WorldWideScience

Sample records for silica polymerization process

  1. In situ polymerization of L-Lactide in the presence of fumed silica

    International Nuclear Information System (INIS)

    Prebe, A.; Alcouffe, P.; Cassagnau, Ph.; Gerard, J.F.

    2010-01-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  2. In situ polymerization of L-Lactide in the presence of fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Prebe, A. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France); Alcouffe, P. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Cassagnau, Ph., E-mail: philippe.cassagnau@univ-lyon1.fr [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Gerard, J.F. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France)

    2010-11-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  3. Comparison between rice husk ash and commercial silica as filler in polymeric composites

    International Nuclear Information System (INIS)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M.

    2014-01-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  4. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  5. Bleeding evaluation of the stationary phase from a few novel macroporous silica-substrate polymeric materials used for radionuclide partitioning from HLLW in MAREC process

    International Nuclear Information System (INIS)

    Zhang, A.; Wei, Y.; Kumagai, M.

    2005-01-01

    To separate minor actinides from HLLW by extraction chromatography, a few novel silica-based di(2-ethylhexyl)phosphoric acid (HDEHP), 4,4',(5')-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric adsorption materials (HDEHP/SiO 2 -P, DtBuCH18C6/SiO 2 -P, CMPO/SiO 2 -P, and TODGA/SiO 2 -P) were synthesized by impregnating HDEHP, DtBuCH18C6, CMPO, and TODGA into the pores of porous SiO 2 -P particles, which were the new kind of inorganic/organic composites consisted of macroporous SiO 2 and copolymer. The bleeding behavior of these composites was investigated by examining the effect of contact time and HNO 3 concentration. It was found that in the tested HNO 3 concentration range, a noticeable quantity of DtBuCH18C6, at least 600 ppm, leaked out from DtBuCH18C6/SiO 2 -P because of the protonation of DtBuCH18C6 with hydrogen ion, while the others were lower and basically equivalent to the solubility of HDEHP, CMPO, or TODGA in corresponding acidities solutions. Based on the batch experiment, the bleeding of CMPO/SiO 2 -P and TODGA/SiO 2 -P, the main adsorbents used in MAREC process for HLLW partitioning, was evaluated by column operation in 0.01M HNO 3 and 3M HNO 3 . The quantity of CMPO leaked was ∼48 ppm in 0.01M HNO 3 and ∼37 ppm in 3.0M HNO 3 . The bleeding of TODGA decreased from 23.2 ppm to 7.27 ppm at the initial stage and then basically kept constant. An actual bleeding of TODGA was evaluated by the separation of Sr(II) from a 2.0M HNO 3 solution containing 5.0 x 10 -3 M of 6 typically simulated elements. (author)

  6. Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process.

    Science.gov (United States)

    Zhang, Anyun; Kuraoka, Etsushu; Kumagai, Mikio

    2007-07-20

    To partition effectively Cs(I) and Sr(II), two harmful heat emitting nuclides, from a highly active liquid waste by extraction chromatography, two kinds of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO(2)-P and TODGA/SiO(2)-P, were synthesized. Two chelating agents, 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14), an excellent supramolecular compound having molecular recognition ability for Cs(I), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were impregnated and immobilized into the pores of SiO(2)-P particles support by a vacuum sucking technique. The loading and elution of 11 typical simulated fission and non-fission products from 4.0M or 2.0M HNO(3) were performed at 298K. It was found that in the first column packed with the Calix[4]arene-R14/SiO(2)-P, all of the simulated elements were separated effectively into two groups: (1) Na(I), K(I), Sr(II), Fe(III), Ba(II), Ru(III), Pd(II), Zr(IV), and Mo(VI) (noted as Sr-group); (2) Cs(I)-Rb(I) (Cs-group) by eluting with 4.0M HNO(3) and distilled water, respectively. The harmful element Cs(I) flowed into the second group along with Rb(I) because of their close sorption and elution properties towards Calix[4]arene-R14/SiO(2)-P, while Sr(II) showed no sorption and flowed into Sr-containing group. In the second column packed with TODGA/SiO(2)-P, the Sr-group was separated into (1) Ba(II), Ru(III), Na(I), K(I), Fe(III), and Mo(VI) (non-sorption group); (2) Sr(II); (3) Pd(II); and (4) Zr(IV) by eluting with 2.0M HNO(3), 0.01M HNO(3), 0.05M DTPA-pH 2.5, and 0.5M H(2)C(2)O(4), respectively. Sr(II) adsorbed towards TODGA/SiO(2)-P flowed into the second group and showed the excellent separation efficiency from others. Based on the elution behavior of the tested elements, an advanced PREC (Partitioning and Recovery of two heat generators from an acidic HLW (high activity liquid waste) by Extraction Chromatography) process was proposed.

  7. Comparison between rice husk ash and commercial silica as filler in polymeric composites; Comparacao de cinza de casca de arroz e silica comercial como carga em compositos polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M., E-mail: ijk.fernandes@gmail.com [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Pos-Graduacao em Engenharia Civil

    2014-07-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  8. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  9. Plasma Polymerization of Acetylene onto silica: and Approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, Jacobus W.M.; Ooij, W.J.; Dierkes, Wilma K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water

  10. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  11. Polymerization of Methyl Methacrylate with Samarocene Complex Supported on Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Samarocene complex was supported on a series of mesoporous silica with various pore sizes. Polymerization of methyl methacrylate (MMA) by these catalysts provide highly syndiotactic PMMAs with higher molecular weights compared with those obtained by solution polymerization with homogeneous catalyst system.

  12. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  13. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  14. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    Science.gov (United States)

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  15. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  16. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  17. Designer silica layers for advanced applications: Processing and properties

    Science.gov (United States)

    Anderson, Adam

    Recently, as scientists have investigated the application of conventional MEMS devices to biological systems, the exciting fields of bio-MEMS and microfluidics have emerged. Due to their small size, bio-MEMS and microfluidics devices offer the advantage of requiring only small sample and reagent volumes, in a potentially low-cost, integrated package. Such devices have the potential to significantly advance point-of-care diagnostics devices and improve overall patient care. However, due to the extremely small feature size, the large surface area-to-volume ratio in these devices makes controlling surface interactions of critical importance. Recently, there has been a shift to polymeric materials for fabrication of microfluidics devices due to their lower cost, ease of device fabrication by various processes, varied and favorable material properties, and, in some cases, pre-existing regulatory agency approvals. As a result, various surface modification strategies for polymeric surfaces have been proposed, but with only limited success. The proven success of organosilicon-based precursors in a wide variety of surface modification strategies has been demonstrated, with a body of knowledge on the general subject dating back nearly fifty years. However, these proven methodologies cannot be transferred to many important polymeric materials due to a lack of sufficient reactive groups on the surface. If any polymer surface could be made reactive by some intermediate treatment, the wide body of knowledge of organosilicon-based surface modification chemistries could be leveraged to advance the state-of-the-art in surface modification for microfluidics applications, where polymeric substrates are commonly encountered. This thesis reports on the processing properties and chemical properties of a vapor deposited silica layer, which is formed from the vapor phase hydrolysis of silicon tetrachloride. This layer can be deposited at low temperatures to a wide variety of substrates

  18. Characterization of transparent silica films deposited on polymeric materials

    International Nuclear Information System (INIS)

    Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O.

    2002-01-01

    Silica films were synthesized by capacitively coupled RF PECVD using mixtures of organo-silane and oxygen as a source. The chemical bonding states and compositions of the films deposited were evaluated with FTIR and XPS. Film surfaces and cross-sections were observed by SEM. Oxygen transmission rates (OTR) of the films coated on polyethylene terephthalate (PET) substrates were measured by an isopiestic method. (Authors)

  19. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  20. Thermal and Mechanical Properties of Novolac-Silica Hybrid Aerogels Prepared by Sol-Gel Polymerization in Solvent-Saturated Vapor Atmosphere

    Directory of Open Access Journals (Sweden)

    Mohamad Mehdi Seraji1, Seraji

    2015-05-01

    Full Text Available Nowadays organic–inorganic hybrid aerogel materials have attracted increasing interests due to improved thermal and mechanical properties. In the present research, initially, novolac type phenolic resin-silica hybrid gels with different solid concentrations were synthesized using sol-gel polymerization in solvent-saturatedvapor atmosphere. The hybrid gels were dried at air atmosphere through ambient drying process. This method removed the need for costly and risky supercritical drying process. The yields of the obtained hybrid aerogels increased with less shrinkage in comparison with conventional sol-gel process. The precursor of silica phase in this study was tetraethoxysilane and inexpensive novolac resin was used as a reinforcing phase. The results of FTIR analysis confirmed the simultaneous formation of silica and novolac gels in the hybrid systems. The resultant hybrid aerogels showed a nanostructure hybrid network with high porosity (above 80% and low density (below 0.25 g/cm3. Nonetheless, higher content of silica resulted in more shrinkage in the hybrid aerogel structure due to the tendency of the silica network to shrink more during gelation and drying process. The SEM images of samples exhibited a continuous network of interconnected colloidal particles formed during sol-gel polymerization with mean particle size of less than 100 nanometers. Si mapping analysis showed good distribution of silica phase throughout the hybrid structure. The results demonstrated improvements in insulation properties and thermal stability of novolac-silica aerogel with increasing the silica content. The results of compressive strength showed that the mechanical properties of samples declined with increasing the silica content.

  1. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles

  2. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  3. Morphology and properties of silica/novolac hybrid xerogels synthesized using sol–gel polymerization at solvent vapor-saturated atmosphere

    International Nuclear Information System (INIS)

    Seraji, Mohamad Mehdi; Seifi, Azadeh; Bahramian, Ahmad Reza

    2015-01-01

    Highlights: • Sol–gel polymerization in vapor of solvent saturated atmosphere is developed. • Highly porous novolac–silica hybrid xerogels are successfully synthesized. • Novolac–silica hybrid gel was dried in ambient condition with low shrinkage. • Required time for preparation of gel reduced from 5 days to about 5 h. • By incorporation of silica into the novolac xerogel structure, the pore size decreases. - Abstract: Highly porous novolac–silica hybrid xerogels were successfully synthesized via the novel method of sol–gel polymerization in solvent vapor-saturated atmosphere. This method removes the need for supercritical drying and yields the hybrid xerogels with reduced shrinkage in comparison with conventional sol–gel process. Tetraethoxysilane (TEOS) was used as the precursor of silica-based inorganic phase. The chemical and structural characterization of the prepared hybrid xerogels were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis, respectively. Thermal and mechanical properties of the hybrid samples were investigated by differential scanning calorimetry (DSC), and compressive strength analysis. The resultant hybrid xerogels show a nanostructured colloidal hybrid network with high porosity (above 80%) and low density (below 0.25 g cm −3 ). Si mapping images shows the good distribution of silica phase throughout the hybrid structure

  4. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  5. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica

    DEFF Research Database (Denmark)

    Wu, Qiong; Andersson, Richard L.; Holgate, Tim

    2014-01-01

    This article presents a novel type of flame-retardant biohybrid foam with good insulation properties based on wheat gluten and silica, the latter polymerized in situ from hydrolysed tetraethyl orthosilicate (TEOS). This led to the formation of intimately mixed wheat gluten and silica phases, wher...... with a vacuum treatment to remove the largest air bubbles. X-ray photoelectron and infrared spectroscopy showed that silicon was present mainly as SiO2....

  6. Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    BAO Yongzhong; ZHAO Wenting; HUANG Zhiming

    2013-01-01

    Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2′-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles,and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites,followed by HF etching.Thermogravimetric analysis of AN-MMA copolymer/silica nanocomposites showed that the carbon yield of copolymer was slightly decreased as silica particle incorporated.N2 adsorption-desorption,scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials.Both SEM and TEM results showed that disordered mesopores were formed in the obtained carbon material mainly through templating effect of silica nanoparticles.The diameter of mesopores was mainly distributed in the range from 5 nm to 15 nm.The mean pore diameter and total pore volume of the material increased as the mass fraction of silica in the nanocomposites increased from 0 to 24.93%.The significant increase of the mean pore diameter and the decrease of surface area for the carbon material prepared from the nanocomposite with 24.93% silica were caused by partial aggregation of silica nanoparticles in the polymer matrix.

  7. Thiolated Chitosan Masked Polymeric Microspheres with Incorporated Mesocellular Silica Foam (MCF for Intranasal Delivery of Paliperidone

    Directory of Open Access Journals (Sweden)

    Stavroula Nanaki

    2017-11-01

    Full Text Available In this study, mesocellular silica foam (MCF was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid (PLA and poly(lactide-co-glycolide (PLGA 75/25 w/w microspheres and these have been coated with thiolated chitosan. As found by TEM analysis, thiolated chitosan formed a thin layer on the polymeric microspheres’ surface and was used in order to enhance their mucoadhesiveness. These microspheres aimed at the intranasal delivery of paliperidone. The DSC and XRD studies showed that paliperidone was encapsulated in amorphous form inside the MCF silica and for this reason its dissolution profile was enhanced compared to the neat drug. In coated microspheres, thiolated chitosan reduced the initial burst effect of the paliperidone dissolution profile and in all cases sustained release formulations have been prepared. The release mechanism was also theoretically studied and three kinetic models were proposed and successfully fitted for a dissolution profile of prepared formulations to be found.

  8. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  10. Synthesis of PANi-SiO2 Nanocomposite with In-Situ Polymerization Method: Nanoparticle Silica (NPS) Amorphous and Crystalline Phase

    Science.gov (United States)

    Munasir; Luvita, N. R. D.; Kusumawati, D. H.; Putri, N. P.; Triwikantoro; Supardi, Z. A. I.

    2018-03-01

    Silica which is synthesized from natural materials such as Bancar Tuban’s sand composited with Polyaniline (PANi), where the silica used are silica has an amorphous phase and cristobalite phase. In this research, the composite method used is in- situ polymerization, which is silica entered during the fabrication of PANi, then automatically silica will be substitute into the chain bonding of PANi. The aim of this research is to find out the results of a composite process using in-situ methods as well as differences in the morphology of PANi/a- SiO2 and PANi/c-SiO2. For the characterization of samples tested in the form of FTIR to determine the functional groups of the composite and SEM to determine the morphology of the sample. From the test results of FTIR are known composite possibility has occurred because there are several functional groups belonging to silica also functional groups belonging polyaniline, functional group that’s happened in wave numbers were almost identical between PANi/a-SiO2 and PANi/c-SiO2, but there are little differences were seen in the form of a graph generated from the peak and intensity that occurred charts for PANi/c-SiO2 has peak more pointed or sharp compared to PANi/a-SiO2 because that bond of crystal is strong, stiff and has a larger particle size than the amorphous composite. Then from the data of SEM seen clearly their morphological differences between PANi/a-SiO2 and PANi/c-SiO2 where polyaniline is composited with amorphous silica will have a fault that is not uniform or irregular different from PANi/c -SiO2 has a regular fault and this is corresponding with the nature of the typical structure of amorphous and crystalline.

  11. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  12. Variables and advantages of the polymerization process in plasma

    International Nuclear Information System (INIS)

    Rojas, Andres F; Ortiz, Jairo A; Restrepo, Elizabeth; Devia Alfonso

    1998-01-01

    They are given to know the parameters that affect the polymerization process in plasma like they are: the kinetics, the electric joining, the variables related to the substrata and the interaction plasma/surface. Some advantages of the polymerization process are also presented with regard to the conventional processes

  13. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    International Nuclear Information System (INIS)

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  14. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Wan, Qing; Jiang, Ruming; Mao, Liucheng; Zeng, Guangjian; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-01-01

    In this study, we developed a new procedure to prepare monodispersed functionalized SiO_2 (SiO_2-PDA-PDMC) composites via mussel inspired chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). Samples were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) measurements. TEM results showed that spherical morphology was unchanged after the functionalization. FT-IR results confirmed the successful modification with polydopamine (PDA) and the presence of poly-([2-(Methacryloyloxy) ethyl] trimethylammonium chloride) (PDMC) layer on the surface of SiO_2 spheres. TGA data showed that the PDMC account for about 12.12 wt% in the sample of SiO_2-PDA-PDMC composites. The XPS analysis further confirmed the existence of PDMC on the surface of SiO_2-PDA-PDMC composites. The obtained SiO_2-PDA-PDMC composites were used as adsorbent for the removal of Congo red (CR) from aqueous solution to evaluate the performance in environment application. The effect of contact time, solution pH, initial CR concentration and temperature on the adsorption of CR onto SiO_2-PDA-PDMC composites was investigated. Adsorption results demonstrated that adsorption of CR onto SiO_2-PDA-PDMC composites was a fast and efficient process. The adsorption equilibrium reached within 60 min, and the adsorption process followed the pseudo-second-order model. The experimental data of isotherms were better described by the Freundlich model. Thermodynamic study depicted the endothermic nature of adsorption and the process was spontaneous. Results from the effect of solution pH on the CR adsorption showed that the acidic condition favors the adsorption and provided evidence for the contribution of PDMC on the SiO_2-PDA-PDMC composites in the removal of CR. This study suggests SiO_2-PDA-PDMC composites can be developed as a new adsorbent for the removal of

  15. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Wan, Qing; Jiang, Ruming; Mao, Liucheng; Zeng, Guangjian; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-06-01

    In this study, we developed a new procedure to prepare monodispersed functionalized SiO{sub 2} (SiO{sub 2}-PDA-PDMC) composites via mussel inspired chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). Samples were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) measurements. TEM results showed that spherical morphology was unchanged after the functionalization. FT-IR results confirmed the successful modification with polydopamine (PDA) and the presence of poly-([2-(Methacryloyloxy) ethyl] trimethylammonium chloride) (PDMC) layer on the surface of SiO{sub 2} spheres. TGA data showed that the PDMC account for about 12.12 wt% in the sample of SiO{sub 2}-PDA-PDMC composites. The XPS analysis further confirmed the existence of PDMC on the surface of SiO{sub 2}-PDA-PDMC composites. The obtained SiO{sub 2}-PDA-PDMC composites were used as adsorbent for the removal of Congo red (CR) from aqueous solution to evaluate the performance in environment application. The effect of contact time, solution pH, initial CR concentration and temperature on the adsorption of CR onto SiO{sub 2}-PDA-PDMC composites was investigated. Adsorption results demonstrated that adsorption of CR onto SiO{sub 2}-PDA-PDMC composites was a fast and efficient process. The adsorption equilibrium reached within 60 min, and the adsorption process followed the pseudo-second-order model. The experimental data of isotherms were better described by the Freundlich model. Thermodynamic study depicted the endothermic nature of adsorption and the process was spontaneous. Results from the effect of solution pH on the CR adsorption showed that the acidic condition favors the adsorption and provided evidence for the contribution of PDMC on the SiO{sub 2}-PDA-PDMC composites in the removal of CR. This study suggests SiO{sub 2}-PDA-PDMC composites can be

  16. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)

    2013-11-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  17. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    International Nuclear Information System (INIS)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V.

    2013-01-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  18. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya

    2013-01-01

    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  19. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  20. An investigation of laser processing of silica surfaces

    International Nuclear Information System (INIS)

    Weber, A.J.; Stewart, A.F.; Exarhos, G.J.; Stowell, W.K.

    1988-01-01

    An initial set of experiments has been conducted to determine the practicality of laser processing of optical substrates. In contrast to earlier work, a high average power CO 2 laser was used to flood load the entire surface of each test sample. Fused silica substrates were laser polished on both surfaces at power densities ranging from 150 to 350 W/cm 2 . During each test sequence sample surface temperatures were recorded using a thermal imaging system. Extensive pre- and post-test characterization revealed that surface roughness and scattering of bare silica surfaces were reduced while internal stress increased. Laser damage thresholds were found to increase only for certain conditions. Changes in the microstructure were observed. These preliminary experiments demonstrate that laser processing can dramatically improve the optical properties of fused silica substrates

  1. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    Science.gov (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  2. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization.

    Science.gov (United States)

    Song, Cunfeng; Wang, Meijie; Liu, Xin; Wang, He; Chen, Xiaoling; Dai, Lizong

    2017-09-01

    Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization has been utilized to fabricate high-capacity strong anion-exchange (AEX) membrane for the separation of protein. By means of RAFT polymerization, quaternized poly(3-(methacrylamidomethyl)-pyridine) brushes formed 3-dimensional nanolayers on the surface of porous anodic aluminum oxide (AAO)-silica composite membrane. The surface properties of the membranes were analyzed by SEM, water contact angle, ATR-FTIR, XPS and TGA. To investigate the adsorption performance, the new AEX membranes were applied to recover a model protein, ovalbumin (OVA). High adsorption capacities of 95.8mg/g membranes (static) and 65.3mg/g membranes (dynamic) were obtained at ambient temperature. In the further studies, up to 90% of the adsorbed OVA was efficiently eluted by using phosphate buffer-1M NaCl as elution medium. The successful separation of OVA with high purity from a mixture protein solution was also achieved by using the AEX membranes. The present study demonstrated that under mild reaction condition, RAFT polymerization can be used to fabricate ion-exchange membrane which has many remarkable features, such as high capacity and selectivity, easy elution and so on. Copyright © 2017. Published by Elsevier B.V.

  3. Polymeric supported sorbents for decreasing hazardous metal ions content in wet process phosphoric acid

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; El-Naggar, H.A.; Ahmed, M.

    2005-01-01

    Procedure for preparation of polymeric supported silica, and their usage for decreasing hazardous metal ion content in wet process phosphoric acid was developed. The procedure is based firstly on extraction silica from rice straw by alkaline treatment , secondly supporting the produced silica on binding polyacrylonitrile (PAN). The produced polymer based sorbent was used for decreasing hazardous metal ions (especially iron) present as inorganic impurities in crud Egyptian phosphoric acid (green acid). Different factors affecting the sorption equilibrium ( contact time, temperature , sorbent mass and batch factor ) were studied. Studying the sorption isotherm revealed that the adsorption data could favorably fit the Langmuir adsorption isotherm. In the dynamic study , the sorption capacity at (Cξ/Cο = 50%) was found to be 28.5 mg/g and the loaded column could be regenerated using 50ml of 0.15 M HNO 3 . The regenerated column could undergo sorption regeneration cycles up to four cycles without significant decrease in the sorption capacity , weight loss or change in the physical properties of the sorbent

  4. The Effect of Various Acids to the Gelation Process to the Silica Gel Characteristic Using Organic Silica

    Science.gov (United States)

    Rahman, NA; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W.

    2018-01-01

    Bagasse ash is solid waste of cane sugar industry which contain of silica more than 51%. Some previous study of silica gel from bagasse ash have been conducted often and been applied. This study concerns about the effect of various acid used in the process of gelation to the characteristic of silica gel produced. Then, this silica gel will be used as adsorbent. As that, the silica gel must fulfill the requirements of adsorbent, as have good pores characteristics, fit in mesoporous size so that adsorbent diffusion process is not disturbed. A fitted pores size of silica gel can be prepared by managing acid concentration used. The effect of acid, organic acid (tartaric acid) and inorganic acid (hydrochloric acid), is investigated in detail. The acid is added into sodium silicate solution in that the gel is formed, the pores structures can be investigated with BET, the crystal form is analyzed with XRD and the pore structure is analyzed visually with SEM. By managing the acid concentration added, it gets the effect of acid to the pore structure of silica gel. The bigger concentration is, the bigger the pore’s size of silica gel produced.

  5. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  6. Various aspects of ultrasound assisted emulsion polymerization process.

    Science.gov (United States)

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  9. The Research on Modeling and Simulation of TFE Polymerization Process

    Directory of Open Access Journals (Sweden)

    Jing Gao Sun

    2014-01-01

    Full Text Available PTFE (polytetrafluoroethylene is the fluorinated straight-chain polymer, made by the polymerization of tetrafluoroethylene monomer; it is used widely because of its excellent performance and can be obtained by the polymerization of body, solutions, suspensions, and emulsions. But only the last two are the main ways. This research paper makes simulation based on Polymer Plus. It uses the emulsion polymerization method at background to carry out a semibatch reactor system. Upon the actual production conditions, simulation process under the steady state conditions is used to analyze the effects of the changes on operating conditions; the corresponding dynamic model is created to analyze the impact of the changes of conditions on the entire system. Moreover, the amount of APS which plays an important part in this reaction is discussed for getting the most suitable amount of initiator. Because of less research work on this job, it is so difficult to find the related data from the literature. Therefore, this research will have a great significance for the process of the tetrafluoroethylene emulsion polymerization in the future.

  10. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Maria-Daniela Stelescu

    2014-01-01

    Full Text Available A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica. The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  11. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    Science.gov (United States)

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  12. Atom Transfer Radical Polymerization of Styrene in Presence of Mesoporous Silica Nanoparticles: Application of Reverse, Simultaneous Reverse and Normal Initiation Techniques

    Directory of Open Access Journals (Sweden)

    Khezrollah Khezri

    2014-04-01

    Full Text Available Atom transfer radical polymerization (ATRP of styrene in presence of mesoporous silica nanoparticles was carried out at 110 °C. Reverse atom transfer radical polymerization (RATRP and simultaneous reverse and normal initiation for atom transfer radical polymerization (SR&NI ATRP techniques were used as two appropriate introduced techniques for circumventing oxidation problems. Usage of metal catalyst in its higher oxidation state was the main feature of these initiation techniques in which deficiencies of normal ATRP were circumvented. Structure, surface area and pore diameter of synthesized mesoporous silica nanoparticles were evaluated using X–ray diffraction and nitrogen adsorption/desorption isotherm analysis. Average particle size was estimated around 600 nm by electron microscopy images. In addition, according to these images, nanoparticles revealed an appropriate size distribution. Particles size and their distribution were examined using scanning. Final monomer conversion was determined by using gas chromatography. The number and weight average molecular weights (Mn and Mw and polydispersity indexes (PDI were also evaluated by gel permeation chromatography. According to the results obtained, addition of mesoporous silica nanoparticles in both RATRP and SR&NI ATRP systems revealed similar effects: decrement of conversion and Mn and also increment of PDI values observed by increasing of mesoporous silica nanoparticles content. Improvement in thermal stability of the nanocomposites in comparison with neat polystyrene was demonstrated by thermogravimetric analysis (TGA. Moreover, in case of nanocomposites, thermal stability was obtained by higher loading of nanoparticles. A decrease in glass transition temperature by higher content of mesoporous silica nanoparticles has been demonstrated by differential scanning calorimetry analysis.

  13. Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica

    International Nuclear Information System (INIS)

    Gaydhankar, T.R.; Samuel, V.; Jha, R.K.; Kumar, R.; Joshi, P.N.

    2007-01-01

    Synthesis of mesoporous MCM-41 materials at room temperature using less expensive polymeric version of ethyl silicate (40 wt% SiO 2 ) as a source of silica was established. The influence of crucial synthesis parameters such as molar ratios of H 2 O/NH 4 OH, NH 4 OH/SiO 2 and CTMABr/SiO 2 in gel on the quality of the phase formed was investigated. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and low temperature N 2 adsorption-desorption isotherms have been employed to characterize the products. The magnitude of orderness, textural properties and thermal stability of the Si-MCM-41 samples prepared under identical judiciously pre-controlled synthesis conditions using ethyl silicate and conventional tetraethyl orthosilicate (TEOS) were assessed. Even though, ethyl silicate has proved to be suitable source for the preparation of MCM-41 at room temperature, there exists an optimum value of H 2 O/NH 4 OH for different NH 4 OH/SiO 2 molar ratios in the gel. Changes in the morphology were observed when NH 4 OH/SiO 2 , H 2 O/NH 4 OH molar ratios in the gels were changed

  14. Studies on the runaway reaction of ABS polymerization process

    International Nuclear Information System (INIS)

    Hu, K.-H.; Kao, C.-S.; Duh, Y.-S.

    2008-01-01

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants

  15. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    Science.gov (United States)

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-10-01

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.

  16. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    Science.gov (United States)

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  17. In situ polymerization process of polypyrrole ultrathin films

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Tada, Kazuya; Shinkuma, Akira

    2006-01-01

    A novel thin film processing technique has been developed for the fabrication of ultrathin films of conducting polymers with molecular-level control over thickness and multilayer architecture. This new self-assembly process opens up vast possibilities in applications which require large area, ultrathin films of conducting polymers and more importantly in applications that can take advantage of the unique interactions achievable in the complex, supermolecular architectures of multilayer films. In in situ polymerized polypyrrole (PPy), the deposition process strongly depends on the nature of the substrate surface. That is, for a surface that is negatively charged, there is a linear correspondence between dipping time and the amount of PPy deposited on the substrate. However, in the case of a positively charged surface, there is an apparent rest period of approximately 10-20 min, during which no PPy is deposited. From optical absorption spectroscopy and photoelectron emission studies etc., it became clear that oligomers of pyrrole were adsorbed on the positively charged surface during the rest period, as a result the polymerization reaction of PPy could proceed

  18. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    Science.gov (United States)

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  19. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    Science.gov (United States)

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sol-Gel processing of silica nanoparticles and their applications.

    Science.gov (United States)

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-06

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Defense University Research Initiative on Nanotechnology: Microstructure, Processing and Mechanical Performance of Polymeric Nanocomposites

    National Research Council Canada - National Science Library

    Boyce, Mary C; Thomas, Edwin L

    2006-01-01

    This research was directed towards the development of fundamental understanding of the connections amongst the microstructure, processing and macroscopic properties of polymeric based nanocomposites...

  2. Polymerization and processing of organic polymers in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, E.P. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The use of magnetic fields to affect the structure and properties of polymeric materials remains an area of great promise. Liquid crystalline polymers have been actively studied over the past 20 years for use in high performance structural applications. In particular, highly oriented fibers can exhibit remarkable increases in strength to weight performance compared to conventional materials. For example, the fibers marketed by DuPont under the tradename Kevlar are 20 times stronger than steel on an equivalent weight basis. However, larger bulk parts do not exhibit the same increases in strength due to a lack of orientation of the polymer molecules. Magnetic field processing of polymers remains an attractive solution to this problem.

  3. Synthesis and surface modification of hydrophobic magnetite to processible magnetite at silica-propylamine

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)]. E-mail: kjwoo@kist.re.kr; Hong, Jangwon [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Ahn, Jae-Pyoung [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)

    2005-05-15

    Hydrophobic magnetite nanoparticles with a narrow size distribution were prepared by thermal decomposition of Fe(CO){sub 5} in octyl ether solution of oleic acid and by consecutive aeration. The nanoparticles were converted into magnetite core/silica shell (magnetite at silica) structured particles with hydrophilic and processible aminopropyl groups on their surfaces.

  4. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  5. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  6. Modelling the Load Torques of Electric Drive for Polymerization Process

    Directory of Open Access Journals (Sweden)

    Andrzej Popenda

    2007-01-01

    Full Text Available The problems of mathematical modelling the load torques on shaft of driving motor designed for applications in polymerization reactors are presented in the paper. The real load of polymerization drive is determined as a function of angular velocity. Mentioned function results from friction in roll-formed slide bearing as well as from friction of ethylene molecules with mixer arms in polymerization reactor chamber. Application of mathematical formulas concerning the centrifugal ventilator is proposed to describe the mixer in reactor chamber. The analytical formulas describing the real loads of polymerization drive are applied in mathematical modelling the power unit of polymerization reactor with specially designed induction motor. The numerical analysis of transient states was made on the basis of formulated mathematical model. Examples of transient responses and trajectories resulting from analysis are presented in the paper.

  7. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  8. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  9. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    Science.gov (United States)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  10. Kinetic Analysis of the Thermal Processing of Silica and Organosilica

    NARCIS (Netherlands)

    Kappert, Emiel; Bouwmeester, Henricus J.M.; Benes, Nieck Edwin; Nijmeijer, Arian

    2014-01-01

    The incorporation of an organic group into sol–gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy,

  11. A Life Cycle Assessment of Silica Sand: Comparing the Beneficiation Processes

    Directory of Open Access Journals (Sweden)

    Anamarija Grbeš

    2015-12-01

    Full Text Available Silica sand or quartz sand is a mineral resource with a wide variety of application; glass industry, construction and foundry are the most common examples thereof. The Republic of Croatia has reserves of 40 million tons of silica sand and a long tradition of surface mining and processing. The average annual production of raw silica sand in Croatia in the period from 2006 to 2011 amounted to 150 thousand tons. This paper presents cradle to gate LCA results of three different types of beneficiation techniques: electrostatic separation; flotation; gravity concentration. The aim of this research is to identify and quantify the environmental impacts of the silica sand production, to learn the range of the impacts for different processing methods, as well as to identify the major contributors and focus for further process design development.

  12. On the enhancement of pervaporation properties of plasma-deposited hybrid silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-06-24

    The separation performance of a polymeric-supported hybrid silica membrane in the dehydration process of a butanol-water mixture at 95C has been enhanced by applying a bias to the substrate during the plasma deposition.

  13. Synthesis and application of a macroporous silica-based polymeric octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide composite for the chromatographic separation of high level liquid waste

    International Nuclear Information System (INIS)

    Zhang, A.

    2006-01-01

    The Minor Actinides Recovery from HLW by Extraction Chromatography (MAREC) process was used mainly for the separation of minor actinides (MAs) and some specific fission products (FPs) from highly active liquid waste (HLW) by the composite CMPO/SiO 2 -P of the macroporous silica based polymeric octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO) and others. In this study a cascade of chromatographic separation was performed on a 3.0M HNO 3 solution containing 5.0 x 10 -3 M of 13 elements, at 323 K. The cascade consisted of three columns the first and second ones were packed with CMPO/SiO 2 -P and the third with SiO 2 -P particles. The first column was employed to prepare various eluents containing saturated CMPO. The second column was used for separation into groups. The CMPO of CMPO/SiO2-P was recovered from the effluent by the third column and a CMPO-free effluent containing minor actinides was obtained. The elements contained in the simulated HLW of 3.0M HNO 3 were separated into (1) a non-adsorption group (Sr, Cs, and Ru etc.), (2) a MA-hRE (heavy rare earth)-Mo-Zr group, and (3) a lRE (light rare earth) group by eluting with 3.0M HNO 3 , 0.05M DTPA (diethylenetriaminepentaacetic acid) (pH 2.0) and HNO 3 (pH 3.5), respectively. The resultant MA-hRE-Mo-Zr mixture containing minor actinides was then separated into the groups (1) Pd-Ru, (2) MA-hRE, and (3) Mo-Zr by utilizing 3.0M HNO 3 , distilled water, and 0.05M DTPA (pH 2.0) as eluents. More than 92% of CMPO in the MA-hRE containing effluent was adsorbed by SiO 2 -P particles. The effectivity and technical feasibility of MAREC process were demonstrated. (author)

  14. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    Science.gov (United States)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  15. Ultraviolet-light-induced processes in germanium-doped silica

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...... which are responsible for the observed refractive index changes. Activation energies [1.85 +/-0.15 eV and 1.91 +/-0.15 eV] and rates [(2.7 +/-1.9) x 10(13) Hz and(7.2 +/-4.5) x 10(13) Hz] are determined for thermal elimination of these states. Good agreement is found with experimental results and new UV...

  16. Process for manufacturing hollow fused-silica insulator cylinder

    Science.gov (United States)

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  17. Polysiloxanes derived from the controlled hydrolysis of tetraethoxysilane as precursors to silica for use in ceramic processing

    Science.gov (United States)

    Philipp, Warren H.

    1990-01-01

    Synthesis, properties, and potential applications in ceramic processing for two polysiloxane silica precursors derived from the controlled hydrolysis of tetraethoxysilane (TEOS) are presented. The higher molecular weight TEOS-A is a thick adhesive liquid of viscosity 8000 to 12,000 c.p. having a SiO2 char yield of about 55 percent. The lower molecular weight TEOS-B is a more fluid liquid of viscosity 150 to 200 c.p. having a SiO2 char yield of about 52 percent. The acid catalyzed hydrolysis of TEOS to hydrated silica gel goes through a series of polysiloxane intermediates. The rate of this transition increases with the quantity of water added to the TEOS; thus, for ease of polymer isolation, the amount of water added must be carefully determined so as to produce the desired polymer in a reasonable time. The water to TEOS mole ratio falls in the narrow range of 1.05 for TEOS-A and 0.99 for TEOS-B. Further polymerization or gelation is prevented by storing at -5 C in a freezer. Both polysiloxanes thermoset to a glassy solid at 115 C. The liquid polymers are organic in nature in that they are miscible with toluene and ethanol, slightly souble in heptane, but immiscible with water. For both polymers, results on viscosity versus time are given at several temperatures and water additions. Based on these results, some examples of practical utilization of the precursors for ceramic fabrication are given.

  18. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  19. The study of polymeric hydro-gels with unique properties obtained by polymerization with gamma radiation processing

    International Nuclear Information System (INIS)

    Dragusin, M.

    1995-01-01

    This thesis presents the work carried out on polymeric hydro-gels obtained by radiation processing using 60 Co gamma rays from the irradiation facility IETI-10.000 (10 k Ci), and on the polymeric hydro-gels obtained by irradiation with the electron beams from a linear accelerator (6 MeV). The aim of the study was to determine the effect of the rate dose and total dose absorbed in the materials. There are presented the preparation methods of homo- and co-polymer hydro-gels (acrylics, namely anionic and neutral monomers (acrylamide, acrylic acid, vinyl acetate) and cationic monomers (di-methyl di-allyl ammonium chloride)) such as floculants, additives, absorbers, etc. Concerning with these we have analysed the preparation methods, the mechanical, thermal, diffusivity, and swelling properties of polymeric hydro-gels in a large variety of gels of type I or II. The technological aspects and end use were studied in connection with the characteristics of the radiation processing of these hydro-gels as a function of chemical composition rate and absorbed dose, swelling degree (low and very high hydro-soluble), mechanical and diffusional properties. (author) 33 figs., 12 tabs., 101 refs

  20. Effect of homopolymer in polymerization-induced microphase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.; Kang, Dong-Chang; Seo, Myungeun (IBS-Korea); (KAIST); (UMMN)

    2017-09-01

    We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratio of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.

  1. Polymeric microsieves via phase separation microfabrication: Process and design optimization

    NARCIS (Netherlands)

    Bikel, M.; Culfaz, P.Z.; Bolhuis-Versteeg, Lydia A.M.; Perez, J. Garduno; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Phase separation microfabrication (PSμF) is a fabrication method that allows the preparation of membranes having micropattern surface topologies. PSμF has been successfully used for manufacturing polymeric microsieves. The technique benefits from the vertical shrinkage of polymer solutions to ensure

  2. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... applications, strength and stiffness are crucial factors to a successful implementation of cured photopolymer thermosets. Hence, fiber-reinforced polymers have recently been introduced. The behavior and especially orientation of fibers during the vat photopolymerization process has yet not been fully...

  3. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  4. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    Directory of Open Access Journals (Sweden)

    Laixi Sun

    2018-04-01

    Full Text Available The reactive ion etching (RIE process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique.

  5. Combining On-Line Characterization Tools with Modern Software Environments for Optimal Operation of Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Navid Ghadipasha

    2016-02-01

    Full Text Available This paper discusses the initial steps towards the formulation and implementation of a generic and flexible model centric framework for integrated simulation, estimation, optimization and feedback control of polymerization processes. For the first time it combines the powerful capabilities of the automatic continuous on-line monitoring of polymerization system (ACOMP, with a modern simulation, estimation and optimization software environment towards an integrated scheme for the optimal operation of polymeric processes. An initial validation of the framework was performed for modelling and optimization using literature data, illustrating the flexibility of the method to apply under different systems and conditions. Subsequently, off-line capabilities of the system were fully tested experimentally for model validations, parameter estimation and process optimization using ACOMP data. Experimental results are provided for free radical solution polymerization of methyl methacrylate.

  6. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    Directory of Open Access Journals (Sweden)

    Benjamin Baumgärtner

    2017-05-01

    Full Text Available A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine, silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  7. Granulation study of porous silica particles for MA recovery process

    International Nuclear Information System (INIS)

    Goto, Ichiro; Kofuji, Hirohide; Oriuchi, Akio; Watanabe, Sou; Takeuchi, Masayuki

    2017-01-01

    JAEA has been working on partition of MA from HLLW generated in the reprocessing by extraction chromatography technology. This technology utilizes 50 μm porous silica particles coated by styrene-divinylbenzene copolymer in which an extractant for MA recovery is impregnated as adsorbent. In this study, spray drying granulating experiments with various operating conditions and with different experimental apparatuses were carried out to find an appropriate condition to control the size of the particle and the pore. The target average sizes of the particle and pore are more than 50 μm and 600 nm respectively. Suspension containing fine silica particles were supplied to the spray drying devices, and small droplets generated through the spray nozzle were dried inside the drying chamber. In this study, viscosity of the feed solution and some granulation conditions were parametrically changed, and two different types of the spray nozzles were used. An air atomizing nozzle and a rotary disk nozzle were equipped at different chambers respectively. Then, performance of the product particle was evaluated by particle and pore size distributions and adsorption experiment after the polymer coating and an extractant impregnation. The particle size of the product depended on the atomizing pressure and viscosity of the feed solution, and the size increased with decrease in the pressure and in the viscosity. The maximum size obtained in this study was about 40 μm. Large viscosity of the feed solution lead poor recovery ratio and uniformity in the size distribution of the product powder. The pore size of the resultant particle was 550-800 nm as expected. As the type of the nozzle changed from the air atomizing nozzle to the rotary disk nozzle and size of the drying chamber became large, the average particle size and the particle size distribution became large and sharp, respectively. Rotation speed of the nozzle also influenced on the particle size, and targeted average size of the

  8. Polymeric-silica-based sols for membrane modification applications: sol-gel synthesis and characterization with SAXS

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1995-01-01

    Polymeric SiO2 and binary SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 sols, for ceramic membrane modification applications, have been prepared by acid-catalyzed hydrolysis and condensation of alkoxides in alcohol. The sols were characterized with small angle X-ray scattering, using synchrotron radiation.

  9. PROCESSING OF SERPENTINITE TAILINGS TO PURE AMORPHOUS SILICA

    Directory of Open Access Journals (Sweden)

    Alena Fedorockova

    2015-12-01

    The prepared samples of silica were of high purity (99.4 % SiO2, did not contain residues of the original raw serpentinite, and the size and shape of the particles were given by the conditions of precipitation. The presence of impurities in the sodium silicate solution had a beneficial effect on the specific surface area - in all cases the values for SiO2 powders prepared from serpentine were higher than those of SiO2 prepared from a synthetic solution of Na2SiO3. The specific surface area of SiO2 samples synthesized under alkaline conditions has been much more affected by the presence of impurities if compared to that achieved by acidic precipitation.

  10. In situ and real-time small-angle neutron scattering studies of living anionic polymerization process and polymerization-induced self-assembly of block copolymers

    International Nuclear Information System (INIS)

    Tanaka, H.; Yamauchi, K.; Hasegawa, H.; Miyamoto, N.; Koizumi, S.; Hashimoto, T.

    2006-01-01

    We have studied a simultaneous living anionic polymerization process of isoprene and deuterated styrene in deuterated benzene with sec-buthyl lithium as an initiator into polyisoprene-block-poly(styrene-d 8 ) and the polymerization-induced self-assembling process. This polymerization-induced self-assembling process was directly observed by an in situ and real-time small-angle neutron scattering (SANS) experiment. The time-resolved SANS studies enabled us to explore a time evolution of hierarchical structures induced by a time evolution of the primary structure (linear sequential connection of two monomers)

  11. Chromatographic separation of metal cations on silica gel chemically modified with a polymeric derivative of diaza-18-crown-6

    International Nuclear Information System (INIS)

    Basyuk, V.A.

    1991-01-01

    Sorbent on the basis of γ-aminopropyl silica gel, containing chemically grafted polymer derivatives of diaza-18-crown-6, has been synthesized. Retaining of certain metal cations when acid mobile phases are used is studied. Acetate buffer solution, 0.005% aqueous solution of acetic acid and 10 mM aqueous solution of oxalic acid were used as mobile phases. Rare earth cations (including Sr 2+ ones) are weakly retained when any mobile phase is used. Retention of VO 2+ cations is the strongest one

  12. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A KIND OF FLUORESCENCE PROBE TO STUDY THE KINETICS OF POLYMERIZATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    YANG Guoqiang; WU Shikang

    1994-01-01

    Fluorescence properties of 1-phenyl-3-(4'-nitrophenyl) pyrazoline (PNP) were studied in bulk polymerization process of methylmethacrylate (MMA). The fluorescence intensity of PNP was enhanced and the emission maximum was blue shifted with the polymerization progress. In the period of auto-acceleration of the polymerization the enhancement of fluorescence intensity and blue shift of peak wavelength in spectra could be observed evidently. This means that the solvatochromic properties of PNP are influenced not only by the solvent polarity but also by the viscosity of the medium(especially by the phase transition). In solid state PNP emits from the charge transfer excited state without solvent relaxation. The transient emission spectra and the results from Bakhshiev model of solvent relaxation coincide with that from the polymerization experiment.

  14. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  15. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  16. Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO2) prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Antoniadis, G.; Paraskevopoulos, K.M.; Bikiaris, D.; Chrissafis, K.

    2010-01-01

    A number of poly(ethylene terephthalate) (PET) nanocomposites were prepared by in situ polymerization using different amounts (0.5, 1, 2, 3 and 4 wt%) of fumed silica (SiO 2 ). The polymerization of PET was carried out by the two-stage melt polycondensation method. From DSC studies it was found that the melting point of the nanocomposites was shifted slightly to higher temperatures by the addition of SiO 2 till 3 wt% while for PET-4 wt% SiO 2 nanocomposite the melting point was reduced. As the amount of SiO 2 was increased the crystallization became faster, and there was, also, a shifting of the temperature of the crystallization peak to higher values, this being evidence that SiO 2 can act as nucleating agent. At higher content (3 and 4 wt%) the temperature of the crystallization peak is lower than that of PET-2 wt% SiO 2 due to the formation of crosslinked macromolecules. The activation energy is calculated with the Friedman's method. PET/SiO 2 samples present lower activation energy compared to that of neat PET, except those of PET-4% SiO 2 , in which the activation energy have a maximum value for α = 0.8 probably due to the second crystallization peak. Extensive crystallization studies by using Avrami, Ozawa and Malek methods verified that PET and its nanocomposites must be crystallized by two mechanisms with different activation energies taking place in different degrees of crystallization.

  17. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  18. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K0.8Li0.27Ti1.73O4) nanocomposite by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2007-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The plate-like particles are required to enhance the coverage ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/plate-like potassium lithium titanate (K 0.8 Li 0.27 Ti 1.73 O 4 ) nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was prepared by soft chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR

  19. Effect of the preform fabrication process on the properties of all-silica optical fibres

    Science.gov (United States)

    Grishchenko, A. B.

    2017-12-01

    In this paper, we present a detailed comparison of technical capabilities of processes for the fabrication of all-silica optical fibre preforms with the use of an atmospheric pressure radio frequency plasma (POVD process) and low-pressure microwave plasma (PCVD process) and analyse the origin of the difference in optical properties between fibres produced by these methods. It is shown that the higher temperature of the core material and the higher oxygen partial pressure in preform fabrication by the POVD process lead to an increase in optical losses in the visible and UV spectral regions in the silica fibres with low hydroxyl (OH) content and a decrease in the solarisation resistance of the fibres with high OH content, i.e. to a more rapid increase in background losses in response to UV irradiation. No such drawbacks are detected in the case of the growth of reflective layers by the PCVD process.

  20. Process for the graft polymerization of polyvinyl chloride. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, E; Kusama, Y; Udagawa, A; Hashimoto, S

    1970-08-14

    The graft polymerization of acrylonitrile on polyvinyl chloride is effected by simultaneous irradiation with ionizing radiations in a reaction bath consisting of 30% acrylonitrile and 70% n-hexane. The acrylonitrile-hydrocarbon reaction bath increases the graft efficiency markedly when the content of acrylonitrile is 30%. In this case, the formation rate of acrylonitrile homopolymer decreases with a decrease in the content of acrylonitrile. The immersion time may be from a few minutes to a few hours, depending on the type, property and desired graft efficiency of the polyvinyl chloride resin. The polyvinyl chloride may be any available on the market. The acrylonitrile may contain a small quantity of copolymerizable monomer if it does not influence the thermal property of the polyvinyl chloride graft polymer. The ionizing radiations must have enough energy to form an ion pair by removing one electron from one atom of a gas. In examples, 10 g of polyvinyl chloride in powder form were immersed in 100 cc of a mixed solution consisting of 70% to 90% of n-hexane and 10% to 30% of acrylonitrile. The polyvinyl chloride in the solution was exposed to electron beams of 2 Mrad at a dose rate of 7.2 x 10/sup 7/ rad/hr. under a reduced pressure. The graft efficiency was 50% to 80% and the yield of acrylonitrile homopolymer was 0.42 g to 1.26 g.

  1. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... understood. Research indicates an orientation within the manufacturing layer and efforts have been made to achieve a more uniform orientation within the part. A vat polymerization machine consisting of a resin vat and a moving build plate has been simulated using the fluid flow module of Comsol Multiphysics...... photopolymer resin. The prediction can be used to identify potential clusters or misalignment of fibers and in the future allow for optimization of the machine design and manufacturing process....

  2. Evidence of coexistence of micro and nanoporosity of organo-silica polymeric films deposited on silicon by plasma deposition

    International Nuclear Information System (INIS)

    Purohit, Viswas; Mielczarski, Ela; Mielczarski, Jerzy A.; Akesso, Laurent

    2013-01-01

    A range of hybrid, SiOCH films were deposited on silicon substrates within a radio frequency plasma reactor using hexamethyldisiloxane (HMDSO) as a precursor. The plasma polymerized films were deposited at various HMDSO/argon/oxygen ratios. The composition and structure, at microscopic and nanoscopic levels, of the deposited films were determined by external reflection and transmission Fourier Transform Infrared (FTIR) spectroscopy as well as by X-Ray Photoelectron Spectroscopy (XPS). The content of carbon and oxygen in films were found to be inversely proportional to each other. XPS results showed that the outermost surface of the deposited films are nanoporous and coexist with microporosity which was revealed by electron microscopy. The structure of deposited coatings is anisotropic as was documented by polarized external reflection FTIR spectroscopy. Several correlations between the film chemical composition, surface structure, and macroscopic properties of the films such as: hydrophobicity and hydrophilicity were established. - Highlights: • Hybrid organo-polymer silicon films deposited by RF plasma on silicon substrates. • FTIR and XPS reveal porosity by interpreting bonding between Si and –O. • Quantification of nano and microporosity are identified with bonding of Si with –O

  3. Evidence of coexistence of micro and nanoporosity of organo-silica polymeric films deposited on silicon by plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Viswas, E-mail: vishwas.purohit@gmail.com [Laboratoire Environnment et Mineralurgie, UMR 7569 CNRS, INPL-ENSG, BP.40, 54501 Vandoeuvre-les-Nancy (France); Mielczarski, Ela; Mielczarski, Jerzy A. [Laboratoire Environnment et Mineralurgie, UMR 7569 CNRS, INPL-ENSG, BP.40, 54501 Vandoeuvre-les-Nancy (France); Akesso, Laurent [Teer Coatings Ltd., Droitwich, Worcestershire WR9 9AS (United Kingdom)

    2013-09-16

    A range of hybrid, SiOCH films were deposited on silicon substrates within a radio frequency plasma reactor using hexamethyldisiloxane (HMDSO) as a precursor. The plasma polymerized films were deposited at various HMDSO/argon/oxygen ratios. The composition and structure, at microscopic and nanoscopic levels, of the deposited films were determined by external reflection and transmission Fourier Transform Infrared (FTIR) spectroscopy as well as by X-Ray Photoelectron Spectroscopy (XPS). The content of carbon and oxygen in films were found to be inversely proportional to each other. XPS results showed that the outermost surface of the deposited films are nanoporous and coexist with microporosity which was revealed by electron microscopy. The structure of deposited coatings is anisotropic as was documented by polarized external reflection FTIR spectroscopy. Several correlations between the film chemical composition, surface structure, and macroscopic properties of the films such as: hydrophobicity and hydrophilicity were established. - Highlights: • Hybrid organo-polymer silicon films deposited by RF plasma on silicon substrates. • FTIR and XPS reveal porosity by interpreting bonding between Si and –O. • Quantification of nano and microporosity are identified with bonding of Si with –O.

  4. Effect of light intensity and irradiation time on the polymerization process of a dental composite resin

    Directory of Open Access Journals (Sweden)

    Discacciati José Augusto César

    2004-01-01

    Full Text Available Polymerization shrinkage is a critical factor affecting the longevity and acceptability of dental composite resins. The aim of this work was to evaluate the effect of light intensity and irradiation time on the polymerization process of a photo cured dental composite resin by measuring the Vickers hardness number (VHN and the volumetric polymerization shrinkage. Samples were prepared using a dental manual light-curing unit. The samples were submitted to irradiation times of 5, 10, 20 and 40 s, using 200 and 400 mW.cm-2 light intensities. Vickers hardness number was obtained at four different moments after photoactivation (immediate, 1 h, 24 h and 168 h. After this, volumetric polymerization shrinkage values were obtained through a specific density method. The values were analyzed by ANOVA and Duncan's (p = 0.05. Results showed increase in hardness values from the immediate reading to 1 h and 24 h readings. After 24 h no changes were observed regardless the light intensities or activation times. The hardness values were always smaller for the 200 mW.cm-2 light intensity, except for the 40 s irradiation time. No significant differences were detected in volumetric polymerization shrinkage considering the light intensity (p = 0.539 and the activation time (p = 0.637 factors. In conclusion the polymerization of the material does not terminate immediately after photoactivation and the increase of irradiation time can compensate a lower light intensity. Different combinations between light intensity and irradiation time, i.e., different amounts of energy given to the system, have not affected the polymerization shrinkage.

  5. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    International Nuclear Information System (INIS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-01-01

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP

  6. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  7. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  8. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  9. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  10. Investigation of glycerol polymerization in the clinker grinding process

    NARCIS (Netherlands)

    Parvulescu, A.N.; Rossi, M.; Della Pina, C.; Ciriminna, R.; Pagliaro, M.

    2011-01-01

    Concrete production is a large scale process that involves high energy consumption. In order to increase the sustainability of this process, the reduction of energy input is necessary. Bio-glycerol was demonstrated to be a highly efficient renewable-based additive in the grinding process for

  11. The Fracture Process of Tempered Soda-Lime-Silica Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2009-01-01

    This work presents experimental observations of the characteristic fracture process of tempered glass. Square specimens with a side length of 300 mm, various thicknesses and a residual stress state characterized by photoelastic measurements were used. Fracture was initiated using a 2.5 mm diamond...

  12. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    Science.gov (United States)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  13. TERMINATION PROCESS AND THE TERMINATION PARAMETER k_t OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    In this work the exact k_t data during the whole process of MMA bulk radical polymerization have been determined under unsteady state by using the post effect technique and ESR method. The effect of the micro-environment of radicals on the termination is discussed.

  14. CONCERNING CHAIN GROWTH SPECIFIC REACTION RATE AS A PART OF THE PROCESS OF METHYL METHACRYLATE MASS RADICAL POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Sultanova

    2017-02-01

    Full Text Available It is the chain growth specific reaction rate that was determined for the process of methyl methacrylate mass radical polymerization within the temperature range of 40–900 С in quasi-steady approximation by means of Monte Carlo method. The theoretical model of radical polymerization was developed taking the gel effect into account. Computer software was developed that enables to imitate radical polymerization process taking gel effect into account within the minimum run time. The programme was tested on asymptotic examples as well as was applied for methyl methacrylate mass radical polymerization. The programme makes it possible to calculate monomer conversion, molecular mass variation, molecular-mass distribution, etc.

  15. Software for Demonstration of Features of Chain Polymerization Processes

    Science.gov (United States)

    Sosnowski, Stanislaw

    2013-01-01

    Free software for the demonstration of the features of homo- and copolymerization processes (free radical, controlled radical, and living) is described. The software is based on the Monte Carlo algorithms and offers insight into the kinetics, molecular weight distribution, and microstructure of the macromolecules formed in those processes. It also…

  16. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011

    Directory of Open Access Journals (Sweden)

    Rogošić, M.

    2012-07-01

    Full Text Available A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems,are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems.

  17. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  18. Assessment of the impact strength of the denture base resin polymerized by various processing techniques

    Directory of Open Access Journals (Sweden)

    Rajashree Jadhav

    2013-01-01

    Full Text Available Aim : To measure the impact strength of denture base resins polymerized using short and long curing cycles by water bath, pressure cooker and microwave techniques. Materials and Methods: For impact strength testing, 60 samples were made. The sample dimensions were 60 mm × 12 mm × 3 mm, as standardized by the American Standards for Testing and Materials (ASTM. A digital caliper was used to locate the midpoint of sample. The impact strength was measured in IZOD type of impact tester using CEAST Impact tester. The pendulum struck the sample and it broke. The energy required to break the sample was measured in Joules. Data were analyzed using Student′s " t" test. Results: There was statistically significant difference in the impact strength of denture base resins polymerized by long curing cycle and short curing cycle in each technique, with the long curing processing being the best. Conclusion: The polymerization technique plays an important role in the influence of impact strength in the denture base resin. This research demonstrates that the denture base resin polymerized by microwave processing technique possessed the highest impact strength.

  19. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  20. Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour

    Directory of Open Access Journals (Sweden)

    Elena Simona Bacaita

    2012-01-01

    Full Text Available A theoretical model of the drug release process from polymeric microparticles (a particular type of polymer matrix, through dispersive fractal approximation of motion, is built. As a result, the drug release process takes place through cnoidal oscillations modes of a normalized concentration field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration. The model is validated by experimental results.

  1. Organophilization process of Brazilian bentonite for preparation of polymeric nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos I.R. de; Rocha, Marisa C.G.; Ferreira, Joao L.A.N.G.

    2015-01-01

    Bentonite clay from the municipality of Cubati, PB, was used for the preparation of an organophilic clay. First, the clay was treated with sodium chloride to obtain the homo-ionic sodium clay. The organoclay was, then, obtained from the reaction of homo-ionic clay with the quaternary ammonium salt, cetyltrimethyl ammonium chloride. The natural clay and the modified clays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The chemical analysis showed a decrease in the concentration of the majority of the metallic oxides when the bentonite was organophilizated. This result is characteristic of the metal cation exchange process by organic salt molecules. The X-ray diffraction confirmed the intercalation among the layers of the clay. The results obtained by FTIR showed the presence of the characteristic groups of the salt in the clay, thus confirming the obtaining of organophilic bentonite. (author)

  2. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  3. Supercritical Carbon Dioxide Assisted Processing of Silica/PMMA Nanocomposite Foams

    Science.gov (United States)

    Rende, Deniz; Schadler, Linda S.; Ozisik, Rahmi

    2012-02-01

    Polymer nanocomposite foams receive considerable attention in both scientific and industrial communities. These structures are defined as closed or open cells (pores) surrounded by bulk material and are widely observed in nature in the form of bone structure, sponge, corals and natural cork. Inspired by these materials, polymer nanocomposite foams are widely used in advanced applications, such as bone scaffolds, food packaging and transportation materials due to their lightweight and enhanced mechanical, thermal, and electrical properties compared to bulk polymer foams. The presence of the nanosized fillers facilitates heterogeneous bubble nucleation as a result, the number of bubbles increases while the average bubble size decreases. Therefore, the foam morphology can be controlled by the size, concentration, and surface chemistry of the nanofiller. In the current study, we used supercritical carbon dioxide as a foaming agent for silica/poly(methyl methacrylate), PMMA, foams. The silica nanoparticles were chemically modified by fluoroalkane chains to make them CO2-philic. The surface coverage was controlled via tethering density, and the effect of silica surface coverage and concentration on foam morphology was investigated through scanning electron microscopy and image processing. Results indicated that nanofiller concentration and filler surface chemistry (CO2-philicity) had tremendous effect on foam morphology but surface coverage did not have any effect.

  4. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  5. Selective oxidation with nanoporous silica supported sensitizers: An environment friendly process using air and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Cricq, Philippe; Pigot, Thierry; Blanc, Sylvie [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France); Lacombe, Sylvie, E-mail: sylvie.lacombe@univ-pau.fr [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Photo-sensitizers were covalently grafted on silica matrices. Black-Right-Pointing-Pointer Grafted powdered silica was characterized by diffuse reflectance and emission spectroscopy. Black-Right-Pointing-Pointer Selective solvent-free photo-oxygenation was carried out with air under visible light. Black-Right-Pointing-Pointer Singlet generation and reactivity at the gas-solid interface was demonstrated. - Abstract: Transparent and porous silica xerogels containing various grafted photosensitizers (PSs) such as anthraquinone derivatives, Neutral Red, Acridine Yellow and a laboratory-made dicyano aromatics (DBTP) were prepared. In most cases, the xerogels were shown to be mainly microporous by porosimetry. The PSs were characterized in the powdered monoliths (form, aggregation, concentration) by electronic spectroscopy which also proved to be a useful tool for monitoring the material evolution after irradiation. These nanoporous xerogels were used as microreactors for gas/solid solvent-free photo-oxygenation of dimethylsulfide (DMS) using visible light and air as the sole reactant. All these PSs containing monoliths were efficient for gas-solid DMS oxidation, leading to sulfoxide and sulfone in varying ratios. As these polar oxidation products remained strongly adsorbed on the silica matrix, the gaseous flow at the outlet of the reactor was totally free of sulfide and odorless. The best results in term of yield and initial rate of degradation of DMS were obtained with DBTP containing xerogels. Moreover, as these materials were reusable without loss of efficiency and sensitizer photobleaching after a washing regeneration step, the concept of recyclable sensitizing materials was approved, opening the way to green process.

  6. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  7. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  8. Optical study of the ultrasonic formation process of noble metal nanoparticles dispersed inside the pores of monolithic mesoporous silica

    CERN Document Server

    Fu Gan Hua; Kan Cai Xia; Li Cun Cheng; Fang Qi

    2003-01-01

    Gold nanoparticles dispersed inside the pores of monolithic mesoporous silica were prepared by soaking the silica in a gold (III) ion solution and subsequent ultrasound irradiation. The formation process of gold nanoparticles in the pores of mesoporous silica was investigated based on optical measurements of wrapped and naked soaked silica after ultrasonic irradiation, and the reduction rate effect in solution and pre-soaking effect. It has been shown that acoustic cavitation cannot occur in nano-sized pores. The gold nanoparticles in silica are not formed in situ within the pores but produced mainly by diffusion of the gold clusters formed in the solution during irradiation into the pores. The radicals formed in solution are exhausted before entering the pores of silica. There exists a critical reduction rate in solution, at which the yield of gold nanoparticles in silica reaches a maximum, and above which there is a decrease in the yield. This is attributed to too quick a growth or aggregation of gold clust...

  9. Polymerization of aniline in an organic peroxide system by the inverted emulsion process

    OpenAIRE

    Rao, Palle Swapna; Sathyanarayana, DN; Palaniappan, S

    2002-01-01

    An inverted emulsion process for the synthesis of the emeraldine salt of polyaniline using a novel oxidizing agent, namely benzoyl peroxide, is described. The polymerization is carried out in a nonpolar solvent in the presence of a functionalized protonic acid (sulfosalicylic acid) as the dopant and an emulsifier (sodium lauryl sulfate). The influence of synthesis conditions such as the duration of the reaction, temperature, concentration of the reactants, etc., on the properties of polyanili...

  10. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Montaño, Carlos J.; Campos, Tarcísio P.R., E-mail: carlmont@ucm.es, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Lab. de Radiações Ionizantes; Silva, Adolfo H.M.; Araujo, Maria H., E-mail: adolfohmoraes@ufmg.br, E-mail: mharaujo1993@gmail.com [Universidade Federal de Minas Gerais (RMN/UFMG), Belo Horizonte (Brazil). Dept. de Ressonância Magnética Nuclear

    2017-07-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H{sub 2}O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x{sub 5} concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the {sup 1}H NMR spectra. (author)

  11. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    International Nuclear Information System (INIS)

    Montaño, Carlos J.; Campos, Tarcísio P.R.; Silva, Adolfo H.M.; Araujo, Maria H.

    2017-01-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H 2 O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x 5 concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the 1 H NMR spectra. (author)

  12. Multi input single output model predictive control of non-linear bio-polymerization process

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  13. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  14. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  15. Chemical Reactor Automation as a way to Optimize a Laboratory Scale Polymerization Process

    Science.gov (United States)

    Cruz-Campa, Jose L.; Saenz de Buruaga, Isabel; Lopez, Raymundo

    2004-10-01

    The automation of the registration and control of variables involved in a chemical reactor improves the reaction process by making it faster, optimized and without the influence of human error. The objective of this work is to register and control the involved variables (temperatures, reactive fluxes, weights, etc) in an emulsion polymerization reaction. The programs and control algorithms were developed in the language G in LabVIEW®. The designed software is able to send and receive RS232 codified data from the devices (pumps, temperature sensors, mixer, balances, and so on) to and from a personal Computer. The transduction from digital information to movement or measurement actions of the devices is done by electronic components included in the devices. Once the programs were done and proved, chemical reactions of emulsion polymerization were made to validate the system. Moreover, some advanced heat-estimation algorithms were implemented in order to know the heat caused by the reaction and the estimation and control of chemical variables in-line. All the information gotten from the reaction is stored in the PC. The information is then available and ready to use in any commercial data processor software. This work is now being used in a Research Center in order to make emulsion polymerizations under efficient and controlled conditions with reproducible results. The experiences obtained from this project may be used in the implementation of chemical estimation algorithms at pilot plant or industrial scale.

  16. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Turkozu, D. A.; Aytas, S.

    2006-01-01

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  17. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  18. The effect of silica toward polymer membrane for water separation process

    Science.gov (United States)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  19. Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Ana Rita C., E-mail: aduarte@dep.uminho.pt [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal); Caridade, Sofia G.; Mano, Joao F.; Reis, Rui L. [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal)

    2009-08-31

    The aim of this study was to develop a new process for the production of bioactive 3D scaffolds using a clean and environmentally friendly technology. The possibility of preparing composite scaffolds of Bioglass and a polymeric blend of starch and poly(L-lactic acid) (SPLA50) was evaluated. Supercritical phase-inversion technique was used to prepare inorganic particles loaded starch-based porous composite matrixes in a one-step process for bone tissue engineering purposes. Due to their osteoconductive properties some glasses and ceramics are interesting materials to be used for bone tissue engineering purposes; however their poor mechanical properties create the need of a polymeric support where the inorganic fraction can be dispersed. Samples impregnated with different concentrations of Bioglass (10 and 15% wt/wt polymer) were prepared at 200 bar and 55 deg. C. The presence of Bioglass did not affect the porosity or interconnectivity of the polymeric matrixes. Dynamic mechanical analysis has proven that the modulus of the SPLA50 scaffolds increases when glass particles are impregnated within the matrix. In vitro bioactivity studies were carried out using simulated body fluid and the results show that a calcium-phosphate layer started to be formed after only 1 day of immersion. Chemical analysis of the apatite layer formed on the surface of the scaffold was performed by different techniques, namely EDS and FTIR spectroscopy and X-ray diffraction (XRD). The ion concentration in the simulated body fluid was also carried out by ICP analysis. Results suggest that a bone-like apatite layer was formed. This study reports the feasibility of using supercritical fluid technology to process, in one step, a porous matrix loaded with a bioactive material for tissue engineering purposes.

  20. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.

    Science.gov (United States)

    Roy, Sagar; Singha, Nayan Ranjan

    2017-09-08

    Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  1. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  2. Preparation of highly absorbing polymeric hydrogels by radiation processing: mechanical and physical properties

    International Nuclear Information System (INIS)

    Dragusin, M.

    1994-01-01

    Some highly absorbing polymeric hydrogels such as acrylic polymers were produced by radiation processing with gamma sources Co-60 of 10,000 Ci, 3 kGy/h and an electron beam accelerator of 3 - 6 MeV, 0.3 - 3 kGy/s. For practical purposes, such as different applications in agriculture, etc, we studied the physical properties of residual monomers by refractometric and polarographic methods and the mechanical properties (gel strength) with devices made in our laboratory. (Author)

  3. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  4. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural

    2011-08-01

    the polymerization process for at least 30 min and water storage of the heat-polymerized denture bases for at least 1 to 2 days before denture delivery is clinically recommended for minimizing the residual MMA and possible cytotoxic effects.

  5. A novel process for ultrasound-induced radical polymerization in CO2-expanded fluids

    NARCIS (Netherlands)

    Kemmere, M.F.; Kuijpers, M.W.A.; Prickaerts, R.M.H.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. In this work, ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA in order to reduce the

  6. HYDRATION PROCESS AND MECHANICAL PROPERTIES OF CEMENT PASTE WITH RECYCLED CONCRETE POWDER AND SILICA SAND POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-11-01

    Full Text Available Recycled concrete powder (RCP mostly consisting of cement paste could be reused as partial cement replacement. The aim of this paper is to compare hydration and mechanical properties of RCP and two types of silica sand powder (SSP. Comparison of those materials combined with cement can highlight the binder properties of recycled concrete powder. Using of two types of SSP also show an influence of their fines on hydration process and mechanical properties. Particle size analysis and calorimetric measurement were carried out and mechanical properties such as bulk density, dynamic Young’s modulus and compression strength were examine. Calorimetric measurement proves the presence of exposed non-hydrated particles in RCP that can react again. However lower density of old cement paste in RCP overweight the mentioned potential of RCP and mechanical properties are decreasing compared with reference cement paste and cement paste SSP.

  7. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  8. Processing and characterization of yttrium-stabilized zirconia thin films on polyimide from aqueous polymeric precursors

    International Nuclear Information System (INIS)

    Gorman, B.P.; Anderson, H.U.

    2004-01-01

    Low-temperature deposition of dense, nanocrystalline yttrium-stabilized zirconia (YSZ) thin films on polyimide (PI) substrates is illustrated using an aqueous polymeric precursor spin-coating technique. The polymeric precursor uses low-cost materials, is water-soluble and the viscosity and cation concentrations can be easily adjusted in order to vary the film thickness from 0.02 to 0.3 μm. Due to the use of water as the solvent in the YSZ precursor and the hydrophobic nature of the PI surface, surface modification processes were utilized in order to improve the wetting characteristics. Surface modification of PI substrates using wet chemical and oxygen plasma techniques led to a decrease in the precursor contact angle, and ultimately allowed for uniform film formation on both bulk and thin film PI substrates. Scanning electron microscopy, transmission electron microscopy and UV/Vis absorption illustrate that near full-density nanocrystalline thin films of YSZ can be produced at temperatures as low as 350 deg. C. Thermogravimetric analyses illustrate that the PI substrate does not undergo any weight loss up to these temperatures

  9. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  10. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  11. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  12. Elastic properties of silica aerogels from a new rapid supercritical extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gross, J.; Coronado, P.R.; Hair, L.M.; Hrubesh, L.W.

    1997-08-11

    Silica aerogels were produced by a new process from Tetramethoxysilane (TMOS) with ammonia as base catalyst. the process involves pouring the liquid sol in a stainless steel mold and immediately heating it to supercritical conditions. Gelation and aging occurs during heating and reaction rates are high die to high average temperatures. the gel fills the container completely, which enables relatively fast venting of the supercritical fluid by providing a constraint for swelling and failure of the gel monolith. The whole process can be completed in 6 h or less. Longitudinal and shear moduli were measured in the dried aerogels by ultrasonic velocity measurements both as a function of chemical composition of the original sol and of position in the aerogel. It was found that the sound velocity exhibits marked maxima on the surface of the cylindrical specimens and specifically close to the ends, where the fluid left during venting. Specimens with high catalyst concentration and high water:TMOS ratio exhibited higher average moduli.

  13. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  14. Process Chain for the Manufacture of Polymeric Tubular Micro-Components and “POLYTUBES Micro-Factory” Concept

    DEFF Research Database (Denmark)

    Qin, Yi; Perzon, Erik; Chronakis, Ioannis S.

    The paper presents a process chain for the shaping of poly-meric tubular micro-components for the volume production as well as presents a concept for the integration of the developed processes and modular machines onto a platform to form a "POLYTUBES Micro-Factory", being resulting from the Europ...

  15. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    Science.gov (United States)

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  16. Process, Design and Materials for Unidirectionally Tilted Polymeric Micro/Nanohairs and Their Adhesion Characteristics

    Directory of Open Access Journals (Sweden)

    Hyeon Seong Im

    2016-09-01

    Full Text Available Recent research in the field of gecko-inspired dry adhesive has focused on modifying the material and structural properties of polymer-based nanohairs. Polymers such as polystyrene (PS, high-density polyethylene (HDPE, ultraviolet curable epoxy (SU-8, polyurethane acrylate (PUA, polycarbonate (PC, and polydimethyl siloxane (PDMS can fulfill many mechanical property requirements, are easily tunable, and can be produced via large-scale fabrication. However, the fabrication process for tilted structure remains challenging. The tilted structure is a crucial factor in high-degree conformal contact, which facilitates high adhesion, low effective modulus, and directional adhesion properties. Recent studies have attempted to create a tilted structure by applying beam irradiation, mechanical and thermal stress, and magnetic fields. This review provides a comprehensive investigation into advanced strategies for producing tilted polymeric nanostructures and their potential applications in the near future.

  17. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  18. Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process

    Science.gov (United States)

    Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong

    2017-04-01

    In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.

  19. A review on the processing accuracy of two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoqin; Hou, Yihong [School of Mechanical Science and Engineering, Jilin University, Changchun, 130022 (China); Lin, Jieqiong, E-mail: linjieqiong@mail.ccut.edu.cn [School of Electromechanical Engineering, Changchun University of Technology, Changchun, 130012 (China)

    2015-03-15

    Two-photon polymerization (TPP) is a powerful and potential technology to fabricate true three-dimensional (3D) micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  20. A review on the processing accuracy of two-photon polymerization

    Directory of Open Access Journals (Sweden)

    Xiaoqin Zhou

    2015-03-01

    Full Text Available Two-photon polymerization (TPP is a powerful and potential technology to fabricate true three-dimensional (3D micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  1. A study on the silica removal in primary system using the membrane process

    International Nuclear Information System (INIS)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk; Jung, Hee Chul; Jo, Hang Rae

    2005-01-01

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 ∼ 70% and boron rejection rate is about 10 ∼ 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg f /cm 2 , we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal

  2. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  3. A study on the silica removal in primary system using the membrane process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk [Korea Hydro and Nuclear Power Co., LTD., Taejeon (Korea, Republic of); Jung, Hee Chul; Jo, Hang Rae [Korea Hydro and Nuclear Power Co., LTD., Uljin (Korea, Republic of)

    2005-06-15

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 {approx} 70% and boron rejection rate is about 10 {approx} 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg{sub f}/cm{sup 2}, we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal.

  4. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors

    Institute of Scientific and Technical Information of China (English)

    Shujing Guo; Liqiang Li; Zhongwu Wang; Zeyang Xu; Shuguang Wang; Kunjie Wu; Shufeng Chen; Zongbo Zhang; Caihong Xu; Wenfeng Qiu

    2017-01-01

    Silica is one of the most commonly used materials for dielectric layer in organic thin-film transistors due to its excellent stability,excellent electrical properties,mature preparation process,and good compatibility with organic semiconductors.However,most of conventional preparation methods for silica film are generally performed at high temperature and/or high vacuum.In this paper,we introduce a simple solution spin-coating method to fabricate silica thin film from precursor route,which possesses a low leakage current,high capacitance,and low surface roughness.The silica thin film can be produced in the condition of low temperature and atmospheric environment.To meet various demands,the thickness of film can be adjusted by means of preparation conditions such as the speed of spin-coating and the concentration of solution.The p-type and n-type organic field effect transistors fabricated by using this film as gate electrodes exhibit excellent electrical performance including low voltage and high performance.This method shows great potential for industrialization owing to its characteristic of low consumption and energy saving,time-saving and easy to operate.

  5. Mimicking the Nanostructure of Bone: Comparison of Polymeric Process-Directing Agents

    Directory of Open Access Journals (Sweden)

    Laurie B. Gower

    2010-12-01

    Full Text Available The nanostructure of bone has been replicated using a polymer-induced liquid-precursor (PILP mineralization process. This polymer-mediated crystallization process yields intrafibrillar mineralization of collagen with uniaxially-oriented hydroxyapatite crystals. The process-directing agent, an anionic polymer which we propose mimics the acidic non-collagenous proteins associated with bone formation, sequesters calcium and phosphate ions to form amorphous precursor droplets that can infiltrate the interstices of collagen fibrils. In search of a polymeric agent that produces the highest mineral content in the shortest time, we have studied the influence of various acidic polymers on the in vitro mineralization of collagen scaffolds via the PILP process. Among the polymers investigated were poly-L-aspartic acid (PASP, poly-L-glutamic acid (PGLU, polyvinylphosphonic acid (PVPA, and polyacrylic acid (PAA. Our data indicate that PASP and the combination of PGLU/PASP formed stable mineralization solutions, and yielded nano-structured composites with the highest mineral content. Such studies contribute to our goal of preparing biomimetic bone graft substitutes with composition and structure that mimic bone.

  6. Bioinspired thermo- and pH-responsive polymeric amines: multimolecular aggregates in aqueous media and matrices for silica/polymer nanocomposites.

    Science.gov (United States)

    Danilovtseva, Elena N; Aseyev, Vladimir; Belozerova, Olga Yu; Zelinskiy, Stanislav N; Annenkov, Vadim V

    2015-05-15

    Polymeric amines have been intensively studied for application in smart systems and as matrices for the design of composite materials, including bioinspired substances. A new thermo- and pH-responsive polymer was obtained by radical polymerization of N-(3-(diethylamino)propyl)-N-methylacrylamide. Upon heating, the polymer precipitated from aqueous solutions above pH 9; the observed cloud point was dependent on the polymer concentration and decreased from 95°C at pH 9 to 40°C at pH 11. The basicity of the polymer decreased at elevated temperatures owing to an increase in the hydrophobicity-driven compaction of the macromolecules. Dynamic light scattering analysis demonstrated that the formation of large multimolecular associates with radius 1000-2000 nm was initiated from 1 to 2°C below the cloud point. The new polymer is demonstrated to be an effective matrix for various siliceous composite structures, including 200-300 nm solid spherical raspberry-like particles and hollow hemispherical particles of more than 1000 nm diameter. Condensation of silicic acid in the presence of polymeric amines is a model reaction in biosilicification studies, and the obtained data are also discussed from the perspective of the matrix hypothesis for biosilica formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie; Labreche, Ying; Lively, Ryan P.; Lee, Jong Suk; Jones, Christopher W.; Koros, William J.

    2014-01-01

    -jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly

  8. Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    Synthesized N,N′-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were...

  9. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    Science.gov (United States)

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  10. Reactive processing of silica-reinforced tire rubber : new insight into the time- and temperature-dependence of silica rubber interaction

    NARCIS (Netherlands)

    Mihara, S.

    2009-01-01

    In recent years, silica has become one of the most important fillers used in tire tread compounds due to its contribution to a better environment. Silica is capable of not only reducing the rolling resistance but also improving the wet skid resistance of tires, compared to carbon black as a filler.

  11. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  12. Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing

    Directory of Open Access Journals (Sweden)

    Guozhao Ji

    2013-08-01

    Full Text Available This work shows the application of a validated mathematical model for gas permeation at high temperatures focusing on demonstrated scale-up design for H2 processing. The model considered the driving force variation with spatial coordinates and the mass transfer across the molecular sieve cobalt oxide silica membrane to predict the separation performance. The model was used to study the process of H2 separation at 500 °C in single and multi-tube membrane modules. Parameters of interest included the H2 purity in the permeate stream, H2 recovery and H2 yield as a function of the membrane length, number of tubes in a membrane module, space velocity and H2 feed molar fraction. For a single tubular membrane, increasing the length of a membrane tube led to higher H2 yield and H2 recovery, owing to the increase of the membrane area. However, the H2 purity decreased as H2 fraction was depleted, thus reducing the driving force for H2 permeation. By keeping the membrane length constant in a multi-tube arrangement, the H2 yield and H2 recovery increase was attributed to the higher membrane area, but the H2 purity was again compromised. Increasing the space velocity avoided the reduction of H2 purity and still delivered higher H2 yield and H2 recovery than in a single membrane arrangement. Essentially, if the membrane surface is too large, the driving force becomes lower at the expense of H2 purity. In this case, the membrane module is over designed. Hence, maintaining a driving force is of utmost importance to deliver the functionality of process separation.

  13. Development of silica nanoparticles obtaintion process from renewable source waste and its incorporation in thermoplastic polymer for manufacturing a nanocomposite

    International Nuclear Information System (INIS)

    Ortiz, Angel Visentim

    2016-01-01

    The nanocomposite technology is applicable to a wide range of thermoplastic and thermoset polymers. The use of sugar cane byproducts has been extensively studied as a source of reinforcement for nanocomposites. The bagasse is widely used in cogeneration and as a result of the burning of this material, millions of tons of ash are produced. For this work, silica contained in the ashes of bagasse from sugarcane was extracted by chemical method and thermal method. The thermal method is more efficient leading to a purity of more than 93% of silica, while the chemical method generated silica contaminated with chlorine and sodium from the extraction reagents. The silica particles obtained were evaluated by dynamic light scattering (DSL) and presented an average size of 12 micrometers. These particles were submitted to grinding in a ball mill and then to a sonochemical treatment. Silica particles treated by the sonochemical process ( 20 kHz, 500 W and 90 minutes) had its dimensions reduced to nanometric scale of tenths of nanometers. The nanossílica obtained was then used as reinforcement in high density polyethylene (HDPE). Mechanical and thermo-mechanical properties were assessed and gains were shown for mechanical properties , except for the impact resistance. The distortion temperature (HDT) showed that the incorporation of the reinforcement in HDPE led to a small increase in this property compared to pure HDPE. The crystallinity of the nanocomposites generated was evaluated by differential scanning calorimetry (DSC) and it was observed a decrease of crystallinity in the material when the reinforcing incorporation was 3%. The material irradiated to 250 kGy with electron beam showed important property gains, mainly due to the high level of crosslinking of irradiated HDPE. (author)

  14. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  15. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...... of the chemical surface was obtained using pulsed AC plasma, as shown by ToF-SIMS. It is demonstrated how the experimental conditions to some extent control the chemical structure of the plasma-polymerized film, e.g., film thickness, density of post-plasma-polymerized oligomeric chains, and the density of intact...

  17. Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design.

    Science.gov (United States)

    Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong

    2016-07-22

    A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.

  18. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  19. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  20. Influence of substituents in vinyl groups on reactivity of parylene during polymerization process

    International Nuclear Information System (INIS)

    Freza, Sylwia; Skurski, Piotr; Bobrowski, Maciej

    2010-01-01

    The MCSCF calculations indicate that both triplet and singlet state of biradical di-para-xylylene can exist during polymerization of parylene in gas phase and both can potentially react with vinyl molecules. The singlet-state open-shell dimer turned out to exhibit multiconfigurational character. In the case of triplet state of the dimer two mechanisms of the reactions with various species containing vinyl groups have been examined at the B3LYP/6-31G level. The kinetic and thermodynamical barriers have been estimated for the reaction path involving the π-bond cleavage as well as for the route describing the hydrogen atom transfer. It was found that the overall reactions are thermodynamically favorable, whereas appropriate kinetic barriers for certain derivatives are very small (close to 0 kcal/mol) which in turn makes allowances for easy reactivity under accessible conditions. The calculated mechanisms indicate the influence of substituents in vinyl groups for reactivity of parylene during LPCVD process.

  1. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    Science.gov (United States)

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  2. Photothermal heating as a methodology for post processing of polymeric nanofibers

    Science.gov (United States)

    Gorga, Russell; Clarke, Laura; Bochinski, Jason; Viswanath, Vidya; Maity, Somsubhra; Dong, Ju; Firestone, Gabriel

    2015-03-01

    Metal nanoparticles embedded within polymeric systems can be made to act as localized heat sources thereby aiding in-situ polymer processing. This is made possible by the surface plasmon resonance (SPR) mediated photothermal effect of metal (in this case gold) nanoparticles, wherein incident light absorbed by the nanoparticle generates a non-equilibrium electron distribution which subsequently transfers this energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. Here we demonstrate this effect in polymer nanocomposite systems, specifically electrospun polyethylene oxide nanofibrous mats, which have been annealed at temperatures above the glass transition. A non-contact temperature measurement technique utilizing embedded fluorophores (perylene) has been used to monitor the average temperature within samples. The effect of annealing methods (conventional and photothermal) and annealing conditions (temperature and time) on the fiber morphology, overall crystallinity, and mechanical properties is discussed. This methodology is further utilized in core-sheath nanofibers to crosslink the core material, which is a pre-cured epoxy thermoset. NSF Grant CMMI-1069108.

  3. On dual nature of effect of adsorbed polymeric hydroxide films on rate of different electrode processes

    International Nuclear Information System (INIS)

    Zakharkina, P.S.; Korshunov, V.N.

    1985-01-01

    The effect of cation Er 3+ hydrolysis products on the electrochemical behaviour of Zn and Na amalgams is studied. The i, t-curves are presented which are moasUred from a film Hg-electrode in 1M LiCl- and 1MNaCl solUtions both with and without the 10 -3 MErCl 3 addition, along with the I, t-dependences obtained from a rotation disk Zn-electrode at E=-1.45 B against the background of 0.1 MLi 2 SO 4 with the 1.5x10 -3 M Er 2 (SO 4 ) 3 addition. Polymeric films of REE oxohydroxo compounds exhibit a distinct dualism in the effect on the rate of different electrode reactions; provided a proton donor is the depolarizator, the films being considered confirm their name of catalytically active matrices accelerating hydrogen evolution by a modified bridge mechanism variant. In case of metal charge-ionization process these films become inhibitors and the more effective, the more hydrated is the corresponding REE ion

  4. Synthesis of silica nanoparticles for encapsulation of oncology drugs with low water solubility: effect of processing parameters on structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Palacký University Olomouc, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: JBartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-12-15

    Silica nanoparticles with tailored properties have been developed for a variety of biomedical applications, with particular emphasis on their use as carriers for the encapsulation and controlled release of bioactive species. Among the various strategies described, silica nanoparticles with uniform mesoporosity (MSN) prepared in aqueous solution at elevated temperatures using cetyltrimethylammonium bromide as a template have a range of desirable properties. However, the processing windows available to control the dimensions and other key properties of such nanoparticles prepared using fluoride salts as catalysts have not been elucidated, with mixed products containing gel fragments and non-uniform products obtained under many conditions. Here, we present a parametric study of the synthesis of MSN under fluoride-catalysed conditions using tetraethylorthosilicate as silica precursor. The processing conditions required to produce uniform nanoparticles with controlled dimensions are elucidated, together with the conditions under which dried powders can be re-dispersed in aqueous solution after long-term storage to regenerate unaggregated nanospheres with dimensions (as measured by dynamic light scattering) comparable to those measured via scanning electron microscopy analysis of the dried material. The ability to dry and store such powders for extended periods of time is an important requirement for the use of such materials in drug delivery applications. Preliminary results demonstrating the use of such MSNs as hosts for oncology drugs [substituted 3-hydroxyquinolinones (3-HQ)] with low water solubility (≪1 µg/g H{sub 2}O) are presented, with loadings of several wt% demonstrated. The ability of the silica host to protect the 3-HQ from oxidative degradation during impregnation and release is discussed.

  5. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance

    International Nuclear Information System (INIS)

    Li, Chong; Li, Yujie; Ling, Yunyang; Lai, Yangwei; Wu, Chuanliu; Zhao, Yibing

    2014-01-01

    Ultrathin silica coating (UTSC) has emerged as an effective way to improve the compatibility and stability of nanoparticles without attenuating their intrinsic optical properties. Exploration strategies to probe the growth process of ultrathin silica shells on the surface of nanoparticles would represent a valuable innovation that would benefit the development of ultrathin silica coated nanoparticles and their relevant applications. In this work, we report a unique, very effective and straightforward strategy for probing the growth of ultrathin silica shells on the surface of gold nanorods (Au NRs), which exploits the localized surface plasmon resonance (LSPR) as a reporting signal. The thickness of the ultrathin silica shells on the surface of Au NRs can be quantitatively measured and predicted in the range of 0.5–3.5 nm. It is demonstrated that the LSPR shift accurately reflects the real-time change in the thickness of the ultrathin silica shells on Au NRs during the growth process. By using the developed strategy, we further analyze the growth of UTSC on the surface of Au NRs via feeding of Na 2 SiO 3 in a stepwise manner. The responsiveness analysis of LSPR also provides important insight into the shielding effect of UTSC on the surface of Au NRs that is not accessible with conventional strategies. This LSPR-based strategy permits exploration of the surface-mediated sol–gel reactions of silica from a new point of view. (paper)

  6. Novelty of Dynamic Process in the Synthesis of Biocompatible Silica Nanotubes by Biomimetic Glycyldodecylamide as a Soft Template.

    Science.gov (United States)

    Choi, Hyejung; Kim, Joong-Jo; Mo, Yong-Hwan; Reddy, Benjaram M; Park, Sang-Eon

    2017-10-10

    A dynamic process in the synthesis of silica nanotubes (SNTs) by utilizing glycyldodecylamide (GDA) as a soft template was thoroughly investigated. The morphological evolution from GDA to SNTs was deeply explored to elucidate the formation mechanism for optimizing the synthesis procedure. Various analytical tools, namely, XRD, FTIR, SEM, TEM, Z-potential, and N 2 adsorption/desorption isotherms, were employed during the synthesis procedure. The interactive structure of GDA was also investigated using TEM-EDX as a function of aging time. These studies revealed the stepwise morphology of nanograin, nanofiber, curved plate, and nanotube in the ethanol/water solution when aged at room temperature. The supramolecular GDA molded the vesicle type nanostructure which was surrounded by silica and facilitated the formation of uniform SNTs. The stimulus for GDA to be curved into a vesicle was the intermolecular hydrogen bonding between adjacent amide groups of the template molecules. This was illustrated by FTIR spectra of GDA-silica intermediate by detecting the transition of amide I peak from 1678 to 1635 cm -1 . The effect of hydrogen bonding became stronger when the sample was aged.

  7. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes

    Directory of Open Access Journals (Sweden)

    Kim Young Ho

    2015-01-01

    Full Text Available Despite exhibiting a wide spectrum of cosmeceutical properties, flavonoids and related compounds have some limitations related to their stability and solubility in distilledwater. In this project, we prepared silica microspheres using a novel method that uses polyol-in-oil-in-water (P/O/W emulsion and sol-gel methods as techniques for stabilizing quercetin. A stable microsphere suspension was successfully preparedusing a mixed solvent system comprising a polyol-phase medium for performing the sol-gel processing of tetraethyl orthosilicate (TEOS as an inorganic precursor with outer water phase. The morphology of the microsphere was evaluated using a scanning electron microscope (SEM, which showed a characteristic spherical particle shape with a smooth surface. Furthermore, SEM/EDSanalysis of a representative microsphere demonstrated that the inner structure of the silica microspheres was filled with quercetin. The mean diameter of the microsphere was in the range 20.6-35.0 μm, and the encapsulation efficiency ranged from 17.8% to 27.5%. The free and encapsulated quercetin samples were incubated in separateaqueous solutions at 25 and 42°C for 28 days. The residualcontent of the quercetin encapsulated by silica microspheres was 82% at 42°C. In contrast, that of the free quercetin stored at 42°C decreased to ~24%.

  8. Effect of Plasma Spheroidization Process on the Microstructure and Crystallographic Phases of Silica, Alumina and Nickel Particles

    International Nuclear Information System (INIS)

    Hu Peng; Yan Shikai; Yuan Fangli; Bai Liuyang; Li Jinlin; Chen Yunfa

    2007-01-01

    During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials

  9. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  10. In-situ Polymerization-modification Process and Foaming of Poly(ethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    仲华; 奚桢浩; 刘涛; 赵玲

    2013-01-01

    Most of traditional linear poly(ethylene terephthalate) (PET) resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures, which are not enough to support and keep cells. An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride (PMDA) or pentaerythritol (PENTA) as modifying monomers to obtain PETs with high melt strength. The influence of amounts of modifying monomers on the properties of modified PET was investigated. It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength. With in-creasing the amount of the modifying monomer, the melt strength of the modified PET increased. But when the amount of PENTA reached 0.35%or PMDA reached 0.9%, crosslinking phenomenon was observed in the modified PET. Supercritical carbon dioxide (ScCO2) was employed as physical foaming agent to evaluate the foaming ability of modified PETs. The modified PETs had good foaming properties at 14 MPa of CO2 pressure with foaming tem-perature ranging from 265 °C to 280 °C. SEM micrographs demonstrated that both modified PET foams had ho-mogeneous cellular structures, with cell diameter ranging from 35 μm to 49 μm for PENTA modified PETs and 38μm to 57μm for PMDA modified ones. Correspondingly, the cell density had a range of 3.5×107 cells·cm-3 to 7×106 cells·cm-3 for the former and 2.8×107 cells·cm-3 to 5.8×106 cells·cm-3 for the latter.

  11. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  12. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    Science.gov (United States)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  13. Synthesis and Characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride – Mesoporous Silica Composite as Adsorbent for Dehydration in Industrial Processes

    OpenAIRE

    Liévano,Javier F. Plata; Díaz,Luz A. Carreno

    2016-01-01

    Ionic liquid – mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix...

  14. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  15. Geometrical shape assessment of additively manufactured features by direct light processing vat polymerization method

    DEFF Research Database (Denmark)

    Péreza, Lucia C. Díaz; Davoudinejad, Ali; Quagliotti, Danilo

    The importance of Additive Manufacturing (AM) in the field of micro manufacturing is increasing. Vat Polymerization Methods are one of the lead AM technologies to produce polymer micro parts. In the Technical University of Denmark (DTU), a vat photopolymerization AM machine able to print features...

  16. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    NARCIS (Netherlands)

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  17. A process to fabricate fused silica nanofluidic devices with embedded electrodes using an optimized room temperature bonding technique

    Science.gov (United States)

    Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.

    2017-05-01

    Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.

  18. SAXS study of silica sols, gels and glasses obtained by the sol gel process

    International Nuclear Information System (INIS)

    Santos, D.I. dos; Aegerter, M.A.

    1988-01-01

    Systematic SAXS studies have been performed at the LURE Synchrotron, Orsay, using an intense beam of point like cross-section to obtain information about the sol -> humid gel -> dried gel -> silica glass transformation. The intensity curves have been analysed in term of power law in log-log plots, whose exponent is related to mass and surface fractal dimensions of the structure. It was found that almost all phases present fractal structures and for the case of basic gels, is of hierarchical nature. The aerogels are formed by a dense matrix, with a smooth surface and exhibit a very narrow auto-similarity range that gives a mass fractal dimension. (author) [pt

  19. Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Hiroyo; Yoshimizu, Hisato; Hirosaki, Naoto; Inoue, Satoru, E-mail: SEGAWA.Hiroyo@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-06-15

    We have prepared silica glass by the sol-gel method and studied its ability to disperse the Ca-{alpha}-SiAlON:Eu{sup 2+} phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.

  20. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process

    International Nuclear Information System (INIS)

    Nagayama, Shuhei; Kajihara, Koichi; Kanamura, Kiyoshi

    2012-01-01

    Highlights: ► Silica glasses doped by LaF 3 nanocrystals are obtained by HF-catalyzed sol–gel method. ► The processing time (∼1 week) is much shorter than that of previous studies. ► The uptake of SiF groups in the glass matrix greatly reduces the SiOH concentration. ► Effects of sintering conditions and properties of Er 3+ -doped samples are presented. - Abstract: Silica glasses doped with LaF 3 nanocrystals were prepared by HF-catalyzed sol–gel method. HF was used both as fluorine source and as catalyst of the sol–gel reaction, making it possible to shorten the processing time with reducing the concentration of SiOH groups to ∼10 18 cm −3 . The resultant glasses are transparent at visible spectral range, and the optical loss at the ultraviolet absorption edge is dominated by the Rayleigh scattering from LaF 3 crystallites. The size of LaF 3 crystallites increases with an increase in the sintering temperature and time, and is smaller than ∼40 nm in samples showing good visible transparency. Green upconversion photoluminescence is observed in an Er 3+ -doped sample under excitation at 980 nm.

  1. Suspension polymerization a process for the production of beaded polymer supports and derived ion exchangers

    International Nuclear Information System (INIS)

    Malik, M.A.

    1995-01-01

    Suspension polymerization techniques for production of beaded polymers are discussed with special reference to styrene divinylbenzene copolymers. Methods to control particle size and size distribution of final copolymer beads are given. Mechanism of copolymerization and constituents of aqueous and oil phase are discussed. Mechanism of porous structure formation and control of porosity are also discussed. Chemical conversion of base copolymers into ion exchange resins is also discussed. (author) 16 figs

  2. Modeling intraparticle transports during propylene polymerizations using supported metallocene and dual function metallocene as catalysts: Single particle model

    Directory of Open Access Journals (Sweden)

    Li Hua-Rong

    2014-01-01

    Full Text Available Two improved multigrain models (MGMs for preparing homopolypropylene and long chain branched polypropylene via propylene polymerization using silica-supported metallocene or dual function metallocene as catalysts are presented in this paper. The presented models are used to predict the intraparticle flow fields involved in the polymerizations. The simulation results show that the flow field distributions involve dare basically identical. The results also show that both the two polymerization processes have an initiation stage and the controlling step for them is reaction-diffusion-reaction with the polymerization proceeding. Furthermore, the simulation results show that the intra particle mass transfer resistance has significant effect on the polymerization but the heat transfer resistance can be ignored.

  3. Dispersion of nano-silica in monomer casting nylon6 and its effect on the structure and properties of composites

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available To promote dispersion of nano-silica in monomer casting nylon6 (MC nylon6, nano-silica was dispersed in melted caprolactam with the assistance of ultrasound, anionic polymerization was then initiated to form silica/MC nylon6 in-situ nanocomposites. It was found that hydrogen bonds were formed between nano-silica and caprolactam, in the meantime, ultrasound helped to break the nanoparticles aggregations into smaller ones or even mono-dispersing particles. Therefore, the agglomerated nanoparticles were pulled apart and stabilized by caprolactam. Additionally, the rapid anionic polymerization of caprolactam also contributed to the avoidance of re-agglomeration and deposition of nanoparticles during the polymerization process, leading to the uniform distribution of nanoparticles in the polymer matrix. Mechanical tests indicated that the silica/MC nylon6 in-situ nanocomposites prepared according to the above strategy were simultaneously toughened, strengthened and stiffened. Thermogravimetric analysis (TGA results showed that thermal stability of nanocomposites was notably improved compared to neat MC nylon6.

  4. Submicrometric gratings fabrication from photosensitive organo-silica-hafnia thin films elaborated by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Janyce [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Barnier, Vincent, E-mail: barnier@emse.fr [Ecole Nationale Superieure des Mines, SMS-EMSE, CNRS:UMR 5146, LCG, F-42023 Saint-Etienne (France); Vocanson, Francis, E-mail: francis.vocanson@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Gamet, Emilie; Lesage, Maryline [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jamon, Damien [Universite de Lyon, F-42023 Saint-Etienne (France); Laboratoire Claude Chappe, Telecom Saint-Etienne, 42000 Saint-Etienne Cedex 2 (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jourlin, Yves [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France)

    2012-07-31

    The aim of this study is the elaboration of a high index sol-gel material in order to prepare submicrometric grating. The gratings were obtained after few seconds of UV exposure in one step using an organically modified silica-hafnia matrix. The chemical composition of thin films after UV and annealing treatments were studied using Fourier Transform Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy. The study of optical properties revealed that the annealed films are transparent from 200 to 1000 nm and have a refractive index from 1.550 to 1.701 depending on the hafnium concentration. - Highlights: Black-Right-Pointing-Pointer Silica-hafnia matrix with high refractive index was prepared using sol-gel process. Black-Right-Pointing-Pointer Organic and inorganic networks formation of thin films was investigated. Black-Right-Pointing-Pointer Optical properties are influenced by annealing treatment and initial hafnium amount. Black-Right-Pointing-Pointer The use of high Si:Hf molar ratio can lead to a loss transmittance below 300 nm. Black-Right-Pointing-Pointer Submicrometric grating period can be prepared using a holographic method.

  5. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  6. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    Science.gov (United States)

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  7. Post-Harvest Processing Methods for Reduction of Silica and Alkali Metals in Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Lacey, Jeffrey Alan; Shaw, Peter Gordon

    2002-04-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950°C is desirable, corresponding to SiO2:K2O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  8. Study of Catalyst, Aging Time and Surfactant Effects on Silica Inorganic Polymer Characteristics

    Directory of Open Access Journals (Sweden)

    M. Pakizeh

    2007-06-01

    Full Text Available In the present study the sol-gel method is used for synthesis of amorphous nanostructure silica polymer using tetraethoxysilane (TEOS as silicon source. This polymer can be used in manufacturing of nanoporous asymmetricmembranes. The effect of catalyst on silica particle size has been studied under acidic and basic conditions.زAcid-catalyzed reaction leads to the formation of fine particles while the base-catalyzed reaction produceslarger particles. The presence of cationic template surfactant namely cetyl pyridinium bromide (CPBزdirects the structural formation of the polymer by preventing the highly branched polymeric clusters. This will increase the effective area of the produced silica membrane. Nitrogen physisorption tests by Brunaver- Emmett-Teller (BET and Barrett-Joyner-Halenda (BJH methods revealed that the surface area of the membrane increases significantly around 5-folds when acid-catalyzed reaction is used. 29Si-NMR test is also used to study the aging time effect on the level of silica polymer branching. The results show that in acidic condition, aging time up to three weeks can still affect branching. The calcinations process in which the organic materials and CPB (surfactant are burned and released from the silica particles, is studied on template free silica materials as well as templated silica materials using TGA and DTA techniques.

  9. Physical chemistry research for engineering and applied sciences, v.2 polymeric materials and processing

    CERN Document Server

    Pearce, Eli M; Pethrick, Richard A

    2015-01-01

    PrefaceInvestigation on the Influence of a Strong Electric Field on the Electrical, Transport and Diffusion Properties of Carbon Nanostructures; S. A. Sudorgin and N. G. LebedevA Study Thermal Stability of Polyurethane Elastomers; I. A. Novakov, M. A. Vaniev, D. V. Medvedev, N. V. Sidorenko, G. V. Medvedev, and D. O. GusevTrends in Aromatic Polyesters; Z. S. Khasbulatova and G. E. ZaikovMicroheterogeneous Titanium Ziegler-Natta Catalysts: 1,3-Diene Polymerization Under Ultrasound Irradiations; V. P. Zakharov, V. Z. Mingaleev, I. D. Zakirov

  10. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  11. Microwave process employed to study the immobilization feasibility of spent ion exchange resins in polymeric matrices

    Energy Technology Data Exchange (ETDEWEB)

    Caratin, Reinaldo L.; Araujo, Sumair G. de; Landini, Liliane; Neves, Sabrina C.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: rcaratin@ipen.br, E-mail: sgaraujo@ipen.br, E-mail: llandini@ipen.br, E-mail: scneves@ipen.br, E-mail: ablugao@ipen.br

    2007-07-01

    Nuclear activities generate radioactive wastes in several physical states, radioactive levels and kinds of radioactive emission. Hence, a lot of techniques have been developed and optimized to do the immobilization of these materials, according to local and international regulations to protect human being and environment. Another great concern is the indiscriminate disposal of used polymeric materials (such as plastic and rubber) or production leftovers in landfills, which remain for many years before they are naturally decomposed. In this work, it was studied the possibility of carrying out the immobilization of spent ion exchange resins (contaminated with ionising radiation), by using polymeric matrices of bitumen and rubber (as solidification materials for the storage of low level radioactive waste). The samples were mixed at different percentages and were heated in a microwave device (2,450 MHz) at IPEN/CNEN-SP, varying the irradiation time and power. The objective of the immobilization is converting the wastes into forms that are leach resistant and physically and chemically stable for disposal. Characterizations of these materials have been performed according to ABNT-NBR standards. The results indicated the previous idea of the necessary minimum temperature to keep the matrix for future embedding of radioactive waste, in solid state. (author)

  12. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  13. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  14. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    Science.gov (United States)

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-04

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) micropores with diameters 2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.

  15. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  16. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    Science.gov (United States)

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017

  17. Controlling Foam Morphology of Poly(methyl methacrylate via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters

    Directory of Open Access Journals (Sweden)

    Deniz Rende

    2013-01-01

    Full Text Available Polymer nanocomposite foams have received considerable attention because of their potential use in advanced applications such as bone scaffolds, food packaging, and transportation materials due to their low density and enhanced mechanical, thermal, and electrical properties compared to traditional polymer foams. In this study, silica nanofillers were used as nucleating agents and supercritical carbon dioxide as the foaming agent. The use of nanofillers provides an interface upon which CO2 nucleates and leads to remarkably low average cell sizes while improving cell density (number of cells per unit volume. In this study, the effect of concentration, the extent of surface modification of silica nanofillers with CO2-philic chemical groups, and supercritical carbon dioxide process conditions on the foam morphology of poly(methyl methacrylate, PMMA, were systematically investigated to shed light on the relative importance of material and process parameters. The silica nanoparticles were chemically modified with tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysilane leading to three different surface chemistries. The silica concentration was varied from 0.85 to 3.2% (by weight. The supercritical CO2 foaming was performed at four different temperatures (40, 65, 75, and 85°C and between 8.97 and 17.93 MPa. By altering the surface chemistry of the silica nanofiller and manipulating the process conditions, the average cell diameter was decreased from 9.62±5.22 to 1.06±0.32 μm, whereas, the cell density was increased from 7.5±0.5×108 to 4.8±0.3×1011 cells/cm3. Our findings indicate that surface modification of silica nanoparticles with CO2-philic surfactants has the strongest effect on foam morphology.

  18. ADSORPTION PROCESS OF MOLECULARLY IMPRINTED SILICA FOR EXTRACTION OF LACTOSE FROM MILK

    Directory of Open Access Journals (Sweden)

    A. L. Balieiro

    Full Text Available Abstract In Brazil, about 25-30% of the population has some degree of intolerance to lactose, a disorder associated with the inability of the body to digest lactose due to a disability or absence of the enzyme lactase. The goal of this study was to evaluate the performance of adsorption of lactose from fresh milk using a fixed bed column of molecularly imprinted polymer (MIP. The polymeric material was characterized using Scanning electron microscopy (SEM analysis, thermal analysis (e.g., differential scanning calorimetric (DSC and thermogravimetric analysis (TGA, Fourier Transform Infrared Spectroscopy (FTIR, and the method of Braunauer, Emmet and Teller (BET. The adsorption column dynamics and performance were studied by the breakthrough curves using a 24-1 fractional factorial design. The chemical and structural characterization of the pure matrix and imprinted polymers confirmed the molecularly imprinted polymer (MIP imprinted with lactose. The highest capacity was 62.21 mgg-1, obtained at 307.1 K and a flow rate of 12.5 mL.min-1, with central point conditions, 320.1 K and 9 mL.min-1, with an average value of 50.9 mg.g-1. The results indicate that the molecularly imprinted polymer is efficient.

  19. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno, E-mail: lcarreno@uis.edu.co [Universidad Industrial de Santander (Colombia)

    2016-07-15

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  20. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    International Nuclear Information System (INIS)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno

    2016-01-01

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  1. Targeting of porous hybrid silica nanoparticles to cancer cells

    NARCIS (Netherlands)

    Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Lindén, M.

    2009-01-01

    Mesoporous silica nanoparticles functionalized by surface hyperbranching polymerization of polyethylene imine), PEI, were further modified by introducing both fluorescent and targeting moieties, with the aim of specifically targeting cancer cells. Owing to the high abundance of folate receptors in

  2. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Starostin, S A; Premkumar, P Antony; Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M; De Vries, H; Paffen, R M J

    2009-01-01

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N 2 /O 2 /hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm -2 ) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  3. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  4. Retention of Silica Nanoparticles in a Lab-Scale Membrane Bioreactor: Implications for Process Performance and Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Mark Larracas Sibag

    2016-07-01

    Full Text Available In conventional activated sludge (CAS involving aerobic biological processes, the retention of silica nanoparticles (SiO2 NPs has no detrimental effect on chemical oxygen demand (COD and ammonia nitrogen (NH3–N removal. However, for the membrane bioreactor (MBR system, which is also based on the activated sludge process in addition to the membrane separation process, it has implications not only on the process performance but also on membrane fouling. To investigate these two implications in lab-scale experiments, we continuously operated a control MBR and two experimental MBRs, in which the 28 nm SiO2 NPs and 144 nm SiO2 NPs were added separately to the influent at a final concentration of 100 mg/L. Although the retention of SiO2 NPs in the MBR, as confirmed by dynamic light scattering (DLS analysis, did not compromise the COD and NH3–N removal, it resulted in substantial increases in the transmembrane pressure (TMP suggesting the onset of membrane fouling. Analyses by batch-dead end filtration revealed the same fouling trend as observed during the continuous MBR experiments; membrane fouling is aggravated in the presence of SiO2 NPs. This was evident from permeate flux decline of between 30% and 74% at very low TMP (5 kPa and the further increases in the total resistance.

  5. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  6. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Bakhshayesh, A.M.; Mohammadi, M.R.

    2013-01-01

    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO 2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO 2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film had nanostructured and porous morphology containing uniform spherical particles with diameter about 2.5 μm. The spherical particles were made of small nanoparticles with average grain size of 60 nm improving light scattering and dye loading of the DSSC. Moreover, atomic force microscope (AFM) analysis verified that the roughness mean square of prepared electrode was low, enhancing electron transport to the counter electrode. Photovoltaic measurements showed that solar cell made of polymeric gel process had higher photovoltaic performance than that made of conventional paste. An enhancement of power conversion efficiency from 4.54%, for conventional paste, to 6.21%, for polymeric gel process, was achieved. Electrochemical impedance spectroscopy (EIS) study showed that the recombination process in solar cell made of polymeric gel process was slower than that in solar cell made of conventional paste. The presented strategy would open up new insight into fabrication of low-cost TiO 2 DSSCs with high power conversion efficiency

  7. Rapid Precipitation of Amorphous Silica in Experimental Systems with Nontronite (NAu-1) and Shewanella oneidensis MR-1

    National Research Council Canada - National Science Library

    Furukawa, Yoko; O'Reilly, S. E

    2007-01-01

    ...) silica globule formation was confirmed in the immediate vicinity of bacterial cells and extracellular polymeric substances in all experimental systems that contained bacteria, whether the bacteria...

  8. Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process.

    Science.gov (United States)

    Aziz, Hesham Abdul; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.

  9. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  10. Light induced heterogeneous ozone processing on the pesticides adsorbed on silica particles

    Science.gov (United States)

    Socorro, J.; Désert, M.; Quivet, E.; Gligorovski, S.; Wortham, H.

    2013-12-01

    In France, in 2010, the sales of pesticides reached 1.8 billion euros for 61 900 tons of active ingredients, positioning France as a first European consumer of pesticides, as reported by the European Crop Protection Association. About 19 million hectares of crops are sprayed annually with pesticides, i.e., 35% of the total surface area of France. This corresponds to an average pesticide dose of 3.2 kg ha-1. The consumption of herbicide and fungicide is favoured in comparison to the use of insecticides in France and the other European countries, as well. The partitioning of pesticides between the gas and particulate phases influences the atmospheric fate of these compounds such as their photo-chemical degradation. There is much uncertainty concerning the behavior of the pesticides in the atmosphere. Especially, there is a gap of knowledge concerning the degradation of the pesticides induced by heterogeneous reactions in absence and especially in presence of solar light. Considering that most of the pesticides currently used are semi-volatile, it is of crucial importance to investigate the heterogeneous reactivity of particulate pesticides with light and with atmospheric oxidants such as ozone and OH radical. The aim of the present work is to evaluate the light induced heterogeneous ozonation of suspended pesticide particles. 8 pesticides (cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin and tetraconazole) were chosen for their physico-chemical properties and their concentration levels in the PACA (Région Provence-Alpes-Côte d'Azur) region, France. Silica particles with well-known properties were chosen as model particles of atmospheric relevance. Kinetic rate constants were determined to allow estimate the atmospheric lifetimes relating to ozone. The rate constants were determined as follows: k = (6.6 × 0.2) 10-19, (7.2 × 0.3) 10-19, (5.1 × 0.5) 10-19, (3.9 × 0.3) 10-19 [cm3 molecules-1 s-1] for Cyprodinil

  11. Radiation hardening in sol-gel derived Er3+-doped silica glasses

    International Nuclear Information System (INIS)

    Hari Babu, B.; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu; Ibarra, Angel

    2015-01-01

    The aim of the present paper is to report the effect of radiation on the Er 3+ -doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er 3+ -doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′ δ point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er 3+ to Er 2+ ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects

  12. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  13. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  14. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  15. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  16. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  17. Neutral hydrophilic coatings for capillary electrophoresis prepared by controlled radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Fabián H.; Gómez, Jorge E.; Espinal, José H.; Sandoval, Junior E., E-mail: junior.sandoval@correounivalle.edu.co

    2016-12-15

    In the present study, porous silica particles as well as impervious fused-silica wafers and capillary tubes were modified with hydrophilic polymers (hydroxylated polyacrylamides and polyacrylates), using a surface-confined grafting procedure based on atom transfer radical polymerization (ATRP) which was also surface-initiated from α-bromoisobutyryl groups. Initiator immobilization was achieved by hydrosilylation of allyl alcohol on hydride silica followed by esterification of the resulting propanol-bonded surface with α-bromoisobutyryl bromide. Elemental analysis, IR and NMR spectroscopies on silica micro-particles, atomic force microscopy, ellipsometry and profilometry on fused-silica wafers, as well as CE on fused-silica tubes were used to characterize the chemically modified silica substrate at different stages. We studied the effect of monomer concentration as well as cross-linker on the ability of the polymer film to reduce electroosmosis and to prevent protein adsorption (i. e., its non-fouling capabilities) and found that the former was rather insensitive to both parameters. Surface deactivation towards adsorption was somewhat more susceptible to monomer concentration and appeared also to be favored by a low concentration of the cross-linker. The results show that hydrophilic polyacrylamide and polyacrylate coatings of controlled thickness can be prepared by ATRP under very mild polymerization conditions (aqueous solvent, room temperature and short reaction times) and that the coated capillary tubes exhibit high efficiencies for protein separations (0.3–0.6 million theoretical plates per meter) as well as long-term hydrolytic stability under the inherently harsh conditions of capillary isoelectric focusing. Additionally, there was no adsorption of lysozyme on the coated surface as indicated by a complete recovery of the basic enzyme. Furthermore, since polymerization is confined to the inner capillary surface, simple precautions (e.g., solution

  18. New process for the simultaneous manufacture of sugar alcohol, and paper pulp from sugar cane fiber in a self-sufficient factory: soda, potash, silica, and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, E A

    1960-01-01

    Details of the process of bagasse digestion with potash to form paper pulp are discussed. The pulp is washed, after digestion, with a small quantity of warm water and after separation of the pulp vinasse residues from the alcohol fermentation of molasses are added. Silica is precipitated as silicates by the addition of Ca and Mg hydroxides; this prevents difficulties due to incrustration in further processing. The black liquor is concentrated in a sextuple-effect evaporator from 15 to 20% solids to 50 to 60% solids. The mass is mixed with bagacillo, cane leaves, etc., and burned in a furnace with a movable gridiron. The temperature in the furnace should be under 1000/sup 0/ to prevent fusion of the ash. The ash, containing mainly potash and some soluble silicates, is mixed with lime and recycled. The use of silica in cane growing is briefly discussed.

  19. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.

    Science.gov (United States)

    Taormina, Gabriele; Sciancalepore, Corrado; Messori, Massimo; Bondioli, Federica

    2018-04-01

    The aim of this review is a faithful report of the panorama of solutions adopted to fabricate a component using vat photopolymerization (VP) processes. A general overview on additive manufacturing and on the different technologies available for polymers is given. A comparison between stereolithography and digital light processing is also presented, with attention to different aspects and to the advantages and limitations of both technologies. Afterward, a quick overview of the process parameters is given, with an emphasis on the necessities and the issues associated with the VP process. The materials are then explored, starting from base matrix materials to composites and nanocomposites, with attention to examples of applications and explanations of the main factors involved.

  20. The solution of the reliability problem in the repair process of the plates of the silica bricks press boxes

    Directory of Open Access Journals (Sweden)

    Nochvai V.М.

    2017-05-01

    Full Text Available The research analyzes recommendations existing in different sources of information for the choice of methods of strengthening and reconditioning of worn machine parts. These methods include: the method of electric arc deposition, chemical-thermal treatment, gas-powder deposition, gas-powder and plasma spraying, electric arc metallization. As a result of studies of wear of the working surfaces of the plates of silicate brick press boxes, we define that the plates wear out unevenly and the thickness of the worn layer varies between 0.3 ... 2 mm. Technological method is chosen as the method of the plate reliability enhancement and maintaining. One of the main technological stages of reliability formation is machine parts strengthening using the methods of strengthening technologies, namely electric arc metallization. Wire models Нп-65Г, ФМИ-2, Нп-40Х13 are used to develop wear-resistant coatings with desired properties. Technological process of the plates repair consists of the following basic operations: plate preparation, wire preparation, plate coating, plate grinding, final checking. Single and complex reliability indicators are determined by testing a set of the plates and registering all the indicators (operating time, failures, faults. The value of the economic reliability index of the plate Kе equals to 0,10. Higher plate reliability is achieved at the expense of extra cost for plate strengthening using wire Нп-40Х13, and the price of Bн plate reliability is 104,83 UAH. Complex indicators of reliability of the reconditioned plate of the silica bricks press boxes are used for more complete reliability assessment. Availability coefficient Kг. equals to 0,995 and characterizes two different properties simultaneously: reliability and maintainability. Coefficient of technical use Kт.в. equals to 0,974 and most fully characterizes the reliability of the plates because it considers time in the process of maintenance, repair and

  1. Epoxy-silica nanocomposite interphase control using task-specific ionic liquids via hydrolytic and non-hydrolytic sol-gel processes

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Perchacz, Magdalena; Ponyrko, Sergii; Donato, Katarzyna Zawada; Schrekker, H. S.; Beneš, Hynek; Matějka, Libor

    2015-01-01

    Roč. 5, č. 111 (2015), s. 91330-91339 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-05146S; GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : epoxy-silica nanocomposite * sol-gel processes * ionic liquids Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  2. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  3. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  4. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    Science.gov (United States)

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  5. Investigating the Trimethylaluminium/Water ALD Process on Mesoporous Silica by In Situ Gravimetric Monitoring

    Directory of Open Access Journals (Sweden)

    Verena E. Strempel

    2018-05-01

    Full Text Available A low amount of AlOx was successfully deposited on an unordered, mesoporous SiO2 powder using 1–3 ALD (Atomic Layer Deposition cycles of trimethylaluminium and water. The process was realized in a self-built ALD setup featuring a microbalanceand a fixed particle bed. The reactor temperature was varied between 75, 120, and 200 °C. The self-limiting nature of the deposition was verified by in situ gravimetric monitoring for all temperatures. The coated material was further analyzed by nitrogen sorption, inductively coupled plasma-optical emission spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, attenuated total reflection Fourier transformed infrared spectroscopy, and elemental analysis. The obtained mass gains correspond to average growth between 0.81–1.10 Å/cycle depending on substrate temperature. In addition, the different mass gains during the half-cycles in combination with the analyzed aluminum content after one, two, and three cycles indicate a change in the preferred surface reaction of the trimethylaluminium molecule from a predominately two-ligand exchange with hydroxyl groups to more single-ligand exchange with increasing cycle number. Nitrogen sorption isotherms demonstrate (1 homogeneously coated mesopores, (2 a decrease in surface area, and (3 a reduction of the pore size. The experiment is successfully repeated in a scale-up using a ten times higher substrate batch size.

  6. Reaction calorimetry for the development of ultrasound-induced polymerization processes in CO2-expanded fluids

    NARCIS (Netherlands)

    Kemmere, M.F.; Kuijpers, M.W.A.; Keurentjes, J.T.F.

    2007-01-01

    A strong viscosity increase upon polymn. hinders radical formation during an ultrasound-induced bulk polymn. Since CO2 acts as a strong anti-solvent for most polymers, it can be used to reduce the viscosity of the reaction mixt. In this work, a process for the ultrasound-induced polymn. in

  7. High-throughput experimentation in synthetic polymer chemistry: From RAFT and anionic polymerizations to process development

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Paulus, R.M.; Fijten, M.W.M.; Mar, de la M.J.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The application of combinatorial and high-throughput approaches in polymer research is described. An overview of the utilized synthesis robots is given, including different parallel synthesizers and a process development robot. In addition, the application of the parallel synthesis robots to

  8. Immobilization and continuous culture of cells with radiation polymerized supports for the uses of biomass conversion processes

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Tamada, M.; Kasai, N.

    1988-01-01

    A novel technique for immobilization and biofunctional components such as enzyme, antibody, protein, drug, hormone and organella by means of radiation polymerization was studied and developed. (E.G.) [pt

  9. Is polymeric substrate in influent an indirect impetus for the nitrification process in an activated sludge system?

    Science.gov (United States)

    Wang, Bin-Bin; Gu, Ya-Wei; Chen, Jian-Meng; Yao, Qian; Li, Hui-Juan; Peng, Dang-Cong; He, Feng

    2017-06-01

    Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected. In this study, three lab-scale sequencing batch reactors with different PS/total substrate (TS) ratio (0, 0.5 or 1) in influent were performed in parallel to investigate the influence of PS on nitrification process in activated sludge system. The results showed that with the increase of PS/TS ratio, apparent sludge yields decreased, while NO 3 - -N concentration in effluent increased. The change of PS/TS ratio in influent also altered the cycle behaviors of activated sludge. With the increase of PS/TS ratio from 0 to 0.5 and 1, the ammonium and nitrite utilization rate increased ∼2 and 3 times, respectively. The q-PCR results showed that the abundance of nitrifiers in activated sludge for PS/TS ratio of 0.5 and 1 were 0.7-0.8 and 1.4-1.5 orders of magnitude higher than that for PS/TS ratio of 0. However, the abundance of total bacteria decreased about 0.5 orders of magnitude from the former two to the latter. The FISH observation confirmed that the nitrifiers' microcolony became bigger and more robust with the increase of PS/TS ratio. This paper paves a path to understand the role of PS/TS in affecting the nitrification process in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    International Nuclear Information System (INIS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  11. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  12. Overview of the Activities on Radiation Processing of Polymeric Materials in Bangladesh. Chapter 4

    Energy Technology Data Exchange (ETDEWEB)

    Haque, M.; Dafader, N. C.; Sultana, S.; Mollah, M. Z.I. [Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, Dhaka (Bangladesh); Mandal, M. M.A. [Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh (Bangladesh)

    2014-07-15

    Natural polymers processed through radiation are used in agriculture, health care, and environmental protection. The process of chitosan extraction from prawn/shrimp shells has been established. The method used in determining the molecular weight of chitosan had previously been standardized during the harmonization program of protocol for molecular weight determination organized by IAEA in cooperation with Poland and UK during which Bangladesh was a participant. Increased yield of several crops over the control was achieved using chitosan as plant growth promoter: up to 13% for rice when chitosan with 50 ppm concentration was applied two times, up to 56% for summer tomato when chitosan with a concentration of 75 ppm was sprayed one time, up to 30% for mungbean when 50 ppm chitosan was applied two times, and up to 24% for maize when 100 ppm chitosan was applied three times. Field tests covering three seasons to confirm any increase in the yield of tomato and maize are still being conducted. Funding from the CRP helped carry out these activities to a great extent. Through the IAEA TC project, radiation processing laboratories were enhanced with new equipment, chemicals/monomers/polymers, and the capability of staff members was improved through additional training, expert assistance and scientific visits. One PhD student and several MSc students were able to complete their theses and had them published. Super Water Absorbent (SWA) hydrogel was prepared using 5%Acrylamide blended with 3% carboxymethyl cellulose (CMC) and irradiating at 25 kGy. It was applied on tomato plants as soil conditioner and positive results were obtained. Government funding aided in the establishment of a pilot plant that eventually became a full-fledged institute for radiation processing. (author)

  13. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  14. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Mirtič, B. [NTF, Aškerčeva 12, 1000 Ljubljana (Slovenia)

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)

  15. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    Science.gov (United States)

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  16. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  17. In situ processing of concrete surface by impregnation and polymerization of an organic resin

    International Nuclear Information System (INIS)

    Pellecchia, V.; Ursella, P.; Moretto, G.

    1990-01-01

    The impregnation by resins of concrete structures is widely known as PIC (Polymer Impregnated Concrete). This process is normally used to improve the physical-chemical features of prefabricated items in particular to raise their lifetime under severe environmental conditions. The main target of this research contract was the verification of the possibility of a proper impregnation of existing concrete surfaces, of any dimensions and position, by comparing the obtained characteristics with those of untreated original material to check the improvement of chemical-physical properties and durability. In a nuclear facility, this goal is very important with reference to the long-term integrity of concrete walls during plant operative lifetime and after the final shutdown and decommissioning of the plant, if its dismantling is deferred. The operative steps of the research were the design, manufacturing and implementation of a tailored prototype equipment, the setting-up of the machine, the project and erection of a walling unit made of different density sectors in nuclear grade concrete and optimisation of the PIC process phases (dehydration, degassing, monomer injection, thermal cycles) during the experimental campaign. The data collected from samples gathered from field application gave results very similar to laboratory impregnated samples, thus confirming the satisfactory running of the prototype unit. Particularly the resin penetration, in spite of low porosity of nuclear grade concrete matrix, reached depths well beyond 50 mm with a significant increase of mechanical features, leaching resistance to aggressive agents and an appreciable sealing of concrete porosity

  18. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  19. In vitro⿿in vivo performance of bare and drug loaded silica gel synthesized via optimized process parameters

    Science.gov (United States)

    Chakraborty, Suparna; Biswas, Supratim

    2016-01-01

    Silica xerogel as a potential drug carrier system for the in vivo as well as in vitro delivery of andrographolide was tested. The present study aims to optimize the effective experimental parameters; volume of ethanol, volume of water and drying temperature by applying response surface methodology coupled with Box⿿Behnken experimental design. The in vitro drug release in simulated body fluid at 37 οC from the selected formulation was significantly highest (44.83 ± 0.9%) among rest of the formulations. Results indicate that sol⿿gel method is useful for entrapping andrographolide in the silica gel and for releasing the same via diffusion through the porous matrix under the in vitro/in vivo conditions. Silica gel exhibited slow matrix degradation as well as sustained release of andrographolide within the experimental time frame of 168 h. In vivo study was performed with three increasing doses [2 mg (S1), 8 mg (S2), and 16 mg (S3)] of silica. Histological fates of different organs were executed with those doses.

  20. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process.

    Science.gov (United States)

    Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-07-25

    In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quality control for electron beam processing of polymeric materials by end-point analysis

    International Nuclear Information System (INIS)

    DeGraff, E.; McLaughlin, W.L.

    1981-01-01

    Properties of certain plastics, e.g. polytetrafluoroethylene, polyethylene, ethylene vinyl acetate copolymer, can be modified selectively by ionizing radiation. One of the advantages of this treatment over chemical methods is better control of the process and the end-product properties. The most convenient method of dosimetry for monitoring quality control is post-irradiation evaluation of the plastic itself, e.g., melt index and melt point determination. It is shown that by proper calibration in terms of total dose and sufficiently reproducible radiation effects, such product test methods provide convenient and meaningful analyses. Other appropriate standardized analytical methods include stress-crack resistance, stress-strain-to-fracture testing and solubility determination. Standard routine dosimetry over the dose and dose rate ranges of interest confirm that measured product end points can be correlated with calibrated values of absorbed dose in the product within uncertainty limits of the measurements. (author)

  2. Using a micro-molding process to fabricate polymeric wavelength filters

    Science.gov (United States)

    Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting

    2008-08-01

    A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.

  3. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  4. Development and Modeling of a Novel Self-Assembly Process for Polymer and Polymeric Composite Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G. [ORNL; Carrillo, Jan-Michael Y. [ORNL; Ahn, Suk-Kyun [ORNL; Barnes, Mike D. [University of Massachusetts, Amherst; Shelton, William A. [Pacific Northwest National Laboratory (PNNL); Harrison, Robert J. [Stony Brook University (SUNY); W. Noid, Donald [Retired

    2017-10-01

    Extensive computational simulations and experiments have been used to investigate the structure, dynamics and resulting photophysical properties of a number para-phenylenevinylene (PPV) based polymers and oligomers. These studies have shown how the morphology and structure are controlled to a large extent by the nature of the solute-solvent interactions in the initial solution phase preparation. A good solvent such as dichloromethane generates non-compact structures with more of a defect-extended chain like morphology while a bad solvent such as toluene leads to compact organized and folded structures with rod-like morphologies. Secondary structural organization is induced by using the solution phase structures to generate solvent-free single molecule nanoparticles. These nanoparticles are very compact and rod shaped, consisting of near-cofacial ordering of the conjugated PPV chain backbones between folds located at tetrahedral defects (sp3 C-C bonds). The resulting photophysical properties exhibit a significant enhancement in the photoluminescence quantum yield, lifetime, and stability. In addition, the single molecule nanoparticles have Gaussian-like emission spectra with discrete center frequencies that are correlated to a conjugation length, allowing the design of nanoparticles which luminesces at a particular frequency. We followed a similar approach and applied a comparable methodology in our recent work on polythiophenes in order to study the effect of polymer architecture on nanoscale assembly. Unlike linear chains of comparable size, we observed aggregation of the bottlebrush architecture of poly(norbornene)-g-poly(3-hexylthiophene) (PNB-g-P3HT) after the freeze-drying and dissolution processes. The behavior can be attributed to a significant enhancement in the number of π-π interactions between grafted P3HT side chains.

  5. Preparation and characterization of hydrated salts/silica composite as shape-stabilized phase change material via sol–gel process

    International Nuclear Information System (INIS)

    Wu, Yuping; Wang, Tao

    2014-01-01

    Highlights: • A mixture of hydrated salts were adopted as phase change materials. • Phase segregation of the hydrated salts was inhibited. • Subcooling was slightly mitigated. • Thermal cycling performance was greatly improved after PVP coating. - Abstract: A novel shape-stabilized phase change material composite was prepared by impregnating the mixture of hydrated salts (Na 2 SO 4 ·10H 2 O–Na 2 HPO 4 ·12H 2 O) into porous silica matrix obtained by sol–gel process and further coated with polyvinylpyrrolidone (PVP) to improve the thermal cycling performance. The chemical compatibility, morphology and phase change properties were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), hot-stage polarizing optical microscope (HS-POM) and differential scanning calorimetry (DSC). Confined in the silica matrix, phase segregation of the hydrated salts was inhibited and subcooling was slightly mitigated. No leakage was observed during the solid–liquid phase transition even when the mass ratio of hydrated salts to silica was as high as 70:30. Results showed that the melting enthalpy of the composite can reach 106.2 kJ/kg with the melting temperature at 30.13 °C and there was no significant enthalpy loss after 30 thermal cycles

  6. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    Energy Technology Data Exchange (ETDEWEB)

    Starostin, S A; Premkumar, P Antony [Materials Innovation Institute (M2i), Mekelweg 2, 2600 GA Delft, The Netherland (Netherlands); Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); De Vries, H; Paffen, R M J [FUJIFILM Manufacturing Europe B.V, PO Box 90156, Tilburg (Netherlands)

    2009-11-15

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N{sub 2}/O{sub 2}/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density ({approx}0.7 A cm{sup -2}) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  7. Radiation processing of polymer emulsion, (4). Radiation-induced emulsion polymerization of methyl methacrylate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1983-06-01

    Methyl methacrylate was polymerized in emulsion by Co-60 ..gamma..-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles.

  8. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process

    International Nuclear Information System (INIS)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L.

    2009-01-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  9. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  10. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  11. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    Science.gov (United States)

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  12. On the Way to Improve the Environmental Benignity of Chemical Processes: Novel Catalysts for a Polymerization Process

    Directory of Open Access Journals (Sweden)

    Silvana F. Rach

    2009-03-01

    Full Text Available An example for a process that can, in principle, be improved by the application of a catalyst is the synthesis of poly(2-methyl-propenes (“polyisobutenes”, which are important for numerous industrial applications. Each year several 100,000 t are produced. The production of low-molecular weight polyisobutenes by means of cationic initiation by an excess of Lewis acids is well established. Typically, these initiators require the usage of solvents like chloroform, dichloromethane and ethylene and temperatures far below 0 °C (–100 °C in the case of ethylene as solvent. Solvent stabilized transition metal complexes with weakly coordinating counter anions overcome these drawbacks and thus are not only more efficient, but also more environmentally benign: they can be applied at ambient temperature and in non chlorinated solvents at low concentrations.

  13. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  14. Improving structural stability of water-dispersed MCM-41 silica nanoparticles through post-synthesis pH aging process

    Energy Technology Data Exchange (ETDEWEB)

    Varache, Mathieu; Bezverkhyy, Igor [UMR 6303 CNRS-Université Bourgogne Franche-Comté, Laboratoire Interdisciplinaire Carnot de Bourgogne (France); Bouyer, Florence [Inserm U866, Equipe Chimiothérapie, métabolisme des lipides et réponse immunitaire anti-tumorale (France); Chassagnon, Rémi; Baras, Florence; Bouyer, Frédéric, E-mail: frederic.bouyer@u-bourgogne.fr [UMR 6303 CNRS-Université Bourgogne Franche-Comté, Laboratoire Interdisciplinaire Carnot de Bourgogne (France)

    2015-09-15

    The colloidal and structural stabilities of MCM-41 mesoporous silica nanoparticles (MSNs) are of great importance in order to prepare optimal nanovectors. In this paper, MSNs (approximatively 160 nm in diameter) were synthesized using n-cetyltrimethylammonium bromide as a template and tetraethyl orthosilicate as a silica source under high N{sub 2} flow (MSN/N{sub 2}) to obtain stable dispersions in water. The degradation of the porous nanoparticles was investigated by immersion in water. The morphology and the porous structure were studied by TEM, XRD, N{sub 2} sorption, and {sup 29}Si MAS NMR and were compared to that of MSNs prepared in ambient air (MSN/air). The volumetric properties of the MSN/N{sub 2} after 1 day in water were drastically more decreased than MSN/air (a pore volume decrease of 85 % for MSN/N{sub 2} and 59 % for MSN/air) and the 2D-hexagonal porous structure was totally lost. Furthermore, synthesizing MSNs under a high N{sub 2} flow leads to a decrease in the synthesis yield (45 % MSN/N{sub 2} and 75 % for MSN/air). The lower structural stability of the MSN/N{sub 2} is explained by the lower polycondensation degree of the MSN/N{sub 2} observed by {sup 29}Si MAS NMR (Q{sup 4}/Q{sup 3} = 0.86 for MSN/N{sub 2} and 1.61 for MSN/air) and the lower silica molar ratio in the nanomaterials (SiO{sub 2}/CTA = 3.9 for MSN/N{sub 2} 7.1 for MSN/air). This allows for enhanced solubilization of silica in water. Four strategies were hence evaluated in order to reinforce the porous structure of the MSNs. Among them, the most efficient route was based on a pH adjustment of the colloidal suspension (pH 7.5) after 2 h of synthesis without any purification and while keeping a N{sub 2} static atmosphere (called MSN/N{sub 2}/7.5). After 1 day in water, the volumetric and structural properties of MSN/N{sub 2}/7.5 were similar to that obtained for MSN/air. The improvement of the stability arose as a result of the increase in the silica condensation (Q{sup 4

  15. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  16. A novel sol–gel process to facilely synthesize Ni{sub 3}Fe nanoalloy nanoparticles supported with carbon and silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.Q. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); School of Physics and Information Technology, Ningxia Teachers University, Guyuan, Ningxia 756000 (China); Chen, L.Y.; Huang, H.F.; Xie, R.; Xia, W.B.; Wei, J.; Zhong, W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Tang, S.L., E-mail: tangsl@nju.edu.cn [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Du, Y.W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Graphical abstract: The TEM and HRTEM images and the magnetization curves taken in both zero-field-cooled (ZFC) and field-cooled (FC) modes of Ni{sub 3}Fe nanoparticles calcined at 300 °C for 2 h under Ar flowing. Display Omitted - Highlights: • Ultrafine Ni{sub 3}Fe nanoalloy nanoparticles were synthesized via a modified novel sol–gel process. • The prepared Ni{sub 3}Fe nanoalloy nanoparticles have a narrow size distribution. • The Ni{sub 3}Fe nanoparticles exhibit superparamagnetic behaviors at room temperature. - Abstract: In this paper, we present a modified novel silica sol–gel process and explored the possibility, for the first time, to synthesize binary nanoalloy nanoparticles. We successfully prepared ultrafine Ni{sub 3}Fe nanoparticles supported with carbon and silica via this simple one-pot reaction without H{sub 2} reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) investigations of the Ni{sub 3}Fe nanoparticles show that the nanoparticles have a face-centered-cubic (fcc) crystal structure. The TEM images show that grain sizes of Ni{sub 3}Fe nanoparticles have a narrow size distribution. Moreover, the grain size of the nanoparticles is not very sensitive to the elevated annealing temperature. The Ni{sub 3}Fe nanoparticles exhibit typical superparamagnetic behavior at room temperature, and the blocking temperatures (T{sub B}) are determined by the temperature-dependent magnetization (M–T curves) measurements. This novel silica sol–gel method is expected to have broad applications in synthesizing nanoalloy nanoparticles.

  17. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    International Nuclear Information System (INIS)

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-01-01

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to ∼2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10 10 cm -3 . The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor

  18. Simultaneous AuIII Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    Science.gov (United States)

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-04-10

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au III salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au III extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L -1 4-nitrophenol aqueous solution with 10 mmol L -1 NaBH 4 solution within 25 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    Science.gov (United States)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2018-03-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  20. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process

    Science.gov (United States)

    He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung

    2017-06-01

    Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.

  1. Could Mineral Surfaces have Oriented Amino Acid Polymerization Towards Useful Products?

    Science.gov (United States)

    Lambert, J. F.; Sakhno, Y.; Battistella, A.; Ribetto, B.; Mezzetti, A.; Georgelin, T.; Jaber, M.; Michot, L.

    2017-07-01

    We investigated selective amino acid polymerization on the surface of silicic minerals. Specific amino acid couples were deposited on silica or clays, thermally activated, and the oligomers formed were analyzed. Very different behaviors were observed.

  2. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  3. Nucleation of polystyrene latex particles in the presence of gamma-methacryloxypropyltrimethoxysilane: functionalized silica particles.

    Science.gov (United States)

    Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne

    2006-02-01

    Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.

  4. DSC法研究MMA/纳米Si3N4体系的聚合过程%STUDY ON POLYMERIZATION PROCESS OF MMA/NANO-SI3N4 BY DSC

    Institute of Scientific and Technical Information of China (English)

    王小东

    2011-01-01

    Polymerization process of MMA/nano-Si3N4 was studied by DSC. Effects of polymerization temperature, nano-Si3N4 amount and initator concentration of AIBN on polymerization rate were investigated in this article. The results showed that with the polymerization temperature rising,the rate of polymerization increased;the initiatior concentration could effectually improve the polymerization rate; but with the increasing of nano-Si3N4 amount, the polymerization rate was decreased.%利用差示扫描量热仪(DSC)对MMA/纳米Si3N4体系的聚合过程进行研究,着重考察了聚合温度,纳米Si2N4粉体加入量及引发剂AIBN用量对体系聚合速率的影响.结果表明:升高聚合反应温度,增大引发剂用量,均可使体系的凝胶效应提前出现,聚合速率增大;而纳米Si3N4粉体的加入对体系的聚合起到延缓的作用,且随着加入量的增加,聚合速率逐渐降低.

  5. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  6. Influence of pH, Temperature and Sample Size on Natural and Enforced Syneresis of Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Sebastian Wilhelm

    2015-12-01

    Full Text Available The production of silica is performed by mixing an inorganic, silicate-based precursor and an acid. Monomeric silicic acid forms and polymerizes to amorphous silica particles. Both further polymerization and agglomeration of the particles lead to a gel network. Since polymerization continues after gelation, the gel network consolidates. This rather slow process is known as “natural syneresis” and strongly influences the product properties (e.g., agglomerate size, porosity or internal surface. “Enforced syneresis” is the superposition of natural syneresis with a mechanical, external force. Enforced syneresis may be used either for analytical or preparative purposes. Hereby, two open key aspects are of particular interest. On the one hand, the question arises whether natural and enforced syneresis are analogous processes with respect to their dependence on the process parameters: pH, temperature and sample size. On the other hand, a method is desirable that allows for correlating natural and enforced syneresis behavior. We can show that the pH-, temperature- and sample size-dependency of natural and enforced syneresis are indeed analogous. It is possible to predict natural syneresis using a correlative model. We found that our model predicts maximum volume shrinkages between 19% and 30% in comparison to measured values of 20% for natural syneresis.

  7. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  8. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification.

    Science.gov (United States)

    Kadhom, Mohammed; Yin, Jun; Deng, Baolin

    2016-12-06

    Thin film nanocomposite (TFN) membranes containing MCM-41 silica nanoparticles (NPs) were synthesized by the interfacial polymerization (IP) process. An m -phenylenediamine (MPD) aqueous solution and an organic phase with trimesoyl chloride (TMC) dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU) support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m²·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi)).

  9. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process towards sustainable antioxidant polymers

    Science.gov (United States)

    Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent

    2017-12-01

    Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

  10. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  11. Preparation of Polymeric Resin Beads Using Gamma Irradiation and Chemical Processes for Use in the Recovery of Some Alkali Metal Ions

    International Nuclear Information System (INIS)

    El-Nahas, H. H.; Khalil, F. H.; Ibrahim, G. M.; El-Gammal, B.

    2007-01-01

    Syntheses of resin beads from unsaturated polyester and urea-formaldehyde were carried out by dispersion polymerization. The reaction was performed through gamma irradiation and chemical processing. Factors affecting the reaction and syntheses parameters that are the type and viscosity of dispersant, irradiation dose and agitation rate on the resin beads size were thoroughly investigated. The resulting resin beads were smooth on their spherical surface and the beads diameters were in the range 2-200μm. Some measurements such as beads diameter, surface hardness and scanning electron microscopy were studied. The bead diameter was generally decreased with increasing concentration and viscosity of the dispersant and agitation rate. A comparison study between irradiation and chemical processes for resin beads synthesis was discussed to identify the suitable process for preparing a resin beads in a pilot scale. The different methods of preparation were tried to be applied in the recovery of Li + , Na+, k + and Cs + ions from acidic media.

  12. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  13. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.

  14. On the Relation between Natural and Enforced Syneresis of Acidic Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Sebastian Wilhelm

    2014-11-01

    Full Text Available Silica in industrial production processes is precipitated by mixing an acid and an inorganic precursor. In this aqueous solution, silica particles form due to a polymerization reaction and agglomeration and, finally, build a gel. Thereafter, the reaction continues, and the gel network shrinks with the expulsion of the enclosed pore liquid. This slow process is known as “natural syneresis” and strongly affects the product properties, such as the agglomerate size, specific surface or porosity of the silica produced. In order to investigate the influence of process parameters, such as temperature, pH or ionic strength, on the shrinkage in shorter time-scales, we propose an acceleration of this process and define it as “enforced syneresis”. The acceleration is performed by applying a mechanical external force to the gel by means of a plunger and measuring the shrinkage behavior under these conditions. Thereby, the conceptual idea is the prediction of the shrinkage due to natural syneresis based on the results of enforced syneresis. We are now able to predict the natural syneresis behavior from enforced syneresis data by the development of a correlative model. Using this prediction model, we can show the influence of temperature on the maximum shrinkage and on its rate in a significantly shorter time of about 12 h instead of several days.

  15. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  16. Measurement and modelization of silica opal optical properties

    OpenAIRE

    Avoine , Amaury; Ngoc Hong , Phan; Frederich , Hugo; Aregahegn , Kifle; Bénalloul , Paul; Coolen , Laurent; Schwob , Catherine; Thu Nga , Pham; Gallas , Bruno; Maître , Agnès

    2014-01-01

    International audience; We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflect...

  17. Melt inclusion: methods, applications and problem: Silica-rich melts in quartz xenoliths from Vulcano islands and their bearing on processes of crustal melting and crust-magma interaction in the Aeolian Arc, Italy

    NARCIS (Netherlands)

    Frezzotti, M.L.; Zavon, V.; Peccerillo, A.; Nikogosian, I.

    2002-01-01

    Silica-rich melts in quartz xenoliths from Vulcano islands and their bearing on processes of crustal melting and crust-magma interaction in the Aeolian Arc, Italy Proceedings of workshop Melt inclusion: methods, applications and problem. Napoli, Italy, September 2002, p. 71-73

  18. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón

    2015-01-01

    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  19. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  20. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  1. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable ...

  2. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  3. Homogeneity characterization of ethylene-co-vinyl acetate copolymer (EVA) and hydrophobic silica nanocomposite by low field NMR

    International Nuclear Information System (INIS)

    Stael, Giovanni Chaves; Tavares, Maria I.B.

    2005-01-01

    This project proposes the characterization of a polymeric matrix composite material using nanometric scale hydrophobic silica as charge element, with the ethylene-vinyl acetate (EVA), by using the spin-lattice relaxation time measurement applying the low field NMR

  4. One step process of decomposition and polymerization to fabricate SiO{sub 2} hollow spheres/polyimide composite for foldable OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Dong Won; Moon, Soo Hyun [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Dong-Wook [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Oh, Tae Sik [School of Mechanical and ICT Convergence Engineering, Sunmoon University, Asan 336-708 (Korea, Republic of); Yoo, Ji Beom, E-mail: jbyoo@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-03-15

    Graphical abstract: The SiO{sub 2} hollow spheres and polyimide hybrid synthesized using one step process, simultaneous occurrence of decomposition and polymerization (SODP) is useful with a ultra-low dielectric constant and high thermal stability for flexible OLED. - Highlights: • We fabricated hybrid films of SHS/PI by using a one step process with SODP. • The film has ultralow dielectric constant (50 vol% at k = 1.67). • There is no collapse of SiO{sub 2} hollow spheres in the PI matrix after bending test for 50,000 cycles. - Abstract: The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) requires flexible materials with a low dielectric constant as well as materials with excellent electrical, thermal, and mechanical properties for optimal device performance. Hybrid films of SiO{sub 2} hollow spheres (SHS)/polyimide (PI) were prepared using a one-step process, with simultaneous occurrence of decomposition (polystyrene, PS) and polymerization (PI) (SODP). No collapse of SiO{sub 2} hollow spheres in PI was observed from 10 vol% to 60 vol% SHS in hybrid films. The dielectric constant of hybrid films was reduced from 3.45 to 1.67 and was saturated at above 50 vol% of SHS due to the maximum fill factor of SHS in the PI matrix. The thermal stability was excellent up to 500 °C due to the inherent thermal property of PI. After a bending test for 50,000 cycles at a bending radius of 1 mm, the SHS/PI hybrid films retained their dielectric constant and current density. These results indicate the hybrid film to be the most promising candidate for flexible ILDs with a low dielectric constant and high thermal stability for foldable OLEDs.

  5. One step process of decomposition and polymerization to fabricate SiO_2 hollow spheres/polyimide composite for foldable OLEDs

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Dong Won; Moon, Soo Hyun; Shin, Dong-Wook; Oh, Tae Sik; Yoo, Ji Beom

    2017-01-01

    Graphical abstract: The SiO_2 hollow spheres and polyimide hybrid synthesized using one step process, simultaneous occurrence of decomposition and polymerization (SODP) is useful with a ultra-low dielectric constant and high thermal stability for flexible OLED. - Highlights: • We fabricated hybrid films of SHS/PI by using a one step process with SODP. • The film has ultralow dielectric constant (50 vol% at k = 1.67). • There is no collapse of SiO_2 hollow spheres in the PI matrix after bending test for 50,000 cycles. - Abstract: The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) requires flexible materials with a low dielectric constant as well as materials with excellent electrical, thermal, and mechanical properties for optimal device performance. Hybrid films of SiO_2 hollow spheres (SHS)/polyimide (PI) were prepared using a one-step process, with simultaneous occurrence of decomposition (polystyrene, PS) and polymerization (PI) (SODP). No collapse of SiO_2 hollow spheres in PI was observed from 10 vol% to 60 vol% SHS in hybrid films. The dielectric constant of hybrid films was reduced from 3.45 to 1.67 and was saturated at above 50 vol% of SHS due to the maximum fill factor of SHS in the PI matrix. The thermal stability was excellent up to 500 °C due to the inherent thermal property of PI. After a bending test for 50,000 cycles at a bending radius of 1 mm, the SHS/PI hybrid films retained their dielectric constant and current density. These results indicate the hybrid film to be the most promising candidate for flexible ILDs with a low dielectric constant and high thermal stability for foldable OLEDs.

  6. The One-Step Pickering Emulsion Polymerization Route for Synthesizing Organic-Inorganic Nanocomposite Particles

    Directory of Open Access Journals (Sweden)

    Kaushal Rege

    2010-02-01

    Full Text Available Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxyethylpropionamide (VA-086 and potassium persulfate (KPS as the initiator. Motivated by potential applications of “smart” composite particles in controlled drug delivery, the one-step Pickering emulsion polymerization route is further applied to synthesize polystyrene/poly(N-isopropylacrylamide (PNIPAAm-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The polystyrene/PNIPAAm-silica composite nanoparticles are temperature sensitive and can be taken up by human prostate cancer (PC3-PSMA cells.

  7. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    Science.gov (United States)

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  9. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  10. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  11. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  12. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  13. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  14. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  15. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  16. Synthesis of Various Silica Nanoparticles for Foam Stability

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  17. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  18. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  19. Ionic liquid-silica precursors via solvent-free sol-gel process and their application in epoxy-amine network: a theoretical/experimental study

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Donato, R. K.; Seixas, L.; Zhigunov, Alexander; Konefal, Rafal; Serkis-Rodzen, Magdalena; Beneš, Hynek

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16474-16487 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA17-08273S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : 3D POSS structures * epoxy-silica hybrid material * IL-silica precursor Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  20. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  1. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  2. A New Route for Preparation of Hydrophobic Silica Nanoparticles Using a Mixture of Poly(dimethylsiloxane and Diethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Iryna Protsak

    2018-01-01

    Full Text Available Organosilicon layers chemically anchored on silica surfaces show high carbon content, good thermal and chemical stability and find numerous applications as fillers in polymer systems, thickeners in dispersing media, and as the stationary phases and carriers in chromatography. Methyl-terminated poly(dimethylsiloxanes (PDMSs are typically considered to be inert and not suitable for surface modification because of the absence of readily hydrolyzable groups. Therefore, in this paper, we report a new approach for surface modification of silica (SiO2 nanoparticles with poly(dimethylsiloxanes with different lengths of polymer chains (PDMS-20, PDMS-50, PDMS-100 in the presence of diethyl carbonate (DEC as initiator of siloxane bond splitting. Infrared spectroscopy (IR, elemental analysis (CHN, transmission electron microscopy (TEM, atomic force microscopy (AFM, rotational viscosity and contact angle of wetting were employed for the characterization of the raw fumed silica and modified silica nanoparticles. Elemental analysis data revealed that the carbon content in the grafted layer is higher than 8 wt % for all modified silicas, but it decreases significantly after sample treatment in polar media for silicas which were modified using neat PDMS. The IR spectroscopy data indicated full involvement of free silanol groups in the chemisorption process at a relatively low temperature (220 °C for all resulting samples. The contact angle studies confirmed hydrophobic surface properties of the obtained materials. The rheology results illustrated that fumed silica modified with mixtures of PDMS-x/DEC exhibited thixotropic behavior in industrial oil (I-40A, and exhibited a fully reversible nanostructure and shorter structure recovery time than nanosilicas modified with neat PDMS. The obtained results from AFM and TEM analysis revealed that the modification of fumed silica with mixtures of PDMS-20/DEC allows obtaining narrow particle size distribution with

  3. Influence of the Reclamation Process Intensity in the REGMAS Reclaimer on the Purification Degree of the High-silica Matrix

    Directory of Open Access Journals (Sweden)

    Skrzyński M.

    2016-03-01

    Full Text Available The investigation results of the reclamation of spent moulding sands with furfuryl resin are presented in this paper. The reclamation process was performed in the secondary reclamation chamber of the REGMAS 1.5 vibratory reclaimer. 70 kg portions of moulding sands, previously subjected to the primary reclamation and dedusting, were used. The secondary reclamation was performed in two stages: the first consisted of determining the reclaimer intensity at various reclamation times (5 min, 10 min and 15 min and various electrovibrator frequencies (40 Hz, 50 Hz and 60 Hz, the second consisted of determining the influence of additional crushing elements on the intensity of processes.

  4. Polymeric Materials

    Science.gov (United States)

    2009-06-01

    circumvention of classic property-processing trade -offs. The laboratory task focuses on two primary objectives: (1) Creating the fundamental...processing trade -offs. To establish feasibility for military needs, current opportunities being examined include: 1. Electrically conductive...CINT Center for Intergrated Technologies NIST National Institute of Standards and Technology RF MEM Radio Frequency Microelectromechanical Systems SOA State of the Art TPA Two-photon Resonant

  5. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  6. Ionic systems in materials research : new materials and processes based on ionic polymerizations and/or ionic liquids

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.

    2007-01-01

    Systems based on ionic interactions are usually related to reversible processes and/or transitory chemical states and, nowadays, they are believed to be key factors for the understanding and for the development of processes in several branches of chemistry and materials research. During the last

  7. Radiation effect on polystyrene deposited and grafted on silica gel

    International Nuclear Information System (INIS)

    Kusama, Y.; Udagawa, A.; Takehisa, M.

    1978-01-01

    The effect of radiation on polystyrene was studied in the presence and absence of silica gel by molecular weight measurement with gel permeation chromatography (GPC). Polystyrene crosslinked under vacuum in the absence of silica gel, but it either crosslinked or degraded by radiation, depending on the molecular weight of the polymer in the presence of silica gel. part of the deposited polymer bonded to silica gel by radiation; the G value for graft-chain formation is in the range of 0.01 to 0.1. Irradiation of polystyrene grafted on silica gel resulted in degradation of the graft chain because of the transfer of energy from silica gel. The G value for main chain scission was about 2 when graft polymer was irradiated in the absence of homopolymer. The degradation of graft polymer was suppressed when the polymer was irradiated in the presence of homopolymer, and the amount of unextractable polymer from silica gel increased with increasing irradiation. This adds evidence to the estimation that an increase in grafting percent coupled with a slight decrease in molecular weight at a later stage of radiation-induced polymerization of styrene adsorbed on slica gel is due to a secondary effect of radiation on the polymer

  8. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  9. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  10. Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen Hao [University of Illinois at Chicago, Department of Chemical Engineering (United States); Hong, Seungpyo [University of Illinois at Chicago, Department of Biopharmaceutical Sciences (United States); Prud' homme, Robert K. [Princeton University, Department of Chemical Engineering (United States); Liu Ying, E-mail: liuying@uic.edu [University of Illinois at Chicago, Department of Chemical Engineering (United States)

    2011-09-15

    We present an experimental study of self-assembled polymeric nanoparticles in the process of flash nanoprecipitation using a multi-inlet vortex mixer (MIVM). {beta}-Carotene and polyethyleneimine (PEI) are used as a model drug and a macromolecule, respectively, and encapsulated in diblock copolymers. Flow patterns in the MIVM are microscopically visualized by mixing iron nitrate (Fe(NO{sub 3}){sub 3}) and potassium thiocyanate (KSCN) to precipitate Fe(SCN){sub x}{sup (3-x)+}. Effects of physical parameters, including Reynolds number, supersaturation rate, interaction force, and drug-loading rate, on size distribution of the nanoparticle suspensions are investigated. It is critical for the nanoprecipitation process to have a short mixing time, so that the solvent replacement starts homogeneously in the reactor. The properties of the nanoparticles depend on the competitive kinetics of polymer aggregation and organic solute nucleation and growth. We report the existence of a threshold Reynolds number over which nanoparticle sizes become independent of mixing. A similar value of the threshold Reynolds number is confirmed by independent measurements of particle size, flow-pattern visualization, and our previous numerical simulation along with experimental study of competitive reactions in the MIVM.

  11. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  12. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  13. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  14. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    Science.gov (United States)

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  15. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  16. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process

    International Nuclear Information System (INIS)

    Venkateswara Rao, A.; Bhagat, S.D.

    2004-01-01

    The experimental results on the synthesis and physical properties of tetra-ethoxy-silane- (TEOS) based silica aerogels produced by two step (acid-base) sol-gel process, are reported. The oxalic acid (A) and NH 4 OH (B) concentrations were varied from 0 to 0.1 M and from 0.4 to 3 M, respectively. Monolithic and transparent aerogels have been obtained for the values of A=0.001 M and B=1 M. The effect of time interval (t) before the base catalyst (NH 4 OH) addition to the acidic sol was studied from 0 to 72 h. The time interval at t=24 h of NH 4 OH addition was found to be the best, in terms of low volume shrinkage, high optical transmission and monolithicity. The molar ratio of EtOH/TEOS (S) was varied from 3 to 7.5. Monolithic and transparent aerogels were obtained for an S value of 6.9. Also, the effects of molar ratio of acidic water, i.e., H 2 O/TEOS (W1) and basic water, i.e., H 2 O/TEOS (W2) on the physical properties of the aerogels have been studied. Highly transparent (about 90%) and monolithic aerogels with lower volume shrinkage ( 2 O):basic (H 2 O). The results are discussed by taking into consideration the hydrolysis and poly-condensation reactions. The aerogels were characterized by scanning electron microscopy (SEM), optical transmission, bulk density, volume shrinkage and porosity measurements. (authors)

  17. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    Science.gov (United States)

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Mixes of polymeric material II - Evaluation of the physical, mechanical properties and of process in mixtures polyethylene, virgin and recycled

    International Nuclear Information System (INIS)

    Chaparro R, Luis; Perilla, Jairo E; Huertas, Jairo; Castro German

    1999-01-01

    In this document a summary of the results in the experimental development of the necessary stages to recover hothouse polyethylene is made. Is studied the form that alter the physical properties and of process of the virgin material when is submitted to long periods of exhibition to the environment and the form of variation of these properties when preparing mixtures of polyethylene, virgin and recycled. The results suggest use as maximum of 30% polyethylene recycled in the mixtures to avoid big variations in the properties of the final product

  19. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  20. Cathodoluminescence microcharacterization of ballen silica in impactites

    International Nuclear Information System (INIS)

    Okumura, T.; Ninagawa, K.; Toyoda, S.; Gucsik, A.; Nishido, H.

    2009-01-01

    The ballen silica shows fairly weak (faint) CL with homogeneous feature in its grain exhibiting almost same spectral pattern with two broad band peaks at around 390 and 650 nm, which might be assigned to self-trapped excitons (STE) or an intrinsic and nonbridging oxygen hole centers (NBOHC), respectively, recognized in amorphous and crystalline silica. In addition, ballen silica from Lappajaervi crater shows bright and heterogeneous CL with a broad band centered at around 410 nm, presumably attributed to [AlO 4 /M + ] 0 centers or self-trapped excitons (STE). Micro-Raman and micro-XRD analyses show that fairly homogeneous CL part is α-quartz and heterogeneous CL part is composed of α-cristobalite and α-quartz. These indicate that ballen silica could be formed in the quenching process from relatively high temperature.

  1. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Aragão-Santiago, Leticia

    2017-01-01

    CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence on the pr......CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence......), respectively. Furthermore, interactions between sildenafil and the PLGA matrix were observed for the spray-dried MPs. Optimization of spray-drying conditions allowed for a fabrication of defined MPs (size range of ∼4-8 μm) displaying a high sildenafil encapsulation efficiency (>90%) and sustained sildenafil...... properties of the prepared powders. CONCLUSION: Identification of relevant formulation and spray-drying parameters enabled the fabrication of tailored sildenafil-loaded PLGA-based MPs, which meet the needs of the individual application (e.g. controlled drug delivery to the lungs)....

  2. Better flocculants by radiation induced polymerization

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.

    1978-01-01

    The use of radiation induced polymerization should theoritically allow to prepare better flocculants. The testings of several products prepared by such a process shows that better properties are indeed obtained: better efficiencies, lower amounts needed, better overall properties [fr

  3. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  4. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  5. Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers

    NARCIS (Netherlands)

    Trzaskus, Krzystof; Zdeb, Aneta; de Vos, Wiebe Matthijs; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.

    2016-01-01

    Nanotechnology applications give rise to new forms of water pollution, resulting in a need for reliable technologies that can remove nanoparticles from water. Membrane filtration is an obvious candidate. The tendency of nanoparticles to become instable in suspension and form aggregates strongly

  6. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    Science.gov (United States)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  7. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  8. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  9. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  10. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  11. Production and Application of Olivine Nano-Silica in Concrete

    Science.gov (United States)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  12. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  13. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  14. Homogeneity characterization of ethylene-co-vinyl acetate copolymer (EVA) and hydrophobic silica nanocomposite by low field NMR; Caracterizacao da homogeneidade de nanocomposito do copolimero etileno acetato de vinila (EVA) e silica hidrofobica atraves de ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Observatorio Nacional, Rio de Janeiro, RJ (Brazil). Dept. de Geofisica (DGE); Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    2005-07-01

    This project proposes the characterization of a polymeric matrix composite material using nanometric scale hydrophobic silica as charge element, with the ethylene-vinyl acetate (EVA), by using the spin-lattice relaxation time measurement applying the low field NMR.

  15. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  16. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  17. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  18. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  19. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  20. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  1. Polymeric Nanogels Obtained by Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, P.; Kadłubowski, A. K.; Olejnik,; Rokita, B.; Wach, R.; Rosiak, J. M. [Institute of Applied Radiation Chemistry, Technical University of Lodz, Lodz (Poland)

    2009-07-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials.

  2. Polymeric Nanogels Obtained by Radiation Technique

    International Nuclear Information System (INIS)

    Ulanski, P.; Kadłubowski, A.K.; Olejnik; Rokita, B.; Wach, R.; Rosiak, J.M.

    2009-01-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials

  3. A DFT Study of R-X Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Gillies, Malcolm Bjørn; Matyjaszewski, Krzysztof; Norrby, Per-Ola

    2003-01-01

    DFT calculations at the B3P86/6-31G** level have been carried out to derive the bond dissociation energies (BDE) and free energies for a number of R-X systems (X ) Cl, Br, I, N3, and S2-CNMe2) that have been or can potentially be used as initiators for atom transfer radical polymerization (ATRP...

  4. Process and device for the polymerization and/or cross-linking by ionizing radiations of a resin component of a composite material part

    International Nuclear Information System (INIS)

    Beziers, D.

    1985-01-01

    An electron beam is directed on a target for the production of X-rays with adequate dose for resin cross-linking. Means are provided for relative motion between ionizing radiations and the irradiated object for partial or total exposure to radiations. The part can be polymerized by electron-beam or X-rays in function of its thickness [fr

  5. Hybrid opto-digital signal processing in 112 Gbit/s DP-16QAM and DP-QDB transmission for long-haul large-Aeff pure-silica-core fiber links

    DEFF Research Database (Denmark)

    Asif, Rameez; Ahmad, Ramshah; Basir, Rabeea

    2016-01-01

    By means of numerical simulations, we demonstrated that all-optical signal processing methods (XPM-suppressor module and in-line nonlinear equalization) significantly increase the system performance of digital nonlinear compensation (digital backward propagation) and improve the system performanc...... in five-channel 112 Gbit/s DP-16QAM and DP-QDB transmission over 2400 km large- effective-area pure-silica-core fiber ((Formula presented.)-PSCF). The system performance is quantified with the help of Q-factor (dB) for both dispersion-managed and nondispersion-managed fiber links....

  6. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  7. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  8. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  9. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  10. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  11. Structural evolution of silica sols modified with formamide

    Directory of Open Access Journals (Sweden)

    Lenza R.F.S.

    2001-01-01

    Full Text Available In this work we investigated the influence of formamide on the acid-catalyzed sol-gel process by Fourier transform infrared spectroscopy (FTIR. Three silica sols were studied: Sol catalyzed with nitric acid without formamide, sol catalyzed with nitric acid containing formamide and sol catalyzed with a mixture of nitric acid and hydrofluoric acid and modified with formamide. Following the time evolution of both the Si-(OH stretching vibration at around 950 cm-1 and the Si-O-(Si vibration between 1040 cm-1 and 1200 cm-1 we were able to describe the structural evolution of each sol. The curve of evolution of Si-(OH stretching vibration corresponding to sol A has a simple asymptotic evolution. In the case of formamide containing sol, we observed a two-step structural evolution indicating that for the system containing formamide the polymerization goes through a temporary stabilization of oligomers, which can explain the non-variation of the Si-O(H bond wavenumber for a certain time. Gelation times were of several days for gels without formamide and few hours for gels containing additive. The presence of additive resulted in a highly interconnected gel.

  12. Electrochemical lithium migration to mitigate alkali-silica reaction in existing concrete structures

    NARCIS (Netherlands)

    Silva De Souza, L.M.

    2016-01-01

    Alkali-silica reaction (ASR) is a deterioration process that affects the durability of concrete structures worldwide. During the reaction, hydroxyl and alkali ions present in the pore solution react with reactive silica from the aggregate, forming a hygroscopic ASR gel. Alternatively, the silica

  13. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  14. Treatment of oil sands mature fine tailings with silica

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R.H. [DuPont Canada Inc., Mississauga, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of treating mature fine tailings (MFT) with silica. Rheology modifications with silica treatments were examined. Experimental studies demonstrated a significant slump at 30 minutes after mixing. Flow properties were studied at a 2 degree angle. The MFT thin lift evaporative drying procedure was used to determine the effects of the silica treatments. Methods of using pressure to dewater MFTs were reviewed. The results of a field test conducted to determine the flow behaviour of MFTs treated with low dose silica were presented. Drying characteristics and strength gains were also evaluated. Results of the study showed that the MFTs had a tendency to channel at discharge points. After a 15 day period that included a freeze-thaw the MFTs had cracks that continued to enlarge, full depth cracking, and fine cracking. The field tests demonstrated that in-situ polymerization of silica within the water phase of fluid fine tails provides significant modifications to rheological properties, and that the onset of rheological modification can be controlled over a range of conditions and times. tabs., figs.

  15. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    Science.gov (United States)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  16. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  17. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  18. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  19. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  20. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  1. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  2. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  3. Structure and Properties of LENRA/ Silica Composite

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  4. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  5. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  6. Measurement and Analysis of in vitro Actin Polymerization

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  7. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  8. Superhydrophobic silica wool—a facile route to separating oil and hydrophobic solvents from water

    Science.gov (United States)

    Crick, Colin R.; Bhachu, Davinder S.; Parkin, Ivan P.

    2014-12-01

    Silica microfiber wool was systematically functionalized in order to provide an extremely water repellent and oleophilic material. This was carried out using a two-step functionalization that was shown to be a highly effective method for generating an intense water repulsion and attraction for oil. A demonstration of the silica wools application is shown through the highly efficient separation of oils and hydrophobic solvents from water. Water is confined to the extremities of the material, while oil is absorbed into the voids within the wool. The effect of surface functionalization is monitored though observing the interaction of the material with both oils and water, in addition to scanning electron microscope images, x-ray photoelectron spectroscopy and energy dispersive x-ray analysis. The material can be readily utilized in many applications, including the cleaning of oil spills and filtering during industrial processes, as well as further water purification tasks—while not suffering the losses of efficiency observed in current leading polymeric materials.

  9. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  10. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  11. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  12. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Science.gov (United States)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  13. UV-cured methacrylic-silica hybrids: Effect of oxygen inhibition on photo-curing kinetics

    International Nuclear Information System (INIS)

    Corcione, C. Esposito; Striani, R.; Frigione, M.

    2014-01-01

    Highlights: • The kinetic behavior of novel photopolymerizable organic–inorganic hybrid system was studied as a function of the composition and of the atmosphere for reactions. • The UV-curing reaction of the hybrid mixture was found fast and complete. • The combined presence of thiol monomer and nanostructured silica allows to reduce the effect of inhibition of oxygen towards the radical photopolymerization. - Abstract: The kinetic behavior of innovative photopolymerizable UV-cured methacrylic–silica hybrid formulations, previously developed, was studied and compared to that of a reference control system. The organic–inorganic (O–I) hybrids proposed in this study are obtained from organic precursors with a high siloxane content mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nano-domains dispersed within a cross-linked organic phase, as a result of the hydrolysis and condensation reactions. The kinetics of the radical photopolymerization mechanism induced by UV-radiations, in presence of a suitable photoinitiator, was studied by calorimetric, FTIR and Raman spectroscopic analyses, by varying the composition of the mixtures and the atmosphere for reactions. The well known effect of oxygen on the kinetic mechanism of the free radical photopolymerization of the methacrylic–siloxane based monomers was found to be strongly reduced in the hybrid system, especially when a proper thiol was used. The experimental calorimetric data were fitted using a simple kinetic model for radical photopolymerization reactions, obtaining a good agreement between the experimental data and the theoretical model. From the comparison of the kinetic constants calculated for control and hybrid systems, it was possible to assess the effect of the composition, as well as of the atmosphere used during the photo-polymerization process, on the kinetic of photopolymerization reaction

  14. Comparison of optical properties of Eu3+ ions in the silica gel glasses obtained by different preparation techniques

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Sokolnicki, J.; Keller, B.; Borzechowska, M.; Strek, W.

    1996-01-01

    Silica-gel glasses doped with Eu 3+ ions were obtained by different preparation techniques. The absorption, emission and excitation spectra of the obtained glasses were measured in the range of 77-300 K. The energy levels diagrams of Eu 3+ ions were derived. An intensity analysis of f-f transitions was performed. In particular, polymeric structure behaviour of europium compounds entrapped in silica gel glasses was temperature controlled during the preparation of glasses. Their optical properties were investigated. (author)

  15. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  16. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    Science.gov (United States)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  17. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  18. Ion induced polymerization in benzene frozen films

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, G [Catania Univ. (Italy). Ist. di Fisica; Strazzulla, G [Catania Univ. (Italy). Osservatorio Astrofisico; Fichera, M; Foti, G [Catania Univ. (Italy). Ist. di Radiologia

    1983-07-01

    The cross section of the polymerization process induced by energetic protons colliding with frozen benzene layers has been measured. The results have been described by a simple theory and they show that the process is a volume one occurring along the ion track and interesting all of the crossed layers.

  19. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  20. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  1. Titanium, zirconium- and hafnium containing initiators in the polymerization of acrylic monomers to ''living'' polymers

    International Nuclear Information System (INIS)

    Farnham, W.B.; Hertler, W.R.

    1988-01-01

    This patent describes a process for preparing ''living'' polymer. The process comprises contacting one or more acrylic monomers under polymerizing conditions with a polymerization-initiating amount of a tetra-coordinate organotitanium, organozirconium or organo-hafnium polymerization initiator, and ''living'' polymers produced thereby

  2. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 2. The hardening processes from the standpoint of statistical physics

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-04-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer ethod based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  3. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  4. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  5. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  6. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  7. Preparation of EVA/silica nano composites characterized with solid state nuclear magnetic resonance; Obtencao de nanocomposito de EVA/SILICA e caracterizacao por ressonancia magnetica nuclear no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Adriano A; Tavares, Maria I.B.; Neto, Roberto C.P.; Moreira, Leonardo A; Ferreira, Antonio G., E-mail: mibt@ima.ufrj.br [Centro de Tecnologia, Instituto de Macromoleculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Nano composites of poly(ethylene-co-vinyl acetate)/silica (SiO{sub 2}) with dimensions of ca. 40 nm were prepared via solution intercalation employing chloroform as a solvent. They were mainly characterized with nuclear magnetic resonance spectroscopy (NMR) employing carbon-13 (polymeric matrix), silicon-29 (nanoparticles) and through the determination of the proton spin-lattice relaxation time in the rotating frame (T{sub 1{rho}H}) (polymer matrix). From the NMR results it was inferred that up to 5% of silica in mass a well dispersed nano composite was obtained, owing to a strong interaction between silica and the EVA matrix. (author)

  8. An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites

    International Nuclear Information System (INIS)

    Ding Xuefeng; Wang Zichen; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO 2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance

  9. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  10. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    OpenAIRE

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Lu?sa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested ...

  11. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  12. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  13. Efficient example of cross-linked polymeric catalysed synthesis of ...

    Indian Academy of Sciences (India)

    substituted anilines in water under microwave irradia- tion conditions.8. ∗ ... and for applications for industrial processes, recycla- bility, greater selectivity ... crude product was purified by column chromatography on silica gel eluting by ...

  14. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  15. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    Science.gov (United States)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  16. Faraday rotation measurements in maghemite-silica aerogels

    International Nuclear Information System (INIS)

    Taboada, E.; Real, R.P. del; Gich, M.; Roig, A.; Molins, E.

    2006-01-01

    Faraday rotation measurements have been performed on γ-Fe 2 O 3 /SiO 2 nanocomposite aerogels which are light, porous and transparent magnetic materials. The materials have been prepared by sol-gel polymerization of a silicon alkoxide, impregnation of the intermediate silica gel with a ferrous salt and supercritical drying of the gels. During supercritical evacuation of the solvent, spherical nanoparticles of iron oxide, with a mean particle diameter of 8.1±2.0 nm, are formed and are found to be homogenously distributed within the silica matrix. The specific Faraday rotation of the composite was measured at 0.6 T using polarized light of 810 nm, being 29.6 deg./cm. The changes in the plane of polarization of the transmitted light and the magnetization of the material present similar magnetic field dependencies and are characteristic of a superparamagnetic system

  17. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  18. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  19. Polymerization by radiation. Application

    International Nuclear Information System (INIS)

    Romero, M.; Fernandez Miranda, J.

    1997-01-01

    Achieved results of the research work done in the field of radiation polymerization are summarized. Developing new chromatographic matrices, the radiation grafting of Glycidyl methacrylate on the surface of Low Density Polyethylene beads was studied. The dependence of both, the grafted degree and width of the grafted layer, with the radiation dose applied, is presented

  20. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  1. Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Beili; Ryu, Chong-Min; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-11-01

    Highlights: • Silica nanoparticles were modified to carry the vinyl groups for photo-crosslinking. • Acrylic copolymer was modified to have the vinyl groups for photo-crosslinking. • Strong and extensive interfacial bondings were formed between polymer and silica. • Thermal stability of PSA was improved by forming nanocomposite with modified silica. -- Abstract: Pressure sensitive adhesives (PSAs) with higher thermal stability were successfully prepared by forming composite with the silica nanoparticles modified via reaction with 3-methacryloxypropyltrimethoxysilane. The acrylic copolymer was synthesized as a base resin for PSAs by solution polymerization of 2-EHA, EA, and AA with AIBN as an initiator. The acrylic copolymer was further modified with GMA to have the vinyl groups available for UV curing. The peel strength decreased with the increase of gel content which was dependent on both silica content and UV dose. Thermal stability of the composite PSAs was improved noticeably with increasing silica content and UV dose mainly due to the strong and extensive interfacial bonding between the organic polymer matrix and silica.

  2. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M

    1991-01-01

    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  3. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    Science.gov (United States)

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microfluidic production of polymeric micro- and nanoparticles

    NARCIS (Netherlands)

    Serra, C.; Kahn, I.U.; Cortese, B.; Croon, de M.H.J.M.; Hessel, V.; Ono, T.; Anton, N.; Vandamme, Th.

    2013-01-01

    Polymeric micro- and nanoparticles have attracted a wide attention of researchers in various areas such as drug delivery, sensing, imaging, cosmetics, diagnostics, and biotechnology. However, processes with conventional equipment do not always allow a precise control of their morphology, size, size

  5. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  6. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  7. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  8. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  9. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  10. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  12. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  13. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  14. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene.

    Science.gov (United States)

    Li, Wei; Yang, Huaqin; Zhang, Jingjing; Mu, Jingshan; Gong, Dirong; Wang, Xiaodong

    2016-09-25

    Polyhedral oligomeric silsesquioxanes (POSSs) were adsorbed on methylaluminoxane-activated silica for the immobilization of fluorinated bis(phenoxyimine)Ti complexes (FI catalyst). These POSSs have been characterized as horizontal spacers isolating the active sites and hindering the chain overlap in polymerization. The heterogeneous catalyst exhibits considerable activity in the synthesis of weakly entangled polyethylene.

  15. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  16. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  17. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  18. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis and comparison of mechanical behavior of fly ash-epoxy and silica fumes-epoxy composite

    Science.gov (United States)

    Sangamesh; Ravishankar, K. S.; Kulkarni, S. M.

    2017-08-01

    Present day innovation requires materials with a typical combination of properties that are not possible by conventional metal, alloys, ceramics and polymeric materials. Particulate reinforcements for polymers are selected with the dual objective of improving composite properties and save on the total cost of the system. The point of this study is to utilize and compare the mechanical properties of filler (fly ash and silica fumes) reinforced epoxy composites. The composites of different proportions by percentage of matrix (100%), fillers (5%, 10% and 15%) volume are developed using hand lay-up process are tested for tensile and compression, according to ASTM Standards. From these mechanical properties, the flexural analysis of these composites is simulated. And which are characterized by Scanning electron microscopy for the fracture surface study, which reveals the brittle fracture, this also conforms from the Finite element analysis (FEA). And the overall mechanical properties of the fly ash reinforced polymer composites were found to have better than silica fumes reinforced composites.

  20. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  1. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    Science.gov (United States)

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  2. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well......This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...... as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted....

  3. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  4. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  5. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  6. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  7. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno; Waldron, Christopher; Zolotukhin, M.G.; Nunes, Suzana Pereira

    2017-01-01

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic

  8. Identification of a premature termination of DNA polymerization in ...

    Indian Academy of Sciences (India)

    2013-04-25

    Apr 25, 2013 ... strands to the 5′ end of the template strands, forming double- stranded DNA with ... duplex stem is important for high processive polymerization. HIV-1 reverse ... KF has been used as a model to study DNA polymerase.

  9. A comparison of the accuracy of patterns processed from an inlay casting wax, an auto-polymerized resin and a light-cured resin pattern material.

    Science.gov (United States)

    Rajagopal, Praveen; Chitre, Vidya; Aras, Meena A

    2012-01-01

    Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.

  10. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties.

    Science.gov (United States)

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  11. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties

    Directory of Open Access Journals (Sweden)

    Fahad Naeem

    2017-08-01

    Full Text Available Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol. Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc, volume fraction of polymer (V2,s, solvent interaction parameter (χ and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and DSC differential scanning calorimetry (DSC and scanning electron microscopy (SEM. Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  12. Thermo-stabilized, porous polyimide microspheres prepared from nanosized SiO2 templating via in situ polymerization

    Directory of Open Access Journals (Sweden)

    M. Q. Liu

    2015-01-01

    Full Text Available In this article, we addressed a feasible and versatile method of the fabrication of porous polyimide microspheres presenting excellent heat resistance. The preparation process consisted of two steps. Firstly, a novel polyimide/nano-silica composite microsphere was prepared via the self-assembly structures of poly(amic acid (PAA, precursor of PI/nanosized SiO2 blends after in situ polymerization, following the two-steps imidization. Subsequently, the encapsulated nanoparticles were etched away by hydrofluoric acid treatment, giving rise to the pores. It is found the composite structure of PI/SiO2 is a precondition of the formation of nanoporous structures, furthermore, the morphology of the resultant pore could be relatively tuned by changing the content and initial morphology of silica nano-particles trapped into PI matrix. The thermal properties of the synthesized PI porous spheres were studied, indicating that the introduction of nanopores could not effectively influence the thermal stabilities of PI microspheres. Moreover, the fabrication technique described here may be extended to other porous polymer systems.

  13. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  14. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    International Nuclear Information System (INIS)

    Yoo, Hyojong; Pak, Joonsung

    2013-01-01

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH 4 OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract

  15. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyojong, E-mail: hyojong@hallym.ac.kr; Pak, Joonsung [Hallym University, Department of Chemistry (Korea, Republic of)

    2013-05-15

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH{sub 4}OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract.

  16. Reciclagem de poli(estireno-divinilbenzeno via processo de polimerização em massa-suspensão Recycling of styrene-divinylbenzene via mass-suspension polymerization process

    Directory of Open Access Journals (Sweden)

    Nathália M. Campelo

    2013-01-01

    Full Text Available O presente trabalho trata da reutilização de resinas de troca iônica a base de estireno-divinil benzeno (Sty-DVB na síntese de materiais poliméricos. Partículas micrométricas de poliestireno e poli(estireno-acrilato de etila foram obtidas via processo de polimerização sequencial do tipo massa-suspensão. A técnica experimental proposta mostrou-se bastante apropriada para uma boa dispersão da carga microparticulada de Sty-DVB na matriz polimérica termoplástica. O material final apresentou boa estabilidade térmica, e perfil de degradação similar ao do poliestireno puro. Observou-se também que partículas poliméricas com morfologia esférica podem ser obtidas. Além disso, a incorporação de acrilato de etila à cadeia polimérica do poliestireno minimiza o efeito indesejável de fratura nas partículas poliméricas, melhorando as propriedades mecânicas do material final.This work illustrates the reuse of ion exchange resins based on crosslinked styrene-divinyl benzene copolymer (Sty-DVB for the production of polymeric materials. Micro-sized particles of polystyrene and poly(styrene-ethyl acrylate were obtained by mass-suspension sequential polymerization process. With the proposed experimental technique it was possible to perform proper dispersion of the Sty-DVB in the thermoplastic matrix of polystyrene. The final material showed good thermal stability, and a degradation profile similar to that for pure polystyrene. It was also observed that polymer particles with spherical morphology can be obtained. In addition, the incorporation of ethyl acrylate into the polystyrene chains minimizes the undesirable effect of fracture in polymeric particles, improving the mechanical properties of the final material.

  17. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  18. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  19. Synthesis and new structure shaping mechanism of silica particles formed at high pH

    International Nuclear Information System (INIS)

    Zhang, Henan; Zhao, Yu; Akins, Daniel L.

    2012-01-01

    For the sol–gel synthesis of silica particles under high pH catalytic conditions (pH>12) in water/ethanol solvent, we have deduced that the competing dynamics of chemical etching and sol–gel process can explain the types of silica particles formed and their morphologies. We have demonstrated that emulsion droplets that are generated by adding tetraethyl orthosilicate (TEOS) to a water–ethanol solution serve as soft templates for hollow spherical silica (1–2 μm). And if the emulsion is converted by the sol–gel process, one finds that suspended solid silica spheres of diameter of ∼900 nm are formed. Moreover, several other factors are found to play fundamental roles in determining the final morphologies of silica particles, such as by variation of the pH (in our case, using OH – ) to a level where condensation dominates; by changing the volume ratios of water/ethanol; and using an emulsifier (specifically, CTAB) - Graphical abstract: “Local chemical etching” and sol–gel process have been proposed to interpret the control of morphologies of silica particles through varying initial pHs in syntheses. Highlights: ► Different initial pHs in our syntheses provides morphological control of silica particles. ► “Local chemical etching” and sol–gel process describes the formation of silica spheres. ► The formation of emulsions generates hollow silica particles.

  20. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as Hg(II) adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Ali, E-mail: ali.saad8803@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Faculté des Sciences de Tunis, Université El Manar, PO Box 248, El Manar II, 2092 Tunis (Tunisia); Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Bakas, Idriss [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Laboratoire AQUAMAR, Equipe Matériaux Photocatalyse et Environnement, Faculté des Sciences, Université Ibn Zohr, B.P. 8106, Cité Dakhla, Agadir (Morocco); Piquemal, Jean-Yves; Nowak, Sophie [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Abderrabba, Manef, E-mail: abderrabbamanef@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Chehimi, Mohamed M., E-mail: chehimi@icmpe.cnrs.fr [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais (France)

    2016-03-30

    Graphical abstract: - Highlights: • Mesoporous silica/polyacrylamide nanocomposite adsorbent was prepared by UV-graft polymerization. • Polyacrylamide was successfully grafted onto the silanized mesoporous silica. • The Hg(II) adsorption capacity of the nanocomposite was as high as 177 mg g{sup −1} after 1 h at RT. • Adsorption process was found to fit pseudo second order kinetics and exothermic. - Abstract: MCM-41 ordered mesoporous silica was prepared, aminosilanized and grafted with polyacrylamide (PAAM) through in situ radical photopolymerization process. The resulting composite, denoted PAAM-NH{sub 2}-MCM-41, the calcined and silanized reference MCM-41s were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} physisorption at 77 K. These complementary techniques brought strong supporting evidence for the silanization process followed by PAAM grafting. The surface composition was found to be PAAM-rich as judged by XPS. The composite was then employed for the uptake of Hg(II) from aqueous solutions. Adsorption was monitored versus pH, time, and temperature. The maximum adsorption capacity at 25 °C and pH 5.2 was 177 mg g{sup −1}. Kinetically, the equilibrium was reached within 60 min for a 100 mg L{sup −1} mercury solution. The adsorption of Hg(II) on PAAM-NH{sub 2}-MCM-41 composites followed second order kinetics. Thermodynamic parameters suggested that the favorable adsorption process is exothermic in nature and the adsorption is ascribed to a decrease in the degree of freedom of adsorbed ions which results in the entropy change. This work conclusively shows that mesoporous silica–polymer hybrid metal ion adsorbents (with robust silica–polymer interface) can be prepared in a simple way by in situ radical photopolymerization in the presence of

  1. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  2. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  3. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  4. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  5. Decomposition of silica-alumina ores of Afghanistan by sulfuric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2016-01-01

    Present article is devoted to decomposition of silica-alumina ores of Afghanistan by sulfuric acid. Physicochemical properties of initial silica-alumina ores were studied by means of X-ray phase, differential thermal and silicate analysis. The influence of temperature, process duration and acid concentration on extraction rate of valuable components was considered. The optimal conditions of decomposition of silica-alumina ores of Afghanistan by sulfuric acid were proposed.

  6. The enhanced coercivity for the magnetite/silica nanocomposite at room temperature

    International Nuclear Information System (INIS)

    Wu Mingzai; Xiong Ying; Peng Zhenmeng; Jiang Nan; Qi Haiping; Chen Qianwang

    2004-01-01

    Magnetite/silica nanocomposite was synthesized by a facile solvothermal processing at 150 deg. C for about 10 h. X-ray diffraction (XRD) analysis revealed the effect of annealing on the crystallinity of silica. Transmission electron microscopy (TEM) images showed the good dispersion of magnetite in the silica matrix. Magnetic properties of the nanocomposite were characterized by vibration sample magnetometer (VSM), and the enhanced coercivity was explained by the intrinsic anisotropy of the particles enhanced by the interparticle dipolar fields

  7. Application of Super-Amphiphilic Silica-Nanogel Composites for Fast Removal of Water Pollutants

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2016-10-01

    Full Text Available This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by dispersion polymerization technique. The morphologies and the dispersion stability of nanogel composites were investigated to clarify the ability of silica-nanogel composites to adsorb at different interfaces. The feasibility of silica polyacrylamide nanogel composites to act as a high-performance adsorbent for removal of methylene blue (MB dye and heavy metals (Co2+ and Ni2+ from aqueous solution was investigated. The surface tension, contact angle, average pore size, and zeta potential of the silica-nanogel composites have been evaluated. The MB dye and heavy metal adsorption capacity achieved Qmax = 438–387 mg/g which is considerably high. The adsorption capacity results are explained from the changes in the morphology of the silica surfaces as recorded from scanning electron microscopy (SEM.

  8. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Yao-Wen Hsu

    2017-07-01

    Full Text Available A novel nanoarchitecture-reinforced poly(lactic acid (PLA nanocomposite was prepared using multi-walled carbon nanotube (MWCNT-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity.

  9. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  10. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  11. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  12. Three dimensional changes in maxillary complete dentures immersed in water for seven days after polymerization

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2008-03-01

    Full Text Available The purpose of this study was to investigate the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures which were fabricated using two different polymerizing processes: heat polymerization (HP and microwave polymerization (MP, after immersion in water for seven days. The amount of distortion in the molar region of the alveolar ridge was significantly different between HP and MP. However, the overall distortion of the dentures polymerized using both methods was similar. The distortion due to immersion in water for seven days compensated for the polymerization distortion, but the amount of distortion was very slight.

  13. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  14. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw

    International Nuclear Information System (INIS)

    Hessien, M.M.; Rashad, M.M.; Zaky, R.R.; Abdel-Aal, E.A.; El-Barawy, K.A.

    2009-01-01

    Silica nanoparticles have been prepared through dissolution-precipitation process from rice straw ash (RSA) for different electronic applications. The dissolution of silica from RSA was carried out using alkali leaching process by sodium hydroxide. The precipitation of silica from the produced sodium silicate solution was carried out using sulphuric acid at pH 7. The factors affecting the precipitation process of the sodium silicate solution of dissociated RSA; such as; sodium silicate concentration, sulfuric acid concentration and addition of anionic surfactant (sodium dodecyl sulfate, SDS) on the particle size of the precipitated silica were studied. X-ray diffraction (XRD), X-ray fluorescence (XRF), specific surface area S BET and transmission electron microscope (TEM) have been used for the characterization of the produced nano-silica. The results showed that the optimum conditions of the dissolution efficiency of the silica of about 99% was achieved at 100 deg. C for 4 h, and NaOH/SiO 2 molar ratio three. The particle size of the precipitated silica gel was decreased with increasing Na 2 SiO 3 and SDS concentrations, while H 2 SO 4 concentration had insignificant effect. Particle size of about 16 nm can be achieved at 30% Na 2 SiO 3 , 4% H 2 SO 4 and 200 ppm SDS. The produced silica had 99.93% purity, amorphous and nanosphere particles with narrow size distribution. The produced silica can be used in many applications especially for chemical mechanical polishing (CMP) slurries for semiconductors industries.

  15. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  16. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft

    2014-02-01

    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  17. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    Science.gov (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  18. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  19. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  20. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  1. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  2. Elastic Moduli of Permanently Densified Silica Glasses

    Science.gov (United States)

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  3. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  4. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  5. Comparative study of the porosity induced by CTAB and Tween as silica templates

    International Nuclear Information System (INIS)

    Cardinal, M.F.; Lovino, M.; Bernik, D.L.

    2007-01-01

    In this study doped-silicon polymers were synthesized using the non-ionic surfactant Tween 80 as template. The obtained material was compared with silicates doped with the cationic surfactant CTAB. Both materials were synthesized by sol-gel process with tetraethoxysilane (TEOS) as silicon source. In the synthesis procedure reported herein the main difference to previous reports is that the obtained solids were dried smoothly at 55 o C avoiding surfactant calcination. The aim of this work is to obtain new biomaterials appropriate to be used for encapsulation devices in which the surfactant kept within the silica network has two roles: (1) to improve the mechanical resistance in drying-swelling processes preventing crack formation (2) to hold and protect the encapsulated molecules keeping intact their bioactivity during TEOS polymerization. Structural features such as pore size and surface topology were studied by means of N 2 adsorption, X-ray diffraction and AFM microscopy. The influence of surfactant net charge and molecular shape on the materials obtained is discussed

  6. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites

    International Nuclear Information System (INIS)

    Du Yaying; Fu Yuqin; Shi Yongli; Lue Xiaodan; Lue Changli; Su Zhongmin

    2009-01-01

    Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent nanocomposites were prepared by in situ bulk polymerization. CMS nanoparticles or nanorods with hydroxyl-, mercapto- and sulfonic-functionalized interiors were obtained by different synthetic routes in the nanosize dimensions between 50 and 500 nm. The luminescent Znq 2 complex was successfully introduced in the pores of different mesoporous silicas by chemical adsorption as the driving force. The different internal circumstances of mesoporous silicas had an obvious effect on the luminescence and lifetime of Znq 2 complex. The transparent fluorescent nanocomposites were fabricated from different Znq 2 -CMS and suitable monomers. The Znq 2 -CMS were uniformly dispersed in the polymer matrix without evident aggregation. The photoluminescence properties of Znq 2 -CMS in the transparent matrix exhibited a dependence on the inner surrounding of CMS due to the interaction between Znq 2 -CMS and polymers. The maximum emission peak of the nanocomposites had a red-shift of 28 nm as compared to pure Znq 2 -CMS. - Graphical abstract: Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent fluorescent nanocomposites were prepared by in situ bulk polymerization. The figure shows the synthetic scheme for the Znq 2 -CMS and their transparent bulk nanocomposites.

  7. Variability of biological effects of silicas: Different degrees of activation of the fifth component of complement by amorphous silicas

    International Nuclear Information System (INIS)

    Governa, Mario; Amati, Monica; Fenoglio, Ivana; Valentino, Matteo; Coloccini, Sabrina; Bolognini, Lucia; Carlo Botta, Gian; Emanuelli, Monica; Pierella, Francesca; Volpe, Anna Rita; Astolfi, Paola; Carmignani, Marco; Fubini, Bice

    2005-01-01

    A biogenic and a pyrogenic amorphous silica were incubated in normal human plasma and compared on a per unit surface basis for their ability to split C5 molecules and yield small C5a peptides. Since C5a peptides induce selective chemotactic attraction of polymorphonuclear leukocytes (PMN), measurement of PMN-induced chemotaxis was used as an index of C5 activation. Though to a lesser extent than the crystalline forms, amorphous silicas can promote the cleavage of C5 protein and generation of C5a-like fragment. The biogenic silica, which differs from the pyrogenic variety in particle shape, level of contaminants, and degree of surface hydrophilicity, besides specific surface, induced a greater response. Both silicas activated C5 through a process which seems to involve multiple events similar to those induced by crystalline silica. C5 molecules are adsorbed and hydroxyl radicals are generated through Haber Weiss cycles catalyzed by the redox-active iron present at the particle surface either as trace impurities or chelated from plasma by silanol groups. In turn, these radicals convert native C5 to an oxidized C5-like form C5(H 2 O 2 ). Finally, C5(H 2 O 2 ) is cleaved by protease enzymatic action of plasma kallikrein activated by the same silica dusts, yielding a product, C5a(H 2 O 2 ), having the same functional characteristic as C5a

  8. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  9. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    Science.gov (United States)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  10. Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template

    International Nuclear Information System (INIS)

    Chen, Lin-Jer; Liao, Jiunn-Der; Chuang, Yu-Ju; Fu, Yaw-Shyan

    2011-01-01

    The preparation of crystalline silica nanorods is presented. Crystalline silica nanorods were synthesized via a simple solvothermal route using polyvinylbutyral (PVB) as a template in an autoclave with ethylenediamine as a solvent at 180 °C for 25 h. Silica nanorods with diameters in the range of 50–80 nm were obtained. The solvothermal route with a PVB template played affected the crystallization process and the growth of the silica nanorods. The as-synthesized products were characterized using X-ray diffraction, energy dispersive spectrometry, scanning electron microscopy, and transmission electron microscopy.

  11. Radiation polymerization of tetrafluoroethylene in freon-22

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Thompson, J.C.

    1979-02-01

    The radiation-induced solution-polymerization of tetrafluoroethylene in Freon-22 has been investigated over a temperature range of - 62 degrees celcius to 0 degrees celcius. The rate of polymerization for the in-source process was found to be directly propertional to monomer concentration and an activation energy of only 7,66 kj/mole was calculated. The number-average molecular mass of the product PTFE ranged from 2X10 4 to 6X10 4 and was relatively independent of the usual reaction parameters. The rate of postpolymerization was also found to be directly proportional to monomer concentration. The postpolyerization process did not result in any enchancement of the initial PTFE molecular mass [af

  12. A theory for fracture of polymeric gels

    Science.gov (United States)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  13. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  14. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  15. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    International Nuclear Information System (INIS)

    Zuzuarregui, Ana; Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-01-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur

  16. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  17. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    Science.gov (United States)

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Biomarkers and taphonomic processes in fresh and fossil biosignatures from Hot Spring silica deposits in El Tatio Chile, as a Mars Analogue

    Science.gov (United States)

    Carrizo, D.; Sánchez-García, L.; Parro, V.; Cady, S. L.; Cabrol, N. A.

    2017-09-01

    Biomarkers characterization and taphonomic process of recent and fossil biosignatures in extreme environments with analogies to Mars is essential to understanding how life could develop and survive in this conditions. Siliceous sinter deposits on Mars where similar to those found in the hydrothermal hot springs and geysers from El Tatio, Chile. Organic preservation have been shown in this study. Many different labile functional groups (i.e., carboxylic acids, alcohols, aldehydes, etc.) were found in both "age" samples. A shift in congener pattern for the different lipids families were found and discuss. This results give insight in taphonomic processes actin in this extreme environment, which could be used as a baseline in Mars exploration.

  19. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  20. Autocatalytic polymerization generates persistent random walk of crawling cells.

    Science.gov (United States)

    Sambeth, R; Baumgaertner, A

    2001-05-28

    The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.