of silica and novolac gels in the hybrid systems. The resultant hybrid aerogels showed a nanostructure hybrid network with high porosity (above 80% and low density (below 0.25 g/cm3. Nonetheless, higher content of silica resulted in more shrinkage in the hybrid aerogel structure due to the tendency of the silica network to shrink more during gelation and drying process. The SEM images of samples exhibited a continuous network of interconnected colloidal particles formed during sol-gel polymerization with mean particle size of less than 100 nanometers. Si mapping analysis showed good distribution of silica phase throughout the hybrid structure. The results demonstrated improvements in insulation properties and thermal stability of novolac-silica aerogel with increasing the silica content. The results of compressive strength showed that the mechanical properties of samples declined with increasing the silica content.

  14. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method

    International Nuclear Information System (INIS)

    Tabatabaei, S; Shukohfar, A; Aghababazadeh, R; Mirhabibi, A

    2006-01-01

    Silica nano-particles were synthesised by chemical methods from tetraethylorthosilicate (TEOS), ethanol (C 2 H 5 OH) and deionized water in the presence of ammonia as catalyst at room temperature. The morphology and structure of colloidal silica particles formed depend on the molar ratio of reagents. The formation of silica particles has been investigated using different solvents: ethanol and ethanol-glycerol. The nature and morphology of particles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD)

  15. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  16. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  17. Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses

    Science.gov (United States)

    Al Helou, Nissrine; El Hamzaoui, Hicham; Capoen, Bruno; Ouerdane, Youcef; Boukenter, Aziz; Girard, Sylvain; Bouazaoui, Mohamed

    2018-01-01

    Studying the impact of radiations on doped silica glasses is essential for several technological applications. Herein, bulk silica glasses, activated with various concentrations of luminescent monovalent copper (Cu+), have been prepared using the sol-gel technique. Thereafter, these glasses were subjected to X- or γ-rays irradiation at 1 MGy(SiO2) accumulated dose. The effect of these ionizing radiations on the optical properties of these glasses, as a function of the Cu-doping content, were investigated using optical absorption and photoluminescence spectroscopies. Before any irradiation, the glass with the lowest copper concentration exhibits blue and green luminescence bands under UV excitation, suggesting that Cu+ ions occupy both cubic and tetragonal symmetry sites. However, at higher Cu-doping level, only the green emission band exists. Moreover, we showed that the hydroxyl content decreases with increasing copper doping concentration. Both X and γ radiation exposures induced visible absorption due to HC1 color centers in the highly Cu-doped glasses. In the case of the lower Cu-doped glass, the Cu+ sites with a cubic symmetry are transformed into sites with tetragonal symmetry.

  18. Occlusion of chromophore oxides by Sol-Gel methods: Application to the synthesis of hematite-silica red pigments

    Directory of Open Access Journals (Sweden)

    Vicent, J. B.

    2000-02-01

    Full Text Available Heteromorphic pigments present the chromophore particle occluded in an encapsulating matrix which is thermally stable and insoluble in glazes. The occluded chromophore compound is also insoluble in the host matrix. In this work the mechanisms of formation of this type of pigments are analyzed and the occlusion of hematite into silica matrix is discussed. The formation of this hematite-silica red pigment follows a sintering-coarsening mechanism, and, consequently, the control of both hematite particles nucleation and their crystal growth results to be decisive to obtain a good coloring effectiveness.

    En los pigmentos heteromórficos la partícula de cromóforo es ocluida en una matriz encapsuladora estable tanto termicamente como frente a los vidriados. El compuesto cromóforo ocluido y la matriz no coloreada son insolubles. En este trabajo se analiza los diferentes mecanismos de formación de estos pigmentos heteromórficos y se estudia la oclusión de hematita en sílice mediante métodos sol-gel acuoso. El pigmento sigue un mecanismo de sinterización-crecimiento cristalino por lo que es muy importante controlar el momento de nucleación y la velocidad de crecimiento de las partículas de hematita en el seno de la matriz.

  19. Diffusion structural analysis study of titania films deposited by sol-gel technique on silica glass

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Mitsuhashi, T.; Bountseva, I.M.; Haneda, H.; Málek, Z.; Šubrt, Jan

    2003-01-01

    Roč. 26, 1-3 (2003), s. 185-189 ISSN 0928-0707. [International Workshop on Glasses, Ceramics, Hybrids and Nanocomposites from Gels /11./. Abano Terme, 16.09.2001-21.09.2001] Institutional research plan: CEZ:AV0Z4032918 Keywords : titania film * diffusion structural analysis * sol-gel Subject RIV: CA - Inorganic Chemistry Impact factor: 1.546, year: 2003

  20. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavio...

  1. Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Guerrero Fajardo

    2008-01-01

    Full Text Available Iron materials supported on silica were prepared by the sol-gel method for evaluating catalytic activity in selective o-xidation of methane to formaldehyde. Four catalysts were prepared, one corresponding to the silica support (catalyst 1S, another to the titanium support (catalyst 1T and two more having 0.5% weight iron loads, one for the silica su-pport (catalyst 2FS and the last one the titanium support (catalyst 2FT. The higher BET areas were 659 and 850 m2/g for catalysts 1S and 2FS, respectively while catalysts 1T and 2FT displayed areas of 65 and 54 m2/g, respec-tively. Scanning and transmission electronic microscopy displayed an amorphous structure in the silica-supported materials while titanium-supported materials displayed dense materials having defined structure. X-ray diffraction confirmed the silica’s amorphous structure in 1S and 2FS catalysts and displayed the 1T and 2FT catalysts’ anatase structure. The programmed temperature reduction for the 1S and 2FS catalysts did not display reducible species, while displaying hydrogen consumption peaks related to Fe3O4 reduction to α-Fe via FexO route for 1T and 2FT ca-talysts. The electronic spectroscopy X-ray photo confirmed the Fe(III specie as having 710.6 e.V binding energy for both 2FS and 2FT catalysts. Catalytic activity was carried out at atmospheric pressure in a quartz reactor, reaction mixture as CH4/O2/N2 =7.5/1/4 at 400-800°C temperature range. The reaction products were analysed by gas chromatography on Hayesep R and T columns using 5Å molecular screening. The best response for selective oxida-tion of methane to formaldehyde was displayed by the 2FS catalyst with 3.4% mol methane conversion at 650°C, 11.9% mol formaldehyde selectivity and 0.0211 g HCHO/Kg catalyst yield.

  2. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    Science.gov (United States)

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-05

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with

  3. Epoxy-silica nanocomposite interphase control using task-specific ionic liquids via hydrolytic and non-hydrolytic sol-gel processes

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Perchacz, Magdalena; Ponyrko, Sergii; Donato, Katarzyna Zawada; Schrekker, H. S.; Beneš, Hynek; Matějka, Libor

    2015-01-01

    Roč. 5, č. 111 (2015), s. 91330-91339 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-05146S; GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : epoxy-silica nanocomposite * sol-gel processes * ionic liquids Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  4. Production of colourful pigments consisting of amorphous arrays of silica particles.

    Science.gov (United States)

    Yoshioka, Shinya; Takeoka, Yukikazu

    2014-08-04

    It is desirable to produce colourful pigments that have anti-fading properties and are environmentally friendly. In this Concept, we describe recently developed pigments that exhibit such characteristics. The pigments consist of amorphous arrays of submicron silica particles, and they exhibit saturated and angle-independent structural colours. Variously coloured pigments can be produced by changing the size of the particles, and the saturation of the colour can be controlled by incorporating small amounts of black particles. We review a simple analysis that is useful for interpreting the angular independence of the structural colours and discuss the remaining tasks that must be accomplished for the realistic application of these pigments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    Science.gov (United States)

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-04

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) micropores with diameters 2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.

  6. Structural and optical studies of nano-structure silica gel doped with different rare earth elements, prepared by two different sol -gel techniques

    International Nuclear Information System (INIS)

    Battisha, I.K.; El Beyally, A.; Seliman, S.I.; El Nahrawi, A.S.

    2005-01-01

    Structural and optical characteristics of pure silica gel (silica-xerogel, SiO 2 ) and doped with different concentrations ranging from 1 up to 6% of some rare earth (REEs) ions such as, praseodymium Pr +3 ,and Europium Eu +3 , Erbium Er +3 and Holmium Ho +3 , ions, in the form of thin film and monolith materials were prepared by sol - gel technique, Using tetra-ethoxysilane as precursor materials, which are of particular interest for sol-gel integrated optics applications. Some structural and optical features of sol-gel derived monolith and thin films are analyzed and compared, namely the structure of nano-particle monolith and thin film silica-gel samples, based on X-ray diffraction (XRD). The types of structural information obtainable are compared in detail. It is show that the XRD spectra of a-cristobalite are obtained for the two type materials and even by doping with the four REEs ions. Optical measurements of monolith and thin films were also studied and compared, the normal transmission and specular reflection were measured. The refractive index were calculated and discussed

  7. Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation.

    Science.gov (United States)

    Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang

    2018-04-01

    The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  9. Optical Degradation of Colloidal Eu-Complex Embedded in Silica Glass Film Using Reprecipitation and Sol-Gel Methods.

    Science.gov (United States)

    Fukuda, Takeshi; Kurabayashi, Tomokazu; Yamaki, Tatsuki

    2016-04-01

    A reprecipitation method has been investigated for fabricating colloidal nanoparticles using Eu-complex. Herein, we investigated optical degradation characteristics of (1,10-phenanthroline)tris [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) colloidal nanoparticles, which were embedded into a silica glass film fabricated by a conventional sol-gel process. At first, we tried several types of good solvents for the reprecipitation method, and dimethyl sulfoxide (DMSO) is found to be a suitable solvent for realizing the small diameter and the high long-term stability against the ultraviolet irradiation even though the boing point of DMSO is higher than that of water used as a poor solvent. By optimizing the good solvent and the concentration of Eu-complex, the relative photoluminescence intensity of 0.96 was achieved even though the ultraviolet light was continuously irradiated for 90 min. In addition, the average diameter of 106 nm was achieved when DMSO was used as a good solvent, resulting in the high transmittance at a visible wavelength region. Therefore, we can achieve the transparent emissive thin film with a center wavelength of 612 nm, and the optical degradation was drastically reduced by forming nanoparticles.

  10. Obtaining of Sol-Gel Ketorolac-Silica Nanoparticles: Characterization and Drug Release Kinetics

    International Nuclear Information System (INIS)

    Goerne, T.M.L.; Garcia, M.G.L.; Grada, G.R.; Perez, I.O.; Goerne, T.M.L.; Garcia, M.G.L.; Grada, G.R.; Perez, I.O.; Lemus, M.A.A.; Goerne, T.M.L.; Loez, E.G.

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are among most commonly prescribed medications worldwide. NSAIDs play an important role due to their pronounced analgesic potency, anti-inflammatory effects, and lesser side effects compared to opioids. However, adverse effects including gastrointestinal and cardiovascular effects seriously complicate their prolonged use. In the present work we prepare SiO 2 -based nanoparticles with ketorolac, for controlled release proposes. The nano materials were prepared by the sol-gel technology at acidic conditions and two different water/alcoxide ratios were used. FTIR spectroscopy was performed in order to characterize the solids and drug-SiO 2 interactions. Thermal analysis and nitrogen adsorption isotherms showed thermal stability of the drug and confirmed the presence of particles with high surface area. Transmission electron micrographs of the samples showed the nano size particles (20 nm) forming aggregates. Drug release profiles were collected by means of UV-Vis spectroscopy and kinetic analysis was developed. Release data were fitted and 1:8 sample showed a sustained release over ten hours; 90% of the drug was delivered at the end of the time.

  11. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Science.gov (United States)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  12. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  13. Effect of Different Nano-Sized Silica Sols as Supports on the Structure and Properties of Cu/SiO2 for Hydrogenation of Dimethyl Oxalate

    Directory of Open Access Journals (Sweden)

    Chuancai Zhang

    2017-02-01

    Full Text Available Cu/x-SiO2 catalysts with 4, 10, and 20 nm silica sols as supports was produced by ammonia evaporation method and characterized. Different nano-sized silica sols as supports significantly affected the structure and catalytic properties of the copper catalysts for ethylene glycol synthesis from dimethyl oxalate. Compared with Cu/20-SiO2 and Cu/4-SiO2 catalysts, the catalytic performance and stability of Cu/10-SiO2 catalyst were greatly enhanced. The Cu/10-SiO2 catalyst showed 99.9% conversion with 94% EG selectivity and a lifetime of over 3080 h if it is calculated by industrial weight liquid hourly space velocity (WLHSV of 0.5 h−1. The Cu/10-SiO2 catalyst has one of the longest lifetimes among the catalysts and is a good alternative catalyst for this reaction. Improvement in the catalytic performance and stability of Cu/10-SiO2 is attributed to the proper SBET, Dp and larger dispersion of copper. In addition, the supports of Cu/10-SiO2 catalyst have smaller particles than that of Cu/20-SiO2; thus, the migration and growth of copper species in catalysts are restrained during the reaction.

  14. Modelling of DEMO core plasma consistent with SOL/divertor simulations for long-pulse scenarios with impurity seeding

    International Nuclear Information System (INIS)

    Pacher, G.W.; Pacher, H.D.; Janeschitz, G.; Kukushkin, A.S.; Kotov, V.; Reiter, D.

    2007-01-01

    The integrated core-pedestal-SOL model is applied to the simulation of a typical DEMO operation. Impurity seeding is used to reduce the power load on the divertor to acceptable levels. The influence on long-pulse operation of impurity seeding with various impurities is investigated. DEMO operation at acceptable peak power loads and long-pulse lengths is demonstrated

  15. Preparation of Bragg mirrors on silica optical fibers and inner walls of silica capillaries by employing the sol-gel method, and titanium and silicon alkoxides

    Czech Academy of Sciences Publication Activity Database

    Bartoň, Ivo; Matějec, Vlastimil; Mrázek, Jan; Podrazký, Ondřej; Matoušek, J.

    2017-01-01

    Roč. 81, č. 3 (2017), s. 867-879 ISSN 0928-0707 R&D Projects: GA ČR GA16-10019S Grant - others:AV ČR(CZ) SAV-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Multilayered coatings * Silica and titania layersSilica and titania layers * Alkoxide sol–gel method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.575, year: 2016

  16. Coating of Zircaloy sheaths with silica glass using the Sol-Gel technique for protection against oxidation

    International Nuclear Information System (INIS)

    De Sanctis, O.; Pellegri, N.; Gomez, L.

    1990-01-01

    With the aim of improving corrosion resistance of Zircaloy, a few Zircaloy sheaths were covered with vitreous silica. Deposition was made by dip coating in tetraetilortosilicate (TEOS) solutions and later densification treatment at 500 degrees C. Oxidation tests were performed and compared with sheaths not covered with silica. As a result, an effective increase in the resistance to dry oxidation was found in sheaths which had been protected. The coating-Zircaloy interface was studied using XPS (scanner). (Author). 6 refs., 3 figs

  17. Microwave studies on the dielectric properties of Sm3+ and Sm3+/CdTe doped sol-gel silica glasses

    International Nuclear Information System (INIS)

    Mathew, Siby; Rejikumar, P.R.; Yohannan, Jaimon; Mathew, K.T.; Unnikrishnan, N.V.

    2008-01-01

    Complex permittivity and conductivity studies of Samarium and Samarium/semiconductor cadmium telluride sol-gel silica glass samples were done. We use cavity perturbation technique at S band frequencies using TE 10p Mode. Structural evolution of the matrix on annealing is discussed based on FTIR analysis/XRD power diffraction. In cavity perturbation technique dielectric parameters like complex permittivity and conductivity are determined by measuring changes in resonant frequency due to small perturbation inside the cavity produced by the introduction of the samples. The addition of the semiconductor along with the samarium was found to lower the permittivity, loss factor and conductivity. Variations of permittivity values with annealing temperature find applications in IC Technology, optic fibre communication, etc. The Sm 3+ /CdTe doped glasses can also be used in the fabrication of new and improved materials for microwave electronic circuits and in electromagnetic shielding devices

  18. Recent applications of ionic liquids in the sol-gel process for polymer-silica nanocomposites with ionic interfaces

    Czech Academy of Sciences Publication Activity Database

    Donato, K. Z.; Matějka, Libor; Mauler, R. S.; Donato, R. K.

    2017-01-01

    Roč. 1, č. 1 (2017), s. 1-25, č. článku 5. E-ISSN 2504-5377 Institutional support: RVO:61389013 Keywords : ionic liquids * sol-gel * ionic interfaces Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  19. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    Science.gov (United States)

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. {sup 5}D{sub 3}{yields}{sup 7}F{sub J} emission of Tb doped sol-gel silica

    Energy Technology Data Exchange (ETDEWEB)

    Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    Amorphous silica samples doped with 0.1 and 1 mol% of terbium (Tb) were synthesized by the sol-gel method. In addition to the green light associated with {sup 5}D{sub 4}{yields}{sup 7}F{sub J} transitions of Tb{sup 3+}, the sample containing 0.1 mol% also emitted blue light as a result of {sup 5}D{sub 3}{yields}{sup 7}F{sub J} transitions during photoluminescence (PL) measurements. As a result of concentration quenching this blue emission was not observed for the samples doped with the higher concentration (1 mol%). However the blue {sup 5}D{sub 3} {yields}{sup 7}F{sub J} emission was observed in the 1 mol% doped samples during cathodoluminescence (CL) measurements. Since a rough calculation indicated that the excitation rate in the CL system where the blue emission is observed may be similar to a laser PL system under conditions where the blue emission is not observed, the difference is attributed to the nature of the excitation sources. It is suggested that during the CL excitation incident electrons can reduce non-luminescent Tb{sup 4+} ions in the silica, substituting for Si{sup 4+} ions, to the excited (Tb{sup 3+}) Low-Asterisk state and that these are responsible for the blue emission, which does not occur during PL excitation.

  1. Sol-gel electrospinning preparation of hybrid carbon silica nanofibers for extracting organophosphorus pesticides prior to analyzing them by gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Kermani, Mansoure

    2018-07-13

    Carbon-silica hybrid nanofibers as high performance coatings for solid-phase microextraction fibers were used for analyzing some pesticides by using gas chromatography-corona discharge ion mobility spectrometry. To that end, the fibers were prepared by carbonizing sol-gel based on electrospun polyacrylonitrile and tetraethyl orthosilicate nanofibers as carbon and silica precursors, respectively. Different parameters affecting the electrospinning and the extraction processes including spinning distance, voltage, feeding rate, stirring rate, salt concentration, temperature and extraction time were optimized by response surface methodology. The method involved deionized water samples spiked with pesticides at different concentration levels. The calibration curves were linear in the ranges of 0.1-20 and 0.05-20 μg L -1 with determination coefficients (R 2 ) of 0.9976 and 0.9928 for malathion and chlorpyrifos, respectively. The limits of detection of 0.032 and 0.019 μg L -1 and the limits of quantification of 0.1 and 0.05 μg L -1 were found for malathion and chlorpyrifos, respectively. Acceptable reproducibility values were obtained with relative standard deviations (RSD, n = 3) lower than 6 and 15%, for intra-day and inter-day precision, respectively. Finally, the relative recoveries of the proposed method were calculated in the range of 80-111% for real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Naf, S.M., E-mail: sm.abo-naf@nrc.sci.eg [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Abdel-Hameed, S.A.M.; Marzouk, M.A. [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt)

    2017-06-15

    Red phosphor, composed of Eu-Gd-Bi-codoped hybrid organo-silica glass, has been synthesized via a modified Pechini sol-gel process. The synthesized hybrid glass was analyzed with powder X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetry (DTA-TG) and Fourier transform infrared (FTIR) spectroscopy. XRD and DTA-TG confirmed its amorphous structure up to 1000 °C. Magnetic behavior of the produced phosphor was investigated using vibrating specimen magnetometer (VSM) and the obtained results revealed its unsaturated ferromagnetic behavior. Photoluminescence (PL) properties of the obtained phosphor have been investigated under near-UV excitation at 395 nm. The influence of calcination temperature on the PL intensity and its decay behavior as well as on the ferromagnetic characteristics has been studied to determine the optimal reaction temperature of the phosphor. The PL emission spectra show the characteristic emission bands of Eu{sup 3+} ions in the wavelength range from 580 to 700 nm. These emission spectra have been dominated by the electric dipole {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of the Eu{sup 3+} peaked at 610–620 nm producing the red light emission of the phosphors. It was found that the phosphor performance, expressed by its PL intensity and life time, could be significantly improved by increasing of the heat treatment temperature up to 900 °C. Also, calcination at 900 °C for 6 h greatly increased both of the magnetization and retentivity, while decreased the coercivity value. The organic phenomenon of metal citrate-ethylene glycol chelation and its degradation by calcination were well followed by FTIR spectroscopy. The obtained results are promising and could afford a basis for designing of efficient red phosphors for displays, lighting and bifunctional biosensors for biomedical applications. - Highlights: • Eu-Gd-Bi-codoped hybrid organo-silica phosphor was synthesized by sol-gel method. • Inorganic Eu-Gd-Bi-silica

  3. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process

    International Nuclear Information System (INIS)

    Venkateswara Rao, A.; Bhagat, S.D.

    2004-01-01

    The experimental results on the synthesis and physical properties of tetra-ethoxy-silane- (TEOS) based silica aerogels produced by two step (acid-base) sol-gel process, are reported. The oxalic acid (A) and NH 4 OH (B) concentrations were varied from 0 to 0.1 M and from 0.4 to 3 M, respectively. Monolithic and transparent aerogels have been obtained for the values of A=0.001 M and B=1 M. The effect of time interval (t) before the base catalyst (NH 4 OH) addition to the acidic sol was studied from 0 to 72 h. The time interval at t=24 h of NH 4 OH addition was found to be the best, in terms of low volume shrinkage, high optical transmission and monolithicity. The molar ratio of EtOH/TEOS (S) was varied from 3 to 7.5. Monolithic and transparent aerogels were obtained for an S value of 6.9. Also, the effects of molar ratio of acidic water, i.e., H 2 O/TEOS (W1) and basic water, i.e., H 2 O/TEOS (W2) on the physical properties of the aerogels have been studied. Highly transparent (about 90%) and monolithic aerogels with lower volume shrinkage ( 2 O):basic (H 2 O). The results are discussed by taking into consideration the hydrolysis and poly-condensation reactions. The aerogels were characterized by scanning electron microscopy (SEM), optical transmission, bulk density, volume shrinkage and porosity measurements. (authors)

  4. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  5. Structural and optical characterization of oxygenated CdTe/Sm3+ in sol-gel silica glasses

    International Nuclear Information System (INIS)

    Mathew, Siby; Rejikumar, P.R.; Adiyodi, Amrutha K.; Jyothy, P.V.; Unnikrishnan, N.V.

    2008-01-01

    Oxygenated cadmium telluride co-doped with rare earth element samarium is prepared by sol-gel method. Sample is air annealed at 200, 500 and 800 deg. C. The absorption and fluorescence spectra are analysed using Judd-Ofelt analysis to obtain J-O parameters. X-ray spectroscopy analysis shows the presence of thermally grown CdTeO 3 phase developed at the expense of CdTe phase on heat treatment for samples annealed at 800 deg. C. The FT-IR spectrum of the sample is taken at different annealing temperatures and the assignments of the absorption bands are compiled which shows the gradual evolution of the rigid glassy network formed. Enhanced fluorescence from air annealed Co-doped samples are also investigated

  6. Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red

    Science.gov (United States)

    Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-04-01

    A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.

  7. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (CE) (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO{sub 2}/PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO{sub 2} and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  8. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-05-01

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO2/PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO2 and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  9. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    International Nuclear Information System (INIS)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-01-01

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO 2 /PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO 2 and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  10. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  11. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    Science.gov (United States)

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  12. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  13. Ionic liquid-silica precursors via solvent-free sol-gel process and their application in epoxy-amine network: a theoretical/experimental study

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Donato, R. K.; Seixas, L.; Zhigunov, Alexander; Konefal, Rafal; Serkis-Rodzen, Magdalena; Beneš, Hynek

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16474-16487 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA17-08273S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : 3D POSS structures * epoxy-silica hybrid material * IL-silica precursor Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  14. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    OpenAIRE

    Marina Kurohiji; Seiji Ichiriyama; Naoki Yamasaku; Shinji Okazaki; Naoya Kasai; Yusuke Maru; Tadahito Mizutani

    2018-01-01

    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor...

  15. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  16. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  17. Influence of silane on the structure of polystyrene prepared by sol-gel coatings via UV curing

    Directory of Open Access Journals (Sweden)

    Balbay Senay

    2017-01-01

    Full Text Available Light, heat, oxygen, moisture, ozone, atmospheric pollution and biological effects are the most important effectives wreak to chemical degradation in the polymer structure. In result of chemical degradation on the polymer consist of problems such as discoloration, brittleness, surface cracks, perspiration, crumbling, smell, surface acidity. In this work, it is aimed to improve the problem of the polystyrene (PS material against chemical degradation. For this reason, PS is coated with silica sol-gel hybrid coating. Silica sol-gel was synthesized by using vinyltrimethoxysilane (VTMS as a cross-linker and tetraethylorthosilicate (TEOS as a silica source. Firstly, four different pre-treatment technique (oven, vacuum oven, lyophilizer and freezing was studied to determine the most suitable pre-treatment technique for coating on PS substrate of sol-gel prepared with initial formulation (S1. A freezing technique gave the best results for coating sample. The change of surface colour of coated PS was measured by CIE L*a*b* methods. Secondly, the most suitable curing agent (Irgacure 184, Irgacure 819, Darocur 1173 and TiO2 as crystalline anatase phase was determined to coat the sol-gel on PS. It was determined to the lowest yellowing of PS surface hybrid coated as UV curing of TEOS sol modified by VTMS and TiO2 as photo-initiators. Finally, the chemical and morphological structure of the coated PS samples was determined by FT-IR and SEM instruments, respectively.

  18. Potential of sub- and supercritical CO_2 reaction media for sol-gel deposition of silica-based molecular sieve membranes

    International Nuclear Information System (INIS)

    Durand, Veronique; Duchateau, Maxime; Drobek, Martin; Julbe, Anne; Hertz, Audrey; Ruiz, Jean-Christophe; Sarrade, Stephane

    2014-01-01

    A new eco-friendly method recently developed in our group has been further investigated for the preparation of gas selective silica-based molecular sieve membranes on/in macroporous tubular ceramic supports without any intermediate layer. The synthesis protocol under sub- and supercritical conditions was based on an 'On-Stream Supercritical Fluid Deposition method' (OS-SFD) applying supercritical carbon dioxide (scCO_2) as an attractive 'green' solvent with easily adjustable properties enabling a controlled solubilisation/reaction of precursors and their transport to the ceramic support. Parameters influencing the final membrane characteristics such as permeates flow rate, calcination treatment and deposition steps have been examined for a selected reaction mixture, transmembrane pressure and defined deposition temperatures. On-line monitoring of the membrane formation process (deposition signature curve) was used in this process. Membrane characteristics are discussed in correlation with their gas permeation properties. The optimized crack-free silica membranes prepared at 50 C have a compact microstructure but a thermal stability limited to 400 C. A second deposition run allowed a recovery of the molecular sieving behaviour with a thermally activated transport for He up to 350 C. These promising results demonstrate the potential of this novel method for the preparation of uniform molecular sieve membranes deposited directly on macroporous supports with virtually zero waste. (authors)

  19. Expedition sol

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    Tag på expedition sol rundt i museet. Er der nogen, der har taget en bid af solen? Hvorfor bliver der solformørkelse? Kan vi undvære Solen?......Tag på expedition sol rundt i museet. Er der nogen, der har taget en bid af solen? Hvorfor bliver der solformørkelse? Kan vi undvære Solen?...

  20. Antimony (V) oxide adsorbed on a silica-zirconia mixed oxide obtained by the sol-gel processing method: preparation and acid properties

    International Nuclear Information System (INIS)

    Zaitseva, Galina; Gushikem, Yoshitaka

    2002-01-01

    The preparation, degree of dispersion, thermal stability and Lewis and Broensted acidity of antimony (V) oxide adsorbed on Si O 2 /Zr O 2 mixed oxide, previously prepared by the sol-gel processing method, are described herein. The samples Si O 2 /Zr O 2 /Sb 2 O 5 , with compositions (in wt %): (a) Zr= 8.1 and Sb= 6.3; (b) Zr= 14.9 and Sb= 11.4, were prepared. Scanning electron microscopy images connected to a X-ray energy dispersive spectrometer showed that both metals, Zr and Sb, were highly dispersed in the matrices. The X-ray diffraction patterns of Si O 2 /Zr O 2 /Sb 2 O 5 heated at different temperatures showed that, up to 1023 K, the matrix was amorphous. At 1273 K a crystalline phase of Zr O 2 (baddeleyite) was observed and raising the temperature to 1573 K, crystalline phases of Si O 2 (cristobalite) and presumably of Zr O 2 /Sb 2 O 5 were observed. Using pyridine as a molecular probe, Broensted acid sites on the Si O 2 /Zr O 2 /Sb 2 O 5 matrix, heat treated up to 523 K, were shown to be very stable. (author)

  1. Antimony (V Oxide Adsorbed on a Silica-Zirconia Mixed Oxide Obtained by the Sol-Gel Processing Method: Preparation and Acid Properties

    Directory of Open Access Journals (Sweden)

    Zaitseva Galina

    2002-01-01

    Full Text Available The preparation, degree of dispersion, thermal stability and Lewis and Brphinsted acidity of antimony (V oxide adsorbed on SiO2/ZrO2 mixed oxide, previously prepared by the sol-gel processing method, are described herein. The samples SiO2/ZrO2/Sb2O5, with compositions (in wt %: (a Zr= 8.1 and Sb= 6.3; (b Zr= 14.9 and Sb= 11.4, were prepared. Scanning electron microscopy images connected to a X-ray energy dispersive spectrometer showed that both metals, Zr and Sb, were highly dispersed in the matrices. The X-ray diffraction patterns of SiO2/ZrO2/Sb2O5 heated at different temperatures showed that, up to 1023 K, the matrix was amorphous. At 1273 K a crystalline phase of ZrO2 (baddeleyite was observed and raising the temperature to 1573 K, crystalline phases of SiO2 (cristobalite and presumably of ZrO2/Sb2O5 were observed. Using pyridine as a molecular probe, Brphinsted acid sites on the SiO2/ZrO2/Sb2O5 matrix, heat treated up to 523 K, were shown to be very stable.

  2. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol.

    Science.gov (United States)

    Brányik, T; Kuncová, G; Páca, J

    2000-08-01

    A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q(s)max) decreased in the order: PBRC (598 mg l(-1) h(-1)) > PBR (PU, 471 mg l(-1)h(-1)) > PBR(SG, 394 mg l(-1) h(-1)) > FBR (PU, 161 mg l(-1) h(-1)) > FBR (SG, 91 mg l(-1) h(-1)). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100-200 microm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing.

  3. Sol-gel materials for optofluidics - process and applications

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm

    2011-01-01

    This Ph.D. thesis is concerned with the use of sol-gel materials in optofluidic applications and the physics of DNA molecules in nanoconfinement. The bottom-up formation of solid material, which is provided by the sol-gel process, enables control of the chemical composition and porosity...... of the material. At early stages of gelation, thin gel coatings can be structured by nanoimprint lithography, and purely inorganic silica materials can be obtained by subsequent thermal annealing. The sol-gel process thus constitutes a unique method for nanofabrication of silica materials of special properties....... In this work, sol-gel silica is introduced as a new material class for the fabrication of lab-on-a-chip devices for DNA analysis. An imprint process with a rigid, non-permeable stamp was developed, which enabled fabrication of micro- and nanofluidic silica channels in a single process step without use of any...

  4. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  5. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  6. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  7. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    Science.gov (United States)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  8. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  9. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  10. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  11. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    Science.gov (United States)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3

  13. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  14. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  15. A nanocomposite consisting of silica-coated magnetite and phenyl-functionalized graphene oxide for extraction of polycyclic aromatic hydrocarbon from aqueous matrices.

    Science.gov (United States)

    Mahpishanian, Shokouh; Sereshti, Hassan; Ahmadvand, Mohammad

    2017-05-01

    In this study, graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe 3 O 4 @SiO 2 @GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples. The resulting microspheres (Fe 3 O 4 @SiO 2 @GO-PEA) were characterized by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), CHNS elemental analysis, and vibrating sample magnetometry (VSM) techniques. The adsorbent possesses the magnetic properties of Fe 3 O 4 nanoparticles that allow them easily to be separated by an external magnetic field. They also have the high specific surface area of graphene oxide which improves adsorption capacity. Desorption conditions, extraction time, amount of adsorbent, salt concentration, and pH were investigated and optimized. Following desorption, the PAHs were quantified by gas chromatography with flame ionization detection (GC-FID). The limits of detection (at an S/N ratio of 3) were achieved from 0.005 to 0.1μg/L with regression coefficients (R 2 ) higher than 0.9954. The relative standard deviations (RSDs) were below 5.8% (intraday) and 6.2% (inter-day), respectively. The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7% and 106.7% (with RSDs of 1.6% to 8.4%, for n=3). The results indicated that the Fe 3 O 4 @SiO 2 @GO-PEA microspheres had a great promise to extraction of PAHs from different water samples. Copyright © 2016. Published by Elsevier B.V.

  16. Modified sol-gel coatings for biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  17. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  18. Sol-gel processes and materials. January 1970-August 1988 (Citations from the US Patent data base). Report for January 1970-August 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, Sol-Gel thin films and coatings, photographic materials, and dental materials. (Contains 71 citations fully indexed and including a title list.)

  19. Study of Physical Properties of Nano-Silica Coated Cotton Textiles

    OpenAIRE

    Sidra Saleemi; Farooq Ahmed; Samandar Malik

    2015-01-01

    This research was aimed to investigate the effect of silica sol-gel coating on air permeability, stiffness and tensile properties of dyed cotton fabric. Various concentrations of silica nanoparticles were applied on dyed cotton substrate using two different cross-linkers through sol-gel method. The homogenous sol-gel coating dispersions were prepared by using an ultrasonicator. Coated samples were tested for mechanical and comfort properties such as tensile strength, stiffness, crease recover...

  20. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy)

    2016-05-18

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  1. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  2. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 3. Penetration of energy barriers

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-06-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  3. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 2. The hardening processes from the standpoint of statistical physics

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-04-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer ethod based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  4. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

    Directory of Open Access Journals (Sweden)

    A. Salabat

    2011-01-01

    Full Text Available The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS as a metal alcoxide and condensation reaction. Subsequently, diamminedinitro platinum (II was added to sol to form the Pt/silica sol. After drying and calcination of the sol, the Pt/SiO2 nanocpmposite has been obtained. Crystallographic information and crystalline size of the synthesized Pt/SiO2 were determined by X-ray diffraction (XRD method. Morphology of the nanoparticles and hydrogen-bonding interaction between silanol groups and amine ligands were characterized by SEM and Fourier transform infrared (FTIR spectra, respectively. Transmission Electron Microscopy (TEM was employed in evaluating the distribution and size of the platinum nanoparticles in the silica.

  5. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  6. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  7. Spirit Near 'Stapledon' on Sol 1802

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. South is at the center; north is at both ends. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season. This view is presented as a cylindrical projection with geometric seam correction.

  8. Spirit Near 'Stapledon' on Sol 1802 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a vertical projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  9. Spirit Near 'Stapledon' on Sol 1802 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  10. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  11. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón

    2015-01-01

    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  12. Variables of synthesis in obtaining nanosilicas with sol-gel

    International Nuclear Information System (INIS)

    Elia, A; Martin-Aispuro, P; Musante, L; Martin-Martinez, J.M; Vazquez, P

    2008-01-01

    Amorphous silica materials and polycrystalline are now being developed for different applications as optic components, superconductors, nano-particles used as charges in adhesives and paints, among others. Some methods of obtaining these materials involve complex techniques and high costs. Generally, the materials constituents are fused, for example, using the pyrogenic silica technique, widely used industrially. Meanwhile, the sol-gel meted is based on a mixture of liquid reagents at the molecular level, to easily obtain amorphous and polycrystalline materials, even at room temperature. Therefore, the sol-gel way is a promising option for producing new materials, due to its cost advantages compared to the traditional methods. The sol-gel technique consists of the simultaneous reaction of the hydrolysis and the condensation. In this process the precursor solution, the TEOS in our case, becomes a polymeric gel network polymer. The partial hydrolysis of the orthosilicate takes place when it is mixed with water and ethanol (EtOH), the reaction that occurs is: S i(OEt) 4 + H 2 O S i(OEt) 3 (OH) + EtOH. The condensation takes place between two OH groups or between an OH group and an ethoxy to form an oxygen bridge plus water or ethanol. S i(OEt) 4 + H 2 O + S i(OEt) 3 (OH)(EtO) 3 Si-O-Si(OEt) 3 (OH) + H 2 O S i-OH + HO-Si S i-O-Si + H 2 O. The addition of a base or of an acid catalyzes the process and changes the pH of the solution influencing the condensation process and size of the final particle. This work focuses on finding different conditions by varying the pH, using HCI, with and without agitation during the addition of the HCI, and washing the solid obtained with ethanol in order to study its effect. The nanosilicas were characterized by TEM-EDX, DTA-TGA, S BET , FT-IR, DRX, DRS, SEM and pH measurements. The morphology of the nanosilicas was characterized with SEM and TEM. Using these techniques a partial conclusion showed that the samples synthesized with HCI

  13. Investigation of passive and active silica-tin oxide nanostructured optical fibers fabricated by " inverse dip-coating " and " powder in tube " method based on the chemical sol-gel process and laser emission

    OpenAIRE

    Granger , Geoffroy; Restoin , Christine; Roy , Philippe; Jamier , Raphaël; Rougier , Sébastien; Duclere , Jean-René; Lecomte , André; Dauliat , Romain; Blondy , Jean-Marc

    2015-01-01

    International audience; This paper presents a study of original nanostructured optical fibers based on the SiO 2-SnO 2-(Yb 3+) system. Two different processes have been developed and compared: the sol-gel chemical method associated to the " inverse dip-coating " (IDC) and the " powder in tube " (PIT) process. The microstructural and optical properties of the fibers are studied according to the concentration of SnO 2. X-Ray Diffraction as well as Transmission Electron Microscopy studies show t...

  14. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Sapio, L.; Naviglio, S. [Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples (Italy)

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO{sub 2}·CaO·P{sub 2}O{sub 5}, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. - Highlights: • Coatings consisting of SiO{sub 2}·CaO·P{sub 2}O{sub 5} glasses were prepared via sol-gel dip coating. • Ca/P molar ratio affects the film morphology and biocompatibility. • Higher cell proliferation was found in response to higher Ca/P ratios coatings. • A growth cell proliferation inhibition was observed in response to lower Ca/P ratio.

  15. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  16. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    Science.gov (United States)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  17. Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network

    International Nuclear Information System (INIS)

    Liu Fengyi; Fu Lianshe; Wang Jun; Liu Ze; Li Huanrong; Zhang Hongjie

    2002-01-01

    Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propyltriethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by 1 H NMR, IR and MS. The monomer acts as a ligand for Tb 3+ ion and as a sol-gel precursor. Band emission from Tb 3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb 3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the 5 D 4 level of Tb 3+ ion falls in the exciting range to sensitize Tb 3+ ion fluorescence

  18. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  19. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  20. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  1. Silica colloids and their effect on radionuclide sorption. A literature review

    International Nuclear Information System (INIS)

    Hoelttae, P.; Hakanen, M.

    2008-05-01

    Silica sol, commercial colloidal silica manufactured by Eka Chemicals in Bohus, Sweden is a promising inorganic grout material for sealing small fractures in low permeable rock. This literature review collects information about the use of silica sol as an injection grout material, the properties of inorganic, especially silica colloids, colloid contents in granitic groundwater conditions, essential characterization methods and colloid-mediated transport of radionuclides. Objective was to evaluate the release and mobility of silica sol colloids, the effect of the groundwater conditions, the amount of colloids compared with natural colloids in Olkiluoto conditions, radionuclide sorption on colloids and their contribution to radionuclide transport. Silica sol seems to be a feasible material to seal fractures with an aperture as small as 10 μm in low permeable rock. The silica sol gel is sufficiently stable to limit to water ingress during the operational phase, the requirement that the pH should be below 11 is fulfilled and the compatibility with Engineered Barrier System (EBS) materials is expected to be good. No significant influence on the bentonite properties caused by the silica sol is expected when calcium chloride is used as an accelerator but the influence of sodium chloride has not been examined. No significant release of colloids is expected under prevailing groundwater conditions. The long-term (100 y) stability of silica sol gel has not yet been clearly demonstrated and a long-term release of silica colloids cannot be excluded. The question is the amount of colloids, how mobile they are and the influence of possible glacial melt waters. The bentonite buffer used in the EBS system is assumed to be a potential source of colloids. In a study in Olkiluoto, bentonite colloids were found only in low salinity groundwater. In general, low salinity water (total dissolved solids -1 ) favours colloid stability and bentonite colloids can remain stable over long

  2. Reversible sol-gel-sol medium for enzymatic optical biosensors

    NARCIS (Netherlands)

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  3. Structural Evolution and Stability of Sol-Gel Biocatalysts

    International Nuclear Information System (INIS)

    Rodgers, L.E.; Foster, L.J.R.; Holden, P.J.; Knott, R.B.; Bartlett, J.B.

    2005-01-01

    Full text: Immobilisation strategies for catalytic enzymes are important as they allow reuse of the biocatalysts. Sol-gel materials have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme with a known crystal structure. The sol-gel bioencapsulate is produced through the condensation of suitable metal alkoxides in the presence of CALB, yielding materials with controlled pore sizes, volume and surface chemistry. Sol-gel matrices have been shown to prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analysis techniques applied to date. Small angle neutron scattering (SANS) allows such multicomponent systems to be characterised through contrast matching. In the sol-gel bioencapsulate system, at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35 percent. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. The SANS protocol developed here may be applied more generally to bioencapsulates. (authors)

  4. Synthesis of phthalocyanine doped sol-gel materials

    Science.gov (United States)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross

  5. ZnO-SiO{sub 2} based nanocomposites prepared by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Grigorie, Alexandra Carmen [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Muntean, Cornelia, E-mail: cornelia.muntean@upt.ro [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Vlase, Titus [West University of Timisoara, 4 V. Parvan Blv., RO-300223, Timisoara (Romania); Locovei, Cosmin [Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Politehnica University Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazul Blv., RO-300222, Timisoara (Romania); Stefanescu, Mircea [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania)

    2017-01-15

    This paper presents a study on nanocomposites formation in ZnO-SiO{sub 2} systems with different ZnO:SiO{sub 2} molar ratios (1:4, 1:1, and 4:1), prepared employing a sol-gel method modified by an original procedure. The evolution of ZnO-SiO{sub 2} systems depending on the composition and temperature was studied by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and transmission electron microscopy. Zn(II) carboxylate was synthesized in situ in hybrid silica gels by redox reaction between zinc nitrate and 1,3-propanediol. Its thermal decomposition at low temperatures led to ZnO dispersed in the pores of silica matrix. Only for the 4:1 system, at 400 and 600 °C, ZnO nanocrystallites (average size ∼9 nm) embedded in the amorphous silica matrix were obtained, the other systems being amorphous. Whatever the mixture composition is, above 600 °C, ZnO reacts with SiO{sub 2} to form zinc silicate. At 800 °C, for both 1:4 and 1:1 systems, poor crystallized β-Zn{sub 2}SiO{sub 4} and α-Zn{sub 2}SiO{sub 4} phases embedded in silica matrix were formed. Increasing the temperature, at 1000 °C, only for 1:1 system, β-Zn{sub 2}SiO{sub 4} phase turned into single phase α-Zn{sub 2}SiO{sub 4} (average crystallites size 28.3 nm). For 4:1 composition, at 800 and 1000 °C, systems consisting of ZnO and α-Zn{sub 2}SiO{sub 4} nanocrystallites dispersed in silica were obtained. - Highlights: • By modified sol-gel method, ZnO/SiO{sub 2} and Zn{sub 2}SiO{sub 4}/SiO{sub 2} nanocomposites were obtained. • ZnO dispersed in silica matrix results from zinc carboxylate thermal decomposition. • Zinc carboxylate was synthesized in situ in hybrid silica gels via redox reaction. • Evolution of ZnO in SiO{sub 2} matrix depends on temperature and system composition.

  6. Structure and Properties of LENRA/ Silica Composite

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  7. Spirit Near 'Stapledon' on Sol 1802 (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11781 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11781 NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this stereo, full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. South is at the center; north is at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up

  8. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  9. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Kawashita, M, E-mail: zhixia@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University (Japan)

    2011-10-29

    We attempted to prepare {alpha}-Fe-encapsulating silica ({alpha}FeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH{sub 2}CH{sub 3}OH), water and iron nitrate (Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O) with TMOS / CH{sub 2}CH{sub 3}OH/H{sub 2}O/Fe{sup 3+} in 1:7.4:16.2:0.4{approx}1.2 molar ratio. Fe{sup 3+}-containing silica gel (FeSiG) microspheres 5 to 30 {mu}m in size were successfully obtained by adding the water phase into the oil phase at 60 deg. C under stirring of 1500 rpm for 100 min. {alpha}FeSi microspheres was obtained by heating the FeSiG microspheres at 850deg. C in argon atmosphere. The obtained {alpha}FeSi microspheres have a saturation magnetization (Ms) up to 21 emu g{sup -1} and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  10. Characterization of Metal-Doped Methylated Microporous Silica for Molecular Separations

    DEFF Research Database (Denmark)

    El-Feky, Hany Hassan; Briceno, Kelly; Szalata, Kamila

    2015-01-01

    Novel silica xerogels are prepared and developed by sol-gel method in the present study. The preparation involves cobalt-doping within the organic templated silica matrices, where methyltriethoxysilane (MTES), which contains methyl groups as a covalently bonded organic template is used. The synth...

  11. Sol-gel processes and materials. November 1971-October 1989 (Citations from the US Patent data base). Report for November 1971-October 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations of selected patents concerning sol-gel processes and sol-gel derived materials and products. Selected patents include sol-gel compositions, ceramic and refractory materials, fabrication of silica glass, sol-gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, sol-gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 120 citations, 12 of which are new entries to the previous edition.)

  12. Sol-gel processes and materials. January 1970-August 1989 (Citations from the US Patent data base). Report for January 1970-August 1989

    International Nuclear Information System (INIS)

    1989-09-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, Sol-Gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 108 citations, 37 of which are new entries to the previous edition.)

  13. SOL-Gel microspheres and nanospheres for controlled release applications

    International Nuclear Information System (INIS)

    Barbe, C.; Beyer, R.; Kong, L.; Blackford, M.; Trautman, R.; Bartlett, J.

    2002-01-01

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H 2 O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for

  14. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    Science.gov (United States)

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  15. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  16. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  17. Silica-calcium zirconate nanocomposite, studying its thermal

    Indian Academy of Sciences (India)

    Silica–calcium zirconate nanocomposite was prepared in a two-step procedure. First, nanocalcium zirconate was synthesized by the modified sol–gel method; then, silica was added to the prepared sol and the resulting product was calcined at 700–1000° C. Dilatometric measurements were performed to determine the ...

  18. Granulated Silica Method for the Fiber Preform Production

    Directory of Open Access Journals (Sweden)

    Sönke Pilz

    2017-07-01

    Full Text Available During the past few years, we have studied the granulated silica method as a versatile and cost effective way of fiber preform production and the sol-gel method. Until now, we have used the sol-gel technology together with an iterative re-melting and milling step in order to produce rare earth or transition metal doped granular material for the granulated silica method. Here, we present that the iterative re-melting (laser-assisted and milling step is no longer needed to reach a high homogeneity. The sol-gel method also offers a high degree of compositional flexibility with respect to dopants; it further facilitates achieving high concentrations, even in cases when several dopants are used. We employed optical active doped sol-gel derived granulate for the fiber core, whereas pure or index-raised granulated silica has been employed for the cladding. Based on the powder-in-tube technique, where silica glass tubes are appropriately filled with these granular materials, fibers has been directly drawn (“fiber rapid prototyping”, or eventually after an additional optional quality enhancing vitrification step. The powder-in-tube technique is also ideally suited for the preparation of microstructured optical fibers.

  19. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  20. Reaction kinetics for preparation of silica film with Stoeber method

    International Nuclear Information System (INIS)

    Shang Mengying; Jiang Xiaodong; Liu Miao; Luo Xuan; Tang Yongjian; Cao Linhong

    2013-01-01

    A new formula was proposed to investigate the relationship between reaction time and tetraethylorthosilicate (TEOS) conversion rate for preparation of silica sol with Stöber method, by studying the reaction kinetics of TEOS hydrolytic process. An appropriate conversion rate was then determined and used to calculate the theoretical optimal reaction time. Meanwhile, silica sols were prepared by sol-gel process using TEOS as precursor and ammonia as catalyst. It was found that the reaction time decreases with an increasing amount of ammonia and water. The values of experimental optimal reaction time were obtained, and agree with the theoretical results (the errors are within 5%), which shows good applicability of our formula. (authors)

  1. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    Science.gov (United States)

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.

  2. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  3. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    -accompanying Master courses, placements of internships, and PhD scholarship projects. A new scholarship project, “SHINE”, was launched in autumn 2013 in the frame work of the Marie Curie program of the European Union (Initial Training Network, ITN). 13 PhD-scholarships on solar district heating, solar heat......SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...... for industrial processes, as well as sorption stores and materials started in December 2013. Additionally, the project comprises a training program with five PhD courses and several workshops on solar thermal engineering that will be open also for other PhD students working in the field. The research projects...

  4. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  5. FTIR and morphology of liquid epoxidized natural rubber acrylate (LENRA)/silica hybrid composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2009-01-01

    Synthesis of organic-inorganic hybrid composites was carried out by combination of liquid epoxidized natural rubber acrylate (LENRA) and silica. Silica was introduce to the matrix by sol gel technique. The sol-gel technique was employed to prepare silica using tetraethyorthosilicate (TEOS) as precursor. HDDA and irga cure 184 were added to the formulations as reactive diluents and photosensitizer, respectively. The chemical modification was studied by Fourier Transform Infrared (FTIR) and energy dispersive X-ray analysis (EDAX). The morphological studies were conducted by the optical and scanning electron microscopes (SEM). It shows that silica was dispersed very well in the matrix for lower concentration of TEOS while agglomeration occurs at the higher concentration. The average particles size of silica were less than 100 nm. (Author)

  6. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  7. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Yao-Wen Hsu

    2017-07-01

    Full Text Available A novel nanoarchitecture-reinforced poly(lactic acid (PLA nanocomposite was prepared using multi-walled carbon nanotube (MWCNT-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity.

  8. Optical Fibre NO2 Sensor Based on Lutetium Bisphthalocyanine in a Mesoporous Silica Matrix

    Directory of Open Access Journals (Sweden)

    Marc Debliquy

    2018-03-01

    Full Text Available In this article, we describe a NO2 sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc2 in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO2. NO2 is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre. As diffusion of NO2 in LuPc2 is slow, the response time could be slow. To reduce it, the active molecules are dispersed in a mesoporous silica matrix deposited by a sol-gel process (Evaporation Induced Self Assembly avoiding the formation of large crystals. Doing so, the response is fairly fast. As the recovery is slow at room temperature, the recovery time is reduced by exposure to UV light at 365 nm. This UV light is directly introduced in the fibre yielding a practical sensor sensitive to NO2 in the ppm range suitable for pollution monitoring.

  9. Co-doping effect of CaS and Nd2S3 nanocrystallites on luminescence properties of sol-gel SiO2 xerogel

    International Nuclear Information System (INIS)

    Yang, P.; Lue, M.K.; Song, C.F.; Xu, D.; Yuan, D.L.; Gu, F.

    2005-01-01

    The synthesis and photoluminescence characteristics of a porous phosphor silica xerogel containing CaS and Nd 2 S 3 nanoparticles entrapped in a sol-gel silica network are discussed. X-ray diffraction (XRD), transmission electron micrograph (TEM), UV-Vis absorption spectroscopy and photoluminescence spectroscopy have been performed. The observed luminescence is assigned to CaS and Nd 2 S 3 nanoparticles embedded in the sol-gel silica xerogel. Transmission electron micrographs of doped samples revealed the presence of CaS and Nd 2 S 3 nanoparticles with average diameters of 10-20 nm. Two emission bands have been observed from co-doped sample

  10. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  11. Sol-gel coatings: An alternative route for producing planar optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rey-Garcia, F.; Gomez-Reino, C. [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); Flores-Arias, M.T., E-mail: maite.flores@usc.es [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); De La Fuente, G.F., E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Maria de Luna 3, E-50018 Zaragoza (Spain); Duran, A. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain); Castro, Y., E-mail: castro@icv.csic.es [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain)

    2011-09-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and {approx} 1.99 ({lambda} = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  12. Sol-gel coatings: An alternative route for producing planar optical waveguides

    International Nuclear Information System (INIS)

    Rey-Garcia, F.; Gomez-Reino, C.; Flores-Arias, M.T.; De La Fuente, G.F.; Duran, A.; Castro, Y.

    2011-01-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and ∼ 1.99 (λ = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  13. Whirlwind Drama During Spirit's 496th Sol

    Science.gov (United States)

    2005-01-01

    This movie clip shows a dust devil growing in size and blowing across the plain inside Mars' Gusev Crater. The clip consists of frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the morning of the rover's 496th martian day, or sol (May 26, 2005). Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust moved by wind.

  14. Ageing-induced enhancement of open porosity of mesoporous silica films studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Oshima, Nagayasu; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi

    2006-01-01

    We show that ageing of the silica sol in a closed vessel enhanced the open porosity of calcined mesoporous silica film studied by positron. Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was used to estimate the mesopore size. 2-dimensional PALS (2D-PALS) and ortho-positronium time-of-flight (Ps-TOF) were used to evaluate the open porosity, interconnectivity and tortuosity of mesopores in the silica films. Results revealed that little change in pore size but significant enhancement of open porosity and/or pore interconnectivity occurred in the silica film deposited after the precursor solution aged for a relative longer time

  15. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  16. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae).

    Science.gov (United States)

    Lockwood, Stephanie A; Haghipour-Peasley, Jilla; Hoffman, Donald R; Deslippe, Richard J

    2012-10-01

    We report on two low-molecular weight proteins that are stored in the venom of queen red imported fire ants (Solenopsis invicta). Translated amino acid sequences identified one protein to have 74.8% identity with the Sol i 2w worker allergen, and the other protein was found to have 96/97% identity with Sol i 4.01w/4.02w worker allergens. Both Sol i 2 and Sol i 4 queen and worker proteins were expressed using pEXP1-DEST vector in SHuffle™ T7 Express lysY Escherichia coli. Proteins were expressed at significant concentrations, as opposed to the μg/ml amounts by our previous expression methods, enabling further study of these proteins. Sol i 2q protein bound weakly to human IgE, sera pooled from allergic patients, whereas Sol i 2w, Sol i 4.01w, and Sol i 4q proteins bound strongly. Despite Sol i 2w and Sol i 2q proteins having 74.8% identity, the queen protein is less immuno-reactive than the worker allergen. This finding is consistent with allergic individuals being less sensitive to queen than worker venom. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions

    Science.gov (United States)

    Greenspon, J.

    Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365

  18. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  19. Controlled generation of silver nanocolloid in amorphous silica materials

    International Nuclear Information System (INIS)

    Gil, C.; Garcia-Heras, M.; Carmona, N.; Villages, M. A.

    2004-01-01

    Amorphous silica-based materials bulk and superficially doped with silver nano colloids were prepared. Bulk doped glasses were obtained by conventional melting and doped monolithic slabs by sol-gel. Superficially doped glasses were obtained by ion-exchange and doped coatings by sol-gel. The samples were characterised by TEM and UV-VIS spectrometry. Depending on the composition, the silver incorporation process, and the thermal treatments, several colourings were obtained. By controlling these parameters, metallic silver nano colloids can be generated in the matrices studied. Colloids aggregation and growing up depends on the matrix nature and on the experimental process carried out. (Author) 10 refs

  20. Production of continuous mullite fiber via sol-gel processing

    Science.gov (United States)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  1. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  2. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  3. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  4. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R.

    2000-01-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na) 4 Cl and Fe TCPP(Na) 4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 2 5-1 type, generating 16 total experiments for each Fe P studied. (author)

  5. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  6. Encapsulation of biological species in sol-gel matrices

    International Nuclear Information System (INIS)

    Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.

    2000-01-01

    Two examples are given of the gelation of silica sols containing bio catalysts, resulting in their encapsulation in porous matrices. Urease was encapsulated in gels made from a mixture of TMOS and alkyltrimethoxysilane. Enzyme activities, monitored by measuring the rate of production of ammoniacal nitrogen as urea was decomposed, ranged up to 60% of that of the unencapsulated species. Anaerobic sulphate-reducing bacteria were encapsulated in a gel produced from colloidal silica, thus avoiding contact with alcohol. The detection of H 2 S produced in the doped gel indicated that the bacteria were able to continue normal metabolic function within the gel matrix. A gel initially doped with ∼ 5 x 10 5 cells cm -3 , exhibited an optimum sulphate reduction rate of 11 ug h -1 cm -3 ; this reduction rate was quickly re-established after storage of the gel for 14 weeks. Copyright (2000) The Australian Ceramic Society

  7. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  8. Efficacy of a new tan doped sol-gel sorbent for uptake of zinc

    International Nuclear Information System (INIS)

    Khan, A.; Ahmed, S.; Riaz, M.; Mahmood, F.; Younas Khokhar, M.

    2003-01-01

    A TAN (1-(2-Thiazolylazo)-2-naphthol) doped sol gel silica sorbent (reddish colour, porous, stable, hard, non-swelling) were prepared and investigated for the removal of Zn (II) from aqueous solutions. The kinetics, adsorption isotherm, equilibration time and pH effect on the removal were studied from non competitive aqueous solution to optimize the conditions to be utilized on a large scale. Fast equilibration was observed and adsorption equilibria were reached within 30 minutes. Adsorption of zinc ions on the blank (un-doped) sol gel was found negligible. The maximum adsorption of Zn (II) ions onto the TAN doped sol-gel from single solutions were 2.33 mg/g (0.035 mmol/g). TAN doped sol gel can be regenerated through washing with a solution of 0.1 M HCl solution. The maximum regeneration value was as high as 99.0%. The TAN-doped sol gel silica is suitable at least for four adsorption-desorption cycles without experiencing considerable loss of adsorption capacity. The uptake route and the nature of the Zn-TAN complex have been discussed. (orig.)

  9. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  10. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  11. Turbulent transport regimes and the SOL heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  12. Fast and long term optical sensors for pH based on sol-gels

    International Nuclear Information System (INIS)

    Wang Enju; Chow, Kwok-Fan; Kwan, Vivian; Chin, Tammy; Wong, Crystal; Bocarsly, Andrew

    2003-01-01

    Long lasting and fast response optical sensor for the detection of pH in the range of 6-12 is described. The sensor is fabricated by spin coating silica sol in the presence of phenol red (PR). The sol is in turn obtained by acidic hydrolysis of tetraethoxysilane (TEOS) and phenyltriethoxysilane (Ph-TriEOS). The performance of the sensor depends on the ratio of Ph-TriOES to TEOS. At the optimal composition, the sensor has a response time of less than 20 s, the response is completely reversible and its life-time is over 12 months

  13. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)

    International Nuclear Information System (INIS)

    Barczak, Mariusz; McDonagh, Colette; Wencel, Dorota

    2016-01-01

    This review (with 172 references) highlights the progress made in the past 10 years in silica sol-gel-based materials for use in optical chemical sensing. Following an introduction, the processes leading to the sol-gel-based and ormosil materials, their printability and methods for characterisation are discussed. Then various classes of optical sensors, with a focus on sensors for pH values, oxygen, carbon dioxide, ammonia (also in dissolved form), and heavy metal ions are described. A further section covers nanoparticle-based optical sensors mainly for use in intracellular sensing of the above species. Recent developments in this area are also emphasised and future trends discussed. (author)

  14. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  15. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    Science.gov (United States)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  16. Preparation of silica nanoparticles through microwave-assisted acid-catalysis.

    Science.gov (United States)

    Lovingood, Derek D; Owens, Jeffrey R; Seeber, Michael; Kornev, Konstantin G; Luzinov, Igor

    2013-12-16

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces.

  17. Treatment of aqueous outflows by complexation in micellar media and precipitation with a sol-gel process

    International Nuclear Information System (INIS)

    Lavaud, Cyril

    2013-01-01

    Being able to deal with aqueous outflows from treatment sites in the Hague is a major environmental issue. These outflows are contaminated with organic substances and elements with residual radioactivity. This work deals with the development and optimization of the process of de-polluting, and we aim at removing all pollution from the outflow, and produce a final waste compatible with traditional conditioning matrices in the nuclear area. The separation process consists of two steps: dissolving the pollution in the surfactants micelles, and precipitating a mineral phase via sol-gel transition. Within this thesis, only pollution originating from radionuclides is studied. During the first step, our strategy is to use complexing molecules able to interact with ions and to form mainly solvable complexes at the core of surfactant micelles. Thereafter, the second step consisted to add silica precursor which, after hydrolyse and polycondensation, makes it possible to aggregate those micelles that contain complexes together, and to form a silica phase which precipitates in an in-situ fashion. The goal to de-pollute the outflow was achieved, and the final waste thus produced is a silica powder that contains the micelles and the pollution which, after calcination, is compatible with conditioning matrices such as glass or concrete. A reference system for which the separation process is optimal was defined throughout various studies. This system contains a non-ionic surfactant (P123), an ion that surrogates radionuclides (neodymium), a complexing agent (HDEHP) and a silica precursor (TEOS). Hence, this system was further studied in order to broaden the application scope of the separation process, as well as to understand the mechanisms involved, during the complexation of the ions and the micellar solubilization and during the formation of the silica powder. This study was performed using diffusion, imaging and spectrometry techniques.To conclude, the alternative de

  18. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  20. Preparation of counterion stabilized concentrated silver sols.

    Science.gov (United States)

    LaPlante, Sylas; Halaciuga, Ionel; Goia, Dan V

    2011-07-01

    A strategy for obtaining stable concentrated silver dispersions without dedicated stabilizing agents is presented. This approach consists of rapidly mixing aqueous solutions of silver salicylate and ascorbic acid. By using salicylate as Ag(+) counterion, it is possible to prepare stable sols with metal concentrations up to two orders of magnitude higher than with silver nitrate. The stabilizing effect of the counterion is the result of a decreased ionic strength due to salicylate protonation and its adsorption on the surface of silver. Both effects increase the range of the electrostatic repulsive forces by expanding the electrical double layer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Bright Soil Churned by Spirit's Sol 1861 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit drove 22.7 meters (74 feet) toward the southwest on the 1,861st Martian day, or sol, of Spirit's mission on Mars (March 28, 2009). After the drive, the rover took this image with its front hazard-avoidance camera, looking back at the tracks from the drive. As usual since losing the use of its right-front wheel in 2006, Spirit drove backwards. The immobile right-front wheel churned up a long stripe of bright soil during this drive. Where Spirit has found such bright soil in the past, subsequent analysis of the composition found concentrations of sulfur or silica that testified to past action of water at the site. When members of the rover team saw the large quantity of bright soil exposed by the Sol 1861 drive, they quickly laid plans to investigate the composition with Spirit's alpha particle X-ray spectrometer. The Sol 1861 drive took the rover past the northwest corner of the low plateau called 'Home Plate,' making progress on a route around the western side of Home Plate. The edge of Home Plate forms the horizon on the right side of this image. Husband Hill is on the horizon on the left side. For scale, the parallel rover wheel tracks are about 1 meter (40 inches) apart. The rover's hazard-avoidance cameras take 'fisheye' wide-angle images.

  2. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  3. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  4. Small-angle scattering investigation of silica xerogels and sonogels prepared with ionic liquid pyridinium tetrafluoroborate

    Czech Academy of Sciences Publication Activity Database

    Almásy, L.; Putz, A.-M.; Len, A.; Pleštil, Josef; Savii, C.

    2017-01-01

    Roč. 11, č. 3 (2017), s. 229-233 ISSN 1820-6131 Institutional support: RVO:61389013 Keywords : silica * sol-gel processing * sonocatalysis Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.070, year: 2016

  5. Radio-luminescence efficiency and rare-earth dispersion in Tb-doped silica glasses

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Moretti, F.; Lauria, A.; Chiodini, N.; Vedda, A.; Nikl, Martin

    2007-01-01

    Roč. 42, - (2007), s. 784-787 ISSN 1350-4487 Institutional research plan: CEZ:AV0Z10100521 Keywords : sol-gel * scintillators * silica * rare earths * terbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.054, year: 2007

  6. Nano-porosity in silica reinforced methyltrimethoxysilane coatings studied by positron beam analysis

    NARCIS (Netherlands)

    Escobar Galindo, R.; Veen, A. van; Schut, H.; Falub, C.V.; Balkenende, A.R.; With, G. de; Hosson, J.Th.M. De

    The porosity in particle reinforced sol-gel coatings has been studied. Silica particles (Ludox-TM40) are introduced into methyl silicate coatings to increase the hardness, the elastic modulus and the fracture toughness. The methyl silicate has a relatively low density (about 1.2 g/cm(2)), while the

  7. Preparation and characterization of bimetallic catalysts supported on mesoporous silica films

    NARCIS (Netherlands)

    Muraza, O.; Rebrov, E.V.; Khimyak, T.; Johnson, B.F.G.; Kooyman, P.J.; Lafont, U.; Albouy, P.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2006-01-01

    Thin (300–1000 nm) mesoporous silica coatings with hexagonal and cubic mesostructure have been prepared on Pyrex® 7740 borosilicate glass substrates by the evaporation induced self assembly assisted sol-gel route. Prior to the synthesis, a 50 nm TiO2 layer has been deposited on the substate by

  8. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Directory of Open Access Journals (Sweden)

    Marina Kurohiji

    2018-01-01

    Full Text Available A robust fiber Bragg grating (FBG hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2 catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain.

  9. Repair of glass by sol-gel coating using either conventional or microwave heating

    International Nuclear Information System (INIS)

    Boonyapiwat, A.; Fathi, Z.; Folz, D.C.; Clark, D.E.

    1993-01-01

    A method of repairing glass is discussed. Microindentation was used to deliberately weaken the glass. Some samples were dip coated with silica sol. Effects of dipping the glass in copper nitrate solution also were studied. Heat treatments were conducted in either a conventional furnace or a microwave oven. Four-point bend testing was used to evaluate the merit of each process. Microwave hybrid heating had the same effect on the repair of uncoated glass as conventional heating. Coating the glass with sol resulted in higher strength of glass than heat treatment alone. Treating the glass with copper nitrate without heat treating had no effect on strength. Microwave hybrid heating appears to yield higher reliability in sol-gel coated samples than conventional processing. 21 refs., 8 figs., 2 tabs

  10. Hydrothermal synthesis of silica rich zeolites and microporous martials

    International Nuclear Information System (INIS)

    Durrani, S.K.; Chughtai, N.A.; Akhtar, J.; Arif, M.; Ahmed, M.

    1999-01-01

    A fast crystallization method for synthesis of silica rich aluminosilicate and ferro silicate zeotype materials has been reported. The method also permits for the complete crystallization of silico alumino phosphate microporous materials. Aluminosilicate and ferro silicate silica rich zeotype materials and silico alumino phosphate microporous materials have been synthesized from the reaction mixture of colloidal silica sol, reactive aluminum, ferrous and phosphorous salts, and the essential organic templates at 373-473 K and were characterized by TG/DTA/DSC, X-ray diffraction, scanning electron microscopy and other analytical techniques. Crystallinity and unit cell parameters of the synthesized materials were found to be the function of Al and Fe content of zeolites. (author)

  11. Bioreporter pseudomonas fluorescens HK44 immobilized in a silica matrix

    Directory of Open Access Journals (Sweden)

    Trogl J.

    2003-01-01

    Full Text Available The bioluminescent bioreporter Pseudomonas fluorescens HK44, the whole cell bacterial biosensor that responds to naphthalene and its metabolites via the production of visible light, was immobilized into a silica matrix by the sol-gel technique. The bioluminescence intensities were measured in the maximum of the bioluminescence band at X = 500 nm. The immobilized cells (>105 cells per g silica matrix produced light after induction by salicylate (cone. > 10 g/l, naphthalene and aminobenzoic acid. The bioluminescence intensities induced by 2,3-dihydroxynaphthalene 3-hydroxybenzoic acid and 4-hydroxybenzoic acid were comparable to a negative control. The cells in the silica layers on glass slides produced light in response to the presence of an inductor at least 8 months after immobilization, and >50 induction cycles. The results showed that these test slides could be used as assays for the multiple determination of water pollution.

  12. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  13. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  14. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  15. Opportunity's Surroundings on Sol 1687

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a cylindrical projection with geometric seam correction.

  16. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  17. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  18. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  19. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  20. Opportunity's Surroundings on Sol 1818

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  1. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  2. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    Science.gov (United States)

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  4. Fractal dimensions of silica gels generated using reactive molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bhattacharya, Sudin; Kieffer, John

    2005-01-01

    We have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable

  5. Puesto remisión de V. sol puesto a sol puesto, de.

    OpenAIRE

    2011-01-01

    [ES] Definición del término Puesto remisión de V. sol puesto a sol puesto, de. en el diccionario Dicter. [EN] Definition of the word Puesto remisión de V. sol puesto a sol puesto, de. in the dictionary Dicter.

  6. Sol-Gel Derived Hafnia Coatings

    Science.gov (United States)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  7. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  8. Microporous silica prepared by organic templating: relationship between the molecular template and pore structure

    International Nuclear Information System (INIS)

    Brinker, C. Jeffrey; Cao, Guozhong; Kale, Rahul P.; Lopez, Gabriel P.; Lu, Yunfeng; Prabakar, S.

    1999-01-01

    Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid materials prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N(sub 2) at 77 K but accessible to CO(sub 2) at 195 K; secondary pores were accessible to both N(sub 2) (at 77 K) and CO(sub 2) (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5(angstrom) in diameter, consistent with predictions based on molecular simulations

  9. Modeling SOL evolution during disruptions

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, R.H.; Crotinger, J.A.

    1996-01-01

    We present the status of our models and transport simulations of the 2-D evolution of the scrape-off layer (SOL) during tokamak disruptions. This evolution is important for several reasons: It determines how the power from the core plasma is distributed on material surfaces, how impurities from those surfaces or from gas injection migrate back to the core region, and what are the properties of the SOL for carrying halo currents. We simulate this plasma in a time-dependent fashion using the SOL transport code UEDGE. This code models the SOL plasma using fluid equations of plasma density, parallel momentum (along the magnetic field), electron energy, ion energy, and neutral gas density. A multispecies model is used to follow the density of different charge-states of impurities. The parallel transport is classical but with kinetic modifications; these are presently treated by flux limits, but we have initiated more sophisticated models giving the correct long-mean-free path limit. The cross-field transport is anomalous, and one of the results of this work is to determine reasonable values to characterize disruptions. Our primary focus is on the initial thermal quench phase when most of the core energy is lost, but the total current is maintained. The impact of edge currents on the MHD equilibrium will be discussed

  10. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  11. Differently-catalyzed silica-based precursors as functional additives for the epoxy-based hybrid materials

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Beneš, Hynek; Zhigunov, Alexander; Serkis, Magdalena; Pavlova, Ewa

    2016-01-01

    Roč. 99, 2 September (2016), s. 434-446 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA14-05146S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid material * solvent-free sol-gel process * silica-based precursor Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.684, year: 2016

  12. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  13. Dip coating of sol-gels

    Science.gov (United States)

    Schunk, P. R.; Hurd, A. J.; Brinker, C. J.

    Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.

  14. Integrated simulation of ELM energy loss determined by pedestal MHD and SOL transport

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.; Aiba, N.; Oyama, N.

    2007-01-01

    An integrated simulation code TOPICS-IB based on a transport code with a stability code for the peeling-ballooning modes and a scrape-off-layer (SOL) model has been developed to clarify self-consistent effects of edge localized modes (ELMs) and the SOL on the plasma performance. Experimentally observed collisionality dependence of the ELM energy loss is found to be caused by both the edge bootstrap current and the SOL transport. The bootstrap current decreases with an increase in collisionality and intensifies the magnetic shear at the pedestal region. The increase in the magnetic shear reduces the width of eigenfunctions of unstable modes, which results in the reduction of both the area of the ELM enhanced transport and the ELM enhanced transport near the separatrix. On the other hand, when an ELM crash occurs, the energy flows into the SOL and the SOL temperature rapidly increases. The increase in the SOL temperature lowers the ELM energy loss due to the flattening of the radial edge gradient. The parallel electron heat conduction determines how the SOL temperature increases. For higher collisionality, the conduction becomes lower and the SOL electron temperature increases more. By the above two mechanisms, the ELM energy loss decreases with increasing collisionality

  15. Fabrication of indium tin oxide (ITO) thin film with pre-treated sol coating

    International Nuclear Information System (INIS)

    Hong, Sung-Jei; Han, Jeong-In

    2004-01-01

    A new pre-treated sol-coating method to fabricate an indium tin oxide (ITO) thin film is introduced in this paper. The pre-treatment sol-coating method is to form a seed layer on the substrate before spin coating of ITO sol. The pre-treatment was carried out at room temperature in order not to damage the substrate during the pre-treatment. It is effective to enhance the formation of the ITO sol film on the substrate, owing to the seed layer. The seed layer consists of ultrafine grains, which are observed at the pre-treated substrate. For the optimal pre-treatment condition, we used pre-treatment times of 24, 48, 72, and 96 hours to observe the effect on the characteristics of ITO sol film. As a result, the lowest resistance could be achieved with a pre-treatment time of 72 hours. The optical transmittance of the ITO sol film with the pre-treatment time of 72 hours exceeded 80 % at a wavelength of 400 nm. So, an ITO sol film with good electrical and optical properties could be fabricated by using the pretreatment sol coating.

  16. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  17. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  18. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  19. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  20. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  1. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  2. Mesoscopic objects, porous layers and nanocomposites-Possibilities of sol-gel chemistry

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz

    2009-01-01

    The goal of this study was to prepare mesoscopic objects, thin porous films and nanocomposite coatings with the use of sol-gel technique. Silica nanotubes, titania nanoparticles, porous titania and zirconia coatings as well as titania nanocomposites were successfully synthesized by changing the type of sol-gel precursor, sol composition and applying dip-coating deposition procedure in order to obtain thin films or coatings. All materials were visualized and characterized by the Atomic Force Microcscopy (AFM) technique. Moreover, characterization of titania nanocomposites was extended to the tribological tests performed by means of microtribometer operating in normal loads range of 30-100 mN. The AFM analysis of mesoscopic objects and nanoparticles showed that the diameter of synthesized silica nanotubes was 60-70 nm and the size of titania nanoparticles was 43 nm. In case of porous layers the pore size in titania and zirconia coatings oscillated between 100 and 240 nm, however their shape and distribution were irregular. Microtribological studies of nanocomposites revealed the moderate decrease of the coefficient of friction for samples containing 5, 15 and 5 wt.% of zirconia nanoparticles in titania coatings annealed at 100, 500 and 1000 deg. C respectively. An enhancement of antiwear properties was already observed for 1 wt.% of nanophase content, except the sample annealed at 500 deg. C. It was also found that the annealing at high temperatures is a primary factor which affects the reduction of friction and wear of titania coatings while the presence of nanoparticles has secondary effect. Investigations in this study carried out with the use of the AFM technique highlighted the potential and flexibility of sol-gel approach in designing of various types of advanced materials in a form of mesoscopic objects, porous coatings and composite layers. Results collected in this study clearly demonstrated that sol-gel technique can be applied effectively in preparation of

  3. Opportunity's Surroundings on Sol 1798

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  4. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    International Nuclear Information System (INIS)

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-01-01

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report

  5. Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers

    CSIR Research Space (South Africa)

    Makiwa, G

    2008-08-01

    Full Text Available The authors present a cheaper and environmentally friendly method to fabricate efficient spectrally selective solar absorber materials. The sol-gel technique was used to fabricate carbon-silica (C-SiO2) and carbon-nickel oxide (C-NiO) composite...

  6. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  7. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  8. Steady state and time resolved fluorescence studies of azadioxatriangulenium (ADOTA) fluorophore in silica and PVA thin films

    DEFF Research Database (Denmark)

    Chib, Rahul; Raut, Sangram; Shah, Sunil

    2015-01-01

    A cationic azadioxatriangulenium dye was entrapped in silica thin films obtained by the sol-gel process and in poly (vinyl) alcohol (PVA) thin films. Azadioxatriangulenium is a red emitting fluorophore with a long fluorescence lifetime of ∼20 ns. The fluorescent properties of azadioxatriangulenium...

  9. Mullite fibres preparation by aqueous sol-gel process and activation energy of mullitization

    International Nuclear Information System (INIS)

    Tan Hongbin; Ding Yaping; Yang Jianfeng

    2010-01-01

    Mullite fibres were prepared by sol-gel process using aluminum carboxylates (ACs) and silica sol. ACs was synthesized from dissolving aluminum powder in a mixture of formic acid and oxalic acid using aluminum chloride hexahydrate as catalyst. A molar ratio of 1:2:1 for aluminum, formic acid and oxalic acid was optimized to obtain clear solution and viscous ACs sol for fibres synthesis. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis were used to characterize the properties of the gel and ceramic fibres. The gel fibres completely transformed to mullite at 1200 o C, with a smooth surface and uniform diameter. The activation energy for mullite formation in precursor gel fibres was determined by means of differential thermal analysis. The value obtained, E a = 741.4 kJ/mol, was lower than most data reported in the literatures, which was attributed to the silica-alumina micro-phase separation when organic acids decomposed during gel fibres heating.

  10. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  11. Mechanical and Thermal Characterization of Silica Nanocomposites

    Science.gov (United States)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  12. Etat Du Magnesium Dans Quelques Sols Sales Du Sud Et Du ...

    African Journals Online (AJOL)

    étude a été réalisée sur 86 échantillons de sols provenant du Centre et du Sud de l´Irak. L\\'expérimentation a consisté, d´une part, à calculer les différents sels dominants dans les sols salés par la méthode de combinaison hypothétique et, ...

  13. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    Science.gov (United States)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  14. Silica/Perfluoropolymer nanocomposites fabricated by direct melt-compounding: a novel method without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Hirose, Masaki; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko

    2007-07-01

    A novel method for the fabrication of silica/perfluoropolymer nanocomposites was investigated, whereby nano-sized silica particles without surface modification were dispersed uniformly through mechanical breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages. The first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, poly(tetrafluoroethyleneco-perfluoropropylvinylether), with the loose silica agglomerates prepared in the first stage. In the first stage, the packing structure and the fracture strength of the silica agglomerate were controlled by destabilizing an aqueous colloidal silica solution with a mean primary diameter of 190 nm via pH control and salt addition. In the next stage, the silica/perfluoropolymer nanocomposite was fabricated by breaking down the prepared loose silica agglomerates with low fracture strength by means of a shear force inside the polymer melt during melt-compounding.

  15. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  16. Structure and properties of carbon nanotubes/sol-gel nanocomposites

    International Nuclear Information System (INIS)

    Pokrass, Mariana

    2013-08-01

    Carbon Nanotubes (CNTs) are promising filler materials owing to their exceptional mechanical, electrical, thermal and optical properties. Since their discovery in 1991, a major effort has been made in developing CNT-polymer nanocomposites, whereas CNT/ceramic based nanocomposites, in particularly, CNT/silica nanocomposites, have been very little studied. This thesis focuses on preparation and characterization of novel CNT/silica nanocomposite glasses synthesized by the Sol-Gel technology. A comprehensive analysis of their morphological, optical, and electrical properties was conducted, and analyzed according to existing theoretical models. The nanocomposites hosting matrix is a hybrid organic/inorganic glass prepared by the Fast-Sol-Gel (FSG) route. Using specific conditions in the FSG procedure, the resultant glasses are nonporous, exhibiting no contraction upon drying. Their analogous Classical-Sol-Gel (CSG) glasses, however, are porous, and do exhibit contraction upon drying. The FSG glasses are relatively new materials, and their physical and optical properties were only meagerly studied. In our present work we have conducted a comprehensive experimental research on some previously ignored characteristics such as: UV-vis-IR optical absorption and transmission, and the organic content effect on the refraction index n, density ρ, thermal expansion coefficient β, and thermo-optic coefficient dn/dT. We found that organic residues within the glass decrease the refractive index, density, and thermo-optic coefficient. The thermal expansion coefficient, however, increases with the organic content. A negative linear dependence of the thermo-optic coefficient on the thermal expansion coefficient was obtained. CNT/FSG nanocomposites were prepared by using a solution mixing method, while CNT/CSG nanocomposites were prepared by means of an in situ polymerization technique. Nanocomposites based on FSG hybrid glasses were characterized for their nonlinear optical and

  17. Core-SOL modelling of neon seeded JET discharges with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Telesca, G. [Department of Applied Physics, Ghent University (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Ivanova-Stanik, I.; Zagoerski, R.; Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Brezinsek, S.; Huber, A.; Wiesen, S. [Forschungszentrum Juelich GmbH, Institut fuer Klima- und Energieforschung-Plasmaphysik, Juelich (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Drewelow, P. [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Giroud, C. [CCFE Culham, Abingdon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Collaboration: JET EFDA contributors

    2016-08-15

    Five ELMy H-mode Ne seeded JET pulses have been simulated with the self-consistent core-SOL model COREDIV. In this five pulse series only the Ne seeding rate was changed shot by shot, allowing a thorough study of the effect of Ne seeding on the total radiated power and of its distribution between core and SOL tobe made. The increase in the simulations of the Ne seeding rate level above that achieved in experiments shows saturation of the total radiated power at a relatively low radiated-heating power ratio (f{sub rad} = 0.60) and a further increase of the ratio of SOL to core radiation, in agreement with the reduction of W release at high Ne seeding level. In spite of the uncertainties caused by the simplified SOL model of COREDIV (neutral model, absence of ELMs and slab model for the SOL), the increase of the perpendicular transport in the SOL with increasing Ne seeding rate, which allows to reproduce numerically the experimental distribution core-SOL of the radiated power, appears to be of general applicability. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  18. Preparation of Natural Rubber (NR) Based Nano-Sized Materials Using Sol-Gel Technique

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    The objectives of this project are to prepare nano-sized natural rubber-based hybrid coating material by sol-gel technique; to explore the possibility of producing ENR-Si (epoxidized natural rubber-silica) cramer with toughening effects; and to use it in radiation curing of surface coating. Since early 1960s Malaysia has introduced various forms of value-added natural rubber such as Standard Malaysian Rubber (SMR), methylmethacrylate-grafted natural rubber (MG rubber), followed by liquid natural rubber and epoxidized natural rubber (ENR). Products such as liquid epoxidized natural rubber acrylate (LENRA) and thermoplastic natural rubber (TPNR) are still on-going research projects in Nuclear Malaysia. The former has strong possibility to be used as radiation-sensitive comparabilities in TPNR blends, besides its original purpose for example in radiation curing of surface coating. But earlier findings indicated that, to make it (as for surface coating) more effective, reinforcement system is needed to be introduced. Strong candidate is silica by sol-gel technique, since common reinforcement filler for example carbon black has drawbacks in this particular case. This technique was introduced in late 1960s to produce metal oxides such as silica and titanium oxides in solution. (author)

  19. Faraday rotation measurements in maghemite-silica aerogels

    International Nuclear Information System (INIS)

    Taboada, E.; Real, R.P. del; Gich, M.; Roig, A.; Molins, E.

    2006-01-01

    Faraday rotation measurements have been performed on γ-Fe 2 O 3 /SiO 2 nanocomposite aerogels which are light, porous and transparent magnetic materials. The materials have been prepared by sol-gel polymerization of a silicon alkoxide, impregnation of the intermediate silica gel with a ferrous salt and supercritical drying of the gels. During supercritical evacuation of the solvent, spherical nanoparticles of iron oxide, with a mean particle diameter of 8.1±2.0 nm, are formed and are found to be homogenously distributed within the silica matrix. The specific Faraday rotation of the composite was measured at 0.6 T using polarized light of 810 nm, being 29.6 deg./cm. The changes in the plane of polarization of the transmitted light and the magnetization of the material present similar magnetic field dependencies and are characteristic of a superparamagnetic system

  20. Ultraviolet photoluminescence in Gd-doped silica and phosphosilicate fibers

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-04-01

    Full Text Available Optical fiber lasers operating in the near infrared and visible spectral regions have relied on the spectroscopic properties of rare earth ions such as Yb3+, Er3+, Tm3+, Nd3+, and Sm3+. Here, we investigate Gd3+ doping in phosphosilicate and pure silica fibers using solution doping and sol-gel techniques, respectively, for potential applications in the ultraviolet. Photoluminescence spectra for optical fiber bundles and fiber preforms were recorded and compared. Emissions at 312 nm (phosphosilicate and 314 nm (pure silica were observed when pumping to the Gd3+ 6DJ, 6IJ, and 6PJ = 5/2, 3/2 energy levels. Oxygen deficient center was observed in solution doping sample with a wide absorption band centered at around 248 nm not affecting pumping to 6IJ states.

  1. High density thoria-silica-metal (III) oxide fibers

    International Nuclear Information System (INIS)

    1974-01-01

    Transparent refractory fibers, at least 50% thoria and additionally containing silica and metal(III) oxides, particularly Al 2 O 3 and B 2 O 3 or Cr 2 O 3 are made by shaping and dehydratively gelling, particularly by extruding in air, viscous aqueous thoria solutions or sols containing colloidal silica with boric acid-stabilized aluminum acetate, or additionally chromium acetate or colloidal Cr 2 O 3 , and heating the resulting gelled fibers in a controlled manner to decompose and volatilize undesired constituents and convert fibers to refractory fibers which are useful to form, for example, refractory fabrics, or as reinforcement for composites. The fabrics are heat resistant. A special application is X-ray protective clothing

  2. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Science.gov (United States)

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng

    2011-04-01

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  3. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  4. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    Science.gov (United States)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  5. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  6. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Patel, N; Mariazzi, S; Toniutti, L; Checchetto, R; Miotello, A; Dire, S; Brusa, R S

    2007-01-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 deg. C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 deg. C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 deg. C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO 3 ) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol

  7. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    Science.gov (United States)

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  8. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery

    International Nuclear Information System (INIS)

    Bae, Joonwon

    2011-01-01

    Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: → Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. → Accommodate volume changes of Si NPs during Li ion charge/discharge. → Sizes of microcapsules were controlled by experimental parameters.

  9. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  10. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Science.gov (United States)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  11. Electrochemically assisted deposition of sol-gel bio-composite with co-immobilized dehydrogenase and diaphorase

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijie [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Etienne, Mathieu, E-mail: mathieu.etienne@lcpme.cnrs-nancy.fr [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Kohring, Gert-Wieland [Mikrobiologie, Universitaet des Saarlandes, Campus, Geb. A1.5, D-66123 Saarbruecken (Germany); Bon-Saint-Come, Yemima; Kuhn, Alexander [Universite Bordeaux, ISM, ENSCPB, 16 avenue Pey Berland, 33607 Pessac (France); Walcarius, Alain [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France)

    2011-10-30

    We report here that the electrochemically assisted deposition (EAD) of silica thin films can be a good strategy to co-encapsulate D-sorbitol dehydrogenase (DSDH) and diaphorase in an active form. This is achieved via the electrolysis of a hydrolyzed sol containing the biomolecules to initiate the poly-condensation of silica precursors upon electrochemically induced pH increase at the electrode/solution interface. DSDH was found to be very sensitive to the silica gel environment and the addition of a positively-charged polyelectrolyte was necessary to ensure effective operational behavior of the biomolecules. The composition of the sol and the conditions for electrolysis have been optimized with respect to the intensity of the electrochemical response to D-sorbitol oxidation. The K{sub m} of DSDH in the electrodeposited film was in the range of 3 mM, slightly better than the value determined biochemically in solution (6.5 mM). The co-immobilization of DSDH and diaphorase in this way led on the one hand to the possible reduction of NAD{sup +} to NADH (simultaneously to D-sorbitol oxidation) and on the other hand to the safe re-oxidation of the co-factor using a mediator (ferrocenedimethanol) as electron relay. The bioelectrocatalytic response looks promising for electro-enzymatic applications. To support this idea, the EAD of sol-gel bio-composite has been extended to macroporous electrodes displaying a much bigger electroactive surface area.

  12. Surface modification of quartz fibres for dental composites through a sol-gel process.

    Science.gov (United States)

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  13. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    Science.gov (United States)

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology

    Directory of Open Access Journals (Sweden)

    Faley Jean de Sousa

    2010-03-01

    Full Text Available The sol-gel process is very effective for the preparation of new materials with potential applications in optics, sensors, catalyst supports, coatings, and specialty inorganic polymers that can be used as hosts for the accommodation of organic molecules. The low temperature employed in the process is the main advantage of this methodology. In this work, the europium (III complex with 1,10-phenantroline was prepared, and this luminescent complex was incorporated into silica nanoparticles and films by the sol-gel process. The nanoparticles were obtained by the modified Stöber methodology. The films were obtained by the dip-coating technique, at different deposition rates and numbers of layers. The nanoparticles and films were characterized by photoluminescence, thermal analysis, and Raman and infrared spectroscopies. Characterization revealed that the europium (III complex was not affected upon incorporation into the nanoparticles and films, opening a new field for the application of these materials.

  15. Block Gas Sol Unit in Haderslev

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    2000-01-01

    Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark.......Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark....

  16. Fast Processing of Sol-Gel TCO

    NARCIS (Netherlands)

    Deelen, J. van; Rem, M.; Arfsten, N.; Buskens, P.P.

    2016-01-01

    TCOs are usually deposited using sputtering or chemical vapor deposition, which have a yield of typically 50-75%. The sol gel method does not need low pressure and can be done with a high precursor yield in the range of 90 – 100%. Sol gel enables also the TCO function as a planarization or

  17. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  18. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  19. Structural Consistency, Consistency, and Sequential Rationality.

    OpenAIRE

    Kreps, David M; Ramey, Garey

    1987-01-01

    Sequential equilibria comprise consistent beliefs and a sequentially ra tional strategy profile. Consistent beliefs are limits of Bayes ratio nal beliefs for sequences of strategies that approach the equilibrium strategy. Beliefs are structurally consistent if they are rationaliz ed by some single conjecture concerning opponents' strategies. Consis tent beliefs are not necessarily structurally consistent, notwithstan ding a claim by Kreps and Robert Wilson (1982). Moreover, the spirit of stru...

  20. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  1. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery

    Science.gov (United States)

    Bae, Joonwon

    2011-07-01

    Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer@PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT@C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

  2. Study of Catalyst, Aging Time and Surfactant Effects on Silica Inorganic Polymer Characteristics

    Directory of Open Access Journals (Sweden)

    M. Pakizeh

    2007-06-01

    Full Text Available In the present study the sol-gel method is used for synthesis of amorphous nanostructure silica polymer using tetraethoxysilane (TEOS as silicon source. This polymer can be used in manufacturing of nanoporous asymmetricmembranes. The effect of catalyst on silica particle size has been studied under acidic and basic conditions.زAcid-catalyzed reaction leads to the formation of fine particles while the base-catalyzed reaction produceslarger particles. The presence of cationic template surfactant namely cetyl pyridinium bromide (CPBزdirects the structural formation of the polymer by preventing the highly branched polymeric clusters. This will increase the effective area of the produced silica membrane. Nitrogen physisorption tests by Brunaver- Emmett-Teller (BET and Barrett-Joyner-Halenda (BJH methods revealed that the surface area of the membrane increases significantly around 5-folds when acid-catalyzed reaction is used. 29Si-NMR test is also used to study the aging time effect on the level of silica polymer branching. The results show that in acidic condition, aging time up to three weeks can still affect branching. The calcinations process in which the organic materials and CPB (surfactant are burned and released from the silica particles, is studied on template free silica materials as well as templated silica materials using TGA and DTA techniques.

  3. AMINO AND MERCAPTO-SILICA HYBRID FOR Cd(II ADSORPTION IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Modification of silica gel with 3-aminopropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane through sol-gel technique producing amino-silica hybrid (HAS and mercapto-silica hybrid (HMS, respectively, has been carried out using tetraethylorthosilicate (TEOS as silica source. The adsorbents were characterized using infrared spectroscopy (IR, and X-ray energy dispersion spectroscopy (EDX. Adsorption of Cd(II individually as well as its binary mixture with Ni(II, Cu(II, and Zn(II in solution was performed in a batch system. Adsorption capacities of Cd(II ion on adsorbent of silica gel (SG, HAS, and HMS are 86.7, 256.4 and 319.5 μmol/g with the adsorption energies are 24.60, 22.61 and 23.15 kJ/mol, respectively. Selectivity coefficient (α of Cd(II ion toward combination of Cd(II/Ni(II, Cd(II/Cu(II, and Cd(II/Zn(II ions on HAS adsorbent is relatively smaller than those on HMS adsorbent which has α > 1.   Keywords: adsorption, amino-silica hybrid, mercapto-silica

  4. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.

    Science.gov (United States)

    Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan

    2016-01-05

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  5. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    Directory of Open Access Journals (Sweden)

    Cristina Lavinia Nistor

    2016-01-01

    Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  6. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  7. Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium

    Czech Academy of Sciences Publication Activity Database

    Putz, A.-M.; Wang, K.; Len, A.; Plocek, Jiří; Bezdička, Petr; Kopitsa, G. P.; Khamova, T. V.; Ianasi, C.; Sacarescu, L.; Mitróová, Z.; Savii, C.; Yan, M.; Almásy, L.

    2017-01-01

    Roč. 424, SI 3 (2017), s. 275-281 ISSN 0169-4332. [International Conference on Physics of Advanced Materials (ICPAM) /9./. Cluj Napoca, 08.09.2016-14.09.2016] Institutional support: RVO:61388980 Keywords : Sol-gel process * mtes/teos * Hydrophobic silica * mcm-41 Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.387, year: 2016

  8. Biodiesel production by using lipase immobilized onto novel silica-based hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nicolas [Centre de Recherche Paul Pascal, Pessac (France); Institut des Sciences Moleculaires, Talence (France); Garcia, Annick Babeau; Oestreicher, Victor; Durand, Fabien; Backov, Renal [Centre de Recherche Paul Pascal, Pessac (France); Deleuze, Herve [Institut des Sciences Moleculaires, Talence (France); Laurent, Guillaume; Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee, Paris (France)

    2010-07-01

    The covalent immobilization of crude lipases within silica-based macroporous frameworks have been performed by combining sol-gel process, concentrated direct emulsion, lyotropic mesophase and post-synthesis functionalizations. The assynthesized open cell hybrid monoliths exhibit high macroscopic porosity, around 90%, providing interconnected scaffold while reducing the diffusion low kinetic issue. The entrapment of enzymes in such foams deals with a high stability over esterification of fatty acids, hydrolysis of triglycerides (not shown herein) and biodiesel production by transesterification. (orig.)

  9. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  10. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  11. Development of photonic crystals using sol-gel process for high power laser applications

    International Nuclear Information System (INIS)

    Benoit, Florence

    2015-01-01

    Three-dimensional photonic crystals (PCs) are periodic materials with a modulated refractive index on a length scale close to the light wavelength. This optical property allows the preparation of specific optical components like highly reflective mirrors. Moreover, these structured materials might have a high laser-induced damage threshold (LIDT) in the sub-nanosecond range compared to multilayered dielectric mirrors. This property is obtained because only one high LIDT material (silica) is used. In this work, we present the development of 3D PCs with narrow-sized colloidal silica particles, prepared by sol-gel process and deposited with Langmuir-Blodgett technique. Different syntheses routes have been investigated and compared regarding the optical properties of the PCs. A numerical model based on an ideal opal network including defect influence is used to explain these experimental results. (author) [fr

  12. Formation and characterization of vitreous materials prepared by the sol-gel technique

    International Nuclear Information System (INIS)

    Martinez, J.R.; Ruiz, J.F.; Cruz M, J.A. de la; Villasenor G, P.

    1999-01-01

    A full process of preparation and characterization of silica gel, which can be implemented in a experimental course for undergraduate laboratories is presented. Samples of silica gel and sol-gel derived SiO 2 films on glass substrates were fabricated and characterized using atomic force microscopy, Raman and Infrared absorption techniques. Raman and Infrared spectroscopy were used to analyze the local structure. The microstructure characteristics of the films, fabricated by dip-coating, were monitored using atomic force microscopy. The samples were prepared from alcoholic solutions of tetraethylortosilicate (TEOS) keeping the H 2 O/TEOS and Et-OH/TEOS molar ratios constant and equal to 11.66 and 4 respectively. (Author)

  13. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  14. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    Directory of Open Access Journals (Sweden)

    Mónika Sándor

    2016-01-01

    Full Text Available A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS, using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES, added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA, through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES, trimethylethoxysilane (Me3ES, diethoxydimethylsilane (Me2DES and 1,2-bis(triethoxysilylethane (BETES onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  15. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  16. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  17. Applications of sol gel ceramic coatings

    International Nuclear Information System (INIS)

    Barrow, D.

    1996-01-01

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  18. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  19. One-step sol-gel imprint lithography for guided-mode resonance structures.

    Science.gov (United States)

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  20. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    Science.gov (United States)

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  1. Sol-Gel Glass Holographic Light-Shaping Diffusers

    Science.gov (United States)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  2. Kinetics of silica-phase transitions

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-07-01

    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain

  3. Sol Duc Hot Springs feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  4. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  5. Third Order Susceptibility of Platinum Sulfide Sol

    National Research Council Canada - National Science Library

    LaiHing, Kenneth

    1992-01-01

    .... Experimentally this is determined using degenerate four-wave mixing (DFWM). Pure sulfur sol was prepared by dissolving the solid sulfur in hydrazine, followed by addition of distilled water with vigorous stirring...

  6. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  7. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  8. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  9. Preparation and Properties of Nano Dy/TiO2 Films Supported on High Silica Fiber

    Directory of Open Access Journals (Sweden)

    HUANG Feng-ping

    2017-07-01

    Full Text Available In order to improve the photocatalytic degradation performance and stability of nano TiO2, Dy doped TiO2 supported on high silica glass fiber was prepared by microwave-sol method combined with dip-coating method. The samples were analyzed by XRD,SEM,PL,EDS,XPS and other equipments for phase composition of films,surface topography, surface elements and the stability of films. And the effects of pretreatment solution and coating method on the high-silica fiber film were investigated.In addition, the photocatalytic performance of the sample has been investigated by degrading methylene blue. The results show that the catalytic stability of Dy doping TiO2 nanofilms supported on high silica glass fiber can be improved and the degradation of methyl orange can reach 94% in 30min after 5 times of coating treatment.

  10. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  11. Rice Husk Ash as a Renewable Source for the Production of Value Added Silica Gel and its Application: An Overview

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2012-06-01

    Full Text Available In recent years, silica gels have developed a lot of interest due to their extraordinary properties and their existing and potential applications in science and technology. Silica gel has a wide range of applications such as a desiccant, as a preservation tool to control humidity, as an adsorbent, as a catalyst and as a cata-lyst support. Silica gel is a rigid three-dimensional network of colloidal silica, and is classified as: aqua-gel, alco-gel, xero-gel and aero-gel. Out of all known solid porous materials, aero-gels are particularly known for their high specific surface area, high porosity, low bulk density, high thermal insulation value, ultra low dielectric constant and low index of refraction. Because of these extraordinary properties silica aero-gel has many commercial applications such as thermal window insulation, acoustic barriers, super-capacitors and catalytic supports. However, monolithic silica aero-gel has been used extensively in high energy physics in Cherenkov radiation detectors and in shock wave studies at high pressures, inertial confinement fusion (ICF radio-luminescent and micrometeorites. Silica gel can be prepared by using various sol gel precursors but the rice husk (RH is considered as the cheapest source for silica gel production. Rice husk is a waste product abundantly available in rice producing countries during milling of rice. This review article aims at summarizing the developments carried out so far in synthesis, properties, characterization and method of determination of silica, silica gel, silica aero-gel and silica xero-gel. The effect of synthesis parameters such as pH, temperature of burning the rice husk, acid leaching prior to formation of rice husk ash (RHA on the properties of final product are also described. The attention is also paid on the application of RH, RHA, sil-ica, silica aero-gel and silica xero-gel. Development of economically viable processes for getting rice husk silica with specific

  12. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    Science.gov (United States)

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  13. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    Science.gov (United States)

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  14. En-clave de Sol

    Directory of Open Access Journals (Sweden)

    Louis Manfield

    2011-12-01

    Full Text Available Ha pasado más de medio año desde que tuviera lugar el estallido reivindicativo del 16-M y las sucesivas explosiones en las que derivó este movimiento asambleario. Ninguno de los que asistieron a la manifestación del domingo, 15 de mayo, podía imaginarse que estaban pisando el centro de lo que iba a ser el escenario de la protesta colectiva más mediática de este país. Pero la Acampada ha sido algo más que el material de relleno para los medios de (desinformación y trend topic en redes sociales. Para los que nos dedicamos, en este caso, a la sociología, SOL se nos presenta como un juguete. Un sofisticado artefacto (su compleja y espesa red organizativa así lo atestiguan para poner a prueba, in situ y participando, la plasticidad y elasticidad social de la creatividad contestataria que ha convertido a un movimiento definido como indignado en un modelo autónomo de organización horizontal. Una cámara del tiempo donde el corto, el medio y largo plazo se entrecruzan con el corto, medio y largo alcance. Una ventana desde la que observar y anticipar el cambio que ya se está produciendo en el seno de la sociedad.

  15. Mullite evolution in ceramics derived from clay, and sol-gel precursors

    International Nuclear Information System (INIS)

    Rezaie, H.R.; Naghizadeh, R.; Golestani-Fard, F.

    2002-01-01

    Mullite formation from sol-gel (behemoth and colloidal silica), and clay has been compared and the microstructural evolution examined using electron-optical techniques and XRD. The relationship between processing route and reaction sequence to form mullite is discussed. In sol-gel processing γAloof transforms to γ-Al 2 O 3 at 400-500 d eg w ithout an isothermal hold. δ-Al 2 O 3 was present after cooling directly from 1100 d eg i n air.(δ+θ)Al 2 O 3 were present above 1200 d eg . Reaction between (δ+θ)Al 2 O 3 and amorphous silica produced 3:2 mullite at∼ 1370 d eg . In kaolin, meta kaolin transforms to spinel and mullite at 980-1000 d eg w ithout an isothermal hold. Melanostatin to 3:2 mullite took place at 1200-1250 d eg . Cristobalite was observed after quenching from 1200 d eg , but could not be detected after cooling directly from 1590 d eg

  16. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  17. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  18. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  19. Surface properties of CNTs and their interaction with silica.

    Science.gov (United States)

    Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht

    2014-01-01

    In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Influence of post-deposition treatment by UV light and oxygen (ozone) on 350 nm damage thresholds of SiO2 films deposited from sols

    International Nuclear Information System (INIS)

    Thomas, I.; Wilder, J.; Lee, A.; George, D.

    1988-01-01

    Certain multilayer porous silica AR coatings on fused silica substrates prepared by the sol-gel process have been found to have a much lower laser damage threshold than single layer coatings prepared by the same method. Treatment with UV light in the presence of oxygen (which gives ozone) at low temperature was found to restore damage thresholds to the levels found in single layers. Damage thresholds were measured at 350 nm with a 25 ns pulse for 1000 shots at 25 Hz. The effect of exposure time and other factors such as replacement of oxygen with nitrogen and vacuum are described

  1. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  2. Infrared and Raman spectroscopic studies of tris-[3-(trimethoxysilyl)propyl] isocyanurate, its sol-gel process, and coating on aluminum and copper.

    Science.gov (United States)

    Li, Ying-Sing; Church, Jeffrey S; Woodhead, Andrea L; Vecchio, Nicolas E; Yang, Johnny

    2014-11-11

    Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals. From the vibrational spectra, TTPI is likely to have the C1 point group. Vibrational assignments are suggested based on group frequencies, the expected reactions in the sol-gel process and the vibrational studies of some related molecules. From the experimental infrared spectra of xerogels annealed at different temperatures and from the thermal-gravimetric analysis, it is found that the TTPI xerogel decomposes at around 450°C with silica being the major decomposition product. A cyclic voltammetric study of the metal electrodes coated with different concentrations of TTPI ranging from 5% to 42% (v/v) has shown that the films with high concentrations of sol would provide better corrosion protection for aluminum and copper. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mesure de la vitesse d'infiltration des eaux dans le sol : Cas des sols ...

    African Journals Online (AJOL)

    C'est donc une infiltration superficielle qui ne peut pas modifier la composition des eaux de l'aquifère. Ces sols sont alors favorables à une telle agriculture. Mots clés: mesure, vitesse, infiltration, sols, pollutions, eau, Niari, Congo. English Title: Measuring the speed of the water infiltration into the soil: case of the soil of the ...

  4. The SOL width and the MHD interchange instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O [Kurchatov institute, Moscow (Russian Federation)

    1994-07-01

    Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.

  5. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  6. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  7. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.

  8. Effect of occupational silica exposure on pulmonary function.

    Science.gov (United States)

    Hertzberg, Vicki Stover; Rosenman, Kenneth D; Reilly, Mary Jo; Rice, Carol H

    2002-08-01

    To assess the effect of occupational silica exposure on pulmonary function. Epidemiologic evaluation based on employee interview, plant walk-through, and information abstracted from company medical records, employment records, and industrial hygiene measurements. Drawn from 1,072 current and former hourly wage workers employed before January 1, 1986. Thirty-six individuals with radiographic evidence of parenchymal changes consistent with asbestosis or silicosis were excluded. In addition, eight individuals whose race was listed as other than white or black were excluded. Analysis of spirometry data (FVC, FEV1, FEV1/FVC) only using the test results that met American Thoracic Society criteria for reproducibility and acceptability shows decreasing percent-predicted FVC and FEV1 and decreasing FEV1/FVC in relationship to increasing silica exposure among smokers. Logistic regression analyses of abnormal FVC and abnormal FEV1 values (where abnormal is defined as OSHA)-allowable level of 0.1 mg/m3. Longitudinal analyses of FVC and FEV1 measurements show a 1.6 mL/yr and 1.1 mL/yr, respectively, decline per milligram/cubic meter mean silica exposure (p = 0.011 and p = 0.001, respectively). All analyses were adjusted for weight, height, age, ethnicity, smoking status, and other silica exposures. Systematic problems leading to measurement error were possible, but would have been nondifferential in effect and not related to silica measurements. There is a consistent association between increased pulmonary function abnormalities and estimated measures of cumulative silica exposure within the current allowable OSHA regulatory level. Despite concerns about the quality control of the pulmonary function measurements use in these analyses, our results support the need to lower allowable air levels of silica and increase efforts to encourage cessation of cigarette smoking among silica-exposed workers.

  9. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  10. Digging Movie from Phoenix's Sol 18

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.' The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing. The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols. The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches). The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Cristalización de vidrios ricos en sílice preparados mediante sol-gel en el sistema alúmina-circona-sílice

    Directory of Open Access Journals (Sweden)

    Popa, M.

    2004-02-01

    Full Text Available The crystallization of ZrSiO4 and its evolution with temperature from chemically homogeneous alumina-silica-zirconia powders prepared by sol-gel method from alcoxide mixtures was studied in the silica-rich region. A glass with the same composition was obtained by quenching in water from the melt. The gel-glasses evolution and microstructure were studied by means of XRD, IR and SEM/EDX, in the range of temperatures up to 1650oC. The materials consisted mainly of amorphous phase up to 1200oC, at which partial crystallization of cristobalite was observed. IR spectroscopy analysis showed zircon bands after thermal treatment at 1200oC. The crystallization of zircon and zirconia particles at 1550oC was confirmed by SEM/EDX analysis. At 1650oC the only stable crystalline phase observed after 40 h of thermal treatment was zircon.

    La cristalización de ZrSiO4 y su evolución con la temperatura se ha estudiado en la región rica en sílice, a partir de polvos amorfos y químicamente homogéneos de alumina-sílice-circona, preparados mediante método sol-gel usando mezclas de alcóxidos. Se obtuvo un vidrio con idéntica composición mediante enfriamiento rápido por inmersión en agua del material fundido. La evolución y la microestructura de los vidrios obtenidos se estudió mediante difracción de rayos X, infrarrojos, microscopía electrónica de barrido y análisis químico, en el rango de temperaturas hasta 1650oC. Los materiales están formados principalmente por fase amorfa hasta 1200oC, temperatura a la cual se observa la cristalización parcial de cristobalita. El análisis por espectroscopía de infrarrojos muestra bandas de circón en muestras tratadas térmicamente por encima de 1200oC. Las observaciones mediante microscopía electrónica confirman la cristalización de partículas de circón y circona a 1550oC. A 1650oC la cristobalita ha fundido y la única fase cristalina estable detectada mediante XRD tras 40 h a esta temperatura

  12. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  13. One-step immobilization of tris(2,2'-bipyridyl)ruthenium(II) via vapor-surface sol-gel deposition towards solid-state electrochemiluminescence detection

    International Nuclear Information System (INIS)

    Qian Lei; Yang Xiurong

    2008-01-01

    A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 Cl 2 ) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy) 3 Cl 2 immobilized sol-gel (Ru(bpy) 3 Cl 2 /sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy) 3 Cl 2 was successfully incorporated into the silica sol-gel film. It was found that many irregular Ru(bpy) 3 Cl 2 /sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition. Electrochemical properties and electrochemiluminescence (ECL) behaviors of Ru(bpy) 3 Cl 2 /sol-gel films could be easily adjusted by deposition numbers and time. At last, the Ru(bpy) 3 Cl 2 /sol-gel film modified electrode was used for solid-state ECL detection of tripropylamine. The linear range was from 5.8 x 10 -8 to 2.4 x 10 -4 M with the detection limit of 5 nM, which was three orders of magnitude lower than that from pure Nafion-modified electrodes. The ECL sensor also exhibited high stability, and still remained 92% response after being stored in air for 35 days. This method for immobilization of Ru(bpy) 3 Cl 2 is simple, convenient and low-cost relative to others, so it shows promising applications in solid-state ECL detection

  14. Active corrosion protection of AA2024 by sol-gel coatings with corrosion inhibitors =

    Science.gov (United States)

    Yasakau, Kiryl

    industriais mostraram que estes novos revestimentos sao compativeis com os esquemas de pintura convencionais actualmente em uso. A estabilidade e o prazo de validade das formulacoes foram optimizados modificando a temperatura de armazenamento e a quantidade de agua usada durante a sintese. As formulacoes sol-gel foram dopadas com os inibidores seleccionados durante a primeira etapa e as propriedades anticorrosivas passivas e activas dos revestimentos obtidos foram estudadas numa terceira etapa do trabalho. Os resultados comprovam a influencia dos inibidores nas propriedades anticorrosivas dos revestimentos sol-gel. Em alguns casos a accao activa dos inibidores combinou-se com a proteccao passiva dada pelo revestimento mas noutros casos tera ocorrido interaccao quimica entre o inibidor e a matriz de sol-gel, de onde resultou a perda de propriedades protectoras do sistema combinado. Atendendo aos problemas provocados pela adicao directa dos inibidores na formulacao sol-gel procurou-se, numa quarta etapa, formas alternativas de incorporacao. Na primeira, produziu-se uma camada de titania nanoporosa na superficie da liga metalica que serviu de reservatorio para os inibidores. O revestimento sol-gel foi aplicado por cima da camada nanoporosa. Os inibidores armazenados nos poros actuam quando o substrato fica exposto ao ambiente agressivo. Numa segunda, os inibidores foram armazenados em nano-reservatorios de silica ou em nanoargilas (halloysite), os quais foram revestidos por polielectrolitos montados camada a camada. A terceira alternativa consistiu no uso de nano-fios de molibdato de cerio amorfo como inibidores anticorrosivos nanoparticulados. Os nano-reservatorios foram incorporados durante a sintese do sol-gel. Qualquer das abordagens permitiu eliminar o efeito negativo do inibidor sobre a estabilidade da matriz do sol-gel. Os revestimentos sol-gel desenvolvidos neste trabalho apresentaram proteccao anticorrosiva activa e capacidade de auto-reparacao. Os resultados obtidos

  15. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  16. Opportunity's Surroundings on Sol 1687 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a vertical projection with geometric seam correction.

  17. Opportunity's Surroundings on Sol 1687 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.

  18. Sol-gel synthesis of hydroxyapatite

    International Nuclear Information System (INIS)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P.

    2010-01-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  19. Asymmetric SOL Current in Vertically Displaced Plasma

    Science.gov (United States)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  20. Upgrades for TwinSol facility

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, P.D.; Bardayan, D.W.; Kolata, J.J.; Hall, M.R.; Hall, O.; Allen, J. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Becchetti, F.D. [Physics Department, U. Michigan, Ann Arbor MI 48109 (United States)

    2016-06-01

    TwinSol, a pair of coupled, superconducting solenoids, was one of the first devices capable of producing beams of radioactive nuclei at energies near the Coulomb barrier. A primary beam from University of Notre Dame (UND) tandem accelerator is used to bombard a primary target producing a secondary beam in flight. TwinSol is used to gather, separate, and focus the recoils. Since it was commissioned at the UND in 1997, at least 58 publications have reported data from its use and there have been hundreds of collaborators from many different countries that use this device. Currently, plans are in place at the UND to provide several upgrades to TwinSol, including a multi-cell gas production target and the possible addition of a third solenoid. Upgrades currently in progress will be discussed along with future plans.

  1. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly.

    Science.gov (United States)

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-03-23

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.

  2. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    Science.gov (United States)

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  3. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  4. Stability of zirconia sol in the presence of various inorganic electrolytes

    Directory of Open Access Journals (Sweden)

    Marković Jelena P.

    2013-01-01

    Full Text Available Zirconia sol was prepared from zirconium oxychloride solutions by forced hydrolysis at 102ºC. The prepared sol consisted of almost spherical, monoclinic, hydrated zirconia particles 61 nm in diameter. The stability of zirconia sol in the presence of various inorganic electrolytes (LiCl, NaCl, KCl, CsCl, KBr, KI, KNO3, and K2SO4 was studied by potentiometric titration method. Dependence of the critical concentration of coagulation (CCC on the dispersion pH was determined for all studied electrolytes. The critical coagulation concentration values, for all investigated electrolytes, are lower at higher pH. These values for all 1:1 electrolytes are equal in the range of experimental error. For a given pH value, CCCs of K2SO4 are 3-4 orders of magnitude lower than the corresponding values for 1:1 electrolytes. [Projekat Ministarstva nauke republike Srbije, br. III 45012

  5. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  6. Opportunity's Surroundings on Sol 1818 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  7. Collisionality dependent transport in TCV SOL plasmas

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Pitts, R.A.; Horacek, J.

    2007-01-01

    Results are presented from probe measurements in the low field side scrape-off layer (SOL) region of TCV during plasma current scan experiments. It is shown that with decreasing plasma current the radial particle density profile becomes broader and the fluctuation levels and turbulence driven...... radial particle flux increase. In the far SOL the fluctuations exhibit a high degree of statistical similarity and the particle density and flux at the wall radius scale inversely with the plasma current. Together with previous TCV density scan experiments, this indicates that plasma fluctuations...

  8. Opportunity's Surroundings on Sol 1818 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  9. Spirit Beside 'Home Plate,' Sol 1809

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera to take the images assembled into this 120-degree view southward after a short drive during the 1,809th Martian day, or sol, of Spirit's mission on the surface of Mars (February 3, 2009). Spirit had driven about 2.6 meters (8.5 feet) that sol, continuing a clockwise route around a low plateau called 'Home Plate.' In this image, the rocks visible above the rovers' solar panels are on the slope at the northern edge of Home Plate. This view is presented as a cylindrical projection with geometric seam correction.

  10. Neutron detector using sol-gel absorber

    Science.gov (United States)

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  11. A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films

    Science.gov (United States)

    Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing

    2009-07-01

    A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.

  12. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  13. Chronic obstructive pulmonary disease and occupational exposure to silica.

    Science.gov (United States)

    Rushton, Lesley

    2007-01-01

    Prolonged exposure to high levels of silica has long been known to cause silicosis This paper evaluates the evidence for an increased risk of chronic obstructive pulmonary disease (COPD) in occupations and industries in which exposure to crystalline silica is the primary exposure, with a focus on the magnitude of risks and levels of exposure causing disabling health effects. The literature suggests consistently elevated risks of developing COPD associated with silica exposure in several occupations, including the construction industry; tunneling; cement industry; brick manufacturing; pottery and ceramic work; silica sand, granite and diatomaceous earth industries; gold mining; and iron and steel founding, with risk estimates being high in some, even after taking into account the effect of confounders like smoking. Average dust levels vary from about 0.5 mg.m3 to over 10 mg.m3 and average silica levels from 0.04 to over 5 mg.m3, often well above occupational standards. Factors influencing the variation from industry to industry in risks associated with exposure to silica-containing dusts include (a) the presence of other minerals in the dust, particularly when associated with clay minerals; (b) the size of the particles and percentage of quartz; (c) the physicochemical characteristics, such as whether the dust is freshly fractured. Longitudinal studies suggest that loss of lung function occurs with exposure to silica dust at concentrations of between 0.1 and 0.2 mg.m3, and that the effect of cumulative silica dust exposure on airflow obstruction is independent of silicosis. Nevertheless, a disabling loss of lung function in the absence of silicosis would not occur until between 30 and 40 years exposure.

  14. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  15. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  16. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  17. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  18. Morphological and textural characterization of functionalized particulate silica xerogels

    Science.gov (United States)

    de Miranda, Lazaro A.; Mohallem, Nelcy D. S.; de Magalhães, Welington F.

    2006-03-01

    The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.

  19. Morphological and textural characterization of functionalized particulate silica xerogels

    International Nuclear Information System (INIS)

    Miranda, Lazaro A. de; Mohallem, Nelcy D.S.; Magalhaes, Welington F. de

    2006-01-01

    The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 deg. C and 550 deg. C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied

  20. Anchoring selenido-carbonyl ruthenium clusters to functionalized silica xerogels

    International Nuclear Information System (INIS)

    Cauzzi, Daniele; Graiff, Claudia; Pattacini, Roberto; Predieri, Giovanni; Tiripicchio, Antonio

    2003-01-01

    Silica Xerogels containing carbonyl Ru 3 Se 2 nido clusters were prepared in three different ways. The simple dispersion of [Ru 3 (μ 3 -Se) 2 (CO) 7 (PPh 3 ) 2 ] via sol gel process produces an inhomogeneous material; by contrast, homogeneous xerogels were obtained by reaction of [Ru 3 (μ 3 -Se) 2 (CO) 8 (PPh 3 )] with functionalized xerogels containing grafted diphenylphosphine moieties and by reaction of [Ru 3 (CO) 12 ] with a xerogel containing grafted phosphine-selenide groups. The reaction between [Ru 3 (CO) 12 ] and dodecyl diphenylphosphine selenide led to the formation of four selenido carbonyl clusters, which are soluble in hydrocarbon solvents and can be deposited as thin films from their solution by slow evaporation. (author)

  1. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001 (Israel); Kumagai, Akiko; Miyawaki, Atsushi [Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198 (Japan); Khashirova, Svetlana Yu; Zhansitov, Azamat [Kabardino-Balkar State University, 173 Chernyshevskogo St., Nal' chik, 360004, Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation)

    2016-11-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  2. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    International Nuclear Information System (INIS)

    Wang Jiexin; Wang Zhihui; Chen Jianfeng; Yun, Jimmy

    2008-01-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N 2 adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 μm, and had a specific surface area of about 306 m 2 /g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties

  3. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate.

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-11-19

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  4. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    International Nuclear Information System (INIS)

    Timin, Alexander S.; Solomonov, Alexey V.; Kumagai, Akiko; Miyawaki, Atsushi; Khashirova, Svetlana Yu; Zhansitov, Azamat; Rumyantsev, Evgeniy V.

    2016-01-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  5. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  6. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  7. Patchy silica-coated silver nanowires as SERS substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  8. Patchy silica-coated silver nanowires as SERS substrates

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-01-01

    We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  9. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  10. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  11. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  12. Structural, mechanical, and tribological characterization of sol-gel layers with inbedded anorganic fullerene-like tungsten-disulphide particles

    International Nuclear Information System (INIS)

    Hattermann, Hilke

    2010-01-01

    The preparation of composite coatings consisting of different materials with improved properties has been an intensively studied area of thin film technology in recent years. One method to prepare such composite coatings is the incorporation of nano or micro particles into a matrix of a different material. In this thesis, such composite coatings are investigated which have been prepared via a sol-gel route und contain up to about 30 wt.-% tungsten disulfide particles. These inorganic fullerenes have typical particle sizes of about 100 nm to 200 nm. Two different types of composite coatings with a thickness of up to a few micrometers and with embedded tungsten disulfide particles are prepared: First, coatings with a relatively stiff alumina matrix, and second, coatings with a matrix made of organically modified silica. Different analytical methods are used for the structural characterization of the coatings. The crystal structure and the chemical composition of the coatings are determined via X-ray diffraction and X-ray fluorescence measurements and via energy-dispersive X-ray spectroscopy. Through scanning and transmission electron microscopy the incorporation and the distribution of the tungsten disulfide particles in the respective matrix are analysed. Furthermore, the roughness and the adhesion of the coatings on the substrate are investigated. The influence of the embedded particles and of the temperature of the final heat treatment during the sample preparation on the mechanical properties, like elastic modulus and hardness, of the composite coatings are measured through nanoindentation testing. These experimental results are compared with theoretical values determined via different analytical models for effective materials. Finally, the tribological behavior of the composite coatings is investigated in comparison to pure coatings made of alumina or organically modified silica. With ball-on-disc tests the coefficient of friction of the coatings is measured

  13. Opportunity's View After Drive on Sol 1806

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical projection with geometric seam correction.

  14. SOL: INNOVACIÓN ON-LINE

    Directory of Open Access Journals (Sweden)

    Rubén Faúndez

    2007-11-01

    Full Text Available Las aplicaciones de simulación tienden a ser cada vez más cercanas a usuarios e industrias. Sin embargo, muchas de ellas no poseen ni la capacidad ni el conocimiento como para desarrollar internamente sus modelos de simulación. Por este motivo, y como una forma de apoyar la toma de decisiones basándose en modelos de simulación, se presenta la plataforma SOL (Simulación On Line. La metodología completa de trabajo, así como la interacción entre SOL, Empresa y Asesor, son presentadas. Su base de datos, los niveles de usuarios, sus funcionalidades, y la creación automatizada de información grafica y visual, también son explicadas. En el caso de aplicación, el uso de SOL para apoyar la toma de decisiones en una operación de movimiento de material, permite a los tomadores de decisión acceder a análisis robustos basados en información extraída de los modelos de simulación. SOL, al almacenar información, funcionar vía web, generar análisis automatizados y crear visualizaciones, permite cumplir con las expectativas de los usuarios respecto a una solución integral en simulación.

  15. Sol-Gel Synthesis Of Aluminoborosilicate Powders

    Science.gov (United States)

    Bull, Jeffrey; Leiser, Daniel; Selvaduray, Guna

    1992-01-01

    Application of sol-gel process to synthesis of aluminoborosilicate powders shows potential for control of microstructures of materials. Development of materials having enhanced processing characteristics prove advantageous in extending high-temperature endurance of fibrous refractory composite insulation made from ceramic fibers.

  16. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  17. Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Leila Mazaheri

    2012-12-01

    Full Text Available Silica nanoparticles were modified with titanium tetraisopropoxide (TTIP via atwo-step sol-gel route. The modified silica nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis (TGA and EDAX elemental analysis. Photocatalytic activity of the modified nanocomposites was evaluated by photo-activated degradation of Rhodamine B (Rh.B dyestuff, as a colorant model, in distilled water. Reduction in Rh.B concentration in aqueous solution was evaluated by UV-visible spectroscopy and with the aid of visual observations. The FTIR spectroscopy results confirmed the formation of Ti-O-Si chemical bond on the surfaceof silica nanoparticles. TGA test results showed that the weight loss of the modified sample is due to deterioration of the alkoxy groups of the SiO2 surface. According to the results of EDAX elemental analysis, the presence of carbon and titanium in the structure of the modified samples and also reduction in oxygen levels are attributed to the chemical interactions due to surface chemical modification. Carbon detection in the composition can be attributed to the presence of isopropoxide in titanium tetraisopropoxide compound. The results also revealed that, with TiO2 grafting on the silica nanoparticles surface, absorption in UV region is increased and that the silica nanoparticles modified with titanate compound show photocatalytic characteristics and degradation ability of Rh.B dyestuff under UV light irradiation. It became also evident that the photocatalytic activity of the modified nanoparticles is less than TiO2 nanoparticles. However, by inclusion of modified silica nanoparticles into the polymeric coating, the photocatalytic properties of the coating can be established. Although modified silica nanoparticles have less photocatalytic activity compared to TiO2 nanoparticles, but they cause less damage to the polymer matrix.

  18. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  19. Vanadia-silica and vanadia-cesium-silica catalysts for oxidation of SO2

    DEFF Research Database (Denmark)

    Pârvulescu, Vasile I.; Paun, Christina; Pârvulescu, Viorica

    2004-01-01

    %. The samples were impregnated with Cs2SO4 resulting in a Cs:V ratio of 3:1 and then dried and calcined under the same conditions. The catalysts were characterized using several methods: sorption isotherms of N-2 at 77 K, XRD, and XPS. The results of the characterization indicated that during calcination...... catalysts were also performed. The activation of the catalysts and the catalytic behavior were monitored by in situ Raman and EPR spectroscopy. These characterization techniques indicated that the active molten phase contains vanadium oxosulfato complexes similar to the V2O5-M2S2O7 (M = alkali metal......Mesoporous vanadia-silica catalysts have been prepared by three different sol-gel procedures using tetraethylorthosilicate (TEOS), vanadyl acetylacetonate (VAA), or VOCl3 and in some cases quaternary ammonium salts ((CH3)(3)C14H29N+Br- or (C10H21)(4)N+Br-) as surfactants. According to procedure A...

  20. Mechanism of formation of zeolite Y. I. Action of sodium hydroxide on silica sol

    Energy Technology Data Exchange (ETDEWEB)

    Polak, F; Stobiecka, E

    1974-01-01

    Changes in the composition of the liquid and solid phases during maturation and crystallization of zeolite Y, x-ray diffraction, and sorption of C/sub 6/H/sub 6/ showed that with NaOH treatment of SiO/sub 2/ greater than 3 hr, depolymerization occurred, inhibiting the formation of zeolite Y upon crystallization and resulting in the formation of gmelinite. A discrepancy between the experimental data on the dependence of the crystal constant on the SiO/sub 2//Al/sub 2/O/sub 3/ ratio and previously published data is discussed.

  1. Extraction of Silica from Cassava Periderm using Modified Sol-Gel ...

    African Journals Online (AJOL)

    Akorede

    production (birth of semiconductor revolution) (Wikipedia,. 2018). It has been used ... and TCP were calcined separately at 700 oC for 4 hours to obtain their respective ... Figure 1 shows the TGA curves for UCP and TCP thermally decomposed ...

  2. Effect of silica sol of different routes on the properties of low cement ...

    Indian Academy of Sciences (India)

    Unknown

    Gravimetric method was utilized to determine SiO2 and Al2O3 whereas Fe2O3,. CaO and MgO were determined volumetrically (Hille- brand and Lundell 1953). It may be seen from table 2 that white fused Al2O3 which is produced from fusion of calcined alumina has a very high purity (99⋅38 wt% Al2O3). Microfine Al2O3.

  3. Influence of sol-gel conditions on the final structure of silica-based precursors

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Beneš, Hynek; Kobera, Libor; Walterová, Zuzana

    2015-01-01

    Roč. 75, č. 3 (2015), s. 649-663 ISSN 0928-0707 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61389013 Keywords : sol–gel * (3-glycidyloxypropyl) trimethoxysilane * alkoxysilane Subject RIV: CA - Inorganic Chemistry Impact factor: 1.473, year: 2015

  4. Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation

    Science.gov (United States)

    Sang, Wong Yean; Ching, Oh Pei

    2017-10-01

    Mobil Composition of Matter-41 (MCM-41) is recognized as a potential filler to enhance permeability of mixed matrix membrane (MMM). However, the required loading for available micron-sized MCM-41 was considerably high in order to achieve desired separation performance. In this work, reduced-size MCM-41 was synthesized to minimize filler loading, improve surface modification and enhance polymer-filler compatibility during membrane fabrication. The effect of reaction condition, stirring rate and type of post-synthesis washing solution used on particle diameter of resultant MCM-41 were investigated. It was found that MCM-41 produced at room temperature condition yield particles with smaller diameter, higher specific surface area and enhanced mesopore structure. Increase of stirring rate up to 500 rpm during synthesis also reduced the particle diameter. In addition, replacing water with methanol as the post-synthesis washing solution to remove bromide ions from the precipitate was able to further reduce the particle size by inhibiting polycondensation reaction.

  5. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)

    2013-11-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  6. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  7. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    International Nuclear Information System (INIS)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V.

    2013-01-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  8. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya

    2013-01-01

    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  9. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent

    International Nuclear Information System (INIS)

    Kavale, Mahendra S.; Mahadik, D.B.; Parale, V.G.; Wagh, P.B.; Gupta, Satish C.; Rao, A.Venkateswara; Barshilia, Harish C.

    2011-01-01

    The superhydrophobic surfaces have drawn lot of interest, in both academic and industries because of optically transparent, adherent and self-cleaning behavior. Surface chemical composition and morphology plays an important role in determining the superhydrophobic nature of coating surface. Such concert of non-wettability can be achieved, using surface modifying reagents or co-precursor method in sol-gel process. Attempts have been made to increase the hydrophobicity and optical transparency of methyltrimethoxysilane (MTMS) based silica coatings using polymethylmethacrylate (PMMA) instead of formal routes like surface modification using silylating reagents. The optically transparent, superhydrophobic uniform coatings were obtained by simple dip coating method. The molar ratio of MTMS:MeOH:H 2 O was kept constant at 1:5.63:1.58, respectively with 0.5 M NH 4 F as a catalyst and the weight percent of PMMA varied from 1 to 8. The hydrophobicity of silica coatings was analyzed by FTIR and contact angle measurements. These substrates exhibited 91% optical transmittance as compared to glass and water drop contact angle as high as 171 ± 1 deg. The effect of humidity on hydrophobic nature of coating has been studied by exposing these films at relative humidity of 90% at constant temperature of 30 deg. C for a period of 45 days. The micro-structural studies carried out by transmission electron microscopy (TEM).

  11. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  12. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  13. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  14. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  15. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  16. Consistency in PERT problems

    OpenAIRE

    Bergantiños, Gustavo; Valencia-Toledo, Alfredo; Vidal-Puga, Juan

    2016-01-01

    The program evaluation review technique (PERT) is a tool used to schedule and coordinate activities in a complex project. In assigning the cost of a potential delay, we characterize the Shapley rule as the only rule that satisfies consistency and other desirable properties.

  17. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    Science.gov (United States)

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  18. Characterization of composites prepared by sol-gel process through positrons lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Magalhaes, Welligton F. de; Mohallem, Nelcy D.S.

    1996-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mol ratio, with HCl and HF as catalysts. This silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-prop oxide in the starting solution, during agitation. The samples were prepared in monolithic shape, were dried at 110 deg C for 24 hours and thermally treated for 2 hours at 500, 900 and 1100 deg C. The structural evolution was studied y x-ray diffraction, mercury porosimetry and pycnometry. In this work, it was also used the Position Annihilation Lifetime Spectroscopy which have been used, nowadays, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 deg C and a strong densification process at 1100 deg C. (author)

  19. Luminescence properties of europium (III) cryptates trapped in sol-gel glass

    International Nuclear Information System (INIS)

    Zaitoun, M.A.; Kim, T.; Jaradat, Q.M.; Momani, K.; Qaseer, H.A.; El-Qisairi, A.K.; Qudah, A.; Radwan, N.E.

    2008-01-01

    The Lanthanide complexes Eu-2.2.1 and Eu-2.2.2 were synthesized and then incorporated into silica based transparent organic-inorganic hybrid material by the sol-gel method as an example of how doped xerogel materials are emerging as an important means of producing new materials. The produced gels were diagnosed to monitor emission spectra of the luminescent trivalent europium (Eu 3+ ) complexes; emissions were compared to those for gels containing uncomplexed Eu 3+ . Results of the experiments (emission and lifetimes) concerning the coordination sphere composition showed that a cryptand ligand with aromatic groups (short range effect) and the hydrophobic gel host (long range effect) settle efficient action in the antenna effect and isolate the central ion from efficient quenchers, as e.g. water molecules. Each ligand imposed a distinct splitting pattern on the europium emission bands that helps identify them

  20. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  1. Nanostructure and magnetic properties of CoNi-alloy-based nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian, C.; Sangregorio, C.; Mattei, G.; Battaglin, G.; Cattaruzza, E.; Gonella, F.; Lo Russo, S.; D'Orazio, F.; Lucari, F.; De, G.; Gatteschi, D.; Mazzoldi, P.

    2001-01-01

    A comparative study of the magnetic behavior of FCC alloy CoNi (1:1) nanoparticles, embedded in a silica matrix and prepared by the ion implantation and sol-gel techniques, is presented. The blocking temperature is related to the size distribution, and, at least for the ion-implanted samples, only an enhanced effective anisotropy explains the experimental results. The hysteretic behavior is explained in terms of the temperature dependence of the anisotropy and of the particle volume fraction that determines the dipolar interactions

  2. Nanostructure and magnetic properties of CoNi-alloy-based nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Battaglin, G.; Cattaruzza, E.; Gonella, F.; Lo Russo, S.; D' Orazio, F.; Lucari, F.; De, G.; Gatteschi, D.; Mazzoldi, P

    2001-05-01

    A comparative study of the magnetic behavior of FCC alloy CoNi (1:1) nanoparticles, embedded in a silica matrix and prepared by the ion implantation and sol-gel techniques, is presented. The blocking temperature is related to the size distribution, and, at least for the ion-implanted samples, only an enhanced effective anisotropy explains the experimental results. The hysteretic behavior is explained in terms of the temperature dependence of the anisotropy and of the particle volume fraction that determines the dipolar interactions.

  3. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  4. The development and characterization of sol-gel substrates for chemical and optical applications

    Science.gov (United States)

    Powers, Kevin William

    1998-12-01

    The sol gel process can be used to make monolithic porous glass for various scientific and engineering uses. The porosity of the material imparts a large surface area which is advantageous in applications such as catalyst supports or in the study of surface mediated chemical reactions. The chemical stability and transparency of the porous glass also make it suitable for use in the emerging field of optical sensors. In this study fluoride catalysis is used to produce sol gel monoliths with pore radii of up to 400 Angstroms, four times larger than any previously reported using conventional drying techniques. Gel monoliths with pore radii of 200 Angstroms were found to have the best combination of surface area, pore volume and optical transparency. Typical monoliths have surface areas of 150 m2/g and pore volumes of 1.60 cm3/g with good transparency. The monoliths are chemically stable, have good mechanical strength and can be easily rehydrated without cracking. The substrates are also suitable for sintering into dense high purity silica glass with little tendency towards foaming. An in-depth study of the catalytic effect of fluoride on the sol gel process is also included. It has been theorized that fluoride serves to expand the coordination sphere of the silicon center making it more subject to nucleophilic attack. In this work an ion-specific fluoride electrode is used to monitor free fluoride concentrations in HF catalyzed sols while silicic acid is added in the form of tetramethoxysilane (TMOS). It is found that fluoride is rapidly bound by the silicic acid in a ratio of four to one, indicating the formation of silicon tetrafluoride. A concurrent decrease in pH suggests that a pentacoordinate species is formed that is more stable than previously thought. A polymerization mechanism is proposed that explains the hydrophobicity of fluoride catalyzed gels and the difficulty in retaining structural fluoride in fluoride catalyzed sol gel glasses. Finally, several

  5. The Silica-Water Interface from the Analysis of Molecular Dynamic Simulations

    KAUST Repository

    Lardhi, Sheikha F.

    2013-01-01

    detailed understanding of the silica-water interface. In this study, we investigate the details of this interaction at microscopic level by analyzing trajectories obtained with ab initio molecular dynamic simulations. The system we consider consists of bulk

  6. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  7. Opportunity's Surroundings on Sol 1798 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  8. View Ahead After Spirit's Sol 1861 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this 210-degree view of the rover's surroundings during the 1,861st to 1,863rd Martian days, or sols, of Spirit's surface mission (March 28 to 30, 2009). The center of the scene is toward the south-southwest. East is on the left. West-northwest is on the right. The rover had driven 22.7 meters (74 feet) southwestward on Sol 1861 before beginning to take the frames in this view. The drive brought Spirit past the northwestern corner of Home Plate. In this view, the western edge of Home Plate is on the portion of the horizon farthest to the left. A mound in middle distance near the center of the view is called 'Tsiolkovsky' and is about 40 meters (about 130 feet) from the rover's position. This view is presented as a cylindrical projection with geometric seam correction.

  9. Opportunity's Surroundings After Sol 1820 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  10. Opportunity's Surroundings on Sol 1798 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a vertical projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  11. Impediment to Spirit Drive on Sol 1806

    Science.gov (United States)

    2009-01-01

    The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,806th Martian day, or sol, (January 31, 2009) of Spirit's mission on the surface of Mars. The wheel at the bottom right of the image is Spirit's right-front wheel. Because that wheel no longer turns, Spirit drives backwards dragging that wheel. The drive on Sol 1806 covered about 30 centimeters (1 foot). The rover team had planned a longer drive, but Spirit stopped short, apparently from the right front wheel encountering the partially buried rock visible next to that wheel. The hazard avoidance cameras on the front and back of the rover provide wide-angle views. The hill on the horizon in the right half of this image is Husband Hill. Spirit reached the summit of Husband Hill in 2005.

  12. Opportunity's Surroundings After Sol 1820 Drive (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  13. Opportunity's Surroundings After Sol 1820 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). South is at the center; north at both ends. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  14. Phoenix Robotic Arm's Workspace After 90 Sols

    Science.gov (United States)

    2008-01-01

    During the first 90 Martian days, or sols, after its May 25, 2008, landing on an arctic plain of Mars, NASA's Phoenix Mars Lander dug several trenches in the workspace reachable with the lander's robotic arm. The lander's Surface Stereo Imager camera recorded this view of the workspace on Sol 90, early afternoon local Mars time (overnight Aug. 25 to Aug. 26, 2008). The shadow of the the camera itself, atop its mast, is just left of the center of the image and roughly a third of a meter (one foot) wide. The workspace is on the north side of the lander. The trench just to the right of center is called 'Neverland.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  16. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  17. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    International Nuclear Information System (INIS)

    Dong Jie; Xu Zhenghe; Wang Feng

    2008-01-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2 /g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective

  18. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  19. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  20. Reporting consistently on CSR

    DEFF Research Database (Denmark)

    Thomsen, Christa; Nielsen, Anne Ellerup

    2006-01-01

    This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...

  1. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    Science.gov (United States)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  2. Transparent Hydrophobic Coating by Sol Gel Method

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias

    2016-01-01

    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  3. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  4. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Opportunity's Surroundings on Sol 1687 (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11739 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11739 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). The view appears three-dimensional when viewed through red-blue glasses. Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This panorama combines right-eye and left-eye views presented as cylindrical-perspective projections with geometric seam correction.

  6. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  7. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  8. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  9. Enhanced ferro-actuator with a porosity-controlled membrane using the sol-gel process and the HF etching method

    International Nuclear Information System (INIS)

    Kim, KiSu; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    In this paper, we propose a ferro-actuator using a porous polyvinylidene difluoride (PVDF) membrane. In detail, we fabricated the silica-embedded PVDF membrane using a sol-gel process with PVDF solution and tetraethyl orthosilicate (TEOS) solution, where the size of the silica was determined by the ratio of the PVDF and TEOS solutions. Using hydrofluoric acid (HF) etching, the silica were removed from the silica-embedded PVDF membrane, and porous PVDF membranes with different porosities were obtained. Finally, through absorption of a ferrofluid on the porous PVDF membrane, the proposed ferro-actuator using porous PVDF membranes with different porosities was fabricated. We executed the characterization and actuation test as follows. First, the silica size of the silica-embedded PVDF membrane and the pore size of the porous PVDF membrane were analyzed using scanning electron microscopy (SEM) imaging. Second, energy-dispersive x-ray spectroscopy analysis showed that the silica had clearly been removed from the silica-embedded PVDF membrane by HF etching. Third, through x-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) of the ferro-actuators, we found that more ferrofluids were absorbed by the porous PVDF membrane when the pore of the membrane was smaller and uniformly distributed. Finally, we executed tip displacement and a blocking force test of the proposed ferro-actuator using the porous PVDF membrane. Similar to the VSM result, the ferro-actuator that used a porous PVDF membrane with smaller pores exhibited better actuation performance. The ferro-actuator that used a porous PVDF membrane displayed a tip displacement that was about 7.2-fold better and a blocking force that was about 6.5-fold better than the ferro-actuator that used a pure PVDF membrane. Thus, we controlled the pore size of the porous PVDF membrane and enhanced the actuation performance of the ferro-actuator using a porous PVDF membrane. (technical note)

  10. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  11. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  12. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  13. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  14. The Rucio Consistency Service

    CERN Document Server

    Serfon, Cedric; The ATLAS collaboration

    2016-01-01

    One of the biggest challenge with Large scale data management system is to ensure the consistency between the global file catalog and what is physically on all storage elements. To tackle this issue, the Rucio software which is used by the ATLAS Distributed Data Management system has been extended to automatically handle lost or unregistered files (aka Dark Data). This system automatically detects these inconsistencies and take actions like recovery or deletion of unneeded files in a central manner. In this talk, we will present this system, explain the internals and give some results.

  15. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  16. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2010-01-01

    Full Text Available TiO2 sol was prepared for the degradation of methylene blue (MB solution under ultraviolet (UV irradiation. The absorption spectra of MB indicated that the maximum wavelength, 663 nm, almost kept the same. The performance of 92.3% for color removal was reached after 160 min. The particle size of TiO2 sol was about 22.5 nm. X-ray diffraction showed that TiO2 consisted of a single anatase phase. The small size and anatase phase probably resulted in high photocatalytic activity of TiO2 sol. The degradation ratio decreased as the initial concentration of MB increased. The photodegradation efficiency decreased in the order of pH 2>pH 9>pH 7. Regarding catalyst load, the degradation increased with the mass of catalyst up to an amount of 1.5 g⋅L−1 then decreased as the mass continued to increase. The addition of H2O2 to TiO2 sol resulted in an increase on the degradation ratio.

  17. Integrated core-SOL simulations of L-mode plasma in ITER and Indian demo

    International Nuclear Information System (INIS)

    Wisitsorasak, Apiwat; Onjun, Thawatchai; Kanjanaput, Wittawat

    2015-01-01

    Core-SOL simulations are carried out using 1.5D BALDUR integrated predictive modeling code to investigate tokamak plasma in ITER and Indian DEMO reactors operating in low confinement mode (L-Mode). In each simulation, the plasma current, temperature, and density profiles in both core and SOL region are evolved self-consistency. The SOL is simulated by integrating the fluid equations, including sources, along the field lines. The solutions in SOL subsequently provide as the boundary conditions of core plasma region on low-confinement mode. The core plasma transport model is described using a combination of anomalous transport by Multi-Mode-Model version 2001 (MMM2001) and neoclassical transport calculated by NCLASS module together with the toroidal velocity based on the torque due to Neoclassical Toroidal Viscosity (NTV). In addition, a sensitivity analysis is explored by varying plasma parameters, such as plasma density and auxiliary heating power. Furthermore, the ignition tests are conducted to observed plasma response in each design after shutting down an auxiliary heating. (author)

  18. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  19. Consistent Quantum Theory

    Science.gov (United States)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  20. The effects of nanoscale geometry and spillover on room temperature storage of hydrogen on silica nanosprings

    International Nuclear Information System (INIS)

    Corti, Giancarlo; Zhan, Yingqian; Wang, Lidong; Hare, Brian; Cantrell, Timothy; II, Miles Beaux; Prakash, Tej; Ytreberg, F Marty; McIlroy, David N; Miller, Michael A

    2013-01-01

    Silica nanosprings (NSs) consisting of multiple nanowires intertwined were demonstrated to reversibly store 0.85 wt% hydrogen at 20 bar and room temperature. X-ray photoelectron spectroscopy indicates a mixed 3 + –4 + ionization state of the silicon atoms and partially explains the enhanced surface adsorption of H 2 relative to other forms of silica. Theoretical modeling and simulation using a Lennard-Jones potential demonstrated that interstitial sites between the silica nanowires forming the NS are energetically more favorable adsorption sites relative to single nanowires. The addition of Pd nanoparticles to the surface of the silica NSs was demonstrated to increase the hydrogen storage capacity to ≈3.5 wt% at 66 bar and room temperature. Palladium-nanoparticle-induced hydrogen spillover is attributed to the enhanced storage capacity relative to bare silica NSs. (paper)