WorldWideScience

Sample records for silica reaction products

  1. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  2. Effect of silica fume on reaction products of uranium (VI) with portland cement

    International Nuclear Information System (INIS)

    Tan Hongbin; Shaanxi Univ. of Technology, Hanzhong; Li Yuxiang

    2005-01-01

    Simulation of radioactive waste of U(VI) by uranyl nitrate and the effects of different additive quantities (12%, 20%, 30%, 35%, 40%) of silica fume on the products of U(VI) with Portland cement were studied at a hydrothermal condition of 180 degree C for a duration of one week. The X-ray powder diffraction examination results showed that the calcium uranate would be transformed into uranophane when the cement contained 30% silica fume. (authors)

  3. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  4. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  5. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  6. Reaction kinetics for preparation of silica film with Stoeber method

    International Nuclear Information System (INIS)

    Shang Mengying; Jiang Xiaodong; Liu Miao; Luo Xuan; Tang Yongjian; Cao Linhong

    2013-01-01

    A new formula was proposed to investigate the relationship between reaction time and tetraethylorthosilicate (TEOS) conversion rate for preparation of silica sol with Stöber method, by studying the reaction kinetics of TEOS hydrolytic process. An appropriate conversion rate was then determined and used to calculate the theoretical optimal reaction time. Meanwhile, silica sols were prepared by sol-gel process using TEOS as precursor and ammonia as catalyst. It was found that the reaction time decreases with an increasing amount of ammonia and water. The values of experimental optimal reaction time were obtained, and agree with the theoretical results (the errors are within 5%), which shows good applicability of our formula. (authors)

  7. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    Science.gov (United States)

    2013-01-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed. PMID:24237719

  8. Alcali-silica reactions: Mechanisms for crack formations

    DEFF Research Database (Denmark)

    Goltermann, Per

    2006-01-01

    Alkali-silica reactions (ASR) are found all over the world and cause a large number of damage, which have lead to different sets of requirements in the different countries for the aggregates, the cements and the admixtures. One of the reasons for the damage and the different requirements is that ......Alkali-silica reactions (ASR) are found all over the world and cause a large number of damage, which have lead to different sets of requirements in the different countries for the aggregates, the cements and the admixtures. One of the reasons for the damage and the different requirements...... is that the mechanical behavior of the ASR has not been fully investigated, although the chemical aspects of ASR have been dealt with in depth. This paper presents a unified, mechanical explanation of the ASR damage mechanism, covering the relevant aspects of the diffusion model; the stress-variations in the aggregate...

  9. Electrochemical lithium migration to mitigate alkali-silica reaction in existing concrete structures

    NARCIS (Netherlands)

    Silva De Souza, L.M.

    2016-01-01

    Alkali-silica reaction (ASR) is a deterioration process that affects the durability of concrete structures worldwide. During the reaction, hydroxyl and alkali ions present in the pore solution react with reactive silica from the aggregate, forming a hygroscopic ASR gel. Alternatively, the silica

  10. Automated Detection of Alkali-silica Reaction in Concrete using Linear Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Clayton, Dwight A [ORNL; Ezell, N Dianne Bull [ORNL; Clayton, Joseph A [ORNL; Baba, Justin S [ORNL

    2017-01-01

    Alkali-silica reaction (ASR) is a chemical reaction in either concrete or mortar between hydroxyl ions of the alkalis (sodium and potassium) from hydraulic cement (or other sources), and certain siliceous minerals present in some aggregates. The reaction product, an alkali-silica gel, is hygroscopic having a tendency to absorb water and swell, which under certain circumstances, leads to abnormal expansion and cracking of the concrete. This phenomenon affects the durability and performance of concrete structures severely since it can cause significant loss of mechanical properties. Developing reliable methods and tools that can evaluate the degree of the ASR damage in existing structures, so that informed decisions can be made toward mitigating ASR progression and damage, is important to the long term operation of nuclear power plants especially if licenses are extended beyond 60 years. This paper examines an automated method of determining the extent of ASR damage in fabricated concrete specimens.

  11. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  12. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  13. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  14. Characterization of alkali silica reaction gels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Balachandran, C.; Muñoz, J.F.; Arnold, T.

    2017-01-01

    The ability of Raman spectroscopy to characterize amorphous materials makes this technique ideal to study alkali silica reaction (ASR) gels. The structure of several synthetic ASR gels was thoroughly characterized using Raman Spectroscopy. The results were validated with additional techniques such as Fourier transmission infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. The Raman spectra were found to have two broad bands in the 800 to 1200 cm −1 range and the 400 to 700 cm −1 range indicating the amorphous nature of the gel. Important information regarding the silicate polymerization was deduced from both of these spectral regions. An increase in alkali content of the gels caused a depolymerization in the silicate framework which manifested in the Raman spectra as a gradual shift of predominant peaks in both regions. The trends in silicate depolymerization were in agreement with results from a NMR spectroscopy study on similar synthetic ASR gels.

  15. Studies on the alkali-silica reaction rim in a simplified calcium-alkali-silicate system

    NARCIS (Netherlands)

    Zheng, Kunpeng; Adriaensens, Peter; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the

  16. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  17. Alkali Silica Reaction In The Presence Of Metakaolin - The Significant Role of Calcium Hydroxide

    Science.gov (United States)

    Zapała-Sławeta, Justyna

    2017-10-01

    Reducing the internal corrosion, which is the result of reactions between alkalis and reactive aggregates is especially important in ensuring durability properties of concrete. One of the methods of inhibiting the reaction is using some mineral additives which have pozzolanic properties. This paper presents the efficacy of high-reactivity metakaolin in reducing expansion due to alkali-silica reaction. It was demonstrated that metakaolin in the amount from 5% to 20% by mass of Portland cement reduce linear expansion of mortar bars with opal aggregate. Nevertheless, the safe expansion level in the specimens, classified as non-destructive to concrete, was recorded for the mortars prepared with 20% addition of metakaolin. Depletion of free calcium hydroxide content was considered as one of the most beneficial effects of metakaolin in controlling alkali silica reaction. Based on thermogravimetric analysis (TGA) performed on mortar bars with and without metakaolin the differences in portlandite content were determined. Microstructural observation of the specimens containing metakaolin indicated the presence of a reaction products but fewer in number than those forming in the mortars without mineral additives.

  18. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Shahin; Park, Jihoon; Park, Minkyu; Jin, Myungjong [Inha Univ., Incheon (Korea, Republic of)

    2013-06-15

    We have demonstrated an efficient and eco-friendly procedure for the synthesis of ynones using silica supported thiol-palladium complex as a recyclable catalyst under copper free mild reaction conditions. The material was synthesized by post grafting of 3-mercaptopropyltrimethoxysilane on amorphous silica and subsequently Pd(II) attached onto thiol groups. This synthetic method has notable advantages because it involves easily available, less costly and produces an easily recyclable catalyst in high yields of the products. The mild reaction conditions encouraged us to further extension for the development of novel multicomponent reactions. Thus we have explained the three component synthesis of pyrazoles in one-pot fashion with good yields. Specifically, this simple procedure for the ynone synthesis and this approach to synthesize N-containing heterocycles may be valuable tool in future. The acyl Sonogashira reaction between acyl chlorides and terminal alkynes is one of the most useful method for the preparation of ynones which are important intermediates to prepare versatile pharmaceutically and biologically active heterocyclic compounds such as pyrroles, pyrazoles, furans, furanones, isoxazoles, pyrimidines, quinolines, indolizidinones.

  19. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction

    International Nuclear Information System (INIS)

    Hossain, Shahin; Park, Jihoon; Park, Minkyu; Jin, Myungjong

    2013-01-01

    We have demonstrated an efficient and eco-friendly procedure for the synthesis of ynones using silica supported thiol-palladium complex as a recyclable catalyst under copper free mild reaction conditions. The material was synthesized by post grafting of 3-mercaptopropyltrimethoxysilane on amorphous silica and subsequently Pd(II) attached onto thiol groups. This synthetic method has notable advantages because it involves easily available, less costly and produces an easily recyclable catalyst in high yields of the products. The mild reaction conditions encouraged us to further extension for the development of novel multicomponent reactions. Thus we have explained the three component synthesis of pyrazoles in one-pot fashion with good yields. Specifically, this simple procedure for the ynone synthesis and this approach to synthesize N-containing heterocycles may be valuable tool in future. The acyl Sonogashira reaction between acyl chlorides and terminal alkynes is one of the most useful method for the preparation of ynones which are important intermediates to prepare versatile pharmaceutically and biologically active heterocyclic compounds such as pyrroles, pyrazoles, furans, furanones, isoxazoles, pyrimidines, quinolines, indolizidinones

  20. Impact of Micro Silica Surface Hydroxyl Groups on the Properties of Calcium Silicate Products

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Jørgensen, Bianca; Yu, Donghong

    2017-01-01

    Porous calcium silicates are widely used in insulating systems for high temperature applications. In the production of porous calcium silicates, quicklime and micro silica have been utilized as key raw materials. In the reaction between SiO2 and CaO, the dissolution of SiO2 has been proven...

  1. Supercritical carbon dioxide versus toluene as reaction media in silica functionalisation: Synthesis and characterisation of bonded aminopropyl silica intermediate.

    Science.gov (United States)

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D

    2017-06-09

    This research reports supercritical carbon dioxide versus toluene as reaction media in silica functionalisation for use in liquid chromatography. Bonded aminopropyl silica (APS) intermediates were prepared when porous silica particles (Exsil-pure, 3μm) were reacted with 3-aminopropyltriethoxysilane (3-APTES) or N,N-dimethylaminopropyltrimethoxysilane (DMAPTMS) using supercritical carbon dioxide (sc-CO 2 ) and toluene as reaction media. Covalent bonding to silica was confirmed using elemental microanalysis (CHN), thermogravimetric analysis (TGA), zeta potential (ξ), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The results demonstrate that under sc-CO 2 conditions of 100°C/414bar in a substantial reduced time of 3h, the surface coverage of APS (evaluated from%C obtained from elemental analysis) prepared with APTES (%C: 8.03, 5.26μmol/m -2 ) or DMAPTES (%C: 5.12, 4.58μmol/m 2 ) is somewhat higher when compared to organic based reactions under reflux in toluene at a temperature of 110°C in 24h with APTES (%C: 7.33, 4.71μmol/m 2 ) and DMAPTMS (%C: 4.93, 4.38μmol/m 2 ). Zeta potential measurements revealed a change in electrostatic surface charge from negative values for bare Exsil-pure silica to positive for functionalised APS materials indicating successful immobilization of the aminosilane onto the surface of silica. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effects of supplementary cementitious materials on alkali-silica reaction : [technical summary].

    Science.gov (United States)

    2015-07-01

    The Kansas Department of Transportation (KDOT) has controlled alkali-silica : reaction (ASR) for more than 70 years through the use of selected aggregates. : Sand and gravel sources had to be tested using Kansas Test Method KTMR- : 23 (1999), Wetting...

  3. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  4. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  5. Study of the main parameters involved in carbothermal reduction reaction of silica aiming to obtain silicon nitride powder

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Greca, M.C.

    1989-01-01

    The influence of main parameters involved in the method of silicon nitride attainment by carbothermal reduction of silica followed by nitridation were studied in isothermal experiments of fine powder mixtures of silica and graphite in a nitrogen gas flow. The time, temperature, rate C/SiO 2 and flow of nitrogen were varied since they are the main parameters involved in this kind of reaction. The products of reaction were analysed by X-ray diffraction to identify the crystalline phases and as a result was obtained the nucleation of silicon nitride phase. Meanwhile, corroborating prior results, we verified to be difficult the progress of the reaction and the inhibition of formation of silicon carbide phase, the last one being associated to the formation of silicon nitride phase due to thermodynamic matters [pt

  6. Rice Husk Ash as a Renewable Source for the Production of Value Added Silica Gel and its Application: An Overview

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2012-06-01

    properties assumes importance at this juncture. Copyright © 2012 by BCREC UNDIP. All rights reserved.Received: 23th November 2011, Revised: 09th January 2012, Accepted: 10th January 2012[How to Cite: R. Prasad, and M. Pandey. (2012. Rice Husk Ash as a Renewable Source for the Production of Value Added Silica Gel and its Application: An Overview. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 1-25. doi:10.9767/bcrec.7.1.1216.1-25][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1216.1-25 ] | View in 

  7. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  8. Investigation on lithium migration for treating alkali-silica reaction affected concrete

    NARCIS (Netherlands)

    Silva De Souza, L.M.; Polder, R.B.; Copuroglu, O.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major deterioration mechanisms that affect numerous concrete structures worldwide. During the reaction, hydroxyl and alkali (sodium and potassium ) ions react with certain siliceous compounds in the aggregate, forming a hygroscopic gel. The gel absorbs

  9. Effect of Alkali-Silica Reaction on Shear Strength of Reinforced Concrete Structural Members

    Energy Technology Data Exchange (ETDEWEB)

    Hariri-Ardebili, Mohammad [Univ. of Colorado, Boulder, CO (United States); Saouma, Victor [Univ. of Colorado, Boulder, CO (United States); Le Pape, Yann [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Alkali-silica reaction (ASR) was discovered in the early 40s by Stanton (1940) of the California Division of Highways. Since, it has been recognized as a major degradation mechanism for concrete dams and transportation infrastructures. Sometimes described as the ’cancer of concrete’, this internal swelling mechanism causes expansion, cracking and loss of mechanical properties. There are no known economically viable solutions applicable to massive concrete to prevent the reaction once initiated. The e ciency of the mitigation strategies for ASR subjected structures is limited. Several cases of ASR in nuclear generating stations have been disclosed in Japan (Takatura et al. 2005), Canada at Gentilly 2 NPP (Tcherner and Aziz 2009) 1, and more recently, in the United States for which the U.S. Nuclear Regulatory Commission issued Information Notice (IN) 2011-20, ’Concrete Degradation by Alkali Silica Reaction,’ on November 18, 2011, to provide the industry with information related to the ASR identified at Seabrook. Considering that US commercial reactors in operation enter the age when ASR degradation can be visually detected and that numerous non nuclear infrastructures (transportation, energy production) have already experienced ASR in a large majority of the States (e.g., Department of Transportation survey reported by Touma (Touma 2000)), the susceptibility and significance of ASR for nuclear concrete structures must be addressed in the perspective of license renewal and long-term operation beyond 60 years. The aim of this report is to perform an extensive parametric series of 3D nonlinear finite element analyses of three di erent “beam-like” geometries, including two di erent depths, three di erent types of boundary conditions, and four other parameters: namely, the ASR volumetric expansion, the reinforcement ratio, the loss of elastic modulus induced by ASR and the loss of tensile strength caused by ASR.

  10. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  11. Nondestructive analysis of alkali-silica reaction damage in concrete slabs using shear waves

    Science.gov (United States)

    Khazanovich, Lev; Freeseman, Katelyn; Salles, Lucio; Clayton, Dwight

    2018-04-01

    Alkali-silica reaction (ASR) is the chemical reaction that occurs in concrete. It is caused by the interaction of alkalis in Portland cement and silica in aggregates and results in microcracks within the material. This type of damage has been the focus of nondestructive evaluation efforts in recent history, but no work was done on in-situ structures or large-scale samples. To address these limitations, an ultrasonic linear array device, MIRA, was utilized for this research. An experimental investigation was performed on four slabs with various levels of alkali-silica reaction at the Electric Power Research Institute (EPRI) [1]. One-period impulses with a target of 50kHz center frequency were selected in this study. We propose the use of the Hilbert Transform Indicator (HTI) for quantification of ASR damage [2]. A higher HTI value would be indicative of damaged concrete, while a low value represents sound concrete. In general, values below 90 are regarded as an indicator of sound concrete while values above 100 indicate the presence of damage [3]. The ability of the HTI values to distinguish between areas of damaged concrete was evident via the production of color intensity maps. The maps show that the control specimen, was in good condition, while other slabs exhibited higher levels of damage as indicated by the HTI values. It should be noted that extreme damage conditions were not present in any of the slabs. Evaluation of migration-based reconstructions can give a qualitative characterization of large scale or excessive subsurface damage. However, for detection of stochastic damage mechanisms such as freeze-thaw damage, evaluation of the individual time-history data can provide additional information. A comparison of the spatially diverse measurements on several concrete slabs with varying freeze-thaw damage levels is given in this study. Signal characterization scans of different levels of freeze-thaw damage at various transducer spacing is investigated. The

  12. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13 C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  13. Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction

    International Nuclear Information System (INIS)

    Turanli, L.; Bektas, F.; Monteiro, P.J.M.

    2003-01-01

    The objective of this experimental study was to use ground clay brick (GCB) as a pozzolanic material to minimize the alkali-silica reaction expansion. Two different types of clay bricks were finely ground and their activity indices were determined. ASTM accelerated mortar bar tests were performed to investigate the effect of GCB when used to replace cement mass. The microstructure of the mortar was investigated using scanning electron microscopy (SEM). The results showed that the GCBs meet the strength activity requirements of ASTM. In addition, the GCBs were found to be effective in suppressing the alkali-silica reaction expansion. The expansion decreased as the amount of GCBs in the mortar increased

  14. Granulated Silica Method for the Fiber Preform Production

    Directory of Open Access Journals (Sweden)

    Sönke Pilz

    2017-07-01

    Full Text Available During the past few years, we have studied the granulated silica method as a versatile and cost effective way of fiber preform production and the sol-gel method. Until now, we have used the sol-gel technology together with an iterative re-melting and milling step in order to produce rare earth or transition metal doped granular material for the granulated silica method. Here, we present that the iterative re-melting (laser-assisted and milling step is no longer needed to reach a high homogeneity. The sol-gel method also offers a high degree of compositional flexibility with respect to dopants; it further facilitates achieving high concentrations, even in cases when several dopants are used. We employed optical active doped sol-gel derived granulate for the fiber core, whereas pure or index-raised granulated silica has been employed for the cladding. Based on the powder-in-tube technique, where silica glass tubes are appropriately filled with these granular materials, fibers has been directly drawn (“fiber rapid prototyping”, or eventually after an additional optional quality enhancing vitrification step. The powder-in-tube technique is also ideally suited for the preparation of microstructured optical fibers.

  15. Alkali-silica reaction of aggregates in real concrete and mortar specimen

    Czech Academy of Sciences Publication Activity Database

    Lukschová, Šárka

    -, č. 18 (2009), s. 75-78 ISSN 1214-9691 Institutional research plan: CEZ:AV0Z30460519 Keywords : alkali-silica reaction * concrete * mocroscopy Subject RIV: DB - Geology ; Mineralogy www.irsm.cas.cz/?Lang=CZE&Menu=25,29,0,0

  16. Study on lithium migration for electrochemical treatment of concrete affected by alkali-silica reaction

    NARCIS (Netherlands)

    Souza, L.M.S.; Copuroglu, O.; Polder, R.B.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major durability problems in concrete and affects many structures worldwide. Nevertheless, currently, there are no definite treatments to stop it once it has star ted. Lithium is known to have beneficial effects on ASR. Indeed, the use of lithium-based

  17. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    Science.gov (United States)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  18. The effects of supplementary cementitious materials on alkali-silica reaction.

    Science.gov (United States)

    2015-07-01

    The Kansas Department of Transportation (KDOT) has controlled alkali-silica reaction (ASR) for more than : 70 years through the use of selected aggregates. Sand and gravel sources had to be tested using Kansas Test Method : KTMR-23 (1999), Wetting an...

  19. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis

    International Nuclear Information System (INIS)

    Haha, M. Ben; Gallucci, E.; Guidoum, A.; Scrivener, K.L.

    2007-01-01

    Scanning Electron Microscopy Image Analysis (SEM-IA) was used to quantify the degree of alkali silica reaction in affected microbars, mortar and concrete prisms. It was found that the degree of reaction gave a unique correlation with the macroscopic expansion for three different aggregates, stored at three temperatures and with two levels of alkali. The relationships found for the concretes and the mortars overlap when normalised by the aggregate content. This relationship seems to be linear up to a critical reaction degree which coincides with crack initiation within the reactive aggregates

  20. Experimental collaboration for thick concrete structures with alkali-silica reaction

    Science.gov (United States)

    Ezell, N. Dianne Bull; Hayes, Nolan; Lenarduzzi, Roberto; Clayton, Dwight; Ma, Z. John; Le Pape, Sihem; Le Pape, Yann

    2018-04-01

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.

  1. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  2. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  3. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  4. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    International Nuclear Information System (INIS)

    Mo Xiangyin; Fournier, Benoit

    2007-01-01

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials

  5. Petrography study on altered flint aggregate by alkali-silica reaction

    International Nuclear Information System (INIS)

    Bulteel, D.; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-01-01

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K + and Ca 2+ penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction

  6. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  7. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    International Nuclear Information System (INIS)

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G.

    2003-01-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites

  8. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  9. High-Yield and Sustainable Production of Phosphatidylserine in Purely Aqueous Solutions via Adsorption of Phosphatidylcholine on Triton-X-100-Modified Silica.

    Science.gov (United States)

    Zhang, Xiaoli; Li, Binglin; Wang, Jiao; Li, Huanyu; Zhao, Binxia

    2017-12-13

    Triton X-100 was covalently bound to a surface of silica and acted as an anchor molecule to facilitate the adsorption of phosphatidylcholine (PC) in a purely aqueous solution. The silica-adsorbed PC obtained was successfully used for phospholipase D (PLD)-mediated transphosphatidylation in the production of phosphatidylserine (PS). Organic solvents were completely avoided in the whole production process. The PC loading and PS yield reached 98.9 and 99.0%, respectively. Two adsorption models were studied, and the relevant parameters were calculated to help us understand the adsorption and reaction processes deeply. In addition, the silica-adsorbed PC provides a promising way to continuously biosynthesize PS. A packed-bed reactor was employed to demonstrate the process flow of the continuous production of PS. The recyclability and stability of the Triton-X-100-modified silica were excellent, as demonstrated by its use 30 times during continuous operation without any loss of the productivity.

  10. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  11. Production and Application of Olivine Nano-Silica in Concrete

    Science.gov (United States)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  12. The silica fume on the production of resistant

    International Nuclear Information System (INIS)

    Liborio, J.B.L.; Melo, A.B. de; Souza, M.F. de; Silva, I.J. da

    1998-01-01

    New developments in the field of the materials science and engineering have resulted in news technologies for protection of concrete made of Portland cement. The final product associates higher durability to very high mechanical resistance. Concrete is a material that presents a random distribution of types and sizes of pores. This porosity not just implies in differences in the mechanical properties but it also affect the permeability, allowing the movement of possible fluids that can degrade partially or totally the concrete. The active silica addition of high pozzolanics provides to concrete significant improvements turning it most compact, with smaller numbers of intercommunicated pores and, therefore, resistance to several aggressiveness sources and a material of high performance. This paper discuss the potential applications of the high performance concrete and the expectations for its currents use in the civil construction. (author)

  13. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions

    KAUST Repository

    Fihri, Aziz; Cha, Dong Kyu; Bouhrara, Mohamed; Al Mana, Noor; Polshettiwar, Vivek

    2011-01-01

    Noble amines recycled: Fibrous high-surface-area nano-silica functionalized with aminopropyl groups and loaded with well-dispersed Pd nanoparticles is evaluated for the Suzuki coupling of aromatic halides. It is active for the reaction of a range of aryl bromides and iodides as well as chlorides with aryl boronic acids in good to excellent yields. The catalyst can be recovered and reused for a number of cycles with negligible loss in activity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions

    KAUST Repository

    Fihri, Aziz

    2011-11-15

    Noble amines recycled: Fibrous high-surface-area nano-silica functionalized with aminopropyl groups and loaded with well-dispersed Pd nanoparticles is evaluated for the Suzuki coupling of aromatic halides. It is active for the reaction of a range of aryl bromides and iodides as well as chlorides with aryl boronic acids in good to excellent yields. The catalyst can be recovered and reused for a number of cycles with negligible loss in activity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Investigation of structural integrity for turbine generator foundation affected by alkali-silica reaction

    International Nuclear Information System (INIS)

    Ryo Fujimoto; Hiroshi Shimizu; Hisashi Sekimoto; Yuichi Watanabe; Tatsuya Ishikawa

    2005-01-01

    Turbine Generator Foundation is a reinforced concrete structure having a table deck to support equipments and columns to support the table deck. After operation of the plant, the expansion of the table deck in turbine longitudinal axis in the structure has been observed. By investigation of concrete material property, it is found that the expansion has been caused by alkali-silica reaction (ASR). In this study, we evaluate the material properties of the structure affected by ASR and safety margin of capacity of the structure by nonlinear analysis using beam element model with those material properties. (authors)

  16. Particle size effect of redox reactions for Co species supported on silica

    International Nuclear Information System (INIS)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki; Yamamoto, Yusaku; Yamashita, Shohei; Katayama, Misaki; Inada, Yasuhiro

    2016-01-01

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co 3 O 4 species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particles and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co 3 O 4 was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO 2 -supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.

  17. Detecting alkali-silica reaction in thick concrete structures using linear array ultrasound

    Science.gov (United States)

    Bull Ezell, N. Dianne; Albright, Austin; Clayton, Dwight; Santos-Villalobos, Hector

    2018-03-01

    Commercial nuclear power plants (NPPs) depend heavily on concrete structures, making the long-term performance of these structures crucial for safe operation, especially with license period extensions to 60 years and possibly beyond. Alkali-silica reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, noncrystalline silica (aggregates). In the presence of water, an expansive gel is formed within the aggregates, which results in microcracks in aggregates and adjacent cement paste. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, flexural stiffness, shear strength, and tensile strength. Currently, no nondestructive evaluation methods have proven effective in identifying ASR before surface cracks form. ASR is identified visibly or by petrographic analysis. Although ASR definitely impacts concrete material properties, the performance of concrete structures exhibiting ASR depends on whether or not the concrete is unconfined or confined with reinforcing bars. Confinement by reinforcing bars restrainsthe expansion of ASR-affected concrete, similar to prestressing, thus improving the performance of a structure. Additionally, there is no direct correlation between the mechanical properties of concrete sample cores and the in-situ properties of the concrete. The University of Tennessee-Knoxville, Oak Ridge National Laboratory, and a consortium of universities have developed an accelerated ASR experiment. Three large concrete specimens, representative of NPP infrastructure, were constructed containing both embedded and surface instruments. This paper presents preliminary analysis of these specimens using a frequency-banded synthetic aperture focusing technique.

  18. A proposed aging management program for alkali silica reactions in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E., E-mail: saouma@colorado.edu; Hariri-Ardebili, Mohammad A.

    2014-10-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort.

  19. A proposed aging management program for alkali silica reactions in a nuclear power plant

    International Nuclear Information System (INIS)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad A.

    2014-01-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort

  20. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  1. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  2. Volcanic Aggregates from Azores and Madeira Archipelagos (Portugal): An Overview Regarding the Alkali Silica Reactions

    Science.gov (United States)

    Medeiros, Sara; Ramos, Violeta; Fernandes, Isabel; Nunes, João Carlos; Fournier, Benoit; Santos Silva, António; Soares, Dora

    2017-12-01

    Alkali-silica reaction (ASR) is a type of deterioration that has been causing serious expansion, cracking and durability/operational issues in concrete structures worldwide. The presence of sufficient moisture, high alkali content in the cement paste and reactive forms of silica in the aggregates are the required conditions for this reaction to occur. Reactive aggregates of volcanic nature have been reported in different countries such as Japan, Iceland and Turkey, among others. The presence of silica minerals and SiO2-rich volcanic glass is regarded as the main cause for the reactivity of volcanic rocks. In Portugal, volcanic aggregates are mainly present in Azores and Madeira Archipelagos and, for several years, there was no information regarding the potential alkali-reactivity of these rocks. Since the beginning of this decade some data was obtained by the work of Medeiros (2011) and Ramos (2013) and by the national research projects ReAVA, (Characterization of potential reactivity of the volcanic aggregates from the Azores Archipelago: implications on the durability of concrete structures) and IMPROVE (Improvement of performance of aggregates in the inhibition of alkali-aggregate reactions in concrete), respectively. In order to investigate the potential alkali-reactivity of aggregates from both archipelagos, a total of sixteen aggregates were examined under the optical microscope and, some of them, also under the Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy. A set of geochemical analyses and laboratory expansion tests were also performed on those volcanic aggregates. The main results showed that the presence of volcanic glass is rare in both archipelagos and that the samples of Madeira Archipelago contain clay minerals (mainly from scoria/tuff formations inter-layered with the lava flows), which can play a role in concrete expansion. The results of the laboratory tests showed that one of the samples performed as potentially reactive

  3. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Science.gov (United States)

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  4. Preparation and characterization of rice hull silica products

    International Nuclear Information System (INIS)

    Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.

    2008-01-01

    Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x

  5. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  6. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin; Hamieh, Ali Imad Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D’ Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-01

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  7. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  8. Influence of alkali-silica reaction on the physical, mechanical, and structural behaviour of reinforced concrete

    DEFF Research Database (Denmark)

    Barbosa, Ricardo Antonio

    Alkali-silica reaction (ASR) is one of the major concrete deterioration mechanisms in the world. Cracking in concrete structures due to ASR has been observed worldwide. In Denmark numerous concrete structures have been built with a critical amount of ASR-reactive aggregate, mostly as porous opaline...... and porous calcareous opaline flint in the fine aggregate fraction. During the last few decades, an increasing number of bridges in Denmark have been severely damaged due to ASR. In the most severe cases, the ASR-damaged bridges have been demolished and reconstructed due to uncertainty about their residual...... following features in common: (a) significant amount of ASR cracks were observed on and inside the slabs, (b) the ASR cracks were oriented parallel to the plane of the slabs, and (c) ASR occurred in the fine aggregate fraction. In this PhD study, both the compressive strength and tensile strength of drilled...

  9. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  10. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  11. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  12. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gribok, Andrei V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  13. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  14. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    Directory of Open Access Journals (Sweden)

    Takahashi Ryo

    2011-10-01

    Full Text Available Abstract Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w. Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design

  15. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    International Nuclear Information System (INIS)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-01-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), 29 Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type

  16. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pignatelli, Rossella, E-mail: rossellapignatelli@gmail.com [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano (Italy); Comi, Claudia, E-mail: comi@stru.polimi.it [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  17. High Purity Silica Production from Rice Husk Ash

    International Nuclear Information System (INIS)

    Yaminn Lwin; April Nwayy Nwayy Htett

    2010-12-01

    In this research, two types of raw material source, rice husk and rice husk ash, were used. Among the rice husk samples, taungpyan sample was chosen because it contains the maximum silica content and treated with (1,3,5) wt% sulphuric acid (96% concentration) and citric acid (99% concentration). These acid treated taungpyan samples and nonacid treated taungpyan sample were burned at 900C for 30 min. For rice husk ash samples, ash samples from fluidized combustor, fluidized gasifier and brick factory were collected. All of the rice husk ash samples were purified by alkaline extraction method with (2-3) N NaOH solution and followed by acid precipitation method with 5 N H2SO4 solution. According to the analysis and characterization, acid treated taungpyan sample (5 wt% citric acid) with the highest silica content (99.906 wt% and crystallization form) was obtained.

  18. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  19. Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions.

    Science.gov (United States)

    Alnaggar, Mohammed; Di Luzio, Giovanni; Cusatis, Gianluca

    2017-04-28

    Alkali Silica Reaction (ASR) is known to be a serious problem for concrete worldwide, especially in high humidity and high temperature regions. ASR is a slow process that develops over years to decades and it is influenced by changes in environmental and loading conditions of the structure. The problem becomes even more complicated if one recognizes that other phenomena like creep and shrinkage are coupled with ASR. This results in synergistic mechanisms that can not be easily understood without a comprehensive computational model. In this paper, coupling between creep, shrinkage and ASR is modeled within the Lattice Discrete Particle Model (LDPM) framework. In order to achieve this, a multi-physics formulation is used to compute the evolution of temperature, humidity, cement hydration, and ASR in both space and time, which is then used within physics-based formulations of cracking, creep and shrinkage. The overall model is calibrated and validated on the basis of experimental data available in the literature. Results show that even during free expansions (zero macroscopic stress), a significant degree of coupling exists because ASR induced expansions are relaxed by meso-scale creep driven by self-equilibriated stresses at the meso-scale. This explains and highlights the importance of considering ASR and other time dependent aging and deterioration phenomena at an appropriate length scale in coupled modeling approaches.

  20. Study on the influence of Alkali-Silica reaction on structural behavior of reinforced concrete members

    International Nuclear Information System (INIS)

    Murazumi, Y.; Watanabe, Y.; Matsumoto, N.; Mitsugi, S.; Takiguchi, K.; Masuda, Y.

    2005-01-01

    Expansion produced by alkali-silica reaction (ASR) has been observed in the turbine generator foundation of the unit 1, Ikata nuclear power station, Japan. The foundation is a reinforced concrete frame structure. This paper, as a part of the series of investigation and experiments, discusses tests on structural behavior of concrete members affected by ASR. The purpose of the study is to obtain experimental results on the effects of ASR on bending and shear behavior of reinforced concrete beams and shear walls, and compare with the calculated results by present evaluation methods for normal concrete structures For the experiments on bending/shear behavior of beam, bending test models with a small amount of rebar and shear test models with larger amount were made of concrete in which ASR was induced by adding alkali or concrete without ASR. It was found from the results that bending strength of the bending test models and shear strength of the shear test models did not fall, nor was it lower than the calculated strength for concrete members without ASR. In the shear wall test, the two test models were made of either concrete with ASR or one without it. Horizontal load was applied with actuators on the test model fixed on the test floor, while vertical load was applied with oil jacks. The results did not indicate that ASR lowered the stiffness or strength of the wall test models, showing the strength was able to be calculated with the same formula for reinforced concrete wall without ASR. (authors)

  1. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    Science.gov (United States)

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  2. Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect of OAcˉ, PPh3 and Clˉ ligands on catalytic activity

    Science.gov (United States)

    Das, Trisha; Uyama, Hiroshi; Nandi, Mahasweta

    2018-04-01

    Three new palladium catalysts, PdCat-I, PdCat-II and PdCat-III, immobilized over heterogeneous silica support have been synthesized using different ligands attached to the palladium precursor. The ligands that have been used in this study are acetate, triphenylphosphine and chloride in PdCat-I, PdCat-II and PdCat-III, respectively. The ligands have different effect on stability of the compounds and impart different oxidation states to the metal center. The materials have been characterized by powder X-ray diffraction, nitrogen adsorption-desorption studies, transmission electron microscopy, thermal analysis, and different spectroscopic techniques. The Pd-content of the samples have been determined by ICP-AES analysis. The materials have been used as catalysts for Suzuki coupling reaction of aryl halides with phenylboronic acid under mild conditions. A comparative study has been carried out to ascertain the effect of the nature of different ligands on the outcome of the catalytic reactions. Products have been identified and estimated by 1H NMR and gas chromatography. The results show that the best yields are obtained with the catalyst containing triphenylphosphine as the ligand in methanol. Such type of work to study the effect of ligand on Suzuki coupling reaction over functionalized mesoporous silica heterogeneous catalysts have not been carried out so far.

  3. Effect of SiO2 concentration in silica sol on interface reaction during titanium alloy investment casting

    Directory of Open Access Journals (Sweden)

    Ya-meng Wei

    2018-01-01

    Full Text Available Using silica sol as a binder for titanium investment casting is very attractive due to its good stability and reasonable cost as compared with yttrium sol and zirconium sol. However, the mechanism of interface reaction in the related system remains unclear. In this investigation, the interface reaction between Y2O3-SiO2 (Y-Si shell mold and titanium alloys was studied. A group of shell molds were prepared by using Y2O3 sand and silica sol with different contents of SiO2. Ti-6Al-4V alloy was cast under vacuum by gravity casting through cold crucible induction melting (CCIM method. Scanning electron microscopy (SEM and energy dispersive x-ray spectroscopy (EDS were employed to characterize the micromorphology and composition of the reaction area, respectively. X-ray photoelectron spectroscopy (XPS was used to confirm the valence state of relevant elements. White light interferometer (WLI was used to obtain the surface topography of Y-Si shells. The results show that the thickness of reaction layers is below 3 μm when the SiO2 content of silica sol is below 20wt.%. Whereas, when the SiO2 content increases to 25wt.%, the thickness of the reaction layer increases sharply to about 15 μm. There is a good balance between chemical inertness and mechanical performance when the SiO2 content is between 15 and 20wt.%. Moreover, it was found that the distribution of SiO2 and the roughness at the surface of the shell are the key factors that determine the level of reaction.

  4. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  5. Quantitative diagnosis and prognosis framework for concrete degradation due to alkali-silica reaction

    Science.gov (United States)

    Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek

    2017-02-01

    This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.

  6. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  7. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation

    NARCIS (Netherlands)

    Zheng, Kunpeng; Lukovic, M.; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a

  8. η production in proton-nucleus reactions

    International Nuclear Information System (INIS)

    Cassing, W.; Batko, G.; Vetter, T.; Wolf, G.

    1991-01-01

    The production of η-mesons in proton-nucleus reactions is analysed with respect to primary nucleon-nucleon (NN→NN η ) and secondary pion-nucleon (πN→ηN) production processes on the basis of Hartree-Fock groundstate momentum distributions and free on-shell production processes. The folding model adopted compares well for meson production with more involved simulations based on VUU transport equations. Similar to K + production in proton-nucleus reactions the η-mesons are primarily produced by the πN→ηN channel. However, η-mesons are absorbed in nuclei via excitation of the N * (1535) resonance which leads to strong distortions of the primordial spectra. On the other hand, the experimental mass dependence of the differential cross sections might yield information about the in-medium properties of this resonance. (orig.)

  9. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  10. Direct synthesis of acid-base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions.

    Science.gov (United States)

    Shang, Fanpeng; Sun, Jianrui; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-03-01

    A series of efficient acid-base bifunctionalized hexagonal mesoporous silica (HMS) catalysts contained aminopropyl and propanesulfonic acid have been synthesized through a simple co-condensation by protection of amino group. The results of small-angle XRD, TEM, and N(2) adsorption-desorption measurements show that the resultant materials have mesoscopic structures. X-ray photoelectron spectroscopies, elemental analysis (EA), back titration, (29)Si NMR and (13)C NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The resultant catalysts exhibit excellent acid-basic properties, which make them possess high activity for one-pot deacetalization-Knoevenagel and deacetalization-nitroaldol (Henry) reactions. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  12. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  13. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  14. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir

    2017-04-06

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  15. POLYETHYLENEIMINE (PEI ON SILICA AS CATALYST IN KNOEVENAGEL AND MICHAEL REACTIONS

    Directory of Open Access Journals (Sweden)

    FATIHA ZAOUI

    2017-03-01

    Full Text Available After the synthesis of polyethylenimine supported on silica, it has been used as a new and efficient catalyst in Knoevenagel and Michael condensations. The presence of the polyethylenimine in the catalytic system together with silica displays an acido-basic character allows a better catalytic activity in the condensations. Carried out under microwave irradiation, without organic solvent and during short time, the syntheses are respectful towards green chemistry. The solid catalyst can be easily reused. This catalyst has the acido-basic character at the same time.

  16. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir; Merle, Nicolas; Minenkov, Yury; De Mallmann, Aimery; Samantaray, Manoja; Le Qué mé ner, Fré dé ric; Szeto, Kai C.; Abou-Hamad, Edy; Cavallo, Luigi; Taoufik, Mostafa; Basset, Jean-Marie

    2017-01-01

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  17. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  18. Investigation of safety margin for turbine generator foundation affected by Alkali Silica reaction based on non-linear structure analysis

    International Nuclear Information System (INIS)

    Shimizu, H.; Asai, Y.; Hosokawa, T.; Sekimoto, H.; Sato, K.; Oshima, R.; Takiguchi, K.; Masuda, Y.; Nishiguchi, I.

    2005-01-01

    A turbine generator foundation is a reinforced concrete structure having a table deck and columns to support equipments. After operation of the plant, the expansion of the table deck in turbine longitudinal axis has been observed. By investigation of concrete material properties, it was found that the expansion has been caused by alkali-silica reaction. This study has been performed to evaluate the safety allowance of strength capacity of the turbine generator foundation by nonlinear analysis using beam element model with elongation, rebar strain and material properties data which have been measured for almost 30 years in actual foundation. (authors)

  19. Prestressing of reinforcing bars in concrete slabs due to concrete expansion induced by Alkali-Silica Reaction

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Antonio Barbosa, Ricardo; Hoang, Linh Cao

    2017-01-01

    Alkali-silica reactions (ASR) in concrete bridges have been a major concern worldwide for many decades. In Denmark, several bridges are severely damaged due to ASR and over 600 bridges have the potential to develop ASR in the future. The majority of these bridges are slab-bridges. Despite the many...... cases, experimental research on structural safety and residual load carrying capacity of ASR-damaged bridges is limited. As ASR causes severe cracks in the concrete, which may affect the concrete compressive and tensile strength, concerns have been directed towards the residual shear capacity. Yet...

  20. Use of Fly Ash in the Mitigation of Alkali-Silica Reaction in Concrete

    Science.gov (United States)

    2010-11-12

    crystallinity of the silica and its solubility. Common reactive minerals susceptible to ASR include strained quartz, cristobalite, opal, obsidian , chert, and... obsidian .[5] Adequate Moisture Adequate moisture, the third and final necessary component for ASR to occur, is one of the key components in the

  1. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration ...

  2. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    Science.gov (United States)

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  4. Chromium containing silica: effect of ultrasonic and purification methods on color products

    International Nuclear Information System (INIS)

    Martines, M.A.U.; Jafelicci Junior, M.; Davolos, M.R.

    1990-01-01

    Chromium containing silica has numerous applications, such as: fiber-optics, luminescent materials, catalysts and pigments. In paint and ceramic pigments, chromate and dichromate ions, and silica are largely used. In this paper, it has been investigated the effect of pH, heating methods, and ultrasonic stirring on chromium oxidation states coprecipitated with silica. The material has been obtained from the coprecipitation of an aqueous diluted sodium silicate solution and acid chromium nitrate solution, purified by extractions and dialysis, and dried with microwave oven. Products have been characterized by X-ray powder diffraction, infrared vibrational spectroscopy and nitrogem adsorption isotherm (BET). Coprecipitates are non cristalline and the specific surface area value for sample obtained by conventional heating is smaller than the one for sample obtained by ultrasonic method. It is possible to obtain silica with different colors from blue due to the Cr(III), to yellow due to the Cr (VI), depending on the precipitation, purification and drying methods. (author) [pt

  5. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio

    2015-05-07

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  6. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio; Dong, Hailin; Rossini, Aaron J; Widdifield, Cory M.; Vummaleti, Sai V. C.; Minenkov, Yury; Poater, Albert; Abou-Hamad, Edy; Pelletier, Jeremie D. A.; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  7. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  8. Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Foger, K.; Anderson, J.R.

    1978-10-13

    The hydrocracking/hydroisomerization reaction of 20:1 hydrogen/neopentane at 455-625/sup 0/K was studied on platinum-exchanged sodium, calcium, and lanthanum Y zeolites and Aerosil-supported platinum of 1-20 nm average platinum particle size, by analysis of the product distribution, ESCA, and temperature-programed desorption. The results suggested that the reaction occurs only on platinum and that it proceeds by two parallel pathways which have different activation energies and whose relative proportion depends on the particle size. One pathway is the conventionally accepted one on low-index crystallite facets; the other proceeds on single-surface platinum atoms of low coordination (corner or edge atoms) which become more abundant at lower crystallite size. In both cases, the adsorbed intermediate may undergo either isomerization or hydrogenolysis; the selectivity depends on the hydrogen partial pressure and the relative strength of adsorption of hydrogen and neopentane. Neohexane isomerization selectivity on the same catalysts is consistent with a carbonium ion mechanism on a dual-function catalyst.

  9. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  10. Biodiesel production by using lipase immobilized onto novel silica-based hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nicolas [Centre de Recherche Paul Pascal, Pessac (France); Institut des Sciences Moleculaires, Talence (France); Garcia, Annick Babeau; Oestreicher, Victor; Durand, Fabien; Backov, Renal [Centre de Recherche Paul Pascal, Pessac (France); Deleuze, Herve [Institut des Sciences Moleculaires, Talence (France); Laurent, Guillaume; Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee, Paris (France)

    2010-07-01

    The covalent immobilization of crude lipases within silica-based macroporous frameworks have been performed by combining sol-gel process, concentrated direct emulsion, lyotropic mesophase and post-synthesis functionalizations. The assynthesized open cell hybrid monoliths exhibit high macroscopic porosity, around 90%, providing interconnected scaffold while reducing the diffusion low kinetic issue. The entrapment of enzymes in such foams deals with a high stability over esterification of fatty acids, hydrolysis of triglycerides (not shown herein) and biodiesel production by transesterification. (orig.)

  11. Permeability change with dissolution and precipitation reaction induced by highly alkaline plume in packed bed with amorphous silica particles

    International Nuclear Information System (INIS)

    Komatsu, Kyo; Kadowaki, Junichi; Niibori, Yuichi; Mimura, Hitoshi; Usui, Hideo

    2008-01-01

    A large amount of cement is used to construct of the geological disposal system. Such a material alters the pH of groundwater to highly alkaline region. The highly alkaline plume contains rich Ca ion compared to the surrounding environment, and the Ca ion reacts with soluble silicic acid. Its product would deposit on the surface of flow-paths in the natural barrier and decrease the permeability. In this study, the influence of Ca ions in highly alkaline plume on flow-paths has been examined by using packed bed column. The column was packed with the amorphous silica particles of 75-150 μm in diameter. The Ca(OH) 2 solution (0.78 mM, 2.58 mM, 4.37 mM, and 8.48 mM, pH: 12.2-12.4) was continuously injected into the column at a constant flow rate (5 ml/min, and 2 ml/min), and the change of permeability was monitored. At the same time, the concentrations of [Ca] total and [Si] in the eluted solution were measured by the inductively coupled plasma atomic emission spectrometry (ICP-AES). The Ca(OH) 2 solutions were prepared with CO 2 -free pure water, and filtrated through 0.45 μm filter. The permeability was normalized by the initial permeability value. In the experiment results, the permeability dramatically changed with increasing Ca concentration, because Ca ions and H 4 SiO 4 (due to the dissolution of SiO 2 ) produce C-S-H gel between the packed particles in the column. The SEM images and XRD analyses showed that the surface of SiO 2 particles was covered with the C-S-H gel precipitation. On the other hand, when the Ca concentration was relatively low, the permeability did not show remarkable change. For the cross section of SiO 2 particles, EPMA analysis suggested the consumption of Ca in the inner pore of the SiO 2 particles. However, the time-change in the concentrations of Si and Ca was not always simple. Such time-change strongly depended not only on pH or Ca concentration, but also on the flow rates. This suggested that mass transport controls the chemical

  12. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  13. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  14. Defect production in silica glasses under gamma-irradiation at the quenched nuclear reactor

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Kalanov, M.U.; Ibragimova, E.M.; Sandalov, V.N.; Muminov, M.L.

    2004-01-01

    Full text: Radiation defect production in oxides is highly interesting for atom and solar energy, and also for burying nuclear waste. Combine effect of neutron and gamma-radiation on materials was studied extensively and only neutrons are believed to displace atoms, although 60 Co-gamma quanta were proved to displace light anions (O, F) by inelastic mechanism. On the example of polished plates of pure fused quartz and barium-silica glasses containing nano-crystalline inclusions, and also nano-porous glass, the effect of gamma-radiation of the quenched reactor was studied in the energy range of 0.2-7 MeV. The time period was selected when practically constant current ∼10-20 nA is maintained in the ionizing chamber, corresponding to the average gamma-flux of 15-30 Gy/s. Optical absorption and photoluminescence spectra and also structure of the grasses were studied. It turned out, that the charged oxygen vacancies accumulation rate is higher in Barium glass than in the pure one, because for SiO 2 with small Z the photoelectric effect is weak, while the Compton scattering and photonuclear reactions prevail, and for Barium - just the opposite. The radiation-induced growth of the crystalline precipitates was noticed in the both glasses, which before had been attributed to the elastic atom displacements by fast neutrons. The density of Ba-glass increases with irradiation. The efficiency of defect production by the gamma-component even of the quenched reactor turned out much higher than that under irradiation with 60 Co gamma-source of ∼1.25 MeV to the equivalent dose at the current dose rate of ∼ 7 Gy/s (and before at 45 Gy/s). A 100-times increase of the surface proton conductivity was discovered in the porous glasses under gamma-irradiation due to water vapor radiolysis on the pore surface. The irradiated porous glass is recommended as an active electrode in the hydrogen fuel element. The work was done under the grant F2.1.2 from Center of Science and Technology

  15. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  16. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  17. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  18. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  19. Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics

    International Nuclear Information System (INIS)

    Dove, Patricia M.

    2000-01-01

    During the three years of this project, Professor Dove's laboratory made tremendous progress in understanding controls on amorphous silica dissolution kinetics in aqueous solutions. Our findings have already received considerable attention. In hydrothermal and low temperature studies, the work focused on determining quantitative and mechanistic controls on the most abundant silica polymorphs in Earth environments--quartz and amorphous silica. Our studies achieved goals set forth in the original proposal to establish a new quantitative understanding of amorphous silica dissolution. This support has resulted in 10 journal, 12 abstracts and 2 thesis publications. The PI and students were also recognized with 6 awards during this period. The 1998 EMSP conference in Chicago was an important meeting for our project. The symposium, enabled P.I. Dove to establish valuable contacts with ''users'' having specific needs for the findings of our EMSP project related to the urgency of problems in the Tanks Focus Area (TFA). Since that time, our working relations developed as Dove interacted with TFA scientists and engineers on the problems of waste glass properties. These interactions refined our experimental objectives to better meet their needs. Dove presented the results of EMSP research findings to a TFA subgroup at a Product Acceptance Workshop held in Salt Lake City during December 1998. The travel costs to attend this unanticipated opportunity were paid from EMSP project funds. In January 2000, Dove also attended a similar meeting in Atlanta with PNNL, SRL and BNF scientists/engineers to discuss new issues and make another level of decisions on the Product Acceptance goals. Our EMSP-funded research interfaced very well with the ongoing studies of Dr. Pete McGrail and colleagues in the Applied Geochemistry Group at PNNL. The value of our work to ''users'' was further demonstrated when Dove's EMSP-funded Postdoc, Dr. Jonathan Icenhower was hired by the same PNNL group. With

  20. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions

    Science.gov (United States)

    Shang, L.; Chou, I-Ming; Lu, W.; Burruss, Robert; Zhang, Y.

    2009-01-01

    Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 × 10−4 m OD, 9.9 × 10−5 m ID, and ∼0.01 m long) containing CO2 and H2were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm−1) and CO2 (near 1387 cm−1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s−1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick’s law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by:lnD=-(16.471±0.035)-44589±139RT(R2=0.99991)">lnD=-(16.471±0.035)-44589±139RT(R2=0.99991)where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1σ level. The slope corresponds to an activation energy of 44.59 ± 0.14 kJ/mol.The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur.

  1. Lung cell reactions in guinea pigs exposed to tobacco smoke and silica dust or bacterial lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, M; Rylander, R

    1984-02-01

    In order to investigate the possibility of the synergistic effects of tobacco smoke and/or silica dust (SiO2) or bacterial endotoxins (LPS), guinea pigs were exposed to combinations of these agents. A 15-day exposure to SiO2 alone caused a decrease in intracellular lysosomal enzymes of alveolar macrophages (AM) and an increase of lysosomal enzymes detected in lung lavage fluid which was present 16 weeks after exposure. The effect was the same in animals which received SiO2 in combination with tobacco smoke. Exposure to LPS caused an increase in the number of neutrophils recovered in lavage fluid. The increase in neutrophils was less in animals previously exposed to tobacco smoke alone or in combination with LPS. Acute exposure to LPS also caused an increase in lactate dehydrogenase, N-acetyl-beta-D-glucosaminidase and acid phosphatase activity detectable in lung lavage fluid. The increase was less pronounced in animals previously exposed to smoke. Cathepsin D was increased in AM after tobacco smoke exposure alone and was decreased to below control values of the animals which received an acute LPS exposure.

  2. Relevant parameters in the micro silica selection for the self-flowing ultra-low cement castables production

    International Nuclear Information System (INIS)

    Studart, A.R.; Pandolfelli, V.C.; Rodrigues, J.A.; Vendrasco, S.L.

    1997-01-01

    Self-flowing ultra-low cement castables typically contain a large fraction of the particles, usually fume silica, which increase their flowability and mechanical strength at low temperatures. Fume silicas available in the market differ mainly from their amount of impurities. It is assumed that the content of soluble alkali and free carbon containing in this raw-material affects strongly the processing of self-flowing castable. In this work high alumina castables with gap-sized particle size distribution were prepared to evaluate their flowability, workability and mechanical strength for each sort of fume silica studied. It was observed that the amount of impurities affects both deflocculation and setting time of the castables and their cold and hot mechanical strength. Considerations regarding the physical and chemical characteristics relevant for selecting fume silicas for the production of self-flowing castables are presented and discussed. (author)

  3. Spectroscopic and chromatographic characterisation of a pentafluorophenylpropyl silica phase end-capped in supercritical carbon dioxide as a reaction solvent.

    Science.gov (United States)

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D; Albert, Klaus

    2013-07-12

    This research uses solid-state nuclear magnetic resonance (NMR) spectroscopy to characterise the nature and amount of different surface species, and chromatography to evaluate phase properties of a pentafluorophenylpropyl (PFPP) bonded silica phase prepared and end-capped using supercritical carbon dioxide (sc-CO2) as a reaction solvent. Under sc-CO2 reaction conditions (at temperature of 100 °C and pressure of 414 bar), a PFPP silica phase was prepared using 3-[(pentafluorophenyl)propyldimethylchlorosilane] within 1h. The bonded PFPP phase was subsequently end-capped with bis-N,O-trimethylsilylacetamide (BSA), hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) within 1h under the same sc-CO2 reaction conditions (100 °C/4141 bar). Elemental microanalysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to provide support data to solid-state NMR and chromatographic evaluation. Results revealed a surface coverage of 2.2 μmol/m(2) for the non-end-capped PFPP silica phase while the PFPP phase end-capped with BSA gave a higher surface coverage (3.9 μmol/m(2)) compared to HMDS (2.9 μmol/m(2)) and TMCS (2.8 μmol/m(2)). (29)Si CP/MAS NMR analysis of the PFPP end-capped with BSA shows a significant decrease in the amount of Q(3) (free silanols) and Q(4) (siloxane groups) species, coupled with the absence of the most reactive Q(2) (geminal silanols) in addition to increased amount of a single resonance peak centred at +13 ppm (MH) corresponding to -Si-O-*Si-CH3 bond. (13)C CP/MAS NMR shows the resonance corresponding to the propyl linkage (CH3CH2CH2-) and methyl groups (Si(CH3)n) confirming successful silanisation and endcapping reactions in sc-CO2. Chromatographic evaluation of the BSA end-capped PFPP phase with Neue text mixture revealed improved chromatographic separation as evidenced in the enhanced retention of hydrophobic markers and decreased retention for basic solutes. Moreover, chromatography revealed a change in

  4. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad Amin [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States); Le Pape, Yann, E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Balaji, Rajagopalan [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States)

    2016-12-15

    Highlights: • Alkali–silica reaction (ASR) affects reinforced structures shear strength. • Statistical analysis indicates large scattering of post-ASR strength losses/gains. • Competitive structural and materials mechanisms affect the residual shear strength. - Abstract: The residual structural shear resistance of concrete members without shear reinforcement and subject to alkali–aggregate reaction (ASR) is investigated by finite element analysis. A parametric numerical study of 648 analyses considering various structural members’ geometries, boundary conditions, ASR-induced losses of materials properties, ASR expansions and reinforcement ratios is conducted. As a result of competitive mechanisms (e.g., ASR-induced prestressing caused by the longitudinal reinforcement) and loss of concrete materials properties, important scatter in terms of gain or loss of shear strength is observed: about 50% of the studied configurations lead to a degradation of structural performance. The range of variation in terms of post-ASR shear resistance is extremely scattered, in particular, when ASR results in out-of-plane expansion only. Influencing factors are derived by two methods: (i) visual inspection of boxplots and probability distributions, and (ii) information criteria within multiple-linear regression analysis.

  5. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.

  6. Alkali-silica reaction of aggregates for concrete pavements in Chihuahua’s State, Mexico

    Directory of Open Access Journals (Sweden)

    Olague, C.

    2002-12-01

    Full Text Available The concrete of pavements must resist the climatic conditions, heavy traffic, chemical agents or any other type of aggressive agent. A methodology for characterizing materials that would influence concrete durability was developed considering chemical and physical factors. This methodology allows the consideration of several factors like physiography, geology, and climate, among others that would be of great importance to prevent future durability problems of pavements. This methodology takes into account several tests and this paper presents the results of potential reactivity aggregates of the State of Chihuahua. The tests for evaluating the reactive siliceous aggregate and the potential alkali-silica reactivity were performed according to the: petrographic examination (ASTM C 295 and standard quick chemical test (ASTM C 289. 38% of the tested sites resulted innocuous, 48% potentially reactive and 13% reactive. It is discussed the benefit of applying a conscious methodology in order to obtain the best results with a representative quantity of tests.

    El hormigón de los pavimentos debe ser resistente a las condiciones climáticas, tránsito pesado, agentes químicos o cualquier otro tipo de agente agresivo. Se desarrolló una metodología para caracterización de materiales considerando factores físicos y químicos que influyen en la durabilidad del hormigón. Esta metodología se basa en la consideración de varios factores como: fisiografía, geología y clima, entre otros, que podrían ser de gran importancia para prevenir futuros problemas de durabilidad en pavimentos de hormigón. La metodología en cuestión considera varias pruebas, en este artículo se presentan los resultados de la reactividad potencial de los áridos del Estado de Chihuahua. Las pruebas para evaluar la reactividad de áridos silíceos y la reactividad potencial álcali-sílice fueron ejecutadas de acuerdo a: examen petrográfico (ASTM C 295 y la prueba qu

  7. Structure of fungal oxyluciferin, the product of the bioluminescence reaction.

    Science.gov (United States)

    Purtov, K V; Osipova, Z M; Petushkov, V N; Rodionova, N S; Tsarkova, A S; Kotlobay, A A; Chepurnykh, T V; Gorokhovatsky, A Yu; Yampolsky, I V; Gitelson, J I

    2017-11-01

    The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

  8. Fluorescent silica colloids for study and visualization of skin care products.

    Science.gov (United States)

    Iyer, Swaminathan; Kievsky, Yaroslav; Sokolov, Igor

    2007-08-01

    The efficacy of skin care products depends on the time and dynamics of their absorbance by the skin, and its spatial distribution on the skin. Regular scrape-based methods may depend on the operator and are destructive and invasive in nature. Here, we describe a novel method based on non-contact optical measurements to trace the location and dynamics of skin care products on the skin. We use fluorescent silica colloidal particles of micron sizes at a rather small concentration as non-invasive tracers. As an example of skin care products, we use two base materials: either glycerin or vaseline. A mixture of each product with fluorescent particles is applied on human skin. The amount of fluorescence is monitored by means of a fluorescent spectrometer. The scraping method is used to compare with the spectroscopic measurements. Fluorescent tracers make the skin care product visible under UV light. This allows obtaining an optical image of the spatial distribution of the product on the skin. The quantitative data of fluorescence are well correlated with the scrape data. Comparison of the difference in the spectral and scraped mass data reveals the details of accumulation of the skin products in skin cracks and crevices. We described an efficient non-invasive benign method to quantify dynamics and to perform mapping of emollients and humectants on the skin.

  9. Multiparticle production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Pelte, D.

    1980-01-01

    This lecture is concerned with the question how many particles and what kind of them are produced in heavy-ion collisions at energies about 10 MeV/n. We tend to assume that heavy-ion reactions at this energy are binary reactions. The experimental set consisting of two large ionization chambers serving to detection, in coincidence, the reaction fragments is described. With this set-up a number of reactions induced on 27 Al, 28 Si and 40 Ca by the 32 S beam of 135 and 190 MeV energy has been studied. Two-fragments inclusive and exclusive reactions were investigated. The assumption of a sequential statistical decay gives the best agreement with the data for all analyzed cases. (H.M.)

  10. Evaluation on an influence to turbine generator installed on a concrete foundation structure affected by alkali-silica reaction

    International Nuclear Information System (INIS)

    Takeo Takakura; Takashi Momoo; Shigeru Harada; Yoshihisa Asai; Takashi Hosokawa

    2005-01-01

    A turbine generator to be evaluated is a one with 566 MW capacity installed on a reinforced concrete supporting structure having a table deck portion where equipments are installed and columns to support on the table deck. After the initial operation of this turbine generator started, a difference from the initial setting at an installation stage was found at turbine generator in the annual inspection on 1979. The turbine generator foundation (herein after TG foundation) had expanded mainly longitudinal direction, and it was confirmed this expansion occurred due to affected by Alkali-Silica reaction (herein after ASR) according to concrete core samples tests. The measurement for TG foundation such as displacements started at this time. On the other hand, bearing metal temperatures and shaft vibration for the turbine generator have been continuously monitored by supervisory from initial operation. No abnormal alarm or trips by extraordinary metal temperature or axle vibration of the turbine generator due to TG foundation expansion affected by ASR have been arisen. However it is required to confirm sounding of this turbine generator in order to safely operation. The purpose of this paper checked and examined allowable capacity of turbine generator and TG foundation, in order to operate continuously and safely. (authors)

  11. Design, production, and characterization of artificial protein- and silica-based biomaterials

    Science.gov (United States)

    Marner, Wesley Darrell, II

    feature sizes on the order of nanometers. C. fusiformis mediates the deposition of these silica features using a family of peptides called silaffins. Silaffin peptides are generally short peptides (˜15 amino acids) rich in lysine residues, and these peptides often have post-translational modifications that include polyamine chains and phosphate groups. In vitro, the silaffin R5 has been shown to direct the deposition of silica to form spheres of uniform size. The silification and self-assembly characteristics of a silaffin-protein polymer chimera were investigated using a chemically synthesized fusion protein of the R5 silaffin and (EAK)1. The fusion protein is capable of self-assembly into fibrous hydrogels and still exhibits autosilification activity. While the silica spheres formed from R5 alone have a relatively uniform diameter (466+/-64nm), the size distribution of silica spheres formed by the chimera is bimodal (83+/-20nm and 463+/-78nm), indicating that the addition of the EAK domain is modulating the silification ability of the R5 peptide. It is also possible to modify the morphology of the matrix by changing the process conditions under which the silification occurs. Given the ability of protein polymers to self-assemble into a variety of matrix morphologies, the combination of silaffin peptides with self-assembling protein elements may provide an even greater range of available silica structures that are useful in an array of applications. Another use of the silaffin technology is in the generation of immobilized enzyme matrices. Immobilized enzyme systems often demonstrate greater stability and improved productivity over their soluble enzyme counterparts, and there is great interest in creating new routes to encapsulation of various enzymes. In these studies, the R5 silaffin was expressed as a translational fusion protein with four biomolecules (green fluorescent protein, phosphodiesterase, organophosphate hydrolase, and the cytochrome P450BM3). In each case

  12. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    Science.gov (United States)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  13. 11C-radioisotope study of methanol co-reaction with ethanol over Ni-MCM-41 silica-alumina and Ni-alumina

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Tsoncheva, T.; Kumar, N.; Murzin, D.Yu.

    2009-01-01

    Complete text of publication follows. The Ni modifies the properties of acidic alumina and light acidic MCM-41 silica-alumina supports. The radioisotopic method is a suitable tool for distinction of the 11 Cradioisotopic methanol and its co-derivates from derivates of non-radioactive ethanol on these catalysts. Experimental. The Ni/A l 2O 3 (5 wt % Ni) is commercially available while H-MCMN-41 (Si/Al=20) and Ni-ion-exchanged MCM-41 silica-alumina (5 wt % Ni) were prepared and characterized in previous works. Before catalysis the Ni/Al 2 O 3 and Ni-MCM-41 were pre-reduced. The 11 C-methanol was formed by a radiochemical process from 11 C-carbon dioxide produced at cyclotron (T 1/2 = 20.4 min). The mixture of equivalent volume of radioactive methanol and non-radioactive ethanol was introduced into glass tube micro-flow reactor at ambient temperature. After adsorption, the valves were closed and the catalyst was heated up to the required temperatures. The desorption rate of the remaining 11 C-derivatives on catalysts were continuously followed by radiodetectors and the derivatives of methanol with ethanol were analyzed by Radio/FID-gas chromatography (FID is coupled on-line with a radiodetector). The ethanol and its derivates were identified by FID while the 11 C-methanol and its co-derivates (with ethanol) were detected by both of FID and radiodetector. Results The 11 C-dimethyl ether was the common product of the single 11 C-methanol transformation on H-MCM-41, Ni-MCM-41 and Ni- Al 2 O 3 at low temperature (200-280 degC) due to middle strong acid sites. At higher temperature (280-350 degC), the dimethyl ether and hydrocarbons were the dominant products on H-MCM-41 while dimethyl ether selectivity decreased on Ni-alumina and Ni-MCM-41 in favor of methane. The selectivities of methanol to formaldehyde and methane were the highest on Ni-MCM-41. During co-reaction of 11 C-methanol with non-radioactive ethanol, the 11 C-labeled coethers, namely 11 C-methyl ethyl ether

  14. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  15. Quantitative assessment of alkali silica reaction potential of quartz-rich aggregates: comparison of chemical test and accelerated mortar bar test improved by SEM-PIA

    Czech Academy of Sciences Publication Activity Database

    Šachlová, Š.; Kuchařová, A.; Pertold, Z.; Přikryl, R.; Fridrichová, Michaela

    2017-01-01

    Roč. 76, č. 1 (2017), s. 133-144 ISSN 1435-9529 R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : accelerated mortar bar test * Alkali silica reaction * chemical test * electron microscopy * petrographic image analysis Subject RIV: DD - Geochemistry OBOR OECD: Environmental and geological engineering , geotechnics Impact factor: 1.901, year: 2016

  16. The Heck reaction in the production of fine chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de

    2001-01-01

    An overview is given of the use of the Heck reaction for the production of fine chemicals. Five commercial products have been identified that are produced on a scale in excess of 1 ton/year. The herbicide Prosulfuron™ is produced via a Matsuda reaction of 2-sulfonatobenzenediazonium on

  17. Agricultural waste as a source for the production of silica nanoparticles.

    Science.gov (United States)

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Nilsson, Jörgen

    2001-01-01

    Interesterification of a blend of palm stearin and coconut oil (75:25, w/w), catalyzed by an immobilized Thermomyces lanuginosa lipase by silica granulation, Lipozyme TL IM, was studied for production of margarine fats in a 1- or 300-kg pilot-scale batch-stirred tank reactor. Parameters...

  19. Preparation of silica stabilized biological templates for the production of metal and layered nanoparticles

    Science.gov (United States)

    Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael

    2013-02-26

    The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.

  20. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojie [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100101 (China); Jin, Zhiliang; Li, Shuben; Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Yuexiang [Department of Chemistry, Nanchang University, Nanjing Road 245, Nanchang, 330047 (China)

    2007-03-30

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 x 10{sup -4} mol dm{sup -3} (E/S = 1/3) to 7.24 x 10{sup -4} mol dm{sup -3} (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation ({lambda} {>=} 420 nm) can reach about 43 {mu}mol h{sup -1} and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed. (author)

  1. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Science.gov (United States)

    Zhang, Xiaojie; Jin, Zhiliang; Li, Yuexiang; Li, Shuben; Lu, Gongxuan

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 × 10 -4 mol dm -3 (E/S = 1/3) to 7.24 × 10 -4 mol dm -3 (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation (λ ≥ 420 nm) can reach about 43 μmol h -1 and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed.

  2. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  3. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which

  4. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  5. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO2 layers

    International Nuclear Information System (INIS)

    Sharma, Parul; Anguita, J V; Stolojan, V; Henley, S J; Silva, S R P

    2010-01-01

    A large area compatible and solid-state process for growing silica nanowires is reported using nickel, titanium and silicon dioxide layers on silicon. The silica nanowires also contain silicon, as indicated by Raman spectroscopy. The phonon confinement model is employed to measure the diameter of the Si rich tail for our samples. The measured Raman peak shift and full width at half-maximum variation with the nanowire diameter qualitatively match with data available in the literature. We have investigated the effect of the seedbed structure on the nanowires, and the effect of using different gas conditions in the growth stages. From this, we have obtained the growth mechanism, and deduced the role of each individual substrate seedbed layer in the growth of the nanowires. We report a combined growth mechanism, where the growth is initiated by a solid-liquid-solid process, which is then followed by a vapour-liquid-solid process. We also report on the formation of two distinct structures of nanowires (type I and type II). The growth of these can be controlled by the use of titanium in the seedbed. We also observe that the diameter of the nanowires exhibits an inverse relation with the catalyst thickness.

  6. Photochemical reaction products in air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, E R; Darley, E F; Taylor, O C; Scott, W E

    1961-01-01

    Isolation and purification of peroxyacetyl nitrate (PAN) from artificial photochemical reaction of olefins and NO/sub x/ in air are analyzed. Olefin splits at the double bond, one end forming carbonyl compound and the other yielding PAN, among others. At concentrations below 1 ppM, PAN causes plant damage. At a concentration of about 1 ppM, PAN is a strong eye irritant.

  7. Production of radioactive nuclides in inverse reaction kinematics

    International Nuclear Information System (INIS)

    Traykov, E.; Rogachevskiy, A.; Bosswell, M.; Dammalapati, U.; Dendooven, P.; Dermois, O.C.; Jungmann, K.; Onderwater, C.J.G.; Sohani, M.; Willmann, L.; Wilschut, H.W.; Young, A.R.

    2007-01-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly relevant when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented

  8. Gas-Solid Displacement Reactions for Converting Silica Diatom Frustules into MgO and TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kalem, Tugba [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Technology for the microfabrication of freely moving parts began with a Bell Labs microgear spun by an air jet, and electrostatic silicon micro motors in the mid-1980s. It continued with development work on micropositioning of optics, miniature heat exchangers, small fluidic devices, and chemical reaction chambers. Recently, there has been a great deal of interest centered on the design and manufacture of devices of nanometer proportions and this speculation has spawned a new industry named, nanotechnology. Despite the technological and economic promise of this technology, current commercial micro/mesofabrication methods have largely been based upon two-dimensional processing principles which is not well suited to the low-cost mass production of three-dimensional micro devices with complex geometries and meso/nanoscale features. Diatoms are three dimensional (3D) microstructures from nature that provide a practical alternative for nanotechnology and microfabrication. Diatoms (Figure 1) are single-celled micro algae that form rigid cell walls (frustules) composed of amorphous silica. Their dimensions can range from less than 1 micron to several hundreds of microns. They are distributed throughout the world in aquatic, semi-aquatic and moist habitats, and extremely abundant in freshwater and marine ecosystems. Diatoms are thought to be responsible for up to 25% of the world's net primary production of organic carbon (by transforming of carbon dioxide and water into sugars by photosynthesis). Approximately 105 unique diatom frustule shapes have been claimed to exist in nature. The frustules are composed of two valves that fit together like a petri-dish, connected to each other by one or more girdle bands. The frustule wall consists of a nanoporous assembly of silica nanoparticles. They absorb soluble silica from water even at extremely low concentrations and metabolize and deposit it as an external skeleton. Continued reproduction of a single parent

  9. Exclusive hadron production in two photon reactions

    International Nuclear Information System (INIS)

    Poppe, M.

    1986-02-01

    This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)

  10. A polyacrylonitrile copolymer-silica template for three-dimensional hierarchical porous carbon as a Pt catalyst support for the oxygen reduction reaction.

    Science.gov (United States)

    Liu, Minmin; Li, Jian; Cai, Chao; Zhou, Ziwei; Ling, Yun; Liu, Rui

    2017-08-01

    Herein, we report a novel route to construct a hierarchical three-dimensional porous carbon (3DC) through a copolymer-silica assembly. In the synthesis, silica acts as a hard template and leads to the formation of an interconnected 3D macropore, whereas styrene-co-acrylonitrile polymer has been used as both a carbon source and a soft template for micro- and meso-pores. The obtained 3DC materials possess a large surface area (∼550.5 m 2 g -1 ), which facilitates high dispersion of Pt nanoparticles on the carbon support. The 3DC-supported Pt electrocatalyst shows excellent performance in the oxygen reduction reaction (ORR). The easy processing ability along with the characteristics of hierarchical porosity offers a new strategy for the preparation of carbon nanomaterials for energy application.

  11. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  12. Tritium production in neutron induced reactions

    International Nuclear Information System (INIS)

    Krasa, A.; Andreotti, E.; Hult, M.; Marissens, G.; Plompen, A.; Angelone, M.; Pillon, M.

    2011-01-01

    We present an overview of the present knowledge of (n,t) reaction excitation functions in the 14-21 MeV energy range for Cd, Cr, Fe, Mg, Mo, Ni, Pb, Pd, Ru, Sn, Ti, Zr. Experimental data are compared with evaluated data libraries, cross-section systematics, and TALYS calculations. The new values for the "5"0Cr(n,t)"4"8V cross-section measured using γ-spectrometry at 15, 16, 17.3 MeV are presented. The trend of the results confirms that while early experimental data at 14.6 MeV are strongly overestimated, the calculations performed with the default version of TALYS strongly underestimate the excitation curve in the measured energy region

  13. Quantitation of Maillard reaction products in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    During processing of pet food, the Maillard reaction occurs, which reduces the bioavailability of essential amino acids such as lysine and results in the formation of advanced Maillard reaction products (MRPs). The aim of this study was to quantitate MRPs (fructoselysine (FL), carboxymethyllysine

  14. Coherent π0 production in neutrino reactions

    International Nuclear Information System (INIS)

    Rein, D.; Sehgal, L.M.

    1983-01-01

    We have calculated the cross section and angular distribution of the neutral current process ν+K -> ν+K+π 0 involving the coherent interaction of a neutrino with a complex nucleus. A contrast is made to incoherent production ν+n -> ν+n+π 0 on a single nucleon. The results are compared with observations from some recent experiments. (orig.)

  15. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  16. Influence of irradiation on reaction products of nitrite in foodstuffs

    International Nuclear Information System (INIS)

    Mirna, A.; Rau, G.

    1982-01-01

    Nitro alkanes and nitrolic acids are formed in foods by nitrosation reactions with nitrite. Among TEA-responsive compounds nitrolic acid behave to irradiation similar to N-nitrosamines. Some substances, extracted from spices, especially garlic, are also detectable by GC/TEA-chromatogramms of meat products and of reaction products from spices with nitrite show retention times not always clearly differentiated from those of NDMA, NDEA, NPIP and NPYR, respectively. Additional confirmation of such TEA positive compounds, therefore, is necessary. (orig.) [de

  17. Energy conservation and maximal entropy production in enzyme reactions.

    Science.gov (United States)

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    International Nuclear Information System (INIS)

    Gawlikowicz, W.; Agnihotri, D. K.; Baldwin, S. A.; Schroeder, W. U.; Toke, J.; Charity, R. J.; Sarantites, D. G.; Sobotka, L. G.; Souza, R. T. de; Barczyk, T.; Grotowski, K.; Micek, S.; Planeta, R.; Sosin, Z.

    2010-01-01

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for 136 Xe + 209 Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities, on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.

  19. Mitigation of ASR by the use of LiNO{sub 3}—Characterization of the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Lörtscher, Luzia [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland); Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Espinosa-Marzal, Rosa M. [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland)

    2014-05-01

    The influence of the LiNO{sub 3} on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO{sub 3} decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q{sub 3} dominated) network of the ASR product into a less structured, Q{sub 2} dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO{sub 3} decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO{sub 3}.

  20. Mitigation of ASR by the use of LiNO3—Characterization of the reaction products

    International Nuclear Information System (INIS)

    Leemann, Andreas; Lörtscher, Luzia; Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara; Espinosa-Marzal, Rosa M.

    2014-01-01

    The influence of the LiNO 3 on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO 3 decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q 3 dominated) network of the ASR product into a less structured, Q 2 dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO 3 decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO 3

  1. Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine

    Directory of Open Access Journals (Sweden)

    Katja Hofmann

    2010-07-01

    Full Text Available Novel chromophoric and fluorescent carbonitrile-functionalized poly(vinyl amine (PVAm and PVAm/silica particles were synthesized by means of nucleophilic aromatic substitution of 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile (1 with PVAm in water. The water solubility of 1 has been mediated by 2,6-O-β-dimethylcyclodextrin or by pre-adsorption onto silica particles. Furthermore, 1 was converted with isopropylamine into the model compound 1-M. All new compounds were characterized by NMR, FTIR, UV–vis and fluorescence spectroscopy. The solvent-dependent UV–vis absorption and fluorescence emission band positions of the model compound and the carbonitrile-functionalized PVAm were studied and interpreted using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability, α (hydrogen-bond donating capacity and β (hydrogen-accepting ability in terms of the linear solvation energy relationship (LSER. The solvent-independent regression coefficients a, b and s were determined using multiple linear correlation analysis. It is shown, that the chains of the polymer have a significant influence on the solvatochromic behavior of 1-P. The structure of the carbonitrile 1-Si bound to polymer-modified silica particles was studied by means of X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET measurements. Fluorescent silica particles were obtained as shown by fluorescence spectroscopy with a diffuse reflectance technique.

  2. Qualitative infrared spectral analysis of products adsorbed by silica gel from ditolylmethane coolant and their adsorption isotherm

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1987-01-01

    The IR-spectral analysis has been applied to study the products adsorbed from ditolylmethane first-circuit coolant, as well as from still bottoms after coolant distillation on silicagel of various makes. The qualitative study of desorbate IR-spectra has shown that they refer to the classes of arylaldehydes, diarylketones and carbonic acids. Under actual conditions first-circuit reactor coolant also has a wide set of products of its radiolysis, therefore the spectrum of coolant oxidaton products must be wider. It is noted that adsorption on silica gel, ASK of oxygen-bearing compounds which are present in ditolyl methane coolant has 2 stages

  3. Duff reaction on phenols: Characterization of non steam volatile products

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Bhattacharya, J.

    New products having structures 1 and 2 have been characterized in the Duff reaction thymol arid carvacrol. These products have been identified as 2.6'-dithymylmethane 1 and 5.5' -dicarvacryl methane 2 respectively on the basis of spectral data...

  4. Mass formula dependence of calculated spallation reaction product distributions

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki

    1990-01-01

    A new version of the spallation reaction simulation code NUCLEUS was developed by incorporating Uno and Yamada's mass formula. This version was used to calculate the distribution of products from the spallation of uranium nuclei by high-energy protons. The dependence of the distributions on the mass formula was examined by comparing the results with those from the original version, which is based on Cameron's mass formula and the mass table compiled by Wapstra et al. As regards the fission component of spallation products, the new version reproduces the reaction product data obtained from thin foil experiments much better, especially on the neutron excess side. (orig.) [de

  5. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  6. One-Pot and Efficient Synthesis of Triazolo[1,2-a]indazole-triones via Reaction of Arylaldehydes with Urazole and Dimedone Catalyzed by Silica Nanoparticles Prepared from Rice Husk

    Directory of Open Access Journals (Sweden)

    Asadollah Hassankhani

    2011-10-01

    Full Text Available A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  7. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    Science.gov (United States)

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  8. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  9. Potential of sub- and supercritical CO_2 reaction media for sol-gel deposition of silica-based molecular sieve membranes

    International Nuclear Information System (INIS)

    Durand, Veronique; Duchateau, Maxime; Drobek, Martin; Julbe, Anne; Hertz, Audrey; Ruiz, Jean-Christophe; Sarrade, Stephane

    2014-01-01

    A new eco-friendly method recently developed in our group has been further investigated for the preparation of gas selective silica-based molecular sieve membranes on/in macroporous tubular ceramic supports without any intermediate layer. The synthesis protocol under sub- and supercritical conditions was based on an 'On-Stream Supercritical Fluid Deposition method' (OS-SFD) applying supercritical carbon dioxide (scCO_2) as an attractive 'green' solvent with easily adjustable properties enabling a controlled solubilisation/reaction of precursors and their transport to the ceramic support. Parameters influencing the final membrane characteristics such as permeates flow rate, calcination treatment and deposition steps have been examined for a selected reaction mixture, transmembrane pressure and defined deposition temperatures. On-line monitoring of the membrane formation process (deposition signature curve) was used in this process. Membrane characteristics are discussed in correlation with their gas permeation properties. The optimized crack-free silica membranes prepared at 50 C have a compact microstructure but a thermal stability limited to 400 C. A second deposition run allowed a recovery of the molecular sieving behaviour with a thermally activated transport for He up to 350 C. These promising results demonstrate the potential of this novel method for the preparation of uniform molecular sieve membranes deposited directly on macroporous supports with virtually zero waste. (authors)

  10. Effect of reaction products on cathodic reduction of iodic acid

    International Nuclear Information System (INIS)

    Shtejnberg, G.V.; Urisson, N.A.; Revina, A.A.; Volod'ko, V.L.

    1988-01-01

    The effect of reaction products on kinetics of iodic acid reduction is investigated; reaction products are identified by the optical method. It is shown that although being similar from the qualitative viewpoint the effect on HIO 3 reduction of dissolved crystal and ''reduced'' iodine, certain quantitative differences take place, which are explained by the difference in their surface concentration. Explanation of certain sections of complex lgI, E-curve of HIO 3 reduction is given, in particular, advanced wave is related to the reduction from solution of unstable electroactive complex HIO 3 ) x (I 1 ) y or (HIO 3 ) x (I 2 ) y

  11. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  12. Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2014-03-01

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDAapproved hypotensive drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica particles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The current work exposes the potential of using silica nanoparticles as a delivery vehicle and EGCG's antioxidant capabilities in B35 neuroblastoma cells exposed to acrolein. We also measure nanotoxicity to individual rat neurons using high-throughput image scanning cytometry.

  13. Stochastic aspects of multiparticle production in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Tachung, M.

    1988-01-01

    Midrapidity multiparticle production process in ordinary hadron and heavy-ion induced reactions at sufficiently high incident energies are analyzed. It is shown that stochastic aspects of multiparticle production process in relativistic range plays a dominating role in understanding the observable phenomena. The basic idea and the main results of the multisource model for hadron-nucleus and nucleus-nucleus collisions are shown. The concept of the NES (number of effective sources) scaling is discussed. 16 refs.; 7 figs

  14. The production of high energy neutrons by secondary reactions

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Roney, T.J.; Staples, D.R.; Harmon, J.F.; Burkhart, J.H.

    1994-01-01

    The potential of using binary reactions in targets containing Be is discussed. Data are presented from the use of Be and BeF 2 targets bombarded with 1.5, 1.7, 1.8 and 1.9 MeV protons. Neutron production is enhanced by the presence of the F by factors of ∼4

  15. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    A deeper understanding of the situation is anticipated from a detailed experimental study of meson photoproduction from nuclei in exclusive reactions. In the energy regime above the (1232) resonance, the dominant double pion production channels are of particular interest. Double pion photoproduction from nuclei is ...

  16. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  17. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  18. ENCAPSULATION OF HORSERADISH PEROXIDASE-GLUCOSE OXIDASE (HRP-GOx IN SILICA AQUAGEL SYNTHESIZED FROM RICE HULL ASH FOR ENZYMATIC REACTION OF GLUCOSE

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In recent years, the sol-gel technique has attracted increasing interest as a unique approach to immobilize biomolecules for bioanalytical applications as well as biochemical and biophysical studies. In this research, encapsulation of Horseradish peroxidase-Glucose oxidase (HRP-GOx enzymes in silica aquagel from rice hull ash by sol-gel process has been carried out. In addition, the effect of several parameters (weight ratio of HRP to GOx, pH, temperature, sodium ion concentration on enzyme activity was studied, as well. Rice hull ash, which was produced by ashing at 700 °C, was extracted it's silika by NaOH solution 1 M at 100 °C for two hours to produce sodium silikate (Na2SiO3 solution. The Na2SiO3 solution with pH of 13 was added with a strong cation exchanger resin, to produce sol solution with the pH of 4. Encapsulation was emphasized by mixing sol solution and phosphate buffer pH 7 containing HRP-GOx solution at volume ratio of buffer to sol solution 1:5. The mixture was transferred into 96-microwell plate and was aged for 24 hours. Enzymatic reaction was carried out by adding chromogenic solution of phenol and 4-aminoantipyrine (4-AAP and b-D-glucose solution (as substrate into the microwell. Enzymatic activity was examined by measuring absorbance of product solution at 490 nm with ELISA reader. Result of enzymatic activity for encapsulated enzymes (SGE was compared to that for free enzymes (EB. Results showed that at the investigated condition, HRP-GOx enzymes gave high activity at weight ratio of HRP to GOx 10:1 and pH 7 for both SGE and EB. Encapsulation caused the enzymes activity decrease to 53.0±0.2 %. However, SGE was observed to be more stable on pH and temperature changes than EB. Study on the effect of sodium concentration showed that the increase of sodium concentration from 0.10 to 0.37 M decreased the enzymatic activity to 56±0.2%. Reusability test showed that the synthesized SGE was reusable with activity decrease of 60

  19. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    Science.gov (United States)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  20. Stochastic thermodynamics and entropy production of chemical reaction systems

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  1. 1-4 Strangeness Production in Antiproton Induced Nuclear Reactions.

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    More localized energy deposition is able to be produced in antiproton-nucleus collisions in comparison withheavy-ion collisions due to annihilation reactions. Searching for the cold quark-gluon plasma (QGP) with antiprotonbeamshas been considered as a hot topic both in experiments and in theretical calculations over the past severaldecades. Strangeness production and hypernucleus formation in antiproton-induced nuclear reactions are importancein exploring the hyperon (antihyperon)-nucleon (HN) potential and the antinucleon-nucleon interaction, whichhave been hot topics in the forthcoming experiments at PANDA in Germany.

  2. Studying reaction products in a lithium thionyl chloride cell

    International Nuclear Information System (INIS)

    Vol'fkovich, Yu.M.; Sosenkin, V.E.; Nikol'skaya, N.F.; Blinov, I.A.

    1999-01-01

    Change in the mass, volume and chemical composition of reaction insoluble products (RIP) formed in the course of discharge of thionyl chloride lithium cells under different conditions has been studied by the methods of gravimetry, volumetry and element analysis. It has been ascertained that the measured volume and mass of RIP essentially (by a factor of 1.1-1.8) exceed the calculated values, proceeding from the reaction stoichiometry. Besides lithium chloride and sulfur during discharge additional RIP is formed as LiAlCl 4 · SOCl 2 solvate, its share increasing with temperature decrease, increase in current density and electrolyte concentration [ru

  3. Identification of reaction products from reactions of free chlorine with the lipid-regulator gemfibrozil.

    Science.gov (United States)

    Krkošek, Wendy H; Koziar, Stephen A; White, Robert L; Gagnon, Graham A

    2011-01-01

    High global consumption rates have led to the occurrence of pharmaceutically active compounds (PhACs) in wastewater. The use of chlorine to disinfect wastewater prior to release into the environment may convert PhACs into uncharacterized chlorinated by-products. In this investigation, chlorination of a common pharmaceutical, the antihyperlipidemic agent gemfibrozil, was documented. Gemfibrozil (2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoic acid) was reacted with sodium hypochlorite and product formation was monitored by gas chromatography-mass spectrometry (GC-MS). The incorporation of one, two or three chlorine atoms into the aromatic region of gemfibrozil was demonstrated using negative-ion electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Further analysis using (1)H nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as 4'-ClGem (5-(4-chloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid) 4',6'-diClGem (5-(4,6-dichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), and 3',4',6'-triClGem (5-(3,4,6-trichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), products consistent with electrophilic aromatic substitution reactions. The rapid reaction of gemfibrozil with free chlorine at pH conditions relevant to water treatment indicates that a mixture of chlorinated gemfibrozils is likely to be found in wastewater disinfected with chlorine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Maillard reaction products from chitosan-xylan ionic liquid solution.

    Science.gov (United States)

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  7. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  8. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel

    2015-09-25

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  9. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel; Pelletier, Jé ré mie D. A.; El Eter, Mohamad; Chen, Yin; Abou-Hamad, Edy; Basset, Jean-Marie

    2015-01-01

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  10. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs.

    Directory of Open Access Journals (Sweden)

    Aristos Ioannou

    Full Text Available High performance liquid chromatography (HPLC coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb and Myoglobin (Mb at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.

  11. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).

    Science.gov (United States)

    Ioannou, Aristos; Varotsis, Constantinos

    2017-01-01

    High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.

  12. Optimization of o-phtaldialdehyde/2-mercaptoethanol postcolumn reaction for the hydrophilic interaction liquid chromatography determination of memantine utilizing a silica hydride stationary phase.

    Science.gov (United States)

    Douša, Michal; Pivoňková, Veronika; Sýkora, David

    2016-08-01

    A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o-phtaldialdehyde/2-mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica-C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o-phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Products of the reaction between methylene iodide and tertiary arsines

    International Nuclear Information System (INIS)

    Gigauri, R.D.; Arabuli, L.G.; Machaidze, Z.I.; Rusiya, M.Sh.

    2005-01-01

    Iodides of iodomethylenetrialkyl(aryl) arsonium were synthesized with high yields as a result of interaction between methylene iodide and tertiary arsines. Exchange reactions of the iodides prepared with lead(II) nitrate in water-alcohol solutions gave rise to formation of iodomethylenetrialkyl(aryl) arsonium nitrates. All the products prepared were characterized by data of elementary analysis, IR spectroscopy, conductometry and melting points measurements [ru

  14. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  15. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    Science.gov (United States)

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  16. Influence of transesterification reaction temperature on biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@agr.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Brazilian government policy has authorized the introduction of biodiesel into the national energy matrix, law no.11.097 of January 13th, 2005. It is necessary, like any new product, to invest in research which is able to cover its entire production chain (planting of oilseeds, vegetable oils extraction and chemical reactions), providing data and relevant information in order to optimize the process and solve critical issues. The objective of this work was to study the effects of temperature on crude sunflower transesterification reaction with ethanol. A central composite experimental design with five variation levels (25 deg, 32 deg, 47.5 deg, 64 deg and 70 deg C) was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that the production suffered the influence of temperature (linear and quadratic effects) and reaction time (linear and quadratic). The generated models did not show significant regression. The model generated was not well suited to the experimental data and the value of the coefficient of determination (R{sup 2}=0.52) was low. Consequently it was not possible to build the response surface. (author)

  17. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  18. Production and decay of baryonic resonances in pion induced reactions

    Directory of Open Access Journals (Sweden)

    Przygoda Witold

    2016-01-01

    Full Text Available Pion induced reactions give unique opportunities for an unambiguous description of baryonic resonances and their coupling channels. A systematic energy scan and high precision data, in conjunction with a partial wave analysis, allow for the study of the excitation function of the various contributions. A review of available world data unravels strong need for modern facilities delivering measurements with a pion beam. Recently, HADES collaboration collected data in pion-induced reactions on light (12C and heavy (74W nuclei at a beam momentum of 1.7 GeV/c dedicated to strangeness production. It was followed by a systematic scan at four different pion beam momenta (0.656, 0.69, 0.748 and 0.8 GeV/c in π− − p reaction in order to tackle the role of N(1520 resonance in conjunction with the intermediate ρ production. First results on exclusive channels with one pion (π− p and two pions (nπ+π−, pπ−π0 in the final state are discussed.

  19. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  20. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  1. Products and mechanisms of the reaction of gas phase ozone with organic colorants

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, D. (DGA, Inc., Ventura, CA (USA)); Druzik, J.R. (Getty Conservation Institute, Marina del Rey, CA (USA)); Sensharma, D.K. (Univ. of California, Los Angeles (USA)); Whitmore, P.M.; DeMoor, C.P.; Cass, G.R. (California Institute of Technology, Pasadena (USA))

    1988-09-01

    Studies carried out in this laboratory have shown that many artists organic colorants fade substantially when exposed to ozone in the dark. These studies typically involved pigment exposure for 12 weeks to purified air containing 0.3-0.4 ppm of ozone at ambient temperature and humidity. These laboratory conditions are equivalent to about six years of exposure inside a typical air-conditioned building in Los Angeles, and the observed fading is therefore directly relevant to possible damage to works of arts in museum settings. Organic colorants that were most ozone-fugitive included natural colorants, such as curcumin and indigo, as well as modern synthetic colorants such as alizarin lakes and triphenylmethane dyes. Thus, these colorants were selected for further study with emphasis on the nature of the reaction products. Exposures were carried out on different substrates including watercolor paper, cellulose, silica gel, and Teflon. The experiments involved long-term exposure to low levels of ozone (e.g. {approximately} 0.3 ppm for 90 days) or shorter-term exposure to higher ozone concentrations (e.g. 10 ppm for 24 hours). Exposed and control samples, along with solvent and substrate blanks, were analyzed by mass spectrometry using a Kratos Scientific Instruments MS25 hexapole mass spectrometer operated in either methane chemical ionization (CI) or electron impact (EI) modes.

  2. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  3. Production of colourful pigments consisting of amorphous arrays of silica particles.

    Science.gov (United States)

    Yoshioka, Shinya; Takeoka, Yukikazu

    2014-08-04

    It is desirable to produce colourful pigments that have anti-fading properties and are environmentally friendly. In this Concept, we describe recently developed pigments that exhibit such characteristics. The pigments consist of amorphous arrays of submicron silica particles, and they exhibit saturated and angle-independent structural colours. Variously coloured pigments can be produced by changing the size of the particles, and the saturation of the colour can be controlled by incorporating small amounts of black particles. We review a simple analysis that is useful for interpreting the angular independence of the structural colours and discuss the remaining tasks that must be accomplished for the realistic application of these pigments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of silica-alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres.

    Science.gov (United States)

    Zhang, Yeshui; Tao, Yongwen; Huang, Jun; Williams, Paul

    2017-10-01

    The influence of catalyst support alumina-silica in terms of different Al 2 O 3 to SiO 2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al 2 O 3 to SiO 2 mole ratios in the Ni-Al 2 O 3 /SiO 2 catalyst. The 1:1 ratio of Al 2 O 3 :SiO 2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g -1 tyre . Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al 2 O 3 :SiO 2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al 2 O 3 /SiO 2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g -1 and there was a reduction in catalyst coke formation to 4.6 wt.%.

  5. Production of Energetic Light Fragments in Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2014-03-01

    Full Text Available Different reaction mechanisms contribute to the production of light fragments (LF from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM and the Los Alamos version of the quark-gluon string model (LAQGSM, as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  6. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  7. Studies of evaporation residue products from krypton and argon reactions

    International Nuclear Information System (INIS)

    Plasil, F.; Ferguson, R.L.; Britt, H.C.; Erkkila, B.H.; Blann, M.; Gutbrod, H.H.; California Univ., Berkeley

    1978-01-01

    Mass distributions of evaporation residue (ER) products from 86 Kr-bombardments of 70 Ge and 74 Ge have been obtained by a time-of-flight method at energies ranging from the interaction barrier to 706 MeV. ER excitation functions have also been obtained for a variety of target and projectile combinations. Results are compared with statistical model calculations and with results obtained from γ-measurements. It is deduced that at the lowest impact parameters, the reaction products belong to the ER group, in contrast with the angular momentum hypothesis of Lefort. Cross sections were found to be consistent with an angular momentum limit arising from the onset of fission. (orig.) [de

  8. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  10. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  11. Study of cross-linking reactions induced by gamma rays in hybrid membranes of Bisphenol-A-Polysulfone and precipitated silica

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio Antonio M.; Gomes, Ailton de S.; Lopes, Lea; Benzi, Marcia R.

    2011-01-01

    In this work the bisphenol-A-polysulfone (PSF) was sulfonated using trimethyl silyl chlorosulfonate [(CH 3 ) 3 SiSO 3 Cl] as a mild sulfonating agent in a homogeneous solution of dichloroethane. The sulfonation reaction was confirmed by acid-base titration and FTIR-spectroscopy analysis. The hybrid membranes were obtained by casting the sulfonated bisphenol-A-polysulfone (SPSF) and precipitated silica Tixosil R 333 solutions in N-N-dimethylacetamide. Cross-linking in the hybrid membranes was obtained by irradiation, with doses ranging from 5 to 30 kGy using gamma ray from a 60 Co source. The water uptake and the swelling of the membranes were estimated by measuring the change in weight between dry and wet conditions. The conductivity of the membranes in acid form was measured with the ac impedance technique using a PGSTAT30 frequency response analyzer. The hybrid cross-linked membranes have conductivity close to 10-1 S.cm -1 at 100% RH and 80 deg C. Electrochemical performances, thermo-mechanical stability and low cost make this cross-linked SPSF hybrid membrane an attractive material for fuel cells using a proton exchange membrane. (author)

  12. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  13. Evaluation of Neutron Induced Reactions for 32 Fission Products

    International Nuclear Information System (INIS)

    Kim, Hyeong Il

    2007-02-01

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10 -5 eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, 95 Mo, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross sections for almost all reaction channels

  14. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Vanderbilt Univ., Nashville, TN (United States)

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  15. Flavor production in bar pp reactions at low energies

    International Nuclear Information System (INIS)

    Eisenstein, R.A.

    1994-01-01

    Associated production processes have been known since the 1050's. The solution to the puzzle they presented was to introduce the 'strangeness' quantum number, along with the notion of its conservation in strong interactions. For example, the reaction π + n → K + Λ is described both as the t-channel exchange of a K 0 meson, ans as an s-channel process involving the annihilation of a d bar d quark pair and the subsequent production of an s bar s pair. This basic 'flavor-production' process and ones like it are the focus of widespread interest and the subject of this talk. The physics to be addressed is the nature of the quark annihilation and the creation process, which is expected to proceed according to the rules of quantum chromodynamics (QCD). According to these ideas, it will be dominated by perturbative QCD (essentially single-gluon exchange) at high momentum; at low momentum the process is expected to involve a very complicated multiple gluon exchange since it is in the nonperturbative regime

  16. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Production cross sections of proton-induced reactions on yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung-Chul; Song, Tae-Yung; Lee, Young-Ouk [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2017-05-01

    The production cross sections of residual radionuclides such as {sup 86,88,89g}Zr, {sup 86g,87m,87g,88}Y, {sup 83g,85g}Sr, and {sup 83,84g}Rb in the {sup 89}Y(p,x) reaction were measured using a stacked-foil activation and offline γ-ray spectrometric technique with proton energies of 57 MeV and 69 MeV at the 100 MeV proton linac in the Korea Multi-purpose Accelerator Complex (KOMAC), Gyeongju, Korea. The induced activities of the activated samples were measured using a high purity germanium (HPGe) detector, and the proton flux was determined using the {sup nat}Cu(p,x){sup 62}Zn reaction. The measured data was compared with other experimental data and the data from the TENLD-2015 library based on the TALYS code. The present results are generally lower than those in literature, but are found to be in agreement with the shape of the excitation functions. The integral yields for the thick target using the measured cross sections are given.

  18. Near threshold two meson production in hardonic fusion reactions

    International Nuclear Information System (INIS)

    Jahn, R.

    1991-01-01

    An approved and funded exclusive COSY experiment is presented, which focuses on near threshold two meson production via the reactions p+d→ 3 He + π + π - and p+d→ 3 He+K + K-. It takes advantage of the high quality of the cooled external COSY beam and the existing spectrometer BIG KARL. The setup consists of a vertex wall and a scintillator cylinder and endcap covering a 4π solid angle. The large efficiency and high resolution of this detection method will yield precision data on the low energy (T 0 (975). Existing inclusive data as well as first results of a very recent 'semi-exclusive' experiment performed at SATURNE will be also be presented

  19. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  20. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    International Nuclear Information System (INIS)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-01-01

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H_2O_2 concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K_C_A_T and K_C_A_T/K_M values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H_2O_2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H_2O_2 concentration, while the optimal pH and H_2O_2 concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL"−"1 SBP in 30 min reaction time, while an HRP dose of 0.3 U mL"−"1 was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K_C_A_T) and catalytic efficiency (K_C_A_T/K_M) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  1. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  2. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  3. Interim solidification of SRP waste with silica, bentonite, or phosphoric acid

    International Nuclear Information System (INIS)

    Thompson, G.H.

    1976-03-01

    One option for interim waste management at the Savannah River Plant is in-tank solidification of the liquid waste solutions. This would reduce the mobility of these highly radioactive solutions until techniques for their long-term immobilization and storage are developed and implemented. Interim treatments must permit eventual retrieval of waste and subsequent incorporation into a high-integrity form. This study demonstrated the solidification of simulated alkaline waste solutions by reaction with silica, bentonite, and phosphoric acid. Alkaline waste can be solidified by reaction with silica gel, silica flour, or sodium silicate solution. Solidified products containing waste salt can be retrieved by slurrying with water. Alkaline supernate (solution in equilibrium with alkaline sludge in SRP waste tanks) can be solidified by reaction with bentonite to form cancrinite powder. The solidified waste can be retrieved by slurrying with water. Alkaline supernate can be solidified by partial evaporation and reaction with phosphoric acid. Water is incorporated into hydrated complexes of trisodium phosphate. The product is soluble, but actual plant waste would not solidify completely because of decay heat. Reaction of simulated alkaline waste solutions with silica gel, silica flour, or bentonite increases the volume by a factor of approximately 6 over that of evaporated waste; reaction with phosphoric acid results in a volume 1.5 times that of evaporated waste. At present, the best method for in-tank solidification is by evaporation, a method that contributes no additional solids to the waste and does not compromise any waste management options

  4. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  5. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  6. Transfusion reactions in pediatric compared with adult patients: a look at rate, reaction type, and associated products.

    Science.gov (United States)

    Oakley, Fredrick D; Woods, Marcella; Arnold, Shanna; Young, Pampee P

    2015-03-01

    The majority of reports on transfusion reactions address adult patients. Less is known about the types, incidence, and other clinical details of transfusion reactions in pediatric populations. Furthermore, to our knowledge, there have been no previous reports directly comparing these aspects between adults and pediatric patient populations to assess if there are differences. Between the period of January 1, 2011, and February 1, 2013, all reported adult and pediatric transfusion reactions at Vanderbilt University Medical Center (VUMC) were evaluated by transfusion medicine clinical service. The information was subsequently shared with the hemovigilance database. Data provided to hemovigilance included age, sex, blood product associated with the reaction, severity of the reaction, and the type of transfusion reactions. These were collated with hospital and blood bank information system-acquired data on overall admission and product transfusion. A total of 133,671 transfusions were performed at VUMC during the study period including 20,179 platelet (PLT) transfusions, 31,605 plasma transfusions, 79,933 red blood cell (RBC) transfusions, and 2154 cryoprecipitate transfusions. Over the same period, 108 pediatric and 277 adult transfusion reactions were recorded. This corresponds to an incidence of 6.2 reactions per 1000 transfusions within the pediatric (age reactions per 1000 transfusions within the adult population. In both adult and pediatric populations, transfusion reactions were most commonly associated with PLT, followed by RBC, and then plasma transfusions. Within the pediatric population, subset analysis identified multiple differences when compared to the adult population, including an increased incidence of allergic transfusion reactions (2.7/1000 vs. 1.1/1000, p reactions (1.9/1000 vs. 0.47/1000, p reactions (0.29/1000 vs. 0.078/1000, p reaction incidence was the same between sexes in adults, in pediatric patients, reactions were more common in male

  7. Calculations of long-lived isomer production in neutron reactions

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1992-01-01

    We present theoretical calculations for the production of the long-lived isomers 93m Nb (1/2-, 16 yr), 121m Sn (11/2-, 55 yr), 166m Ho (7-, 1200 yr), 184m Re (8+, 165 d), 186m Re (8+, 2x10 5 yr), 178 Hf (16+, 31 yr), 179m Hf (25/2-, 25 d), and 192m Ir (9+, 241 yr), all of which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider (n,2n), (n,n'), and (n,γ) production modes and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. (author). 16 refs, 10 figs, 4 tabs

  8. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  9. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  10. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  11. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  12. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A., E-mail: ivan_melendez380@hotmail.com [Centro de Investigacion en Quimica Aplicada, Bldv. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila (Mexico)

    2013-08-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na{sub 2}SiO{sub 3}) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO{sub 2} molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO{sub 2} molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  13. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    International Nuclear Information System (INIS)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A.

    2013-01-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na 2 SiO 3 ) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO 2 molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO 2 molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  14. Gold nanostructure-integrated silica-on-silicon waveguide for the detection of antibiotics in milk and milk products

    Science.gov (United States)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2012-10-01

    Antibiotics are extensively used in veterinary medicine for the treatment of infectious diseases. The use of antibiotics for the treatment of animals used for food production raised the concern of the public and a rapid screening method became necessary. A novel approach of detection of antibiotics in milk is reported in this work by using an immunoassay format and the Localized Surface Plasmon Resonance property of gold. An antibiotic from the penicillin family that is, ampicillin is used for testing. Gold nanostructures deposited on a glass substrate by a novel convective assembly method were heat-treated to form a nanoisland morphology. The Au nanostructures were functionalized and the corresponding antibody was absorbed from a solution. Solutions with known concentrations of antigen (antibiotics) were subsequently added and the spectral changes were monitored step by step. The Au LSPR band corresponding to the nano-island structure was found to be suitable for the detection of the antibody antigen interaction. The detection of the ampicillin was successfully demonstrated with the gold nano-islands deposited on glass substrate. This process was subsequently adapted for the integration of gold nanostructures on the silica-on-silicon waveguide for the purpose of detecting antibiotics.

  15. Properties of silica fume procured from natural diatomite and its usage in the production of vacuum insulation panels

    OpenAIRE

    V.P. Selyaev; V.A. Neverov; O.G. Mashtaev; A.V. Kolotushkin

    2013-01-01

    The article shows the results of the research of silica fume particles procured from diatomite from Atemar deposit by means of separating silicic acid from colloidal dissolved state into the sediment. The objective of the work was to define thermal-physical and structural characteristics of the silica fume. The research included IR-spectrometry, granulometry, thermal gravimetric analysis, X-ray structural analysis, optical microscopy, and small angle X-Ray scattering. As a result of the resea...

  16. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    Science.gov (United States)

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  18. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.

  19. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  20. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Birdwell, J.F. Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C.; Day, J.N.; Hullette, J.N.

    2009-01-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  1. Determination of 68Ga production parameters by different reactions ...

    Indian Academy of Sciences (India)

    function of 68Zn(p, n)68Ga reaction was compared with the reported ... 2.1.1 Brief description of nuclear models applied for cross-section calculations ... tion of isotope impurities is not possible by chemical methods, so this reaction is.

  2. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  3. Liquid phase deposition of silica: Thin films, colloids and fullerenes

    Science.gov (United States)

    Whitsitt, Elizabeth A.

    Little research has been done to explore liquid phase deposition (LPD) of silica on non-planar substrates. This thesis proves that the seeded growth of silica colloids from fullerene and surfactant micelles is possible via LPD, as is the coating of individual single walled carbon nanotubes (SWNTs) and carbon fibers. Working on the premise that a molecular growth mechanism (versus colloidal/gel deposition) is valid for LPD, nanostructured substrates and specific chemical functional groups should act as "seeds," or templates, for silica growth. Seeded growth is confirmed by reactions of the growth solution with a range of surfactants and with materials with distinctive surface moieties. LPD promises lower production costs and environmental impact as compared to present methods of coating technology, because it is an inherently simple process, using low temperatures and inexpensive air-stable reactants. Silica is ubiquitous in materials science. Its applications range from thixotropic additives for paint to gate dielectrics in the semiconductor industry. Nano-structured coatings and thin films are integral in today's electronics industry and will become more vital as the size of electronics shrinks. With the incorporation of nanoparticles in future devices, the ability to deposit quality coatings with finely tuned properties becomes paramount. The methods developed herein have applications in fabricating insulators for use in the future molecular scale electronics industry. Additionally, these silica nanoparticles have applications as templates for use in photonics and fuel cell membrane production and lend strength and durability to composites.

  4. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  5. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  6. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek; Thivolle-Cazat, Jean; Taoufik, Mostafa; Stoffelbach, Franç ois; Norsic, Sé bastien; Basset, Jean-Marie

    2011-01-01

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  9. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  10. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    photoproduction from nuclei is also used to investigate the in-medium modification of meson–meson interactions. ... the observation of an in-medium modification of the vector meson masses can pro- vide a unique .... similar behavior is found in (γ,π+π0) reactions, shown in the right panel of figure 3. Additionally, the peak in ...

  11. Determination of 68Ga production parameters by different reactions ...

    Indian Academy of Sciences (India)

    Gallium-68 (1/2 = 68 min, + = 89%) is an important positron-emitting radionuclide for positron emission tomography and used in nuclear medicine for diagnosing tumours. This study gives a suitable reaction to produce 68Ga. Gallium-68 excitation function via 68Zn(, ) 68Ga, 68Zn(, 2) 68Ga, 70Zn(, 3) 68Ga and ...

  12. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  13. Retrofit design of rice husk feeding system in the production of amorphous silica ash in a pilot scale fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdul, A.; Rozainee, M.; Anwar, J.; Wan Alwi, R.S.

    2010-01-01

    Full text: Rice husk is among the most important recovery resources for silica that is produced annually in huge quantities in many countries such as Malaysia which produces 2.38 (MT) of rice paddy. Rice husks accounts for 14-35 % of the weight of the paddy harvested, depending on the paddy variety and because of its abundance it poses serious environmental problems in the rice producing countries. Therefore, the thermo-chemical conversion of rice husks to useful silica ash by fluidized bed combustion is the proven and cost-effective technology for converting the renewable waste husks by making commercial use of this rice husk ash because of its self sustaining ability. However, feeding of rice husk into the reactor bed has become a difficult problem hindering the production of amorphous silica. This is due to the poor penetration and low bulk density as well as the flaky, abrasive and joined nature of rice husk. Most of the researches into fluidized bed combustion are on laboratory or bench scale and none had discussed pilot scale combustion of rice husk into amorphous silica. A recent attempt to solve this feeding problem from an experimental investigation in a bench-scale culminates into a pilot-scale fluidized bed combustor designed with a combined screw conveyor and an inclined pneumatic feeding by direct injection, yet the problem persists. This paper presents a retrofit design of the existing 0.5 m internal diameter pilot scale fluidized bed combustor by the use of combined screw feeding system. It is envisaged that at the end of the experimental investigation the retrofit design will address the problem associated with rice husk feeding in bubbling fluidized bed combustors. (author)

  14. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  15. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  16. Mass spectrometric investigation of synthetic glycoside of muramyl dipeptide immobilized on fumed silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, Tetiana V., E-mail: tanyakulyk@gala.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Azizova, Liana R., E-mail: liana_azizova@ukr.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Palyanytsya, Borys B. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Zemlyakov, Alexander E.; Tsikalova, Victoria N. [Vernadsky Tauric National University, pr. Akademika Vernadskogo 4, Simferopol, 95007 (Ukraine)

    2010-05-25

    N-Acetylmuramyl-L-alanyl-D-isoglutamine or muramyl dipeptide is a cleavage product of peptidoglycan by lysozyme. This study explored the use of the temperature-programmed desorption mass spectrometry (TPDMS) in analysis of glycoside of muramyl dipeptide: O-{l_brace}(4-tert-butylcyclohexyl)-2-acetamido-2, 3-dideoxy-{beta}-D-glucopyranoside-3-yl{r_brace}-D-lactoyl-L-alanyl-D-isoglutamine (MDP) on the surface of fumed silica. Stages of pyrolysis of MDP in condensed state and on the silica surface have been determined. Three stages have been clear identified under pyrolysis of MDP on the silica surface. Kinetic parameters of thermal reactions on the fumed silica surface and in the condensed state have been calculated.

  17. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  18. Utility of spectral measurements of secondary reaction products

    International Nuclear Information System (INIS)

    Heidbrink, W.E.

    1986-02-01

    The spectra of 15 MeV protons and 14 MeV neutrons produced in the burnup of 0.8 MeV 3 He ions and 1 MeV tritons through the d( 3 He,p)α and d(t,n)α fusion reactions contain information on the velocity distributions of the energetic 3 He ions and tritons. 11 refs., 2 figs

  19. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  20. Analysis of a Buchwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  1. Analysis of a Buckwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik; Kiil, Søren; Dam-Johansen, Kim

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  2. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  3. Single Site Silica Supported Tetramethyl Niobium by the SOMC Strategy: Synthesis, Characterization and Structure-Activity Relationship in Ethylene Oligomerization Reaction

    KAUST Repository

    Hamieh, Ali Imad Ali

    2017-06-06

    Silica supported Tetramethyl niobium complex [(≡SiO)NbMe4] 2 has been isolated by surface alkylation of [(≡SiO-)NbCl3Me] 1 with dimethyl zinc in pentane. 1 can be easily synthesized by grafting of NbCl3Me2 on to the surface of partially dehydroxylated silica by the SOMC strategy. Precise structural analysis was carried out by the FTIR, advance solid state NMR, elemental analysis and mass balance techniques (gas quantification after treating 2 with degassed water) . Complex 1 was found to be active in the ethylene oligomerization to produce up to C30, whereas to our surprise complex 2 selectively dimerizes ethylene into 1-butene in the absence of a co-catalyst at the same conversion levels.

  4. Single Site Silica Supported Tetramethyl Niobium by the SOMC Strategy: Synthesis, Characterization and Structure-Activity Relationship in Ethylene Oligomerization Reaction

    KAUST Repository

    Hamieh, Ali Imad Ali; Dey, Raju; Nekoueishahraki, Bijan; Samantaray, Manoja; Chen, Yin; Abou-Hamad, Edy; Basset, Jean-Marie

    2017-01-01

    Silica supported Tetramethyl niobium complex [(≡SiO)NbMe4] 2 has been isolated by surface alkylation of [(≡SiO-)NbCl3Me] 1 with dimethyl zinc in pentane. 1 can be easily synthesized by grafting of NbCl3Me2 on to the surface of partially dehydroxylated silica by the SOMC strategy. Precise structural analysis was carried out by the FTIR, advance solid state NMR, elemental analysis and mass balance techniques (gas quantification after treating 2 with degassed water) . Complex 1 was found to be active in the ethylene oligomerization to produce up to C30, whereas to our surprise complex 2 selectively dimerizes ethylene into 1-butene in the absence of a co-catalyst at the same conversion levels.

  5. Application of the aza-Diels-Alder reaction in the synthesis of natural products.

    Science.gov (United States)

    Cao, Min-Hui; Green, Nicholas J; Xu, Sheng-Zhen

    2017-04-11

    The Diels-Alder reaction that involves a nitrogen atom in the diene or dienophile is termed the aza-Diels-Alder reaction. As well as the powerful all-carbon Diels-Alder reaction, the aza-Diels-Alder reaction has also played an important role in the total synthesis of natural products. Herein, we review various natural products using an aza-Diels-Alder reaction as a key step to their total synthesis, and divide the syntheses into inter- and intra-molecular aza-Diels-Alder reactions and a retro-aza-Diels-Alder reaction. Inter- and intra-molecular aza-Diels-Alder reactions involve an imine as an electron deficient dienophile and an imine as an electron deficient azadiene. The significance of the aza-Diels-Alder reaction for the construction of a six-membered ring containing nitrogen is tremendous, but the development of asymmetric, in particular catalytic enantioselective intramolecular aza-Diels-Alder reaction in the total synthesis of natural products remains highly challenging, and will no doubt see enormous advances in the future.

  6. Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics

    International Nuclear Information System (INIS)

    Dove, Patricia M.

    1999-01-01

    Our goal is to develop a quantitative and mechanistic understanding of amorphous silica, SiO2(am), dissolution kinetics in aqueous solutions. A knowledge of fundamental controls on the reactivity of simple Si-O bonded phases is the baseline of behavior for understanding highly complex silica phases. In the Earth, silicate minerals comprise >70% of the crust and dominate virtually every subsurface system. More importantly for the objectives of this EMSP project, the silicates are important because compositionally complex glasses will become the front line of defense in containing radioactive wastes in the nation's long term and interim storage strategies. To date, the behavior of SiO2(am) is largely inferred from studies of the better known crystalline polymorphs (e.g. alpha-quartz). In the first step towards constructing a general model for amorphous silica reactivity in the complex fluid compositions of natural waters, we are determining the dissolution behavior as a function of temperature, solution pH and cation concentration. With these data we are determining relationships between SiO2 glass structure and dissolution rates in aqueous solutions, as described below

  7. Quantifying silica reactivity in subsurface environments: Reaction affinity and solute matrix controls on quartz and SiO2 glass. 1997 annual progress report

    International Nuclear Information System (INIS)

    Dove, P.M.

    1997-01-01

    'The author reports the preliminary results of the experiments on the dissolution behavior of vitreous silica (v-SiO 2 ) into aqueous solutions of variable pH and ionic strength. The experiments are being conducted in mixed flow reactors with a high circulation rate that simulates constant-stirred conditions, the efficacy of which the authors discuss below. The preliminary results indicate that v-SiO 2 dissolves into aqueous solutions approximately two orders of magnitude more quickly than crystalline silica (e.g., quartz). With additional experiments, they will utilize the dissolution rate data as a framework for understanding the behavior of waste glass compositions in the subsurface. In other work related to the studies of glass reactivity, the author has written one book chapter that will be published as part of a proceedings for the CEA/VALRHO international nuclear waste disposal conference held in Mejannes le Clap, France. In separate work, she is presently writing a second book chapter for the volume entitled Adsorption on Silica Surfaces.'

  8. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  9. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  10. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  11. Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products

    Science.gov (United States)

    Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand

    2005-06-01

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.

  12. A nanojet: propulsion of a molecular machine by an asymmetric distribution of reaction--products

    Science.gov (United States)

    Liverpool, Tanniemola; Golestanian, Ramin; Ajdari, Armand

    2006-03-01

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. Motion of the device is driven by an asymmetric distribution of reaction products. We calculate the propulsive velocity of the device as well as the scale of the velocity fluctuations. We also consider the effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction.

  13. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  14. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  15. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  16. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecu...... comprehensive, reviews....

  17. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  18. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  19. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  20. Radioactive nuclide production and isomeric state branching ratios in P + W reactions to 200 mev

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1995-01-01

    Calculations of nuclide yields from spallation reactions usually assume that the products are formed in their ground states. We are performing calculations of product yields from proton reactions on tungsten isotopes that explicitly account for formation of the residual nuclei in excited states. The Hauser-Feshbach statistical/preequilibrium code GNASH, with full accounting for angular momentum conservation and electromagnetic transitions, is utilized in the calculations. We present preliminary results for isomer branching ratios for proton reactions to 200 MeV for several products including the 31-y, 16+ state in l78 Hf and the 25-d, 25/2- state in 179 Hf. Knowledge of such branching ratios, might be important for concepts such as accelerator production of tritium that utilize intermediate-energy proton reactions on tungsten

  1. A new branch of advertising: reviewing factors that influence reactions to product placement

    NARCIS (Netherlands)

    van Reijmersdal, E.; Neijens, P.; Smit, E.G.

    2009-01-01

    This iiterature review presents a quantitative synthesis of 57 studies on product placement and shows which factors are most effective, it shows that placement characteristics, such as placement commerciality, modality, and prominence, have a strong impact on audience reactions. Audience

  2. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  3. Large fragment production calculations in relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Seixas de Oliveira, L.F.

    1978-12-01

    The abrasion-ablation model is briefly described and then used to calculate cross sections for production of large fragments resulting from target or projectile fragmentation in high-energy heavy-ion collisions. The number of nucleons removed from the colliding nuclei in the abrasion stage and the excitation energy of the remaining fragments (primary products) are calculated with the geometrical picture of two different models: the fireball and the firestreak models. The charge-to-mass dispersion of the primary products is calculated using either a model which assumes no correlations between proton and neutron positions inside the nucleus (hypergeometric distribution) or a model based upon the zero-point oscillations of the giant dipole resonance (NUC-GDR). Standard Weisskopf--Ewing statistical evaporation calculations are used to calculate final product distributions. Results of the pure abrasion-ablation model are compared with a variety of experimental data. The comparisons show the insufficiency of the extra-surface energy term used in the abrasion calculations. A frictional spectator interaction (FSI) is introduced which increases the average excitation energy of the primary products, and improves the results considerably in most cases. Agreements and discrepancies of the results calculated with the different theoretical assumptions and the experimental data are studied. Of particular relevance is the possibility of observing nuclear ground-state correlations.Results of the recently completed experiment of fragmentation of 213 Mev/A 40 Ar projectiles are studied and shown not to be capable of answering that question unambiguously. But predictions for the upcoming 48 Ca fragmentation experiment clearly show the possibility of observing correlation effects. 78 references

  4. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  5. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  6. The unexpected product of Diels-Alder reaction between "indanocyclon" and maleimide

    Science.gov (United States)

    Dobrowolski, Michał A.; Roszkowski, Piotr; Struga, Marta; Szulczyk, Daniel

    2017-02-01

    A heterocyclic compound commonly known as "indanocyclon" undergoes an unexpected Diels-Alder addition with maleimide. The resulting product has been isolated and characterized in order to get an information about its structure and possible mechanism of the reaction. Extensive comparison of single crystal properties of 3-(2,8-dioxo-1,3-diphenyl-2,8-dihydrocyclopenta[a]inden-8a(1H)-yl)pyrrolidine-2,5-dione and favorable product of the reaction has been also performed.

  7. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  8. Lambda-HYPERNUCLEAR PRODUCTION IN (K(stop)(-), pi) REACTIONS

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, Vojtěch; Cieplý, Aleš

    2011-01-01

    Roč. 26, 3-4 (2011), s. 663-664 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : Hypernuclei * DWIA * chiral model Subject RIV: BE - Theoretical Physics Impact factor: 1.053, year: 2011

  9. Laser application for nuclear reaction product detecting system alignment

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  10. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  11. Application of radioanalytical techniques in the study of the products of heavy-ion reactions

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1989-01-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since then it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The large variety of possible reactions gives rise to a multitude of products, which have been studied by many chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low-yield species from the plethora of other nuclides present. Heavy-ion reactions have been essential for the production of the transmendelevium elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions and deeply inelastic reactions have been elucidated using chemical techniques. The variety of chemical procedures and techniques which have been developed for the study of heavy-ion reactions and their products has been examined. The determination of the chemical properties of the transmendelevium elements, which are very short-lived and can only be produced an ''atom at a time'' via heavy-ion reactions, is discussed. (author)

  12. Dilepton and vector meson production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Wolf, Gy.

    1997-01-01

    A nonperturbative dynamical study of dilepton an vector meson production in heavy-ion collisions from 1 to 2 GeV/A bombarding energies is presented incorporating all known sources relevant in this energy range. The dynamical evolution of the nucleus-nucleus collision is described by a transport equation of the Boltzmann-Uehling-Uhlenbeck type evolving phase-space distribution functions for nucleons, baryon resonances, pions, η's, ρ's and σ's with their isospin degrees of freedom. In particular, the sensitivity of the calculated yields to predicted changes of the ρ and ω mesons in dense matter is investigated. (author)

  13. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  14. Determination of gamma production from (n, gamma) reactions

    International Nuclear Information System (INIS)

    Kostal, M.

    2007-06-01

    Calculation of gamma production by interaction of neutrons with materials requires a reasonable accuracy of the nuclear libraries, i. e. effective cross sections, nuclear levels and probabilities of transitions between them. Accurate data enable accurate calculations to be performed, e.g. for PGNAA. First, gamma production in a thick 56 Fe target was examined. Appreciable discrepancies were found among the nuclear libraries available. Additional calculations were performed and compared with the observed data. The fluence of photons observed behind a thick iron target was investigated, the target being irradiated with neutrons from the front side. The results were evaluated for the various nuclear libraries. It is concluded that the libraries ENDF/B VI.2., i.e. data embedded in the MCNPX code, are sufficient for a number of applications. However, their accuracy is insufficient for prompt gamma neutron activation analysis. This is also true of data from the libraries JEFF 3.1. a JENDL 3.3, so that other libraries will have to be used for PGNAA. Specifically for 56 Fe, the data from the libraries ENDF/B VII.0 seem to be usable. (P.A.)

  15. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  16. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  17. The Effect of Titanium Tetrahedral Coordination of Silica-Titania Catalyst on the Physical Properties of Biodiesel

    Science.gov (United States)

    Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.

    2018-04-01

    This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.

  18. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Eiichiro, E-mail: uemura-e@phs.osaka-u.ac.jp; Yoshioka, Yasuo, E-mail: y-yoshioka@biken.osaka-u.ac.jp; Hirai, Toshiro, E-mail: toshiro.hirai@pitt.edu; Handa, Takayuki, E-mail: handa-t@phs.osaka-u.ac.jp; Nagano, Kazuya, E-mail: knagano@phs.osaka-u.ac.jp; Higashisaka, Kazuma, E-mail: higashisaka@phs.osaka-u.ac.jp; Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Osaka University, Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences (Japan)

    2016-06-15

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  19. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    International Nuclear Information System (INIS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-01-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  20. GC of catalytic reactions products involved in the promising fuel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zheivot, V.; Sazonova, N. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Boreskov Inst. of Catalysis

    2012-09-15

    Catalytic reactions involved in the synthesis of the promising kinds of novel fuel and products formed in these reactions were systematized according to the resulting fuel type. Generalization of the retention of the substances comprising these products is presented. Chromatograms exhibiting their separation on chromatographic materials with the surface of different chemical properties are summarized. We propose procedures for gas-chromatographic analysis of the catalytic reactions products formed in the synthesis of hydrogen, methanol, dimethyl ether and hydrocarbons as a new generation of fuel alternative to petroleum and coal. For partial oxidation of methane into synthesis gas, on-line determination of the components obtained in the reaction was carried out by gas chromatography and gas analyzer based on different physicochemical methods (IR spectroscopy and electrochemical methods). Similarity of the results obtained using these methods is demonstrated. (orig.)

  1. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    Science.gov (United States)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  2. Animal DNA identification in food products and animal feed by real time polymerase chain reaction method

    Directory of Open Access Journals (Sweden)

    Людмила Мар’янівна Іщенко

    2016-11-01

    Full Text Available Approbation of diagnostic tests for species identification of beef, pork and chicken by real time polymerase chain reaction method was done. Meat food, including heat treated and animal feed, was used for research. The fact of inconsistencies was revealed for product composition of some meat products that is marked by manufacturer 

  3. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  4. Reactions

    DEFF Research Database (Denmark)

    Søndergaard, Morten

    2011-01-01

      My concern is to understand augmentation as an emergent modality - among many others in ‘the expanding digital field' (Søndergaard M. , Transformative Creativity in the Expanded Digital Field, 2009)' - attributed to the production of contemporary art and the ‘archive of knowledge' in the (art) ...

  5. On the angular distributions of the heavy products of (HI, xn) reactions

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    1989-01-01

    The effects of neutron evaporation and scattering in the target on the angular distribution of the heavy products of (HI, xn) reactions is considered. Based on the analysis of the experimental angular distributions and their calculated parameters a simple phenomenological approach to the description of these distributions is proposed. The calculated distributions are compared with the experimental ones cited in the literature. The possibilities of using the proposed approach to calculate the integrated angular distributions of heavy products and to determine the efficiency of collecting (HI, xn) reaction products under the conditions of the kinematic separation of recoil nuclei are outlined. 28 refs.; 9 figs

  6. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya; Samantaray, Manoja; Tretiakov, Mykyta; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2017-01-01

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2

  7. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Light-Baryon Production in Binary $pd$ Annihilation Reactions at Rest

    CERN Document Server

    Denisov, O Yu; Balestra, F; Botta, E; Bressani, Tullio; Bussa, M P; Busso, L; Calvo, D; Cerello, P G; Costa, S; D'Isep, D; Fava, L; Feliciello, A; Ferrero, L; Filippi, A; Garfagnini, R; Grasso, A; Iazzi, F; Maggiora, A; Marcello, S; Minetti, B; Mirfakhraee, N; Panzarasa, A; Panzieri, D; Piragino, G; Tosello, F; Zosi, G; Alberico, V; Bertin, A; Bruschi, M; Capponi, M; D'Antone, I; De Castro, S; Ferretti, A; Galli, D; Giacobbe, B; Marconi, U; Piccinini, M; Poli, M; Semprini-Cesari, N; Spighi, R; Vecchi, S; Vagnoni, V M; Vigotti, F; Villa, M; Vitale, A; Zoccoli, A; Bianconi, A; Corradini, M; Lodi-Rizzini, E; Venturelli, L; Zenoni, A; Cicalò, C; Masoni, A; Mauro, S; Puddu, G; Serci, S; Temnikov, P P; Usai, G L; Gortchakov, O E; Prakhov, S N; Rozhdestvensky, A M; Sapozhnikov, M G; Tretyak, V I; Gianotti, P; Guaraldo, C; Lanaro, A; Lucherini, V; Nichitiu, F; Petrascu, C; Ableev, V G; Cavion, C; Gastaldi, Ugo; Lombardi, M; Maron, G; Vannucci, Luigi; Vedovato, G; Bendiscioli, G; Filippini, V; Fontana, A; Montagna, P; Rotondi, A; Salvini, P; Pauli, G; Tessaro, S; Santi, L

    1999-01-01

    We report the study of light baryon production in two-prong annihilation reactions due to antiprotons stopping in gaseous deuterium and detected by the OBELIX spectrometer (LEAR, CERN). A clear signal of the Delta (1232) production in binary reactions was found in both annihilation channels: pd to pi /sup -/ Delta /sup +/( Delta /sup +/ to pi /sup 0/p) and pd to pi /sup 0/ Delta /sup 0/( Delta /sup 0/ to pi /sup -/p). The annihilation probabilities for these reactions turned out to be Y=(1.01+or-0.08)*10/sup -5/ and Y= (1.12+or-0.20)*10/sup -5/, respectively. In addition, the annihilation probability for the prototype Pontecorvo reaction pd to pi /sup -/p was measured with the best world statistics: Y= (1.46+or-0.08)*10/sup -5/. (16 refs).

  9. Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.

    Science.gov (United States)

    Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham

    2017-08-01

    Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  11. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    OpenAIRE

    Rodrigues,S.; Mazzone,L. C. A.; Santos,F. F. P.; Cruz,M. G. A.; Fernandes,F. A. N.

    2009-01-01

    Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel) from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of so...

  12. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    Science.gov (United States)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  13. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  14. Reaction kinetic model of the surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol on a CuP/Silica suface

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, S.; Khachatryan, L.; Dellinger, B. [Louisiana State Univ., Baton Rouge (United States). Dept. of Chemistry

    2004-09-15

    One of the major challenges in developing predictive models of the surface mediated pollutant formation and fuel combustion is the construction of reliable reaction kinetic mechanisms and models. While the homogeneous, gas-phase chemistry of various light fuels such as hydrogen and methane is relatively well-known large uncertainties exist in the reaction paths of surface mediated reaction mechanisms for even these very simple species. To date, no detailed kinetic consideration of the surface mechanisms of formation of complex organics such as PCDD/F have been developed. In addition to the complexity of the mechanism, a major difficulty is the lack of reaction kinetic parameters (pre-exponential factor and activation energy) of surface reactions, Consequently, numerical studies of the surface-mediated formation of PCDD/F have often been incorporated only a few reactions. We report the development of a numerical multiple-step surface model based on experimental data of surface mediated (5% CuO/SiO2) conversion of 2-monochlorphenol (2-MCP) to PCDD/F under pyrolytic or oxidative conditions. A reaction kinetic model of the catalytic conversion of 2-MCP on the copper oxide catalyst under pyrolytic conditions was developed based on a detailed multistep surface reaction mechanism developed in our laboratory. The performance of the chemical model is assessed by comparing the numerical predictions with experimental measurements. SURFACE CHEMKIN (version 3.7.1) software was used for modeling. Our results confirm the validity of previously published mechanism of the reaction and provides new insight concerning the formation of PCDD/F formation in combustion processes. This model successfully explains the high yields of PCDD/F at low temperatures that cannot be explained using a purely gas-phase mode.

  15. Study of reactions for the production of uranium titrafluoride and uranium hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1985-01-01

    The main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions confirmed in laboratory experiments that lead to Uf 6 or other intermediate fluorides are discussed. For the purpose of determining a thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as a part of the R and D work planned at the CDTN (Nuclebras Center for Nuclear Technology Development). IN the uranium tatrafluoride synthesis employing U 3 O 8 and SF 6 several experimental parameters are studied. The reaction time, gasflow, temperature and stoechiometic relations among reagents are described in detail. (Author) [pt

  16. Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Kelic, A.; Napolitani, P.; Schmidt, K.H.; Yordanov, O.; Ignatyuk, A.V.; Rejmund, F.

    2003-12-01

    Complex structural effects in the nuclide production from the projectile fragmentation of 1 A GeV 238 U nuclei in a titanium target are reported. The structure seems to be insensitive to the excitation energy induced in the reaction. This is in contrast to the prominent structural features found in nuclear fission and in transfer reactions, which gradually disappear with increasing excitation energy. Using the statistical model of nuclear reactions, relations to structural effects in nuclear binding and in the nuclear level density are demonstrated. (orig.)

  17. Comprehensive characterisation of products from cobalt catalysed Fischer-Tropsch reaction

    Energy Technology Data Exchange (ETDEWEB)

    Marion, M.C.; Bertoncini, F.; Hugues, F.; Forestiere, A. [IFP, Vernaison (France)

    2006-07-01

    Fischer-Tropsch reaction synthesis has been studied in presence of supported cobalt catalysts. The experimental work has been performed by using a slurry pilot plant. All the gaseous and liquid products, including by-products recovered in the water phase produced, have been analysed in order to determine the whole products distribution and the catalyst selectivity. Apart from paraffin which are the main products obtained via cobalt-catalyzed Fischer-Tropsch synthesis, olefins and oxygenates by-products present also their own distribution. These detailed data are available thanks to new dedicated analytical methods developed in IFP laboratories. (orig.)

  18. Toxicological analysis of limonene reaction products using an in vitro exposure system

    Science.gov (United States)

    Anderson, Stacey E.; Khurshid, Shahana S.; Meade, B. Jean; Lukomska, Ewa; Wells, J.R.

    2015-01-01

    Epidemiological investigations suggest a link between exposure to indoor air chemicals and adverse health effects. Consumer products contain reactive chemicals which can form secondary pollutants which may contribute to these effects. The reaction of limonene and ozone is a well characterized example of this type of indoor air chemistry. The studies described here characterize an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue (MucilAir™). The model is used to investigate adverse effects following exposure to combinations of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction products resulted in alterations in inflammatory cytokine production. A one hour exposure to limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ tissue. No change in proliferation was observed but increases in cytokine production were observed for both the parent compounds and reaction products. Factors such as exposure duration, chemical concentration, and sampling time point were identified to influence result outcome. These findings suggest that exposure to reaction products may produce more severe effects compared to the parent compound. PMID:23220291

  19. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    Science.gov (United States)

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Ooi, San Nee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2015-01-01

    Highlights: • Sea mango oil as feedstock for biodiesel via non-catalytic supercritical reaction. • Extracted sea mango oil with high FFA could produce high yield of FAME. • Employment of Response Surface Methodology for optimization of FAME. • Kinetic study for reversible transesterification and esterification reactions. - Abstract: Sea mango (Cerbera odollam) oil, which is rich in free fatty acids, was utilized to produce fatty acid methyl esters (FAME) via supercritical transesterification reaction. Sea mango oil was extracted from seeds and was subsequently reacted with methanol in a batch-type supercritical reactor. Response surface methodology (RSM) analysis was used to optimize important parameters, including reaction temperature, reaction time and the molar ratio of methanol to oil. The optimum conditions were found as 380 °C, 40 min and 45:1 mol/mol, respectively, to achieve 78% biodiesel content. The first kinetic modelling of FAME production from sea mango oil incorporating reversible transesterification and reversible esterification was verified simultaneously. The kinetic parameters, including reaction rate constants, k, the pre-exponential constant, A, and the activation energy, Ea, for transesterification and esterification were determined using an ordinary differential equation (ODE45) solver. The highest activation energy of 40 kJ/mol and the lowest reaction rate constant of 2.50 × 10 −5 dm 3 /mol s verified that the first stepwise reaction of TG to produce DG was the rate-limiting step

  1. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  2. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Science.gov (United States)

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng

    2011-04-01

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  3. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    Science.gov (United States)

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  4. Production of krypton isotopes by (p,xn) reactions on bromine

    International Nuclear Information System (INIS)

    Chiengmai, S.N.; Hans, L.; Petter, M.

    1976-06-01

    Radioactive isotopes of the halogens are of great importance when preparing radiopharmaceuticals. 77 Br has mainly been produced by a direct reaction 75 As(α,2n) 77 Br. Recently an indirect way, producing 77 Kr which then decays to 77 Br, has been suggested. Since this provides a convenient method of separation this work develops this idea further making use of high energy protons on bromine Br(p,xn) 77 Kr→ 77 Br. The production cross-section for this reaction has been studied in the proton-energy interval of 20-80 MeV and the optimal production procedures considered. (Auth.)

  5. Production of lactic acid from C6-polyols by alkaline hydrothermal reactions

    International Nuclear Information System (INIS)

    Zhou Huazhen; Jin Fangming; Wu Bing; Cao Jianglin; Duan Xiaokun; Kishita, Atsushi

    2010-01-01

    Production of lactic acid from C6-polyols (Mannitol) under alkaline hydrothermal conditions was investigated. Experiments were performed to examine the difference in the production of lactic acid between C6-polyols and C3-polyols (glycerine), as well as C6-aldoses (glucose). Results showed that the yield of lactic acid from C6-polyols was lower than that from both glycerine and glucose. It indicated that long chain polyols might follow a different reaction pathway from that of glycerine. Further investigation is needed to clarify the reaction mechanism and improve the relatively low lactic acid acid yield from C6-polyols.

  6. Silica ecosystem for synergistic biotransformation

    Science.gov (United States)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  7. Facile fabrication of mesoporous Fe-Ti-SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions

    Science.gov (United States)

    Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng

    2018-03-01

    A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.

  8. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  9. Synthesis of silicon carbide by carbothermal reduction of silica

    International Nuclear Information System (INIS)

    Abel, Joao Luis

    2009-01-01

    The production of silicon carbide (SiC) in an industrial scale still by carbothermal reduction of silica. This study aims to identify, in a comparative way, among the common reducers like petroleum coke, carbon black, charcoal and graphite the carbothermal reduction of silica from the peat. It is shown, that the peat, also occurs in nature together with high purity silica sand deposits, where the proximity of raw materials and their quality are key elements that determine the type, purity and cost of production of SiC. Tests were running from samples produced in the electric resistance furnace with controlled atmosphere at temperatures of 1550 degree C, 1600 degree C and 1650 degree C, both the precursors and products of reaction of carbothermal reduction were characterized by applying techniques of X-ray diffraction, scanning electron microscopy (SEM) and Energy-Dispersive X-ray analysis Spectroscopy (EDS). The results showed the formation of SiC for all common reducers, as well as for peat, but it was not possible to realize clearly the difference between them, being necessary, specific tests. (author)

  10. Regulatory Notes on Impact of Excipients on Drug Products and the Maillard Reaction.

    Science.gov (United States)

    Chowdhury, Dipak K; Sarker, Haripada; Schwartz, Paul

    2018-02-01

    In general, it is an important criterion that excipients remain inert throughout the shelf life of the formulated pharmaceutical product. However, depending on the functionality in chemical structure of active drug and excipients, they may undergo interaction. The well-known Maillard reaction occurs between a primary amine with lactose at high temperature to produce brown pigments. The reactivity of Maillard reaction may vary depending on the concentration as well as other conditions. Commercially, there are products where the active pharmaceutical ingredient is a primary amine and contains less than 75% lactose along with inactive excipients. This product does not show Maillard reaction during its shelf life of around 2 years at ambient conditions. However, when the same type of product contains more than 95 % lactose as an excipient, then there is a possibility of interactions though it is not visible in the initial year. Therefore, this regulatory note discusses involvement of different factors of a known drug-excipient interactions with case studies and provides an overview on how the concentration of lactose in the pharmaceutical product is important in addition to temperature and moisture in Maillard reaction.

  11. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  12. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis.

    Science.gov (United States)

    Onakpoya, Igho J; Heneghan, Carl J; Aronson, Jeffrey K

    2016-07-01

    We have systematically identified medicinal products withdrawn worldwide because of adverse drug reactions, assessed the level of evidence used for making the withdrawal decisions, and explored the patterns of withdrawals over time. We searched PubMed, the WHO database of withdrawn products, and selected texts. We included products that were withdrawn after launch from 1950 onwards, excluding non-human and over-the-counter medicines. We assessed the levels of evidence on which withdrawals were based using the Oxford Center for Evidence Based Medicine Levels of Evidence. Of 353 medicinal products withdrawn from any country, only 40 were withdrawn worldwide. Anecdotal reports were cited as evidence for withdrawal in 30 (75%) and deaths occurred in 27 (68%). Hepatic, cardiac, and nervous system toxicity accounted for over 60% of withdrawals. In 28 cases, the first withdrawal was initiated by the manufacturer. The median interval between the first report of an adverse drug reaction that led to withdrawal and the first withdrawal was 1 year (range 0-43 years). Worldwide withdrawals occurred within 1 year after the first withdrawal in any country. In conclusion, the time it takes for drugs to be withdrawn worldwide after reports of adverse drug reactions has shortened over time. However, there are inconsistencies in current withdrawal procedures when adverse drug reactions are suspected. A uniform method for establishing worldwide withdrawal of approved medicinal products when adverse drug reactions are suspected should be developed, to facilitate global withdrawals. Rapid synthesis of the evidence on harms should be a priority when serious adverse reactions are suspected.

  13. The macro- and micro properties of cement pastes with silica-rich materials cured by wet-mixed steaming injection

    International Nuclear Information System (INIS)

    Wu, D.S.; Peng, Y.N.

    2003-01-01

    This research used cement pastes with a low water/blaine ratio (W/b=0.27). Rice husk ashes (RHA) burned at 700 and 850 deg. C, silica fume, silica sand (Ottawa standard sand), etc., were the added ingredients. Wet-mixed steam injection (WMSI) was at five different temperatures: 65, 80, 120, 150 and 180 deg. C. We investigated cement pastes with added silica-rich materials. For different WMSI temperatures and times, we explored the relations between compressive strength, hydration products, and pozzolanic reaction mechanism. From scanning electron microscopy (SEM) and EDS, we know that hydration products become very complicated, depending on the WMSI temperatures and times. It is difficult to determine the direct effects on the strength based on changes in the products. Experimental results, however, clearly showed that the compressive strength was worst for 80 deg. C and best for 180 deg. C. High-temperature WMSI is best with 4-h presteaming period and 8-h retention time. Curing in saturated limewater for 28 days did not increase the strength. The three types of silica-rich materials used in this research all participated in the reaction during high-temperature WMSI; they helped to increase the strength. Addition of Ottawa standard sand resulted in the best strength, followed by addition of RHA, while addition of silica fume was worse than the others. Specimens treated with high-temperature WMSI would swell slightly if they were placed in air. This was different from normal-temperature curing

  14. Role of (n,2n) reactions in transmutation of long-lived fission products

    Energy Technology Data Exchange (ETDEWEB)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  15. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  16. The study of biodiesel production using CaO as a heterogeneous catalytic reaction

    Directory of Open Access Journals (Sweden)

    Kamila Colombo

    2017-06-01

    Full Text Available With the aim of developing a process of biodiesel production that is environmentally benign much interest has been focused on the use of solid base catalysts, such as calcium oxide, for the transesterification of vegetable oils with methanol. In the study reported herein a recycling reactor was used in bench scale, with the capacity to produce 3 L of biodiesel. The reactor was designed especially for this research study. A full 23 factorial plan was used to evaluate the process parameters related to this study, in particular, the catalyst concentration, the alcohol to oil molar ratio and the reaction time. Using this equipment for the transesterification reaction resulted in the recovery of the excess alcohol. The reaction products were characterized using gas chromatography and liquid analysis to determine the ester and calcium concentrations, respectively. The main conclusions drawn were that the best conversion percentage (100% of biodiesel was reached when the methanol:oil molar ratio was 6:1, the reaction time was 75 min and the catalyst mass was 3% in relation to the oil mass used in this process. The CaO concentration determined exceeded the limit of concentration defined by legislation and thus a secondary operation was carried out to purify the reaction products obtained. The results of this study showed a high performance, and the proposed experiment could be used as a new and innovative way to produce biodiesel in the future.

  17. Kinetics of the hydrogen production reaction in a copper-chlorine water splitting plant

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Naterer, G.F.; Dincer, I.

    2009-01-01

    The exothermic reaction of HCl with particulate Cu occurs during hydrogen production step in the thermochemical copper-chlorine (Cu-Cl) water splitting cycle. In this paper, this chemical reaction is modeled kinetically, and a parametric study is performed to determine the influences of particle size, temperature and molar ratios on the reaction kinetics. It is determined that the residence time of copper particles varies between 10 and 100 s, depending on the operating conditions. The hydrogen conversion at equilibrium varies between 55 and 85%, depending on the reaction temperature. The heat flux at the particle surface, caused by the exothermic enthalpy of reaction, reaches about 3,000 W/m 2 when the particle shrinks to 0.1% from its initial size. A numerical algorithm is developed to solve the moving boundary Stefan problem with a chemical reaction. It predicts the shrinking of copper particles based on the hypothesis that the chemical reaction and heat transfer are decoupled. The model allows for estimation of the temperature of the copper particle, assumed spherical, in the radial direction. The maximum temperature at the interface is higher than the melting point of CuCl by 10-50 o C, depending on the assumed operating conditions. (author)

  18. Effect of γ-ray emission on transuranium element production cross sections in heavy ion reactions

    International Nuclear Information System (INIS)

    Il'inov, A.S.; Oganesyan, Yu.Ts.; Cherepanov, E.A.

    1980-01-01

    The effect of competition of the γ ray emission with neutron evaporation and of compound nuclei fission induced by heavy ion reactions on the production cross sections for transuranium elements is considered. It is shown that taking account of γ ray emission leads to the broadening of the excitation functions of the (HI, xny) reactions such as 18 O+ 238 U, 40 Ar+ 206 Pb, 40 Ar+ 207 Pb and 40 Ar+ 208 Pb reactions and to the displacement of their maximum toward the higher energies as well as to an increase of the absolute cross sections which is especially strong close to the fusion barrier. Cross sections for the radiative capture of heavy ions by a heavy target nucleus in 40 Ar+ 206 Pb, 40 Ar+ 208 Pb, 48 Ca+ 204 Pb and 48 Ca+ 208 Pb reactions are estimated

  19. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Directory of Open Access Journals (Sweden)

    Nahid Tamanna

    2015-01-01

    Full Text Available Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs. Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  20. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Science.gov (United States)

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  1. Solidification of highly active fission products by a thermite reaction. Pt. 1

    International Nuclear Information System (INIS)

    Rudolph, G.; Hild, W.

    1976-07-01

    To solidify high-level fission products a process was developed according to which a high-melting ceramic product is obtained as a solidification matrix in a thermite reaction. With a constant content of fission product oxides reaction mixtures consisting of 35 to 55 wt.% of manganese dioxide, 24 to 32 wt.% of aluminum shot and 17 to 36 wt.% of sand give suitable products. In the thermite reactiom some components contained in the reactic mixture volatilize partly by evaporation (alkali oxides, manganese oxide, and others) and partly by the formation of volatile oxides having lower valencies (silicon and aluminum oxide). The smoke generated can be easily collected in filters made of glass wool fibers. (orig./HR) [de

  2. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    Science.gov (United States)

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  3. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    Science.gov (United States)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  4. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  5. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies.

    Science.gov (United States)

    Yang, Kai; Dang, Qun; Cai, Pei-Jun; Gao, Yang; Yu, Zhi-Xiang; Bai, Xu

    2017-03-03

    Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.

  6. Characterization of ionic liquid‐based biocatalytic two‐phase reaction system for production of biodiesel

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2011-01-01

    The property of a variety of ionic liquids (ILs) as reaction media was evaluated for the production of biodiesel by enzymatic methanolysis of rapeseed oil. The IL Ammoeng 102, containing tetraaminum cation with C18 acyl and oligoethyleneglycol units, was found to be capable of forming oil....../IL biphasic reaction system by mixing with substrates, which is highly effective for the production of biodiesel with more than 98% biodiesel yield and nearly 100% conversion of oil. Conductor‐like screening model for real solvent (COSMO‐RS) in silico prediction of substrate solubility and simulation...... of partition coefficient change vs. reaction evolution indicated that the amphiphilic property of Ammoeng 102 might be responsible for creating efficient interaction of immiscible substrates; while big difference of partition coefficients of generated biodiesel and glycerol between the two phases suggests...

  7. Parameterization of pion production and reaction cross sections at LAMPF energies

    International Nuclear Information System (INIS)

    Burman, R.L.; Smith, E.S.

    1989-05-01

    A parameterization of pion production and reaction cross sections is developed for eventual use in modeling neutrino production by protons in a beam stop. Emphasis is placed upon smooth parameterizations for proton energies up to 800 MeV, for all pion energies and angles, and for a wide range of materials. The resulting representations of the data are well-behaved and can be used for extrapolation to regions where there are no measurements. 22 refs., 16 figs., 2 tabs

  8. Estudo das reações alcalis-sílica associadas ao uso da lama vermelha em argamassas colantes e de revestimento Study of alkali-silica reactions associated with the use of red mud in plastering mortars

    Directory of Open Access Journals (Sweden)

    D. V. Ribeiro

    2012-03-01

    Full Text Available A incorporação de resíduos industriais em matrizes cimentícias, com o objetivo de inertização, é uma alternativa de reutilização que tem sido bastante estudada nos últimos anos. No presente trabalho, estudou-se a lama vermelha, resíduo sólido gerado no processo de beneficiamento da bauxita e que, devido a seu elevado pH, é considerado "perigoso". Apesar do uso deste resíduo ter sido reportada em trabalhos anteriores, algumas patologias podem estar associadas à sua utilização, devido à elevada concentração de íons alcalinos (principalmente o sódio, favorecendo as reações álcalis-sílica (RAS e às dificuldades de moldagem (reologia devido à elevada finura deste resíduo. Apesar destes prováveis problemas provenientes do uso indiscriminado da lama vermelha como adição às argamassas e concretos, ainda são poucas as pesquisas que os contemplam, sendo este o foco do presente trabalho. Foram verificadas as propriedades reológicas das argamassas, utilizando um reômetro e a avaliação da RAS, de acordo com as normas ASTM C 1260-07 e NBR 11582. Os resultados obtidos foram bastante satisfatórios quanto ao comportamento das argamassas frente à RAS, apesar da elevada concentração de álcalis na lama vermelha, com grande influência reológica.The incorporation of industrial wastes in cementitious matrices, with the goal of inertization, is an alternative of reuse that has been extensively studied in recent years. In this paper, the red mud, the main waste generated in aluminum and alumina production by the Bayer process from bauxite ore and considered "hazardous" due to the high pH, was studied. Despite the use of this waste have been reported in previous studies, some pathologies may be associated with its use, due to high concentration of alkali ions (mainly sodium, favoring the alkali-silica reactions (ASR and the difficulties of molding (rheology because of high fineness of this waste. Despite these potential

  9. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  10. Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction

    International Nuclear Information System (INIS)

    Karimi, E.Z.; Zebarjad, S.M.; Khaki, J. Vahdati; Izadi, H.

    2010-01-01

    Carbon nanotubes (CNTs) have shown promising potential for many applications in field of engineering due to their unusual significant properties. A major challenge for the industrial applications of CNTs is the large-quantity production. In this field, one new method for CNT production is annealing the ball milled graphite powder. The annealing process should be done in high temperature (1200-1400 o C) and needs time more than 6 h. The novel process introduced in this paper is elimination the annealing stage thorough a thermite reaction. The necessity heat for the conversion of milling products to CNTs was generated in the milling chamber by an exothermic reaction. In addition, the reaction products acted as catalysts to the CNT formation process. The adiabatic temperatures of 1809, 2000 and 2325 K were selected according to balancing graphite and thermite mixture (Aluminum + Iron oxide powders) for exothermic reaction. The results of thermo gravimetric analysis (TGA) test proved that CNT formation strongly depends on adiabatic temperature. The results of microscopic evaluation done by transition electron microscope (TEM) showed that at higher adiabatic temperature CNTs could be produced.

  11. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  12. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Oldehinkel, E.; Bank, R. A.; Thorpe, S. R.; Baynes, J. W.; Bayliss, M. T.; Bijlsma, J. W.; Lafeber, F. P.; TeKoppele, J. M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  13. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  14. Hyperon production in photonuclear reactions on protons and deuterons : The Kappa(0)Sigma(+) channel

    NARCIS (Netherlands)

    Lohner, H; Bacelar, J; Castelijns, R; Messchendorp, J; Shende, S; Maeda, K; Tamura, H; Nakamura, SN; Hashimoto, O

    2004-01-01

    With the combined setup of the Crystal Barrel and TAPS photonspectrometers at ELSA in Bonn we have studied photonuclear reactions on protons and deuterons. From the series of experiments on single and multiple neutral meson emission we concentrate here on the hyperon production off protons and

  15. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  16. Production of 11Li in the (11B,11Li) reaction on 232Th

    International Nuclear Information System (INIS)

    Scott, D.K.; Buenerd, M.; Hendrie, D.L.; KeKelis, G.; Mahoney, J.; Menchaca-Rocha, A.; Olmer, C.

    1975-01-01

    Production of the neutron-rich nucleus 11 Li in the bombardment of 232 Th by 11 B at 114 MeV suggests that multinucleon transfer reactions induced by neutron excess heavy ions on heavy targets present a feasible method of measuring the mass excess of exotic light nuclei in the limit of stability

  17. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    International Nuclear Information System (INIS)

    Skibsted, Jorgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly

  18. Selective Production of 2-Methylfuran by Gas-Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts.

    Science.gov (United States)

    Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro

    2017-04-10

    Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  20. A study of reactions of sulfur dioxide in the gaseous phase. Production and evolution of aerosols resulting from these reactions

    International Nuclear Information System (INIS)

    Boulaud, Denis

    1977-01-01

    The reactions of sulfur dioxide in the gaseous phase with atmospheric pollutants (NO x ; hydrocarbons) were studied. Experiments showed that NO 2 contribution was significant and suggested that SO 2 transformation into sulfuric acid and sulfates might occur through oxidising agents mainly hydroxyl (OH) and hydro-peroxyl (HO 2 ) radicals. The production and evolution of the resulting aerosols was also studied. It was demonstrated that the effect of water vapour on particle production was significant and that primary embryos were formed from the hetero-molecular homogeneous nucleation acting on water vapour and very likely on sulfuric acid. There was a semi-quantitative agreement between our experimental results and some theoretical investigations on nucleation rate of the system (H 2 O - H 2 SO 4 ). The subsequent growth of particles was studied in a simulation chamber. Finally a model of sulfuric acid vapour evolution in presence of atmospheric aerosols made it possible to extend the previous results as far as possible to the case of atmosphere and then to compare the importance of homogeneous and heterogeneous nucleation of the vapours according to atmospheric conditions. (author) [fr

  1. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  2. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  3. Storage of CO2 by mineral carbonation of olivine: Study of the global process for the recovery of the reaction products and the separation of chromite particles by flotation

    International Nuclear Information System (INIS)

    Turri, Laura

    2017-01-01

    This work deals with the study of direct carbonation of olivine in solution, for the chemical transformation of CO 2 emitted by the industries. The influence of operating conditions is evaluated in order to optimize the yield of the reaction. However, for environmental acceptability and economic viability of the project, the beneficiation of recoverable metals and products is considered. Chromite particles contained in olivine are unreactive during the carbonation reaction: the separation is developed by flotation upstream of the reaction. According to the results, the extraction of chromite by magnetic separation is also conceivable. Gravimetric separation by sedimentation is considered to recover residual olivine in the reaction products, in order to recycle them in the carbonation process. Products sieving allowed to concentrate carbonates (less than 40 μm) and silica (between 40 and 106 μm). However, the co-precipitation of mixed carbonates due to the presence of iron and nickel included in the magnesium matrix, compromises the purification and the optimal valorization of the solids. Moreover, the formation of a passivation layer on the particles surface limits the conversion of olivine. Pretreatment of olivine is envisaged for the leaching of nickel in ammoniac solution. Besides, preliminary dissolution of olivine and selective precipitation of species with pH control of the solution can be an interesting alternative for higher carbonation extent and more efficient purification of the products. (author)

  4. The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction.

    Science.gov (United States)

    Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R

    2008-02-07

    This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

  5. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    Science.gov (United States)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  6. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    Science.gov (United States)

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  7. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates.

    Science.gov (United States)

    Seo, Sooyoun; Karboune, Salwa

    2014-12-17

    Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine.

  8. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.

    1989-01-01

    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  9. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  10. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  11. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  12. A triple telescope for the simultaneous identification of light and heavy reaction products

    CERN Document Server

    Moura, M M D; Alonso, E E; Souza, F A; Fujii, R J; Morais, O B D; Szanto, E M; Szanto de Toledo, A; Carlin, N

    2001-01-01

    Sixteen triple telescopes were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory, with the purpose of providing simultaneous identification of light and heavy reaction products. Each telescope consists of one ionization chamber, one Si detector and one CsI detector with photodiode readout. The telescopes are encapsulated in such a way that they can be utilized in different setup geometries depending on the kind of experiment being performed. Results for the ionization chambers energy loss resolution, Si and CsI detectors energy resolution and general performance are presented.

  13. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  14. Assay of common sunscreen agents in suncare products by high-performance liquid chromatography on a cyanopropyl-bonded silica column.

    Science.gov (United States)

    Simeoni, Silvia; Tursilli, Rosanna; Bianchi, Anna; Scalia, Santo

    2005-06-15

    A rapid high-performance liquid chromatographic method was developed for the simultaneous assay of eight of the most common sunscreen agents (octyl-methoxycinnamate, oxybenzone, butyl-methoxydibenzoylmethane, octyl-salicilate, methylbenzylidene camphor, octyl-dimethylamminobenzoate, phenylbenzimidazole sulphonic acid and octocrylene) in sun protection products. Evaluation of the influence of different stationary phases and eluents on the separation selectivity showed that optimal resolution was obtained on a cyanopropyl-silica column eluted with methanol-acetonitrile-tetrahydrofuran-aqueous acetic acid. A small adjustment of the proposed chromatographic system (reduction in the aqueous content of the mobile phase) permitted also the determination of the extremely hydrophobic UV filter, methylene bis-benzotriazolyl tetramethylbutylphenol along with three other sunscreen agents, octyl-methoxycinnamate, oxybenzone, butyl-methoxydibenzoylmethane. Recoveries of the UV filters from the spiked formulation were between 95.7 and 103.7% and the precision of the method was better than 6.1% relative standard deviation. The developed HPLC procedure is suitable for quality control and photostability analyses of commercial suncare products.

  15. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Agnieszka Golon

    2014-08-01

    Full Text Available Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  16. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  17. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    Science.gov (United States)

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  18. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  19. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  20. [Vigilance for veterinary medicinal products: declarations of adverse reactions in the year 2009].

    Science.gov (United States)

    Müntener, C R; Bruckner, L; Stürer, A; Althaus, F R; Caduff-Janosa, P

    2010-12-01

    During the year 2009, 134 reports of suspected adverse drug reactions (ADRs) to veterinary medicinal products (VMPs) were received (106 in the year 2008). The distribution according to species and drug classes remained in line with previous years. Companion animals were involved in most of the reports (46 % dogs, 19 % cats), followed by cattle or calves (22 %). Antiparasitic drugs made the biggest part with 30 % of the reports, followed by antiinfectives (19 %) and hormones (13 %). Some reactions following their use are specifically discussed. 95 additional enquiries about ADRs of VMPs were received by the Swiss Toxicological Information Centre in Zürich. Most of them concerned dogs or cats and antiparasitics or anti-inflammatory drugs. In the vaccinovigilance program, a total of 1020 reports were received, of which 1000 were related to the vaccination against blue tongue disease. The most frequently reported adverse reactions were aborts, mastitis or alterations of milk quality and they are specifically discussed.

  1. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  2. FOBOS - a 4π-fragment spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Ortlepp, H.G.; Schilling, K.D.

    1992-06-01

    The FOBOS detector presently under construction at Dubna is intended for heavy ion reaction studies in the bombarding energy range of 10...100 AMeV. It will consist of a 'gas-ball' of 30 position-sensitive avalanche counters and 30 axial ionization chambers behind them, a shell of 190 scintillation counters surrounding the gas ball and a forward phoswich array. All charged reaction products may be measured in a wide dynamic range and in a geometry covering a substantial part of 4π. Special developments were necessary concerning the mechanical construction, the detector design, the evacuation and gas supply and the electronics. Presently individual detector modules are being tested at the beam of the U-400 heavy ion cyclotron of the Laboratory of nuclear reactions. (orig.)

  3. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    Directory of Open Access Journals (Sweden)

    S. Rodrigues

    2009-06-01

    Full Text Available Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of soybean oil into ethyl esters. The process resulted in a maximum yield of 91.8% after 30 minutes of reaction. The process variables alcohol to oil ratio and catalyst to oil ratio were statistically significant regarding the yield of ethyl esters. The optimal operating condition was obtained applying an alcohol to oil molar ratio of 10.2 and a catalyst to oil weight ratio of 0.0035.

  4. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  5. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    Science.gov (United States)

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  6. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.

    Science.gov (United States)

    Ririe, K M; Rasmussen, R P; Wittwer, C T

    1997-02-15

    A microvolume fluorometer integrated with a thermal cycler was used to acquire DNA melting curves during polymerase chain reaction by fluorescence monitoring of the double-stranded DNA specific dye SYBR Green I. Plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product gives a DNA melting curve. The shape and position of this DNA melting curve are functions of the GC/AT ratio, length, and sequence and can be used to differentiate amplification products separated by less than 2 degrees C in melting temperature. Desired products can be distinguished from undesirable products, in many cases eliminating the need for gel electrophoresis. Analysis of melting curves can extend the dynamic range of initial template quantification when amplification is monitored with double-stranded DNA specific dyes. Complete amplification and analysis of products can be performed in less than 15 min.

  7. Prediction of bakery products nutritive value based on mathematical modeling of biochemical reactions

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2013-01-01

    Full Text Available Researches are devoted to identifying changes in the chemical composition of whole-grain wheat bread during baking and to forecasting of food value of bakery products by mathematical modeling of biochemical transformations. The received model represents the invariant composition, considering speed of biochemical reactions at a batch of bakery products, and allowing conduct virtual experiments to develop new types of bread for various categories of the population, including athletes. The offered way of modeling of biochemical transformations at a stage of heat treatment allows to predict food value of bakery products, without spending funds for raw materials and large volume of experiment that will provide possibility of economy of material resources at a stage of development of new types of bakery products and possibility of production efficiency increase.

  8. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    Science.gov (United States)

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-09

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.

  9. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  10. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  11. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  12. Study of cross-linking reactions induced by gamma rays in hybrid membranes of Bisphenol-A-Polysulfone and precipitated silica; Estudo da formacao de ligacoes cruzadas por irradiacao gama em membranas hibridas de Polissulfona Bisfenol-A e silica precipitada

    Energy Technology Data Exchange (ETDEWEB)

    Furtado Filho, Acacio Antonio M., E-mail: facacio@ctex.eb.br [Laboratorio de Quimica Militar, CTEx, Rio de Janeiro, RJ (Brazil); Gomes, Ailton de S.; Lopes, Lea; Benzi, Marcia R. [Instituto de Macromoleculas Professora Eloisa Mano, UFRJ, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In this work the bisphenol-A-polysulfone (PSF) was sulfonated using trimethyl silyl chlorosulfonate [(CH{sub 3}){sub 3}SiSO{sub 3}Cl] as a mild sulfonating agent in a homogeneous solution of dichloroethane. The sulfonation reaction was confirmed by acid-base titration and FTIR-spectroscopy analysis. The hybrid membranes were obtained by casting the sulfonated bisphenol-A-polysulfone (SPSF) and precipitated silica Tixosil{sup R} 333 solutions in N-N-dimethylacetamide. Cross-linking in the hybrid membranes was obtained by irradiation, with doses ranging from 5 to 30 kGy using gamma ray from a {sup 60}Co source. The water uptake and the swelling of the membranes were estimated by measuring the change in weight between dry and wet conditions. The conductivity of the membranes in acid form was measured with the ac impedance technique using a PGSTAT30 frequency response analyzer. The hybrid cross-linked membranes have conductivity close to 10-1 S.cm{sup -1} at 100% RH and 80 deg C. Electrochemical performances, thermo-mechanical stability and low cost make this cross-linked SPSF hybrid membrane an attractive material for fuel cells using a proton exchange membrane. (author)

  13. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  14. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  15. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin

    2017-01-01

    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic

  16. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  17. Coherent production of two and three pions in pd reactions at 19 GeV/c

    International Nuclear Information System (INIS)

    Bakken, V.; Gennow, H.; Lundborg, P.; Maekelae, J.; Moellerud, R.; Pimiae, M.; Sellden, B.; Sundell, E.; Tuominemi, J.K.

    1976-10-01

    The coherent reactions pd→pdπ + π - , pd→pdπ + π - π 0 and pd→ndπ + π + π - are studied. In the two first reactions strong production of Δ ++ (1236) is observed. Production of d* 0 and d* + is observed in the first and second reactions respectively. The forward slope of the t-distribution of the pπ + π - system in the pd→pdπ + π - channel decreases with increasing mass. The 1500 and 1700 MeV enhancements in the pπ + π - mass spectrum of this channel are studied. Assuming that the Gribov-Morrison rule holds, it is found that by analysing the moments of the decay angular distributions that the resonances N(1470), N(1520) and N(1688) are the most likely resonances to be identified with these enhancements. Evidence is found against s-channel helicity conservation and some evidence against t-channel helicity conservation. The decay parameters of the Δ ++ (1236) in the reaction pd→Δ ++ π - d are in good agreement with the predictions of a one-pion exchange model. (Auth.)

  18. Demonstration of physical phenomenas and scavenging activity from d-psicose and methionine maillard reaction products

    Directory of Open Access Journals (Sweden)

    Arum Tiyas Suminar

    2017-01-01

    Full Text Available Maillard reaction has been well understood as a non-enzymatic reaction between reducing sugars and amino acids to generate the Maillard reaction products (MRPs. This study is aimed to demonstrate the browning intensity, color development, spectra measurements, scavenging activity, and the correlation between browning intensity and scavenging activity of the MRPs generated from D-Psicose and Methionine (Psi-Met at 50℃. The browning intensity of MRPs was investigated based on the absorbance using spectrophotometer at 420 nm, the color development was observed using digital colorimeter to gained L*a*b* value then calculated as browning index, the spectra development was analyzed using spectrophotometer at 190 - 750 nm, and the scavenging activity was determined with ABTS method using spectrophotometer at 734 nm. The browning intensity, color development, and scavenging activity were improved along with the increase in heating process. Based on spectra analysis, MRPs from Psi-Met was initially detected at 21 h and Psi at 24 h of heating treatment, which indicating that Psi-Met have faster and better reaction than Psi during heating process. Positive non-linear and significant correlation between browning intensity and scavenging activity were assigned. This finding may provide beneficial information of D-psicose and MRPs to the next scientific research and to the food industries which applies MRPs in their products.

  19. Production of heavy evaporation residues in the reactions induced by an extracted 48Ca beam on a 208Pb target

    International Nuclear Information System (INIS)

    Eremin, A.V.; Chepigin, V.I.; Itkis, M.G.

    1998-01-01

    The production cross sections of the isotopes 253-255 No were measured for the heavy ion complete fusion reaction 48 Ca + 208 Pb using the electrostatic recoil separator VASSILISSA. The obtained excitation functions for the reaction products formed after the evaporation of 1-3 neutrons from the compound nucleus are discussed and compared with the data obtained earlier and with the results of the statistical model calculations. The background conditions at the extraction of the correlated events of the reaction product decay are also considered from the point of view of future experiments on the superheavy element synthesis in the complete fusion reactions induced by 48 Ca projectiles

  20. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schittl, H. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Quint, R.M. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Getoff, N. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria)]. E-mail: nikola.getoff@univie.ac.at

    2007-10-15

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N{sub 2}O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N{sub 2}O (used to convert e{sub aq} {sup -} into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions.

  1. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    International Nuclear Information System (INIS)

    Schittl, H.; Quint, R.M.; Getoff, N.

    2007-01-01

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N 2 O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N 2 O (used to convert e aq - into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions

  2. A Further Study of the Products of Sc and Dioxygen Reactions

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Zhou, Mingfei; Andrews, Lester; Johnson, J. R. Tobias; Panas, Itai; Snis, Anders; Roos, Bjoern O.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The products of the reaction of Sc and dioxygen have been reinvestigated. By adding the electron-trapping molecule CC14, additional information about the IR spectra has been obtained, as well as the observation of new bands. New ab initio calculations are also performed on possible products of the Sc plus O2 reaction. The previously observed band at 722.5 per cm is assigned as the b2 mode of ScO2(-). Bands arising from ScO(+), Sc(O2)(+), and(O2)ScO are also assigned. We are still unable to assign any bands to OScO. The problems associated with the computational study of ScO2 are discussed.

  3. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  4. Perspectives of Scalar- and Vector- Meson Production in Hadron-Nucleus Reactions

    International Nuclear Information System (INIS)

    Cassing, W.

    2000-01-01

    The production and decay of vector mesons (ρ, ω) in pA reactions at COSY energies is studied with particular emphasis on their in-medium spectral functions. It is explored within transport calculations, if hadronic in-medium decays like π + π - or π 0 γ might provide complementary information to their dilepton (e + e - ) decays. Whereas the π + π - signal from the ρ-meson is found to be strongly distorted by pion rescattering, the ω- meson Dalitz decay to π 0 γ appears promising even for more heavy nuclei. The perspectives of scalar meson ( f 0 , a 0 ) production in pp reactions are investigated within a boson-exchange model indicating that the f 0 -meson might hardly be detected in these collisions in the K(anti)K or ππ decay channels whereas the exclusive channel pp→da 0 + looks very promising. (author)

  5. A quark-antiquark formation model for meson production in low transverse momentum hadron-hadron reactions

    International Nuclear Information System (INIS)

    Friebel, W.; Kriegel, U.; Nahnhauer, R.

    1979-01-01

    Introducing quark transverse momenta and masses it is proposed a 3-dimensional generalization of the quark recombination and the quark fusion model for meson production in low transverse momentum hadron-hadron reactions. A consistent description of vector meson production in proton-proton and proton-antiproton reactions from 12 - 405 GeV/c has been achieved. (author)

  6. Multiple particles production for hadron-hadron reactions with finite hadronization time

    International Nuclear Information System (INIS)

    Arbex, N.

    1991-01-01

    Experimental data on multiple particle production for proton-proton reaction are analysed in the context of a very simple analytical model. The model exhibits the essential features of hydrodynamical calculations as, e.g., the formation of an intermediate object, which undergoes expansion. The simultaneous analysis of different types of data allows for the conclusion that such data reflect the dynamics of this intermediate object and have a very deem connection to the elementary processes. (author)

  7. Experiences on removal of sodium-water reaction products in SWAT-3

    International Nuclear Information System (INIS)

    Tanabe, H.; Hiroi, H.; Sato, M.; Otaka, J.

    2002-01-01

    This report summarizes experiences and information concerning the removal of sodium water reaction products (SMRP) obtained through large leak tests of the Steam Generator Safety Test Facility (SWAT-3) at PNC/OEC, which were conducted to validate the safety design of steam generators of a prototype LMFBR Monju. The following three problems are discussed here: (1) drainability of SWRP, (2) removal of SWRP by using a cold trap, and (3) steam cleaning of SWRP. (author)

  8. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  9. Velocity map imaging of ion-molecule reaction products: Co+(3F4)+isobutane

    Science.gov (United States)

    Reichert, Emily L.; Thurau, Gert; Weisshaar, James C.

    2002-07-01

    The velocity map imaging technique is applied to mass-selected CoC3H6++CH4 and CoC4H8++H2 elimination products from the Co+(3F4)+isobutane reaction studied under crossed-beam conditions at 0.21 eV collision energy. For both reactions we obtain the joint scattering probability distribution P(E,Θ), where E and Θ are the product translational energy and scattering angle. The fraction of available energy deposited into product translation is 0.4 for H2, compared with 0.1 for CH4. For the CH4 product, the angular distribution is forward-backwards symmetric and sharply peaked at Θ=0 and 180°. P(E,Θ) is not separable into the product of an energy and an angular function; rather, the angular distribution peaks more sharply at higher translational energy. Evidently, incipient CoC3H6++CH4 products equilibrate in the Co+(C3H6)(CH4) exit-channel well, from which they decay statistically. The product translational energy distribution P(E) is consistent with orbiting-transition state phase-space theory with no exit-channel barrier. In addition, the energy-integrated angular distribution T(Θ) is consistent with the predictions of the early statistical complex decay model of Miller and Herschbach for fragmentation from a transition state that is a prolate top. In sharp contrast, P(E) for the CoC4H8++H2 products exhibits a substantial hot, nonstatistical tail towards high energy. Perhaps the H2 channel has a late potential energy barrier some 0.5 eV above products, but we view this explanation as highly unlikely. Instead, we suggest that the potential energy from an earlier multicenter transition state is funneled efficiently, and highly nonstatistically, into product translation. This surprising conclusion may apply to H2 products for the entire family of reactions of the late-3D series transition metal cations Fe+, Co+, and Ni+ with alkanes.

  10. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  11. Enhancement of Ag-Based Plasmonic Photocatalysis in Hydrogen Production from Ammonia Borane by the Assistance of Single-Site Ti-Oxide Moieties within a Silica Framework.

    Science.gov (United States)

    Verma, Priyanka; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2017-03-13

    Ag nanoparticles (NPs) have gained great attention owing to their interesting plasmonic properties and efficient catalysis under visible-light irradiation. In this study, an Ag-based plasmonic catalyst supported on mesoporous silica with isolated and tetrahedrally coordinated single-site Ti-oxide moieties, namely, Ag/Ti-SBA-15, was designed with the purpose of utilizing the broad spectral range of solar energy. The Ti-SBA-15 support allows the deposition of small Ag NPs with a narrow size distribution. The chemical structure, morphology, and optical properties of the prepared catalyst were characterized by techniques such as UV/Vis, FT extended X-ray absorption fine structure, and X-ray photoelectron spectroscopy, field-emission SEM, TEM, and N 2 physisorption studies. The catalytic activity of Ag/Ti-SBA-15 in hydrogen production from ammonia borane by hydrolysis was significantly enhanced in comparison with Ag/SBA-15 without Ti-oxide moieties and Ag/TiO 2 /SBA-15 involving agglomerated TiO 2 , both in the dark and under light irradiation. Improved electron transfer under light irradiation caused by the creation of heterojunctions between Ag NPs and Ti-oxide moieties explains the results obtained in the present study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Directory of Open Access Journals (Sweden)

    Julien Robert-Paganin

    Full Text Available FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686: one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  13. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Science.gov (United States)

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686): one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  14. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  15. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  16. Mass resolved angular distribution of fission products in 20Ne + 232Th reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.

    2011-01-01

    Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division

  17. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  18. Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source

    Science.gov (United States)

    Szpunar, B.; Rangacharyulu, C.; Daté, S.; Ejiri, H.

    2013-11-01

    In contrast to conventional bremsstrahlung photon beam sources, laser backscatter photon sources at electron synchrotrons provide the capability to selectively tune photons to energies of interest. This feature, coupled with the ubiquitous giant dipole resonance excitations of atomic nuclei, promises a fertile method of nuclear isotope production. In this article, we present the results of simulations of production of the medical/industrial isotopes 196Au, 192Ir and 99Mo by (γ,n) reactions. We employ FLUKA Monte Carlo code along with the simulated photon flux for a beamline at the Canadian Light Source in conjunction with a CO2 laser system.

  19. Synthesis of Siloxanes Directly from Amorphous Silica

    International Nuclear Information System (INIS)

    Myint Sandar Win

    2011-12-01

    A direct synthesis of oligomeric-siloxanes from amorphous silica has been achieved. The compound prepared was caedonal-siloxane. Cardonal is a mono hydroxyphenolic compound with a bulky group in the meta position. It was derived as a by-product from the renewable resources cashew nut shell liquid (CNSL). In the synthesis, one pot synthesis was carried out by using ethylene glycol (EG) as solvent. In the reaction ethylene glycol served as a primary precursor chelating ligand in the synthesised product. The one pot synthesis was enhanced by the strong base, triethylenetetramine (TETA) which served as the promoter catalyst. In the synthesis, optimal conditions were established on the basic of the yield percent of organo-siloxane compounds with respect to the variation of the weight fraction of TETA and to the variation of reaction time. Experimental runs were carried out at (ca 210 2c) which was nearly above the boiling point of the solvent. The substituted organo-silicon compounds obtained were characterized by FT- ir, Thermal analysis, XRD and SEM.

  20. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    cellobiose and glucose. The reported KI for glucose on the T. reesei cellulases and -glucosidase varies from 0.04 to 5 g/L. The type of inhibition is debated, and probably varies for different -glucosidases, but with a required goal of sufficient glucose concentration to support ethanol concentrations....... This is because the currently used Trichoderma reesei derived cellulases, i.e. exoglucanases (mainly the cellobiohydrolases Cel7A and Cel6A), endo-1,4--glucanases, and now boosted with -glucosidase and other enzymes, now considered the “industry standard” enzymes, are significantly inhibited by the products...... of minimum ∼5–6% v/v, the glucose product concentrations exceed the critical limit for product inhibition. Hence, regardless of the recent progress in enzyme development for cellulose hydrolysis, the glucose product inhibition remains an issue, which is exacerbated as the reaction progresses, especially...

  1. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    Science.gov (United States)

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  2. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  3. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  4. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP and Biogenic Silica (Bio-Silica, as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    Directory of Open Access Journals (Sweden)

    Florian Draenert

    2013-03-01

    Full Text Available Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP and biogenic silica (bio-silica have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation. In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

  5. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C.; Feng, Qingling; Draenert, Florian; Müller, Werner E. G.

    2013-01-01

    Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer. PMID:23528950

  6. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  7. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  8. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    International Nuclear Information System (INIS)

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with 3 H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED 50 ) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED 50 values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM

  9. Production of isomers in compound and transfer reactions with 4He ions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Aksenov, N.V.; Albin, Yu.A.; Bozhikov, G.A.; Dmitriev, S.N.; Starodub, G.Ya.; Vostokin, G.K.; Carroll, J.J.

    2011-01-01

    A well-known island of nuclear isomerism appears near A = 175-180 due to the deformation alignment of single-particle orbits at high angular momentum. This sometimes results in the formation of multi-quasiparticle states with record spin that are long-lived because of 'K-hindrance', i.e., symmetry rearrangement. Production methods and spectroscopic studies of these isomers remain a challenge for modern nuclear reaction and nuclear structure physics. Activities were produced by irradiation of 176 Yb(97.6%) enriched and nat Lu targets with 35-MeV 4 He ions from the internal beam of the U200 cyclotron. Induced activities were analyzed applying methods of radiochemistry and gamma spectroscopy. Yields of compound and nucleon-transfer reactions were measured and the isomer-to-ground state ratios were deduced. Calculated results were obtained using standard procedures to reproduce the (α, xn) cross sections, and the systematic behavior of the nucleon-transfer yields was established. The isomer-to-ground state ratios for direct reactions with 4 He ions were examined, resulting in a new characterization of the reaction mechanism

  10. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  11. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    Science.gov (United States)

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  12. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    Science.gov (United States)

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  13. Reactions of clofibric acid with oxidative and reductive radicals—Products, mechanisms, efficiency and toxic effects

    International Nuclear Information System (INIS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O 2 −∙ /HO 2 ∙ reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O 2 −∙ /HO 2 ∙ . Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC–MS method was developed based on 18 O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid. - Highlights: • Clofibric acid is effectively degraded by OH radical. • Main primary and secondary products are hydroxylated and dihydroxylated phenyl type derivatives of clofibric acid. • In air saturated aqueous solutions O 2 plays an important role in decomposition of the aromatic structure. • A new LC–MS method with 18 O-labeling was developed. • Early stage reaction products are more toxic to bacteria Vibrio fischeri than clofibric acid

  14. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  15. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  16. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  17. From the HINDAS Project: Excitation Functions for Residual Nuclide Production by Proton-Induced Reactions

    International Nuclear Information System (INIS)

    Michel, R.; Gloris, M.; Protoschill, J.; Uosif, M.A.M.; Weug, M.; Herpers, U.; Kuhnhenn, J.; Kubik, P.-W.; Schumann, D.; Synal, H.-A.; Weinreich, R.; Leya, I.; David, J.C.; Leray, S.; Duijvestijn, M.; Koning, A.; Kelic, A.; Schmidt, K.H.; Cugnon, J.

    2005-01-01

    A survey is given about efforts undertaken during the HINDAS project to investigate the energy dependence of residual nuclide production by proton-induced reactions from thresholds up to 2.6 GeV. For proton-induced reactions, our experiments aimed to further develop and complete the cross-section database that was established by our collaboration in recent years. It was extended to the heavy-target elements Ta, W, Pb, and Bi for energies up to 2.6 GeV. In addition, new measurements for the target element iron were performed up to 2.6 GeV and for natural uranium for energies from 21 MeV to 69 MeV. For the target element lead, a comprehensive set of excitation functions published recently was completed by AMS-measurements of cross sections for the production of the long-lived radionuclides Be-10, Al-26, Cl-36, and I-129 and by mass spectrometric measurements for stable and radioactive rare gas isotopes of He, Ne, Ar, Kr, and Xe. Comprehensive tests of the nuclear-reaction codes TALYS and INCL4+ABLA, which were developed within the HINDAS project, were performed with the new experimental results over the entire energy range

  18. A dataset of 200 structured product labels annotated for adverse drug reactions.

    Science.gov (United States)

    Demner-Fushman, Dina; Shooshan, Sonya E; Rodriguez, Laritza; Aronson, Alan R; Lang, Francois; Rogers, Willie; Roberts, Kirk; Tonning, Joseph

    2018-01-30

    Adverse drug reactions (ADRs), unintended and sometimes dangerous effects that a drug may have, are one of the leading causes of morbidity and mortality during medical care. To date, there is no structured machine-readable authoritative source of known ADRs. The United States Food and Drug Administration (FDA) partnered with the National Library of Medicine to create a pilot dataset containing standardised information about known adverse reactions for 200 FDA-approved drugs. The Structured Product Labels (SPLs), the documents FDA uses to exchange information about drugs and other products, were manually annotated for adverse reactions at the mention level to facilitate development and evaluation of text mining tools for extraction of ADRs from all SPLs. The ADRs were then normalised to the Unified Medical Language System (UMLS) and to the Medical Dictionary for Regulatory Activities (MedDRA). We present the curation process and the structure of the publicly available database SPL-ADR-200db containing 5,098 distinct ADRs. The database is available at https://bionlp.nlm.nih.gov/tac2017adversereactions/; the code for preparing and validating the data is available at https://github.com/lhncbc/fda-ars.

  19. Viability for controlling long-term leaching of radionuclides from HLW glass by amorphous silica additives

    International Nuclear Information System (INIS)

    Inagaki, Y.; Uehara, S.

    2004-01-01

    Dissolution and deterioration experiments in coexistence system of amorphous silica and vitrified wastes have been executed in order to evaluating the effects of amorphous silica addition to high level radioactive vitrified waste (HLW glass) on suppression of nuclide leaching. Geo-chemical reaction mechanism among the vitrified waste, the amorphous silica and water was also evaluated. Dissolution of the silica network was suppressed by addition of the amorphous silica. However, the leaching of soluble nuclides like B proceeded depending on the hydration deterioration reaction. (A. Hishinuma)

  20. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  1. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  2. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S.A. Mandavgane

    2010-12-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as aconcrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc.Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitatedfrom the sodium silicate by acidification. In the present work, conversion of about 90% of silica containedin RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The resultsshowed that silica obtained from RHA is mesoporous, has a large surface area and small particle size.Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usuallycontains carbon particles. Activated carbon embedded on silica has been prepared using the carbon alreadypresent in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67

  3. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  4. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  5. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  6. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  7. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  8. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions.

    Science.gov (United States)

    Blei, Felix; Baldeweg, Florian; Fricke, Janis; Hoffmeister, Dirk

    2018-05-11

    Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called "magic mushrooms". The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and L-serine, which are less cost-intensive substrates, compared to the previous method. Further, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) via the same in vitro approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  10. Development of computer code on sodium-water reaction products transport

    International Nuclear Information System (INIS)

    Arikawa, H.; Yoshioka, N.; Suemori, M.; Nishida, K.

    1988-01-01

    The LMFBR concept eliminating the secondary sodium system has been considered to be one of the most promissing concepts for offering cost reductions. In this reactor concept, the evaluation of effects on reactor core by the sodium-water reaction products (SWRPs) during sodium-water reaction at primary steam generator becomes one of the major safety issues. In this study, the calculation code was developed as the first step of the processes of establishing the evaluation method for SWRP effects. The calculation code, called SPROUT, simulates the SWRPs transport and distribution in primary sodium system using the system geometry, thermal hydraulic data and sodium-water reacting conditions as input. This code principally models SWRPs behavior. The paper contain the modelings for SWRPs behaviors, with solution, precipation, deposition and so on, and the results and discussions of the demonstration calculation for a typical FBR plant eliminating the secondary sodium system

  11. Reaction Mechanism of Tar Evolution in Biomass Steam Gasification for Hydrogen Production

    International Nuclear Information System (INIS)

    Shingo Katayama; Masahiro Suzuki; Atsushi Tsutsumi

    2006-01-01

    Reaction mechanism of tar evolution in steam gasification of biomass was investigated with a continuous cross-flow moving bed type differential reactor, in which tar and gases can be fractionated according to reaction time. We estimated that time profile of tar and gas evolution in the gasification of cellulose, xylan, and lignin, and compared it with experimental product time profile of real biomass gasification. The experimental tar evolution rate is different from estimated tar evolution rate. The estimated tar evolution rate has a peak at 20 s. On the other hand, the experimental tar evolution rate at 20 s is little, and tar at initial stage includes more water-soluble and water-insoluble compounds. It can be concluded that in the real biomass steam gasification the evolution of tar from cellulose and lignin component was found to be precipitated by that from hemi-cellulose component. (authors)

  12. Heterogeneous reaction of particulate chlorpyrifos with NO3 radicals: Products, pathways, and kinetics

    Science.gov (United States)

    Li, Nana; Zhang, Peng; Yang, Bo; Shu, Jinian; Wang, Youfeng; Sun, Wanqi

    2014-08-01

    Chlorpyrifos is a typical chlorinated organophosphorus pesticide. The heterogeneous reaction of chlorpyrifos particles with NO3 radicals was investigated using a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) and a real-time atmospheric gas analysis mass spectrometer. Chlorpyrifos oxon, 3,5,6-trichloro-2-pyridinol, O,O-diethyl O-hydrogen phosphorothioate, O,O-diethyl ester thiophosphoric acid, diethyl hydrogen phosphate and a phosphinyl disulfide compound were identified as the main degradation products. The heterogeneous reaction pathways were proposed and their kinetic processes were investigated via a mixed-phase relative rate method. The observed effective rate constant is 3.4 ± 0.2 × 10-12 cm3 molecule-1 s-1.

  13. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1995-01-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27 Al, Si, 51 V, 56 Fe, 59 CO, 58,60 Ni, 89 Y and 93 Nb. Data for 59 Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  14. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    Science.gov (United States)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  15. Interaction of steel elements with products of lithium-water reactions

    International Nuclear Information System (INIS)

    Starkov, O.V.; Orlov, A.V.; Orlova, E.A.

    1980-01-01

    Isobar and isothermal potentials of reactions of products of lithium interaction with water (Li 2 O, LiOH) with components of structural steels (Fe, Cr, Ni, Cr 4 C, Ni, Ti, Si, Al) are calculated at the general pressure of P=1 at in the absence of mutual solubility of components. The chemical resistance of steel components to lithium oxide and hydroxide effect in the temperature range of 300-1500 K is estimated comparatively. Lithium oxide and hydroxide have different corrosion properties relatively to chromium-nickel steels (simple and complex compounds form with LiOH, which do not form with Li 2 O). Titanium, niobium, silicon, aluminium form stable compounds when interacting with LiOH. In reactions with Li 2 O only complex titanium compounds are stable at the temperature >1150 K; aluminium compounds are stable in the whole range of temperatures investigated

  16. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    Science.gov (United States)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  17. Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George

    2010-09-30

    The objective is to develop a process that will convert synthesis gas from coal into ethanol and then transform the ethanol into hydrogen. Principal investigators from Iowa State University include Dr. George Kraus, Dr. Victor Lin, Marek Pruski, and Dr. Robert Brown. Task 1 involves catalyst development and catalyst scale up. Mesoporous manganese silicate mixed oxide materials will be synthesized, characterized and evaluated. The first-and secondgeneration catalysts have been prepared and scaled up for use in Task 2. The construction of a high-pressure reactor system for producing synthetic liquid fuel from simulated synthesis gas stream has been completed as the first step in Task 2. Using the first- and second generation catalysts, the reactor has demonstrated the production of synthetic liquid fuel from a simulated synthesis gas stream.

  18. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  19. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  20. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  1. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    Science.gov (United States)

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. FY 1999 results of the regional consortium R and D project/the regional consortium energy R and D. 1st year. Development of the energy-saving type production technology of high-purity/transparent silica glass; 1999 nendo kojundo tomei sekiei glass no sho energy gata seizo gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of achieving the remarkable energy conservation, high accuracy and low cost in the production of high-purity/transparent silica glass, the developmental research was conducted on slip casting method. In the development of technology to synthesize silica powder by the sol-gel method, monodisperse - polydisperse high-purity colloidal silica was obtained. In the development of technology to make silica power ultra-highly pure, a process was found out in which silica particles can be obtained by applying moderate amounts of ammonium bicarbonate and aqueous ammonia to the solution of silicic acid for heating. In the slip cast forming, a high-density forming body with a mean particle size of 1.5{mu}m was obtained. In the trial manufacture of reflector model, a translucent silica glass sintered body was obtained by transcribing the gypsum type dimensional shape in high purity. Besides, experimental researches were conducted on the examination of gypsum type/resin type and evaluation of physical properties, heat deterioration characteristics of the actual multi-layer film and trial manufacture of the heat resistant film, analysis/evaluation of trace impurities inside silica glass, conditions for the manufacture of dense silica glass sheets, etc. (NEDO)

  3. Synthesis and Characterizations of Fine Silica Powder from Rice Husk Ash

    International Nuclear Information System (INIS)

    Khin Muyar Latt

    2011-12-01

    The silica content of rice husk ash obtained from the uncontrolled burning temperature of gasifier was 90.4%. The obtained rice husk ash was an amorphous form of silica with low crystallization by XRD. The sodium hydroxide solution, 1.5N, 2N, 2.5N and 3N, respectively was used to prepare sodium silicate solution by extraction method. The product silica was produced by acid precipitation method used 4.5N, 5.5N and 6.5N sulphuric acid solution. The highest yield percent of product silica extraced by 2.5N sodium hydroxide solution at 5N sulphuric acid solution was 88.84%. The crystallize size of product silica containing silicalite as a source of silica was 86nm at this condition. The fine silica powder was produced by acid refluxing mothod used 5.5N, 6N and 6.5N hydrochloric acid solution. 98% of pure fine silica powder can be produced from the product silica by refluxing method. The crystallize size of fine silica powder was 54nm. The distribution of the crystallize size of product silica powder could be found uniform in size and agglomeration. The Fourier Transform Infrared Spectra indicate the hydrogen bonded silinol groups and siloxane groups in product silica and fine silica powder.

  4. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  5. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  6. In vitro antibacterial analysis of phenoloxidase reaction products from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jiang, Jingwei; Zhou, Zunchun; Dong, Ying; Cong, Cong; Guan, Xiaoyan; Wang, Bai; Chen, Zhong; Jiang, Bei; Yang, Aifu; Gao, Shan; Sun, Hongjuan

    2014-08-01

    Three phenoloxidases (POs) of Apostichopus japonicus, AjPOs (AjPO1, AjPO2 and AjPO3), were partially purified from the coelomocytes with an electrophoretic method, and then employed for the in vitro antibacterial analysis. Using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, AjPO1 and AjPO2-derived compounds inhibited the growth of Vibrio splendidus and Staphylococcus aureus, while AjPO3-derived compounds only inhibited the growth of V. splendidus. When dopamine was used as a substrate, AjPO1 and AjPO3-derived compounds inhibited the growth of V. splendidus and Vibrio harveyi, while AjPO2-derived compounds only inhibited the growth of V. splendidus. Moreover, AjPO1-derived compounds showed stronger inhibition in V. harveyi than AjPO3-derived compounds did. However, all of the three AjPO reaction products showed no inhibitions on the growth of Pseudoalteromonas nigrifaciens, Shewanella baltica, Micrococcus lysodeikticus, Streptococcus dysgalactiae and Nocardiopsis sp. with L-DOPA or dopamine as a substrate. Scanning electron microscope (SEM) observation of V. harveyi treated by AjPOs and dopamine showed that AjPO1-derived compounds resulted in massive bacteriolysis, AjPO2-derived compounds caused no obvious alteration on bacterial morphology, and AjPO3-derived compounds increased the ratio of spheroidal bacteria. All these results suggested that AjPO reaction products derived by L-DOPA and dopamine had different but limited antibacterial spectrum, and the different antibacterial effects observed among three AjPOs resulted from the different reaction products generated by AjPOs with the same substrate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Modulated molecular beam mass spectrometry: A generalized expression for the ''reaction product vector'' for linear systems

    International Nuclear Information System (INIS)

    Chang, H.; Weinberg, W.H.

    1977-01-01

    A generalized expression is developed that relates the ''reaction product vector'', epsilon exp(-iphi), to the kinetic parameters of a linear system. The formalism is appropriate for the analysis of modulated molecular beam mass spectrometry data and facilitates the correlation of experimental results to (proposed) linear models. A study of stability criteria appropriate for modulated molecular beam mass spectrometry experiments is also presented. This investigation has led to interesting inherent limitations which have not heretofore been emphasized, as well as a delineation of the conditions under which stable chemical oscillations may occur in the reacting system

  8. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  9. Production of 139Ce by the 139La(p,n)139Ce reaction

    International Nuclear Information System (INIS)

    Ishioka, Noriko S.; Sekine, Toshiaki; Izumo, Mishiroku; Hashimoto, Kazuyuki; Kobayashi, Katsutoshi; Matsuoka, Hiromitsu

    2002-01-01

    To produce a carrier-free 139 Ce to be used as an efficiency-calibration source for Ge detectors, a target-preparation method and a chemical separation method were studied. It was found that commercially available powders of lanthanum-oxide and lanthanum metal are applicable to a target material in the nuclear reaction 139 La(p,n) 139 Ce. In the separation of 139 Ce from an irradiated lanthanum target, a solvent-extraction method and an ion-exchange method gave final products in good chemical purity. (author)

  10. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  11. Production of noble gas isotopes by proton-induced reactions on bismuth

    International Nuclear Information System (INIS)

    Leya, I.; David, J.-C.; Leray, S.; Wieler, R.; Michel, R.

    2008-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from bismuth (Bi) from the respective reaction thresholds up to 2.6 GeV. Here we present 275 cross sections for 23 nuclear reactions. The production of noble gas isotopes from Bi is of special importance for design studies of accelerator driven systems (EA/ADS) and nuclear spallation sources. For experiments with proton energies above 200 MeV the mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. Comparing the cross sections for Bi to the data published recently for Pb indicates that for 4 He the cross sections for Bi below 200 MeV are up to a factor of 2-3 higher than the Pb data, which can be explained by the production of α-decaying Po-isotopes from Bi but not from Pb. Some of the cross sections for the production of 21 Ne from Bi are affected by recoil effects from neighboured Al-foils, which compromises a study of a possible lowering of the effective Coulomb-barrier. The differences in the excitation functions between Pb and Bi for Kr- and Xe-isotopes can be explained by energy-dependent higher fission cross sections for Bi compared to Pb. The experimental data are compared to results from the theoretical nuclear model codes INCL4/ABLA and TALYS. The INCL4/ABLA system describes the cross sections for the production of 4 He-, Kr- and Xe-isotopes reasonably well, i.e. mostly within a factor of a few. In contrast, the model completely fails describing 21 Ne, 22 Ne, 36 Ar and 38 Ar, which are produced via spallation and/or multifragmentation. The TALYS code is only able to accurately predict reaction thresholds. The absolute values are either significantly over- or underestimated. Consequently, the comparison of measured and modelled thin target cross sections clearly indicates that experimental data are still needed because the

  12. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  13. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    Science.gov (United States)

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  15. Métodos de evaluación de las reacciones álcali-sílice en hormigones con áridos reciclados Evaluation methods of alkali-silica reaction in concrete with recycled aggre-gates

    Directory of Open Access Journals (Sweden)

    Miguel Barreto Santos

    2009-08-01

    Full Text Available Las reacciones álcali-sílice son una de las causas químicas de la degradación de los hormigones con áridos pétreos (HAP que comprometen su durabilidad. La introducción de áridos reciclados (AR en los hormigones produce alteraciones en sus propiedades y diferencias en los resultados de los ensayos de evaluación de las RAS. Se encuentran en la bibliografía algunos cuidados en la evaluación de los AR y de los hormigones con áridos reciclados (HAR en cuanto a la RAS, así como propuestas de modificación de las metodologías de ensayo existentes. Existen propuestas de modificación del ensayo acelerado de mortero y hormigón con AR para acelerar las reacciones y recomendaciones para evitar alteraciones en las características del AR grueso, durante la preparación de probetas. Algunos artículos recomiendan la pre-saturación del AR, debido a su absorción de agua, para evitar variaciones en los resultados de expansión de probetas de hormigón a edades prematuras. El presente artículo pretende describir sucintamente las características de los HAR y de las RAS presentando observaciones de la bibliografía en cuanto a los métodos de evaluación de las RAS en HAR y en HAP.Alkali-silica reactions (ASR are one of the causes of chemical degradation of concrete with natural aggregates (CNA that compromise its durability. The introduction of recycled aggregates (RA in concrete creates changes in their properties and differences in the results of the evaluation tests of ASR. Existing bibliography emphasizes special care in the evaluation of RA and concrete with recycled aggregate (CRA for ASR and changes are proposed to the existing test methods. There are proposals to change the accelerated test of mortar and concrete with RA to accelerate the reactions and recommendations to prevent changes in the characteristics of the RA, during the preparation of samples. Some articles recommend the pre-saturation of the AR, due to its absorption of

  16. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    International Nuclear Information System (INIS)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-01-01

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m -1 for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction

  17. Molecular extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions

    NARCIS (Netherlands)

    van Noorden, C. J.; Jonges, G. N.

    1992-01-01

    Molar extinction coefficients of precipitated lead sulfide (PbS) and polymerized diaminobenzidine (polyDAB) have been determined at wavelengths of 450 nm and 480 nm, respectively, for quantitative histochemical analysis of phosphatase reactions. These values are essential for the conversion of

  18. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  19. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    Science.gov (United States)

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  20. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  1. Analysis of reaction products of food contaminants and ingredients: Bisphenol A diglycidyl ether (BADGE) in canned foods

    NARCIS (Netherlands)

    Coulier, L.; Bradley, E.L.; Bas, R.C.; Verhoeckx, K.C.M.; Driffield, M.; Harmer, N.; Castle, L.

    2010-01-01

    Bisphenol A diglycidyl ether (BADGE) is an epoxide that is used as a starting substance in the manufacture of can coatings for food-contact applications. Following migration from the can coating into food, BADGE levels decay and new reaction products are formed by reaction with food ingredients. The

  2. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  3. Fluorescence metrology of silica sol–gels – The effect of D2O and ...

    Indian Academy of Sciences (India)

    Administrator

    industrial quality control and helping fundamental research. ... Of all the possible syntheses, sodium silicate (i.e. water glass) production of silica gel, ... fine silica gel powders used in many applications (e.g. chromatography, toothpaste etc).

  4. Diversion of the melanin synthetic pathway by dopamine product scavengers: A quantum chemical modeling of the reaction mechanisms

    Directory of Open Access Journals (Sweden)

    T. B. Demissie

    2017-01-01

    Full Text Available We report the stability and reactivity of the oxidation products as well as L-cysteine and N-acetylcysteine adducts of dopamine studied using quantum chemical calculations. The overall reactions studied were subdivided into four reaction channels. The first reaction channel is the oxidation of dopamine to form dopaminoquinone. The second reaction channel leads to melanin formation through subsequent reactions. The third and fourth reaction channels are reactions leading to the formation of dopaminoquinone adducts which are aimed to divert the synthesis of melanin. The results indicate that L-cysteine and N-acetylcysteine undergo chemical reactions mainly at C5 position of dopaminoquinone. The analyses of the thermodynamic energies indicate that L-cysteine and N-acetylcysteine covalently bind to dopaminoquinone by competing with the internal cyclization reaction of dopaminoquinone which leads to the synthesis of melanin. The analysis of the results, based on the reaction free energies, is also supported by the investigation of the natural bond orbitals of the reactants and products.

  5. Investigation of large α production in reactions involving weakly bound 7Li

    Science.gov (United States)

    Pandit, S. K.; Shrivastava, A.; Mahata, K.; Parkar, V. V.; Palit, R.; Keeley, N.; Rout, P. C.; Kumar, A.; Ramachandran, K.; Bhattacharyya, S.; Nanal, V.; Palshetkar, C. S.; Nag, T. N.; Gupta, Shilpi; Biswas, S.; Saha, S.; Sethi, J.; Singh, P.; Chatterjee, A.; Kailas, S.

    2017-10-01

    The origin of the large α -particle production cross sections in systems involving weakly bound 7Li projectiles has been investigated by measuring the cross sections of all possible fragment-capture as well as complete fusion using the particle-γ coincidence, in-beam, and off-beam γ -ray counting techniques for the 7Li+93Nb system at near Coulomb barrier energies. Almost all of the inclusive α -particle yield has been accounted for. While the t -capture mechanism is found to be dominant (˜70 % ), compound nuclear evaporation and breakup processes contribute ˜15 % each to the inclusive α -particle production in the measured energy range. Systematic behavior of the t capture and inclusive α cross sections for reactions involving 7Li over a wide mass range is also reported.

  6. Adverse reactions to cosmetic products and the Notification System in Health Surveillance: a survey.

    Science.gov (United States)

    Huf, Gisele; Rito, Priscila da Nobrega; Presgrave, Rosaura de Farias; Boas, Maria Helena Simoes Villas

    2013-12-01

    This paper is part of a study that investigates the quality of cosmetic products and evaluates the cosmetic surveillance system. This study presents the results of a research that aimed to describe the point of view of the population in terms of the prevalence of Adverse Reactions (AR) and information about the surveillance system. A structured questionnaire was applied to a random sample of 200 people from the administrative staff of the Municipal Guard of Rio de Janeiro. 38% of the participants declared AR to some cosmetic product used in the past two years. To our knowledge, this is an unpublished study in Brazil, which presents results regarding the estimated prevalence of AR similarly to international studies.

  7. Fuel-sodium reaction product formation in breached mixed-oxide fuel

    International Nuclear Information System (INIS)

    Bottcher, J.H.; Lambert, J.D.B.; Strain, R.V.; Ukai, S.; Shibahara, S.

    1988-01-01

    The run-beyond-cladding-breach (RBCB) operation of mixed-oxide LMR fuel pins has been studied for six years in the Experimental Breeder Reactor-II (EBR-II) as part of a joint program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The formation of fuel-sodium reaction product (FSRP), Na 3 MO 4 , where M = U/sub 1-y/Pu/sub y/, in the outer fuel regions is the major phenomenon governing RBCB behavior. It increases fuel volume, decreases fuel stoichiometry, modifies fission-product distributions, and alters thermal performance of a pin. This paper describes the morphology of Na 3 MO 4 observed in 5.84-mm diameter pins covering a variety of conditions and RBCB times up to 150 EFPD's. 8 refs., 1 fig

  8. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    Science.gov (United States)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  9. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    Science.gov (United States)

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  11. Impacts of glutathione Maillard reaction products on sensory characteristics and consumer acceptability of beef soup.

    Science.gov (United States)

    Hong, J H; Jung, D W; Kim, Y S; Lee, S M; Kim, K O

    2010-10-01

    The sensory characteristics and consumer acceptability of beef soup with added glutathione Maillard reaction products (GMRPs) were investigated to examine the effects of the GMRPs on beef-soup flavor compared to soups made with glutathione (GSH) and monosodium glutamate (MSG), a control (CON), or a control soup made with 150% beef content (CON150). The sensory characteristics of the beef soups were examined by descriptive analysis. The overall acceptabilities of the beef soups were rated by consumers. Principal component analysis was performed on descriptive data as explanatory variables with overall acceptability as a supplementary variable to observe the relationships between the descriptive data and consumer acceptability, as well as the relationships between the beef-soup samples and their sensory attributes. The samples containing GMRPs had "beef flavor" that was stronger than the CON and MSG samples, and comparable to that of the GSH sample and CON150. The GMRP samples had stronger "green onion flavor,"garlic flavor," and "boiled egg white flavor" than the other samples. The beef soup containing MSG was preferred to CON, CON150, and GSH. The samples with GMRPs were least favored because of their pronounced metallic and astringent notes. The results of this study imply the feasibility of GMRPs as a flavor enhancer since the soups containing these compounds showed more complex flavor profiles than GSH. However, future studies are required to optimize the MR conditions that produce GMRPs without undesirable characteristics. Practical Application: This study examined the practicability of the Maillard reaction products between glutathione (GSH) and glucose (GP) or fructose (FP) as a flavor enhancer by investigating the sensory characteristics and consumer acceptability evoked by them in a beef-soup system. This study helps flavor and food industry to develop a new flavor enhancer by providing practical information, such as beef flavor-enhancing effect of FP and

  12. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  13. Nuclear reactions and application to production rates of krypton in extraterrestrial materials

    International Nuclear Information System (INIS)

    Lavielle, B.

    1982-01-01

    Noble gases have been largely outgassed from most solar system materials through several heating processes. Consequently, their cosmogenic component, produced by cosmic-ray-induced nuclear reactions near the surface of atmosphere-free planetary objects, is detectable in meteorites and lunar samples. This work deals with the production of cosmogenic Krypton in the four main targets Zr, Y, Sr and Rb. Excitation functions of Krypton isotopes with A = 78, 80, 81, 82, 83, 84, 85 and 86 were mass-spectrometrically measured in Y and Zr targets bombarded with 0.059, 0.075, 0.168, 0.200, 1.0, 2.5 and 24 GeV protons. Also the Krypton relative cross sections were measured in Sr at 0.168 GeV. The results, combined with a general survey of nuclear reactions in Ga to Nb targets, permitted the development of new systematics in order to estimate unknown cross-sections in Rb and Sr. Measured and estimated excitation functions allowed to calculate the concentrations and isotopic ratios of cosmogenic Krypton in same well-documented lunar samples. Compared to observed values in 9 rocks, 83 Kr is predicted with a precision better than 33% and the production ratios sup(i)Kr/ 83 Kr are predicted to better than 25%. Also it is concluded that the cosmogenic ratios 86 Kr/ 83 Kr and 81 Kr/ 83 Kr are dependent on the main target elements concentrations [fr

  14. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafsteinsdottir, Erla G., E-mail: erla.hafsteinsdottir@gmail.com [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); White, Duanne A., E-mail: duanne.white@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Gore, Damian B., E-mail: damian.gore@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Stark, Scott C., E-mail: scott.stark@aad.gov.au [Environmental Protection and Change, Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Tasmania 7050 (Australia)

    2011-12-15

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H{sub 2}PO{sub 4}){sub 2}] or sodium phosphate [Na{sub 3}PO{sub 4}]) reacts with lead (PbSO{sub 4} or PbCl{sub 2}) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO{sub 4} and Na{sub 3}PO{sub 4} were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: > Formation of lead phosphate products in cold environments is identified. > Potential change in formation during freeze-thaw cycling is assessed. > Lead phosphate reaction efficiency varies according to phosphate and lead source. > Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  15. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    International Nuclear Information System (INIS)

    Hafsteinsdottir, Erla G.; White, Duanne A.; Gore, Damian B.; Stark, Scott C.

    2011-01-01

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H 2 PO 4 ) 2 ] or sodium phosphate [Na 3 PO 4 ]) reacts with lead (PbSO 4 or PbCl 2 ) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO 4 and Na 3 PO 4 were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: → Formation of lead phosphate products in cold environments is identified. → Potential change in formation during freeze-thaw cycling is assessed. → Lead phosphate reaction efficiency varies according to phosphate and lead source. → Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  16. Dedolomitization and Alkali Reactions in Ohio-sourced Dolstone Aggregates

    Science.gov (United States)

    2017-11-01

    Concrete samples produced using NW-Ohio sourced aggregates were evaluated for susceptibility to degradation and premature failure due to cracks formed by the volume expansion during hydration of silica gels produced by alkali-silica reactions between...

  17. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    Science.gov (United States)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  18. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  19. Overview of suspected adverse reactions to veterinary medicinal products reported in South Africa (March 2002 – February 2003

    Directory of Open Access Journals (Sweden)

    V. Naidoo

    2003-07-01

    Full Text Available The Veterinary Pharmacovigilance and Medicines Information Centre is responsible for the monitoring of veterinary adverse drug reactions in South Africa. An overview of reports of suspected adverse drug reactions received by the centre during the period March 2002 to February 2003 is given. In total, 40 reports were received. This had declined from the previous year. Most reports involved suspected adverse reactions that occurred in dogs and cats. Most of the products implicated were Stock Remedies. The animal owner predominantly administered these products. Only 1 report was received from a veterinary pharmaceutical company. Increasing numbers of reports are being received from veterinarians.

  20. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis.

    Science.gov (United States)

    Sachse, Alexander; Ameloot, Rob; Coq, Bernard; Fajula, François; Coasne, Benoît; De Vos, Dirk; Galarneau, Anne

    2012-05-16

    The metal-organic framework Cu-BTC has been successfully synthesized as nanoparticles inside the mesopores of silica monoliths featuring a homogeneous macropore network enabling the use of Cu-BTC for continuous flow applications in liquid phase with low pressure drop. High productivity was reached with this catalyst for the Friedländer reaction. This journal is © The Royal Society of Chemistry 2012