WorldWideScience

Sample records for silica nanosphere-based drug

  1. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery

    International Nuclear Information System (INIS)

    Wang, Chunlei; Yan, Juntao; Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun

    2013-01-01

    A series of raspberry-like magnetic-hollow silica nanospheres were successfully synthesized via the sol–gel process, which was based on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene. The Fe 3 O 4 @SiO 2 particles as the outer shell were compactly assembled on the surface of PS, and then magnetic-hollow nanospheres were obtained by calcination. Different synthesis conditions including the amount of NH 4 OH, TEOS, Fe 3 O 4 , and the adding time of PS were systematically investigated to discuss the influence of these conditions on the morphology and structure. The prepared magnetic-hollow nanospheres were systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectrometry, energy-dispersive X-ray analysis, thermogravimetric analysis and nitrogen adsorption–desorption measurement. SEM and TEM images exhibited that the obtained samples with the perfect spherical profile and large cavities structure were well monodisperse and uniform under the optimized condition. Zeta-potential analysis was employed to make clear the formation mechanism of raspberry-like PS@Fe 3 O 4 @SiO 2 composite nanosphere. Moreover, the drug release of ibuprofen experiment results demonstrated that the magnetic-hollow nanospheres could be used as a drug carrier to slowly release and deliver drugs

  2. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunlei; Yan, Juntao, E-mail: yanjuntaonihao@163.com [Wuhan Polytechnic University, College of Chemistry and Environmental Engineering (China); Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun [Jilin University, College of Chemistry (China)

    2013-09-15

    A series of raspberry-like magnetic-hollow silica nanospheres were successfully synthesized via the sol-gel process, which was based on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene. The Fe{sub 3}O{sub 4}@SiO{sub 2} particles as the outer shell were compactly assembled on the surface of PS, and then magnetic-hollow nanospheres were obtained by calcination. Different synthesis conditions including the amount of NH{sub 4}OH, TEOS, Fe{sub 3}O{sub 4}, and the adding time of PS were systematically investigated to discuss the influence of these conditions on the morphology and structure. The prepared magnetic-hollow nanospheres were systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectrometry, energy-dispersive X-ray analysis, thermogravimetric analysis and nitrogen adsorption-desorption measurement. SEM and TEM images exhibited that the obtained samples with the perfect spherical profile and large cavities structure were well monodisperse and uniform under the optimized condition. Zeta-potential analysis was employed to make clear the formation mechanism of raspberry-like PS@Fe{sub 3}O{sub 4}@SiO{sub 2} composite nanosphere. Moreover, the drug release of ibuprofen experiment results demonstrated that the magnetic-hollow nanospheres could be used as a drug carrier to slowly release and deliver drugs.

  3. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  4. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  5. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  6. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  7. Photonic bandgap structure of 3-D fcc silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y. K.; Ha, N. Y.; Hwang, Ji Soo; Chang, H. J.; Wu, J. W. [Dept. of Physics, Ewha Womans University, Seoul (Korea, Republic of)

    2002-07-01

    Photonic crystal is an artificial optical material with a periodic dielectric potential, hence exhibiting a bandgap for a propagating electromagnetic wave. We fabricated crystal possessing 3-D fcc opal structure from silica nanospheres. The crystals are self-assembled on a flat glass by evaporating the solvent in the nanosphere suspension at the room temperature. The suspension consists of silica nanospheres with a diameter of 200 nm. The microscopic arrangement of nanospheres is identified by a scanning electron microscope, the resulting structure being fcc.Transmission spectrum of the fabricated photonic crystal in the visible and near-infrared regions is measured at different incident angles to find the distinct Bragg peaks, analysis of which further confirmed the fcc structure of the photonic crystal. From the optical microscopic image, we find that the opal domain varies from 30 μm to 125 μm in size. In order to relate the observed Bragg peaks with the microscopic arrangement of silica nanospheres, we introduced the scalar wave approximation, where the electric field in the medium is treated as a scalar rather than a vector quantity. It is found that the theoretical prediction of the position of bandgap is in a good agreement with the experimental measurement.

  8. Photonic bandgap structure of 3-D fcc silica nanospheres

    International Nuclear Information System (INIS)

    Woo, Y. K.; Ha, N. Y.; Hwang, Ji Soo; Chang, H. J.; Wu, J. W.

    2002-01-01

    Photonic crystal is an artificial optical material with a periodic dielectric potential, hence exhibiting a bandgap for a propagating electromagnetic wave. We fabricated crystal possessing 3-D fcc opal structure from silica nanospheres. The crystals are self-assembled on a flat glass by evaporating the solvent in the nanosphere suspension at the room temperature. The suspension consists of silica nanospheres with a diameter of 200 nm. The microscopic arrangement of nanospheres is identified by a scanning electron microscope, the resulting structure being fcc.Transmission spectrum of the fabricated photonic crystal in the visible and near-infrared regions is measured at different incident angles to find the distinct Bragg peaks, analysis of which further confirmed the fcc structure of the photonic crystal. From the optical microscopic image, we find that the opal domain varies from 30 μm to 125 μm in size. In order to relate the observed Bragg peaks with the microscopic arrangement of silica nanospheres, we introduced the scalar wave approximation, where the electric field in the medium is treated as a scalar rather than a vector quantity. It is found that the theoretical prediction of the position of bandgap is in a good agreement with the experimental measurement.

  9. Templated Control of Au nanospheres in Silica Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  10. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  11. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  12. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  13. Solid-phase extraction based on a molecularly imprinted polymer nanoshell at the surface of silica nanospheres for the specific enrichment and identification of alkaloids from Crinum asiaticum L. var. sinicum.

    Science.gov (United States)

    Yang, Ruixiang; Zhu, Dong; Wen, Hongmei; Fu, Anchen; Zhao, Zihan; Dai, Guoying; Miao, Zhaoyi; Hu, Yue

    2017-03-01

    A molecularly imprinted nanoshell on the surface of silica nanospheres was prepared for specific enrichment and identification of alkaloids from Crinum asiaticum L. var. sinicum. The nanoshell was synthesized by surface polymerization using lycorine as the template, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2',2-azobisisobutyronitrile as the initiator and acetonitrile as the pore-forming agent. The core-shell nanospheres were characterized by transmission electron microscopy and infrared spectroscopy, and the results show that the nanoshell layer was homogeneously attached to the surface of vinyl-modified SiO 2 nanospheres. The adsorption capacity of the nanospheres was estimated by binding equilibrium and adsorption kinetics experiments. The maximum adsorption amount of lycorine on the nanospheres was 6.68 μmol/g and the imprinting factor was nearly 2.5, indicating a good imprinting effect. The nanospheres were successfully applied in solid-phase extraction for lycorine from Crinum asaticum L. var. sinicum and detection of target molecule in rat metabolites. The average recoveries of lycorine in Crinum asaticum L. var. sinicum extraction and rat metabolites were 93.5 ± 0.6% (n = 3) and 91.6 ± 1.9% (n = 3), respectively. This work provides a simple approach for the fabrication of a molecularly imprinted nanoshell at the surface of silica nanospheres-based solid-phase extraction for drug analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yang; Wu, Chao, E-mail: wuchao27@126.com; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-02-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption.

  15. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    International Nuclear Information System (INIS)

    Qiu, Yang; Wu, Chao; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-01-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption

  16. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  17. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  18. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    International Nuclear Information System (INIS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-01-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO 2 ) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO 2 ). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO 2 /TiO 2 ) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO 2 -Degussa P25 catalyst is detected.

  19. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    Science.gov (United States)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  20. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek; Cha, Dong Kyu; Zhang, Xixiang; Basset, Jean-Marie

    2010-01-01

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek

    2010-08-02

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  3. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin; Hou, Yuanfang; Beaujuge, Pierre

    2015-01-01

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin

    2015-04-21

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Fong-Yu; Chen, Chen-Tai; Yeh, Chen-Sheng, E-mail: csyeh@mail.ncku.edu.t [Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-10-21

    Three Au-based nanomaterials (silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods) were evaluated for their comparative photothermal efficiencies at killing three types of malignant cells (A549 lung cancer cells, HeLa cervix cancer cells and TCC bladder cancer cells) using a CW NIR laser. Photodestructive efficiency was evaluated as a function of the number of nanoparticles required to destroy the cancer cells under 808 nm laser wavelength at fixed laser power. Of the three nanomaterials, silica/Au nanoshells needed the minimum number of particles to produce effective photodestruction, whereas Au nanorods needed the largest number of particles. Together with the calculated photothermal conversion efficiency, the photothermal efficiency rankings are silica-Au nanoshells > hollow Au/Ag nanospheres > Au nanorods. Additionally, we found that HeLa cells seem to present better heat tolerance than the other two cancer cell lines.

  6. Water-soluble ferrocene complexes (WFCs) functionalized silica nanospheres for WFC delivery in HepG2 tumor therapy.

    Science.gov (United States)

    Yan, Saisai; Hu, Fan; Hong, Xia; Shuai, Qi

    2018-09-01

    Silica-encapsulated nanospheres of water-soluble ferrocene complexes WFCs@SiO 2 and WFCs@SiO 2 @glutaraldehyde (GA) were first synthesized by a facile inverse-microemulsion method. The surface functional groups, particle size, and morphologies of nanospheres were characterized by IR spectra, UV-vis absorption spectra, dynamic light scattering (DLS) and SEM images. Single-crystal X-ray diffraction was used to confirm the molecular structure of free ferrocenyl-pyrazol ligand (L) and three WFCs, namely, [Ni(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ] (5a), [Mg(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ]·3H 2 O (5b), and [Ba(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 3 ] (5c). The electrochemical properties of 5a-5c were explored by cyclic voltammetry. The WFCs-loading capacities of 5a-5c in WFCs@SiO 2 were found to be 38.4, 38.2, and 38.1 μg/mg, respectively. Cell studies under two drug delivery modes (free diffusion and endocytosis) were carried out by MTT cell-survival assays and morphological observation of HepG2 cells. It's interesting that the cytotoxicity of WFCs against HepG2 was increased by applying silica nanocarriers. Compared to WFCs@SiO 2 , the modification of GA on the spherical surface provided not only the better water-dispersity but also additional functional groups for further modification of other pharmacophores. The novel nanocarrier system for WFC delivery present a novel concept-of-proof method to protect varieties of affordable metal-based anticancer agents in physiological conditions and provided experimental basis for future studies focusing on drug delivery of other WFCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    Science.gov (United States)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  8. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    Science.gov (United States)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  9. Preparation of hydrophilic magnetic nanospheres with high saturation magnetization

    International Nuclear Information System (INIS)

    Xu Hong; Tong Naihu; Cui Longlan; Lu Ying; Gu Hongchen

    2007-01-01

    Well-defined silica-magnetite core-shell nanospheres were prepared via a modified sol-gel method. Sphere-like magnetite aggregates were obtained as cores of the final nanospheres by assembling in the presence of Tween 20. Characterization by transmission electron microscopy (TEM) showed spherical morphology of the nanospheres with controlled silica shell thickness from 9 to 30 nm, depending on the amount of tetraethoxysilane (TEOS) used. The nanospheres contained up to 41.7 wt% magnetite with a saturation magnetization of 21.8 emu/g. Up to 35 μg/mg of the model biomolecule streptavidin (SA) could be bound covalently to the hydrophilic silica nanospheres

  10. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Enhanced Performance of Mg0.1Zn0.9O UV Photodetectors Using Photoelectrochemical Treatment and Silica Nanospheres

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The Mg0.1Zn0.9O films were grown using atomic layer deposition (ALD system and applied to metal-semiconductor-metal ultraviolet photodetectors (MSM-UPDs as an active layer. To suppress the dangling bonds on the Mg0.1Zn0.9O surface, the photoelectrochemical (PEC treatment was used to passivate the Mg0.1Zn0.9O surface, which could reduce the dark current of the MSM-UPDs about one order. Beside, to increase more incident light into the Mg0.1Zn0.9O active layer of the MSM-UPDs, the 500-nm-diameter silica nanospheres were spin-coated on the Mg0.1Zn0.9O active layer to improve the antireflection capability at the wavelength of 340 nm. The reflectivity of the Mg0.1Zn0.9O films with silica nanospheres antireflection layer decreased about 7.0% in comparison with the Mg0.1Zn0.9O films without silica nanospheres. The photocurrent and UV-visible ratio of the passivated Mg0.1Zn0.9O MSM-UPDs with antireflection layer were enhanced to 5.85 μA and 1.44×104, respectively, at the bias voltage of 5 V. Moreover, the noise equivalent power and the specific detectivity of the passivated Mg0.1Zn0.9O MSM-UPDs with antireflection layer were decreased to 2.60×10-13 W and increased to 1.21×1012 cmHz1/2W−1, respectively, at the bias voltage of 5 V. According to the above mentions, the PEC treatment and silica nanospheres antireflection layer could effectively enhance the performance of Mg0.1Zn0.9O MSM-UPDs.

  12. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    Science.gov (United States)

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  15. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw

    International Nuclear Information System (INIS)

    Hessien, M.M.; Rashad, M.M.; Zaky, R.R.; Abdel-Aal, E.A.; El-Barawy, K.A.

    2009-01-01

    Silica nanoparticles have been prepared through dissolution-precipitation process from rice straw ash (RSA) for different electronic applications. The dissolution of silica from RSA was carried out using alkali leaching process by sodium hydroxide. The precipitation of silica from the produced sodium silicate solution was carried out using sulphuric acid at pH 7. The factors affecting the precipitation process of the sodium silicate solution of dissociated RSA; such as; sodium silicate concentration, sulfuric acid concentration and addition of anionic surfactant (sodium dodecyl sulfate, SDS) on the particle size of the precipitated silica were studied. X-ray diffraction (XRD), X-ray fluorescence (XRF), specific surface area S BET and transmission electron microscope (TEM) have been used for the characterization of the produced nano-silica. The results showed that the optimum conditions of the dissolution efficiency of the silica of about 99% was achieved at 100 deg. C for 4 h, and NaOH/SiO 2 molar ratio three. The particle size of the precipitated silica gel was decreased with increasing Na 2 SiO 3 and SDS concentrations, while H 2 SO 4 concentration had insignificant effect. Particle size of about 16 nm can be achieved at 30% Na 2 SiO 3 , 4% H 2 SO 4 and 200 ppm SDS. The produced silica had 99.93% purity, amorphous and nanosphere particles with narrow size distribution. The produced silica can be used in many applications especially for chemical mechanical polishing (CMP) slurries for semiconductors industries.

  16. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  17. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    International Nuclear Information System (INIS)

    Wanyika, Harrison

    2013-01-01

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol–gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil

  18. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao, E-mail: wuchao27@126.com [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Sun, Xiaohu [Management Center for Experiments, Bohai University, 19 Keji Road, Songshan District, Jinzhou, Liaoning Province 121000 (China); Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Gao, Yu, E-mail: gaoyu_1116@163.com [Department of Medical Oncology, First Affiliated Hospital of Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China)

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement.

  19. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    International Nuclear Information System (INIS)

    Wu, Chao; Sun, Xiaohu; Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying; Gao, Yu

    2014-01-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement

  20. Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay

    International Nuclear Information System (INIS)

    Wu, Long; Li, Xuepu; Shao, Kang; Ye, Shiyi; Liu, Chen; Zhang, Chenjun; Han, Heyou

    2015-01-01

    Boosting the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is significant to the early clinical diagnosis of various diseases. Here, we developed a versatile immunosensor using silica nanospheres as carriers for sensitive detection of porcine circovirus type 2 (PCV2) antibody. With HRP enzyme covalently immobilized on the silica nanospheres and CdSe nanocrystals embedded inside, these signal probes were successfully utilized in the sensitive detection of PCV2 antibody by ELISA, fluorometry and square-wave voltammetry (SWV). To further demonstrate the performance of the immunosensor, Human IgG (HIgG) was used as a model analyte. Since more HRP and CdSe QDs were loaded, 5-, 200- and 400-fold enhancements in amplified ELISA, fluorometry and voltammetry responses for HIgG could be achieved compared to conventional ELISA. The respective detection limits of theses methods for HIgG were 3.9, 0.1 and 0.05 ng mL −1 with a RSD below 5% for amplified ELISA, fluorescence and SWV measurements. Additionally, a 100-fold improvement was obtained in the detection sensitivity for PCV2 antibody immunoassay. The versatile immunosensor exhibits good sensitivity, stability and reproducibility, suggesting its potential applications in clinical diagnostics. - Highlights: • A versatile ELISA-based immunoassay for PCV2 antibody was developed. • Enzyme and CdSe QDs modified SiO 2 particles were used to improve sensitivity. • The simultaneous three ELISA-based techniques enhanced the detection reliability. • The biosensors strategy could provide a new avenue to ELISA-based sensors

  1. Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Li, Xuepu; Shao, Kang; Ye, Shiyi; Liu, Chen; Zhang, Chenjun; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2015-08-05

    Boosting the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is significant to the early clinical diagnosis of various diseases. Here, we developed a versatile immunosensor using silica nanospheres as carriers for sensitive detection of porcine circovirus type 2 (PCV2) antibody. With HRP enzyme covalently immobilized on the silica nanospheres and CdSe nanocrystals embedded inside, these signal probes were successfully utilized in the sensitive detection of PCV2 antibody by ELISA, fluorometry and square-wave voltammetry (SWV). To further demonstrate the performance of the immunosensor, Human IgG (HIgG) was used as a model analyte. Since more HRP and CdSe QDs were loaded, 5-, 200- and 400-fold enhancements in amplified ELISA, fluorometry and voltammetry responses for HIgG could be achieved compared to conventional ELISA. The respective detection limits of theses methods for HIgG were 3.9, 0.1 and 0.05 ng mL{sup −1} with a RSD below 5% for amplified ELISA, fluorescence and SWV measurements. Additionally, a 100-fold improvement was obtained in the detection sensitivity for PCV2 antibody immunoassay. The versatile immunosensor exhibits good sensitivity, stability and reproducibility, suggesting its potential applications in clinical diagnostics. - Highlights: • A versatile ELISA-based immunoassay for PCV2 antibody was developed. • Enzyme and CdSe QDs modified SiO{sub 2} particles were used to improve sensitivity. • The simultaneous three ELISA-based techniques enhanced the detection reliability. • The biosensors strategy could provide a new avenue to ELISA-based sensors.

  2. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells.

    Science.gov (United States)

    Banik, Avishek; Ansari, Mohammad Shaad; Sahu, Tushar Kanta; Qureshi, Mohammad

    2016-10-12

    The present study discusses the design and development of a dye sensitized solar cell (DSSC) using a hybrid composite of ZnO nanoparticles (ZnO NP) and silica nanospheres (SiO 2 NS). A ≈22% enhancement in the overall power conversion efficiency (PCE, η) was observed for the device fabricated with a binary hybrid composite of 1 wt% SiO 2 NS and ZnO NP compared to the pristine ZnO NP device. A systematic investigation revealed the dual function of the silica nanospheres in enhancing the device efficacy compared to the bare ZnO NP based device. Sub-micron sized SiO 2 NS can boost the light harvesting efficiency of the photoanode by optical confinement, resulting in increased propagation length of the incident light by multiple internal reflections, which was confirmed by UV-Vis diffused reflectance spectroscopy. Electrochemical impedance spectroscopic (EIS) analysis showed a reduced recombination of photo-generated electrons to the I - /I 3 - redox shuttle in the case of the composite photoanode. The higher recombination resistance (R ct ) in the case of a 1 wt% composite indicates that the SiO 2 NS serves as a partial energy barrier layer to retard the interfacial recombination (back transfer) of photo-generated electrons at the working electrode/electrolyte interface, increasing the device efficiency.

  3. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  4. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres

    Science.gov (United States)

    Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang

    2017-12-01

    A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.

  6. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.; Sarawade, Pradip B.; Hussain, Irshad; Zhu, Haibo; Al-Johani, Hind; Anjum, Dalaver H.; Hedhili, Mohamed N.; Maity, Niladri; D'Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.

    2016-04-13

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrothermal deposition and characterization of silicon oxide nanospheres

    International Nuclear Information System (INIS)

    Pei, L.Z.

    2008-01-01

    Silicon oxide nanospheres with the average diameter of about 100 nm have been synthesized by hydrothermal deposition process using silicon and silica as the starting materials. The silicon oxide nanospheres were characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectrum, respectively. The results show that large scale silicon oxide nanospheres with the uniform size are composed of Si and O showing the amorphous structure. Strong PL peak at 435 nm is observed demonstrating the good blue light emission property

  9. An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks

    KAUST Repository

    Zou, Houbing

    2014-06-27

    We have developed an organosilane-directed growth-induced etching strategy to prepare hollow periodic mesoporous organosilica (PMO) nanospheres with perpendicular mesoporous channels and a clear hollow interior as well as an amphiphilic framework. This facile strategy is simple, efficient, and highly controllable. Silica nanospheres were utilized as hard templates to obtain hollow PMO nanospheres through a one-step route, with the structure parameter highly controlled by adjusting the synthesis conditions. Different organosilanes were used to obtain bridged hollow PMO nanospheres of different organic groups and showed different directed capacities. The integrity of the bridged organic group was confirmed by Fourier-transform infrared (FT-IR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Transmission electron microscopy (TEM) observations showed that the growth of the PMO shell and the dissolution of the silica nanosphere core occurred simultaneously for each nanosphere, while 29Si NMR spectra revealed that the dissolved silica species from the silica nanospheres transformed into PMO shells by co-condensation with hydrolyzed organosilane oligomers. As a result, the obtained hollow nanospheres were amphiphilic, which can even be used as a particle emulsifier for O-W or W-O emulsion in various systems. These materials can also be served as an efficient sorbent for removal of hydrophobic contaminants in water. Using the proposed formation mechanism, this strategy can be extended to transform silica-coated composite materials into yolk-shell structures with a functional interior core and a perpendicular mesoporous amphiphilic shell. As a nanoreactor, the -Ph- bridged amphiphilic shell showed a faster diffusion rate for organic reactants in water than the hydrophilic silica shell, and thus better catalytic activity for reduction of 4-nitrophenol. This journal is © the Partner Organisations 2014.

  10. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer

    International Nuclear Information System (INIS)

    Cho, Youngnam; Shi, Riyi; Ben Borgens, Richard; Ivanisevic, Albena

    2009-01-01

    In this study, a mesoporous silica nanoparticle (MSN)-based nerve growth factor (NGF) delivery system has been successfully embedded within an electroactive polypyrrol (Ppy). The spherical particles with ∼100 nm diameter possess a large surface-to-volume ratio for the entrapment of NGF into the pores of MSNs while retaining their bioactivity. Direct incorporation of MSN-NGF within Ppy was achieved during electrochemical polymerization. The loading amount and release profile of NGF from the composite was investigated by sandwich ELISA. The NGF incorporation can be controllable by varying particle concentration or by extending electrodeposition time. The morphology and chemical composition of the Ppy/MSN-NGF composite was evaluated by atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). Optical and electron microscopy revealed a characteristic attachment of PC 12 cells and the outgrowth of their neurites when grown on the Ppy/MSN-NGF composite as a result of a sustained and controlled release of NGF. In order to observe the effectiveness of electrical stimulation, neurite extension of cells cultured on unstimulated and stimulated Ppy/MSN-NGF was compared. The NGF release in the presence of electrical stimulation promoted significantly greater neurite extension.

  11. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek; Thivolle-Cazat, Jean; Taoufik, Mostafa; Stoffelbach, Franç ois; Norsic, Sé bastien; Basset, Jean-Marie

    2011-01-01

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    Science.gov (United States)

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  15. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    Science.gov (United States)

    Chi, Hao-Hsin

    This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure

  16. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  17. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite.

    Science.gov (United States)

    Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao

    2015-10-27

    Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability.

  18. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  19. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  20. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  1. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  2. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  3. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.

    Science.gov (United States)

    Bai, Zhiyong; Wang, Jianlong; Yang, Qi

    2018-04-01

    Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.

  4. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  5. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring.

    Science.gov (United States)

    Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V

    2018-07-01

    The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    Science.gov (United States)

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  8. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    Science.gov (United States)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  9. Synthesis of silica nanoparticles for encapsulation of oncology drugs with low water solubility: effect of processing parameters on structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Palacký University Olomouc, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: JBartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-12-15

    Silica nanoparticles with tailored properties have been developed for a variety of biomedical applications, with particular emphasis on their use as carriers for the encapsulation and controlled release of bioactive species. Among the various strategies described, silica nanoparticles with uniform mesoporosity (MSN) prepared in aqueous solution at elevated temperatures using cetyltrimethylammonium bromide as a template have a range of desirable properties. However, the processing windows available to control the dimensions and other key properties of such nanoparticles prepared using fluoride salts as catalysts have not been elucidated, with mixed products containing gel fragments and non-uniform products obtained under many conditions. Here, we present a parametric study of the synthesis of MSN under fluoride-catalysed conditions using tetraethylorthosilicate as silica precursor. The processing conditions required to produce uniform nanoparticles with controlled dimensions are elucidated, together with the conditions under which dried powders can be re-dispersed in aqueous solution after long-term storage to regenerate unaggregated nanospheres with dimensions (as measured by dynamic light scattering) comparable to those measured via scanning electron microscopy analysis of the dried material. The ability to dry and store such powders for extended periods of time is an important requirement for the use of such materials in drug delivery applications. Preliminary results demonstrating the use of such MSNs as hosts for oncology drugs [substituted 3-hydroxyquinolinones (3-HQ)] with low water solubility (≪1 µg/g H{sub 2}O) are presented, with loadings of several wt% demonstrated. The ability of the silica host to protect the 3-HQ from oxidative degradation during impregnation and release is discussed.

  10. Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia

    International Nuclear Information System (INIS)

    Li Hongbo; Ke Fei; An Yanli; Hou Xinxin; Zhang Hao; Lin Mei; Zhang Dongsheng

    2013-01-01

    Eliminating cancer without harming normal body tissue remains a longstanding challenge in medicine. Toward this goal, we prepared nanosized magnetic albumin nanospheres encapsulating magnetic nanoparticles (Fe 3 O 4 ) and antitumor drugs (Gemcitabine, GEM). Magnetic albumin nanospheres (average size ≈ 224 nm) had good magnetic responsiveness upon exposure to an alternating magnetic field even though Fe 3 O 4 was encased in nanospheres. Thermodynamic test showed that Fe 3 O 4 could serve as a heating source under AMF and lead the nanospheres to reach their steady temperature (45 °C). The release results in vitro indicated that nanospheres had an obvious effect of sustained release of GEM. The result of cytotoxicity assay showed that the toxicity of this material was classified as grade 1, which belongs to no cytotoxicity. The antitumor efficacy of the GEM/Fe 3 O 4 albumin nanospheres combined with magnetic fluid hyperthermia on non-small lung cancer cell line GlC-82 was examined by MTT assay and flow cytometry assay. Compared with nanospheres entrapping GEM group, nanospheres entrapping Fe 3 O 4 combined with MFH group, and GEM/Fe 3 O 4 albumin nanospheres without MFH group, the GEM/Fe 3 O 4 albumin nanospheres exhibited enhanced antitumor efficacy. Thus, the GEM/Fe 3 O 4 albumin nanospheres have promising applications in cancer treatment.

  11. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  13. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  14. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  15. Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel Inns

    2007-01-01

    Full Text Available A simplified nanosphere lithography process has been developed which allows fast and low-waste maskings of Si surfaces for subsequent reactive ion etching (RIE texturing. Initially, a positive surface charge is applied to a wafer surface by dipping in a solution of aluminum nitrate. Dipping the positive-coated wafer into a solution of negatively charged silica beads (nanospheres results in the spheres becoming electrostatically attracted to the wafer surface. These nanospheres form an etch mask for RIE. After RIE texturing, the reflection of the surface is reduced as effectively as any other nanosphere lithography method, while this batch process used for masking is much faster, making it more industrially relevant.

  16. Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability

    Science.gov (United States)

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642

  17. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  18. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  19. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  20. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    International Nuclear Information System (INIS)

    Wang Jiexin; Wang Zhihui; Chen Jianfeng; Yun, Jimmy

    2008-01-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N 2 adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 μm, and had a specific surface area of about 306 m 2 /g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties

  1. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    Science.gov (United States)

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    Science.gov (United States)

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  3. Soft-to-hard templating to well-dispersed N-doped mesoporous carbon nanospheres via one-pot carbon/silica source copolymerization

    Institute of Scientific and Technical Information of China (English)

    Qinglu Kong; Lingxia Zhang; Min Wang; Mengli Li; Heliang Yao; Jianlin Shi

    2016-01-01

    Here we report a new approach referred as "softto-hard templating" strategy via the copolymerization of carbon source (dopamine) and silica source (tetraethyl orthosilicate) for the synthesis of well dispersed N-doped mesoporous carbon nanospheres (MCNs),which exhibit high performance for electrochemical supercapacitor.This method overcomes the shortcoming of uncontrolled dispersity and complicated procedures of soft-or hard-tem-plating methods,respectively.Moreover,the synthesized MCNs feature enriched heteroatom N-doping and easy functionalization by noble-metal nanoparticles during the one-pot synthesis.All the above characters make the asprepared MCNs a promising platform in a variety of applications.To demonstrate the applicability of the synthesized nitrogen-doped MCNs,this material has been employed as an electrode for high-performance electrochemical supercapacitor,which shows a capacitance of 223 and 140 F/g at current densities of 0.5 and 10 A/g in 1 mol/L KOH electrolyte,respectively.

  4. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...

  5. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  6. The rheological responds of the superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Xiaohui; Pei, Lei; Xuan, Shouhu, E-mail: xuansh@ustc.edu.cn; Yan, Qifan; Gong, Xinglong, E-mail: gongxl@ustc.edu.cn

    2017-05-01

    In this work, a superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was developed and the influence of the particle structure on the rheological properties was investigated. The Fe{sub 3}O{sub 4} hollow nanospheres which were prepared by using the hydrothermal method presented the superparamagnetic characteristic, and the magnetic fluid thereof showed well magnetorheological (MR) effect. The stable magnetic fluid had a high yield stress even at low shear rate and its maximal yield stress was dramatically influenced by the measurement gap. In comparison to the Fe{sub 3}O{sub 4} nanoparticles based magnetic fluid (MF), the Fe{sub 3}O{sub 4} hollow nanospheres based MF exhibited better MR effect and higher stability since the unique hollow nanostructure. The shear stress of the hollow nanospheres is about 1.85 times larger than the nanoparticles based MF because it formed stronger chains structure under applying a magnetic field. To further investigate the enhancing mechanism, a molecule dynamic simulation was conducted to analyze the shear stress and the structure evolution of the Fe{sub 3}O{sub 4} hollow nanospheres based MF and the simulation matched well with the experimental results. - Highlights: • A superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was investigated. • The stable magnetic fluid had a high yield stress even at low shear rate. • The shear stress of the hollow nanospheres is large. • A molecule dynamic simulation was conducted to analyze the shear stress.

  7. The interaction of encapsulated pharmaceutical drugs with a silica matrix.

    Science.gov (United States)

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; Radtke, Claudio; Baibich, Ione Maluf; dos Santos, João Henrique Z

    2013-03-01

    A series of seven drugs, namely, fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol and tetracycline, were encapsulated. The encapsulated systems were characterized using a series of complementary techniques: Fourier-transform infrared spectroscopy (FT-IR), diffusive reflectance spectroscopy in the UV-vis region (DRS) and X-ray photoelectron spectroscopy (XPS). According to the DRS spectra, most of the encapsulated systems showed a band shift of the maximum absorption when compared with the corresponding bare pharmaceutical. Additionally, after encapsulation, the drugs exhibited infrared band shifts toward higher wavenumbers, which in turn provided insight into potential sites for interaction with the silica framework. The amine group showed a band shift in the spectra of almost all the drugs (except nifedipine and tetracycline). This finding indicates the possibility of a hydrogen bonding interaction between the drug and the silica via electron donation from the amine group to the silica framework. XPS confirmed this interaction between the pharmaceuticals and the silica through the amine group. A correlation was observed between the textural characteristics of the solids and the spectroscopic data, suggesting that the amine groups from the pharmaceuticals were more perturbed upon encapsulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    Science.gov (United States)

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel piroxicam-loaded nanospheres generated by the electrospraying technique: physicochemical characterisation and oral bioavailability evaluation.

    Science.gov (United States)

    Mustapha, Omer; Din, Fakhar Ud; Kim, Dong Wuk; Park, Jong Hyuck; Woo, Kyu Bong; Lim, Soo-Jeong; Youn, Yu Seok; Cho, Kwan Hyung; Rashid, Rehmana; Yousaf, Abid Mehmood; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-06-01

    To determine if a novel electrospraying technique could be applied to an oral drug delivery system for improving the solubility and oral bioavailability of poorly water-soluble piroxicam; the nanospheres were generated with drug and polyvinylpyrrolidone (PVP) using electrospraying technique; and their physicochemical properties, solubility, release and pharmacokinetics were evaluated in comparison with piroxicam powder. All nanospheres had significantly increased drug solubility and dissolution rates in comparison with the drug powder. In particular, the nanosphere composed of piroxicam and PVP at a weight ratio of 2:8 gave about 600-fold higher solubility, 15-fold higher release rate and 3-fold higher AUC in comparison to piroxicam powder, leading to significantly enhanced oral bioavailability in rats, due to the mingled effect of nanonisation along with transformation to the amorphous state. Thus, this electrospraying technique can be utilised to produce a novel oral nanosphere delivery system with enhanced solubility and oral bioavailability for poorly water-soluble piroxicam.

  10. Dynamics of levitated nanospheres: towards the strong coupling regime

    International Nuclear Information System (INIS)

    Monteiro, T S; Millen, J; Pender, G A T; Barker, P F; Marquardt, Florian; Chang, D

    2013-01-01

    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realizing quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regime, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ω M and single-photon optomechanical coupling strength parameters g are a function of the optical field intensities, in contrast to usual set-ups where ω M and g are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r = 20–500 nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use these data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light–matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r ∼> 100 nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes. (paper)

  11. Formulation of Sodium Alginate Nanospheres Containing ...

    African Journals Online (AJOL)

    Patrick Erah

    controlled gellification method and to evaluate the role of the nanospheres as a ... method, and the particle size analysis was carried out by scanning electron ... capacity of sodium alginate was evaluated in terms of drug to polymer ratio.

  12. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2018-05-01

    Full Text Available Osteoarthritis (OA is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrum, X-ray photoelectron spectrum, thermogravimetric analysis and dynamic light scattering techniques to confirm that the phospholipid layer was coated onto the surface of MSNs successfully. A series of tribological tests were performed under different experimental conditions, and the results showed that MSNs@lip with multi-layers of phospholipids greatly reduced the friction coefficient in comparison with MSNs. Additionally, MSNs@lip demonstrated sustained drug release behavior and were biocompatible based on CCK-8 assay using MC3T3-E1 cells. The MSNs@lip developed in the present study, acting as effective lubricating drug nanocarriers, may represent a promising strategy to treat early stage OA by lubrication enhancement and drug delivery therapy.

  13. Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals

    International Nuclear Information System (INIS)

    Wang, Yongming; Chen, Qingde; Shen, Xinghai

    2017-01-01

    Hollow nanospheres (φ: 60-80 nm, wall thickness: 10-20 nm), consisted of UO 2 nanoparticles (φ: 3-5 nm), were successfully prepared in a Triton X-100-water (50:50, w/w) hexagonal lyotropic liquid crystal (LLC) by γ-irradiation, where water soluble ammonium uranyl tricarbonate was added as precursor. The product was stable at least up to 300 C. Furthermore, whether the nanospheres were hollow or not, and the wall thickness of the hollow nanospheres could be easily controlled via adjusting dose rate. While in the Triton X-100 based micellar systems, only solid nanospheres were obtained. At last, a possible combination mechanism containing adsorption, aggregation and fracturing processes was proposed.

  14. Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer

    International Nuclear Information System (INIS)

    Rodrigues, Marcilene M.A.; Simioni, Andreza R.; Primo, Fernando L.; Siqueira-Moura, Marigilson P.; Morais, Paulo C.; Tedesco, Antonio C.

    2009-01-01

    This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS.

  15. Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiriaco, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto [Institute of Clinical Physiology, Bioengineering Division, National Research Council (Italy); Ragusa, Andrea [National Nanotechnology Laboratory of CNR-NANO (Italy); Sbenaglia, Enzo Antonio; Dipaola, Lucia [Institute of Clinical Physiology, Bioengineering Division, National Research Council (Italy); Casciaro, Sergio, E-mail: sergio.casciaro@cnr.it [Istituto di Fisiologia Clinica (CNR-IFC) c/o Campus Universitario Ecotekne, Consiglio Nazionale delle Ricerche (Italy)

    2013-07-15

    Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5-5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.

  16. Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

    International Nuclear Information System (INIS)

    Chiriacò, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto; Ragusa, Andrea; Sbenaglia, Enzo Antonio; Dipaola, Lucia; Casciaro, Sergio

    2013-01-01

    Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5–5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low

  17. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  18. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  19. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

    International Nuclear Information System (INIS)

    Wahba, Sanaa M.R.; Darwish, Atef S.; Shehata, Iman H.; Abd Elhalem, Sahar S.

    2015-01-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe 3 O 4 /SiO 2 composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models

  20. Radiolytic syntheses of hollow UO{sub 2} nanospheres in Triton X-100-based lyotropic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongming; Chen, Qingde; Shen, Xinghai [Peking Univ., Beijing (China). Fundamental Science on Radiochemistry and Radiation Chemistry Lab.

    2017-08-01

    Hollow nanospheres (φ: 60-80 nm, wall thickness: 10-20 nm), consisted of UO{sub 2} nanoparticles (φ: 3-5 nm), were successfully prepared in a Triton X-100-water (50:50, w/w) hexagonal lyotropic liquid crystal (LLC) by γ-irradiation, where water soluble ammonium uranyl tricarbonate was added as precursor. The product was stable at least up to 300 C. Furthermore, whether the nanospheres were hollow or not, and the wall thickness of the hollow nanospheres could be easily controlled via adjusting dose rate. While in the Triton X-100 based micellar systems, only solid nanospheres were obtained. At last, a possible combination mechanism containing adsorption, aggregation and fracturing processes was proposed.

  1. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles—A Platform for Drug Development

    Directory of Open Access Journals (Sweden)

    Henrika Wickström

    2017-11-01

    Full Text Available Mesoporous silica nanoparticles (MSNs have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV and poorly permeable (BCS class III, IV drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI surface functionalized MSNs, as well as drug-free and drug-loaded MSN–PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  2. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.

    Science.gov (United States)

    Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M

    2017-11-21

    Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  3. Micro/Nanospheres Generation by Fluid-Fluid Interaction Technology: A Literature Review.

    Science.gov (United States)

    Lei, Lei; Bergstrom, Don; Zhang, Bing; Zhang, Hongbo; Yin, Ruixue; Song, Ki-Young; Zhang, Wenjun

    2017-01-01

    This review focuses on the fundamental fluid mechanics which governs the generation of micro/nanospheres. The micro/nanosphere generation process has gathered significant attention in the past two decades, since micro/nanospheres are widely used in drug delivery, food science, cosmetics, and other application areas. Many methods have been developed based on different operating principles, such as microfluidic methods, electrospray methods, chemical methods, and so forth. This paper focuses on microfluidic methods. Although the structure of the microfluidic devices may be different, the operating principles behind them are often very similar. Following an initial discussion of the fluid mechanics related to the generation of microspheres, various design approaches are discussed, including T-junction, flow focusing, membrane emulsification, modified T-junction, and double emulsification methods. The advantages and problems associated with each method are also discussed. Next, the most commonly used computational fluid dynamics (CFD) methods are reviewed at three different levels: microscopic, mesoscopic, and macroscopic. Finally, the issues identified in the current literature are discussed, and some suggestions are offered regarding the future direction of technology development related to micro/nanosphere generation. Few relevant patents to the topic have been reviewed and cited. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Sanaa M.R. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt); Darwish, Atef S., E-mail: atef_mouharam@sci.asu.edu.eg [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Shehata, Iman H. [Microbiology and Immunology Department, Faculty of Medicine, Ain-Shams University, Cairo (Egypt); Abd Elhalem, Sahar S. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt)

    2015-03-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe{sub 3}O{sub 4}/SiO{sub 2} composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models.

  5. Development of pH-Dependent Nanospheres for Nebulisation- In vitro Diffusion, Aerodynamic and Cytotoxicity Studies.

    Science.gov (United States)

    Ige, Pradum P; Pardeshi, Sagar R; Sonawane, Raju O

    2018-04-17

    The aim of this work was to evaluate the in vitro performance of nebulized nanosuspension formulation when nebulized using ultrasonic nebulizer. The present investigation deals with successful formulation of Beclomethasone dipropionate loaded HPMCP nanospheres prepared by solvent evaporation technique using PEG 400 as a stabilizer. Beclomethasone dipropionate is a water insoluble drug molecule was encapsulated in HPMCP nanospheres to have pH dependent solubility at basic pH for targeted drug delivery in lung and studied for in vitro cytotoxicity and immediate release capability. The synthesized nanospheres were characterized through drug excipient compatibility, surface topography; mean particle size , zeta potential, PDI, entrapment efficiency and drug loading, in vitro diffusion, aerodynamic, in vitro cytotoxicity and stability studies. The mean particle size and PDI of the optimized batch (F1) had 197.6±0.40 nm and 0.324 ±0.35, respectively. The % entrapment efficiency and % drug loading was found to be 86.56±1.32 and 8.30±0.27, respectively. The optimized batch F1 showed % cumulative drug release 94.77±0.24 at 1 h. The formulation showed cell viability up to 91.28%. It can be concluded that, Beclomethasone dipropionate loaded HPMCP nanospheres was found to be safe, stable with significant increase in solubility and bypass the liver. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats.

    Science.gov (United States)

    Wahba, Sanaa M R; Darwish, Atef S; Shehata, Iman H; Abd Elhalem, Sahar S

    2015-03-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5mg/kg/week for 2.5months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Resorcinol–formaldehyde based carbon nanospheres by ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Chemical Engineering and DST Unit on Nanosciences, Indian Institute of Technology, ... Carbon nanospheres were synthesized using sol–gel processing of organic and ... various process parameters including needle diameter, applied electric ... are various approaches reported in the literature to syn-.

  8. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Karynne Cristina de; Andrade, Gracielle Ferreira [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil); Vasconcelos, Ingrid; Oliveira Viana, Iara Maíra de; Fernandes, Christian [Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Martins Barros de Sousa, Edésia, E-mail: sousaem@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil)

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N{sub 2} adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices. - Highlights: • SBA-15/Fe{sub 3}O{sub 4} was synthesized and functionalized with octadecyltrimethoxysilane. • Magnetite nanoparticles were completely coated by well-ordered mesoporous silica. • The samples were used as sorbent for magnetic solid-phase extraction (MSPE). • The sorbent material was capable of extracting drugs from human plasma. • The extraction ability makes the material a candidate to be employed as MSPE.

  9. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin

    Science.gov (United States)

    Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej

    2018-06-01

    Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.

  10. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  11. Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres

    Science.gov (United States)

    Wang, Xiang; Wang, Gen; Zhang, Ying

    2017-10-01

    Mesoporous bioactive glass (MBG) nanospheres have been synthesized by a facile method of sacrificing template using cetyl trimethyl ammonium bromide (CTAB) as surfactant. The prepared MBG nanospheres possess high specific surface area (632 m2 g-1) as well as uniform size (∼100 nm). In addition, MBG nanospheres exhibited a quick in vitro bioactive response in simulated body fluids (SBF) and excellent bioactivity of inducing hydroxyapatite (HA) forming on the surface of MBG nanospheres. Furthermore, MBG nanospheres can sustain release of doxorubicin (DOX) with a higher encapsulation efficiency (63.6%) and show distinct degradation in PBS by releasing Si and Ca ions. The encapsulation efficiency and DOX release of MBG nanospheres could be controlled by mesoporous structure and local pH environment. The greater surface area and pore volumes of prepared MBG nanospheres are conducive to bioactive response and drug release in vitro. The amino groups in DOX can be easily protonated at acidic medium to become positively charged NH+3, which allow these drug molecules to be desorbed from the surface of MBG nanospheres via electrostatic effect. Therefore, the synthesized MBG nanospheres have a pH-sensitive drug release capability. In addition, the cytotoxicity of MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized MBG nanospheres had no significant cytotoxicity to MC3T3 cells. These all indicated that as-prepared MBG nanospheres are promising candidates for bone tissue engineering.

  12. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  13. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  14. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  15. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model

    International Nuclear Information System (INIS)

    Song Meirong; Song Junling; Ning Aimin; Cui Baoan; Cui Shumin; Zhou Yaobing; An Wankai; Dong Xuesong; Zhang Gege

    2010-01-01

    The aim of this study was to determine the feasibility of using silica sol to carry a hydrophobic drug in aqueous solution. Enrofloxacin, which was selected as the model drug because it is a broad-spectrum antibiotic drug with poor solubility in water, was adsorbed onto silica sol in aqueous solution during cooling from 60 deg. C to room temperature. The drug-loaded silica sol was characterized by transmission electron microscopy, Fourier transform infrared spectrum, thermal gravimetric analysis and ultraviolet-visible light spectroscopy. The results showed that enrofloxacin was adsorbed by silica sol without degradation at a loading of 15.23 wt.%. In contrast to the rapid release from pure enrofloxacin, the drug-loaded silica sol showed a slower release over a longer time. Kinetics analysis suggested the drug release from silica sol was mainly a diffusion-controlled process. Therefore, silica sol can be used to carry a hydrophobic drug in aqueous solution for controlled drug delivery.

  16. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    Science.gov (United States)

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis

    International Nuclear Information System (INIS)

    He, Xiaoyan; Liu, Zhirong; Fan, Fuhong; Qiang, Shenglu; Cheng, Li; Yang, Wu

    2015-01-01

    A smart hollow hybrid system was prepared by introducing poly(2-(1-methylimidazolium 3-yl)-ethyl methacrylate chloride) (PMIMC) network, the temperature-responsive PDMAEMA brushes, and Au nanoparticles into silica nanoparticles through two-step surface-initiated atom transfer radical polymerization. TEM, FTIR, EDX, XRD, XPS, and TGA were used to characterize the morphology and structure of air@PMIMC–PDMAEMA–Au hairy hollow nanospheres. The result showed that Au nanoparticles with an average diameter of 1.5 ± 0.2 nm were homogeneously embedded inside the PMIMC–PDMAEMA shell. Catalytic activity of the as-synthesized air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were investigated using the reduction of 4-nitrophenol with NaBH 4 as a model reaction. It was found that the joint structures of PMIMC hollow nanospheres and PDMAEMA brushes lead to production of the highly active and stable catalyst for reduction of 4-nitrophenol. Furthermore, the obtained air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were found to have a thermally adjustable catalytic activity for the reduction of 4-nitrophenol

  18. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  19. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.

    2016-08-11

    A dispersion system for saturated fluorocarbon (SFC) liquids based on permeable hollow nanospheres with fluorous interiors is described. The nanospheres are well dispersible in water and are capable of immediate uptake of SFCs. The nanosphere shells are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere-stabilized SFC dispersions is demonstrated.

  20. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    Directory of Open Access Journals (Sweden)

    Song Y

    2016-12-01

    Full Text Available Yuanhui Song, Yihong Li, Qien Xu, Zhe Liu Wenzhou Institute of Biomaterials and Engineering (WIBE, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. Keywords: mesoporous silica nanoparticle, drug delivery system, controlled release, stimuli-responsive, chemotherapy

  1. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  2. Characterization of bismuth nanospheres deposited by plasma focus device

    International Nuclear Information System (INIS)

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-01-01

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed

  3. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    Energy Technology Data Exchange (ETDEWEB)

    Luong, T.T., E-mail: thientai.luong@chem.kuleuven.be [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Hanoi National University of Education, Faculty of Chemistry, Xuan Thuy 136, Cau Giay, Hanoi (Viet Nam); Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Locquet, J.-P. [KU Leuven, Department of Physics, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Verbiest, T. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium)

    2016-10-15

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating. - Graphical abstract: The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. - Highlights: • Iron oxide/mesoporous-SiO{sub 2} core-shell NPs were synthesized. • The dye was covalently bound to SiO{sub 2} shells. • The release of dye under magnetothermal heating was studied. • The results are relevant for controlled drug release.

  4. Optimization and application of octadecyl-modified monolithic silica for solid-phase extraction of drugs in whole blood samples.

    Science.gov (United States)

    Namera, Akira; Saito, Takeshi; Ota, Shigenori; Miyazaki, Shota; Oikawa, Hiroshi; Murata, Kazuhiro; Nagao, Masataka

    2017-09-29

    Monolithic silica in MonoSpin for solid-phase extraction of drugs from whole blood samples was developed to facilitate high-throughput analysis. Monolithic silica of various pore sizes and octadecyl contents were synthesized, and their effects on recovery rates were evaluated. The silica monolith M18-200 (20μm through-pore size, 10.4nm mesopore size, and 17.3% carbon content) achieved the best recovery of the target analytes in whole blood samples. The extraction proceeded with centrifugal force at 1000rpm for 2min, and the eluate was directly injected into the liquid chromatography-mass spectrometry system without any tedious steps such as evaporation of extraction solvents. Under the optimized condition, low detection limits of 0.5-2.0ngmL -1 and calibration ranges up to 1000ngmL -1 were obtained. The recoveries of the target drugs in the whole blood were 76-108% with relative standard deviation of less than 14.3%. These results indicate that the developed method based on monolithic silica is convenient, highly efficient, and applicable for detecting drugs in whole blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation, Modification, and Application of Hollow Gold Nanospheres

    Directory of Open Access Journals (Sweden)

    Qiong-Qiong Ren

    2015-01-01

    Full Text Available Hollow gold nanospheres (HGNs have great potential applications in biological sensing, biomedical imaging, photothermal therapy, and drug delivery due to their unique localized surface plasmon resonance (LSPR feature, easy modification, good biocompatibility, and excellent photothermal conversion properties. In this review, the latest developments of HGNs in biosensing, bioimaging, photothermal therapy, and drug delivery are summarized, the synthesis methods, surface modification and bioconjugation of HGNs are also covered in this summary.

  6. Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Meng, Minjia; Song, Zhilong; Gao, Lin; Li, Hongji [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Dai, Jiangdong; Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Chunxiang, E-mail: weixiaokeyan@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Pan, Jianming; Yu, Ping; Yan, Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2014-09-15

    In this study, a simple procedure for the determination of λ-cyhalothrin was reported. CdTe quantum dots (QDs) capped by molecularly imprinted polymers (MIPs) were prepared and characterized by spectrofluorometer, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM) and scanning electron microscope (SEM). Mercaptosuccinic acid (MSA) was chosen as a stabilizer for CdTe QDs synthesis. The MSA stabilizer which comprises both thioglycolic acid (TGA)-like and 3-mercaptopropionic acid (MPA)-like moieties could accelerate the whole growth process of CdTe QDs comparing with TGA-like or MPA-like stabilizer. Meanwhile, the spectrofluorometer was used to evaluate the optical stability, effect of pH, and selective and sensitive determination of λ-cyhalothrin (LC). Moreover, LC could quench the fluorescence of the molecularly imprinted silica nanospheres (CdTe@SiO{sub 2}@MIPs) in a concentration-dependent manner, which was best described by a Stern–Volmer-type equation. - Highlights: • We choose Mercaptosuccinic acid (MSA) as the stabilizer for CdTe QDs synthesis. • The composite materials were prepared by the reverse microemulsion method. • The composite materials can be used for the direct analysis of relevant real samples.

  7. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  8. Cavity Cooling a Single Charged Levitated Nanosphere

    Science.gov (United States)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  9. Precision force sensing with optically-levitated nanospheres

    Science.gov (United States)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  10. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. The synthesis and application involving regulation of the insoluble drug release from mesoporous silica nanotubes

    International Nuclear Information System (INIS)

    Li, Jia; Wang, Yan; Zheng, Xin; Zhang, Ying; Sun, Changshan; Gao, Yikun; Jiang, Tongying; Wang, Siling

    2015-01-01

    Highlights: • Mesoporous silica nanotubes (SNT) were synthesized by using CNT as hard template, and the formation of the SNT shows that CTAB played a significant effect on the coating process. • The tube mesoporous silica materials which were seldom reported were applied in the drug delivery system to improve the loading amount and the drug dissolution. • The release rate could be controlled by the gelatin layer on the silica surface and the mechanism was illustrated. - Abstract: Mesoporous silica nanotubes (SNT) were synthesized using hard template carbon nanotubes (CNT) with the aid of cetyltrimethyl ammonium bromide (CTAB) in a method, which was simple and inexpensive. Scanning electron microscopy, transmission electron microscopy and specific surface area analysis were employed to characterize the morphology and structure of SNT, and the formation mechanism of SNT was also examined by Fourier transform infrared spectroscopy. There are few published reports of the mesoporous SNT with large specific surface area applied in the drug delivery systems to improve the amount of drug loading. In addition, the structure of SNT allows investigators to control the drug particle size in the pore channels and significantly increase the drug dissolution rate. The insoluble drug, cilostazol, was chosen as a model drug to be loaded into SNT and we developed a simple and efficient method for regulating the drug release by using a gelatin coating with different thicknesses around the SNT. The release rate was adjusted by the amount of gelatin surrounding the SNT, with an increased barrier leading to a reduction in the release rate. A model developed on the basis of the Weibull modulus was established to fit the release results

  13. Formulation of Sodium Alginate Nanospheres Containing ...

    African Journals Online (AJOL)

    Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a “passive carrier” in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled ...

  14. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  15. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  16. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box-Behnken design.

    Science.gov (United States)

    Sukhbir, S; Yashpal, S; Sandeep, A

    2016-09-01

    Nefopam hydrochloride (NFH) is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS) were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 3 5 Box-Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetric (DSC) and X-ray diffraction (XRD) affirmed absence of drug-polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE) 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL) 21.41 ± 0.89. Dynamic light scattering (DLS), zeta potential analysis and scanning electron microscopy (SEM) validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI) model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior ( p  accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10 -4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  17. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia

    2014-01-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates...... as NO donors, respectively. The nanospheres have spherical outline with dimension of ~ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching...

  18. Tyrosine-derived polycarbonate-silica xerogel nanocomposites for controlled drug delivery.

    Science.gov (United States)

    Costache, M C; Vaughan, A D; Qu, H; Ducheyne, P; Devore, D I

    2013-05-01

    Biodegradable polymer-ceramic composites offer significant potential advantages in biomedical applications where the properties of either polymers or ceramics alone are insufficient to meet performance requirements. Here we demonstrate the highly tunable mechanical and controlled drug delivery properties accessible with novel biodegradable nanocomposites prepared by non-covalent binding of silica xerogels and co-polymers of tyrosine-poly(ethylene glycol)-derived poly(ether carbonate). The Young's moduli of the nanocomposites exceed by factors of 5-20 times those of the co-polymers or of composites made with micron scale silica particles. Increasing the fraction of xerogel in the nanocomposites increases the glass transition temperature and the mechanical strength, but decreases the equilibrium water content, which are all indicative of strong non-covalent interfacial interactions between the co-polymers and the silica nanoparticles. Sustained, tunable controlled release of both hydrophilic and hydrophobic therapeutic agents from the nanocomposites is demonstrated with two clinically significant drugs, rifampicin and bupivacaine. Bupivacaine exhibits an initial small burst release followed by slow release over the 7 day test period. Rifampicin release fits the diffusion-controlled Higuchi model and the amount released exceeds the dosage required for treatment of clinically challenging infections. These nanocomposites are thus attractive biomaterials for applications such as wound dressings, tissue engineering substrates and stents. Published by Elsevier Ltd.

  19. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes

    Directory of Open Access Journals (Sweden)

    Giuseppe Quero

    2018-02-01

    Full Text Available In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS optical fiber sensor devices (optrodes, as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate and inter-sample (i.e., between regions of different substrates repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5 was found to be the

  20. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Li, Xiaoqiang, E-mail: leecaiwei@163.com [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Chronakis, Ioannis S. [Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Ge, Mingqiao [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China)

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ∼ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. - Highlights: • QDs-mHP-NO fluorescent probe was prepared. • The QDs-mHP-NO probe is capable of releasing NO. • The QDs-mHP-NO probe can quantitatively detecting the release of NO in real time. • The low cell-toxicity of QDs-mHP-NO nanospheres was verified.

  1. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2017-09-01

    Full Text Available Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9 was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  2. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  3. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    International Nuclear Information System (INIS)

    Lopez, Tessy; Ortiz, Emma; Meza, Doraliz; Basaldella, Elena; Bokhimi, Xim; Magana, Carlos; Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier

    2011-01-01

    Research highlights: → Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. → Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. → Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. → The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. → There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO 2 ). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N 2 adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO 2 tubes than in mesoporous silica matrix.

  4. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    scattering. Our aim is to promote heteroaggregation with functionalized silica nanoparticles while minimizing homoaggregation of silica-silica or gold-gold species. Reproducible production of multiple gold nanospheres about a dye-doped silica nanoparticle should lead to dramatic fluorescence brightness enhancements in solution. Gold nanorods can potentially be used to establish radiationless energy transfer between hetero dye-doped silica nanoparticles via gold nanorod plasmon mediated FRET by aggregating two different dye-doped silica nanoparticles preferentially at opposite ends of the nanorod. End-cap binding is accomplished by tuning the strength of gold binding ligands that functionalize the surface of the silica nanoparticles. The gold nanorod can then theoretically serve as a waveguide by employing the longitudinal plasmon as a non-radiative energy transfer agent between the two different fluorophores, giving rise to a new ultrafast signaling paradigm. Heteroaggregation of dye-doped silica nanoparticles and gold nanorods can be potentially employed to as nano waveguides. Construction and aggregation of functionalized silica and gold nano-materials provides an opportunity to advance the field of fluorescence. The synthesis of gold nano-particles allows control over their size and shape, which give rise to useful optical and electronic properties. Silica nanoparticles provide a framework allowing control over a requisite distance for increasing beneficial and deceasing non-radiative dye-metal interactions as well fluorophore protection. Our aim is to take advantage of fine-tuned synthetic control of functionalized nanomaterials to realize the great potential of solution based metal-enhanced fluorescence for future applications.

  5. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis

    International Nuclear Information System (INIS)

    Chen, Da; Wang, Dongfang; Ge, Qisheng; Ping, Guangxing; Fan, Meiqiang; Qin, Laishun; Bai, Liqun; Lv, Chunju; Shu, Kangying

    2015-01-01

    In this work, graphene-wrapped ZnO nanospheres (ZnO–graphene nanocomposites) were prepared by a simple facile lyophilization method, followed by thermal treatment process. ZnO nanospheres with the size of about 100–400 nm, composed of numerous nanocrystals with hexagonal wurtzite structure, were well separated from each other and wrapped with transparent graphene sheets. Compared to ZnO nanospheres, the ZnO–graphene nanocomposites showed a significant enhancement in the photodegradation of methylene blue. This enhanced photocatalytic activity could be attributed to their favorable dye-adsorption affinity and increased optical absorption as well as the efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. Thus, this work could provide a facile and low-cost method for the development of graphene-based nanocomposites with promising applications in photocatalysis, solar energy conversion, sensing, and so on. - Highlights: • Graphene-wrapped ZnO nanospheres were prepared by a facile lyophilization method. • ZnO nanospheres were separated from each other and wrapped with 2D graphene sheets. • Graphene-wrapped ZnO nanospheres exhibited superior photocatalytic activities. • The photocatalytic mechanisms of graphene-wrapped ZnO nanospheres were discussed

  6. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Da, E-mail: dchen_80@hotmail.com [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Wang, Dongfang; Ge, Qisheng; Ping, Guangxing [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Fan, Meiqiang, E-mail: fanmeiqiang@126.com [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Qin, Laishun [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Bai, Liqun [School of Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300 (China); Lv, Chunju; Shu, Kangying [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-01-01

    In this work, graphene-wrapped ZnO nanospheres (ZnO–graphene nanocomposites) were prepared by a simple facile lyophilization method, followed by thermal treatment process. ZnO nanospheres with the size of about 100–400 nm, composed of numerous nanocrystals with hexagonal wurtzite structure, were well separated from each other and wrapped with transparent graphene sheets. Compared to ZnO nanospheres, the ZnO–graphene nanocomposites showed a significant enhancement in the photodegradation of methylene blue. This enhanced photocatalytic activity could be attributed to their favorable dye-adsorption affinity and increased optical absorption as well as the efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. Thus, this work could provide a facile and low-cost method for the development of graphene-based nanocomposites with promising applications in photocatalysis, solar energy conversion, sensing, and so on. - Highlights: • Graphene-wrapped ZnO nanospheres were prepared by a facile lyophilization method. • ZnO nanospheres were separated from each other and wrapped with 2D graphene sheets. • Graphene-wrapped ZnO nanospheres exhibited superior photocatalytic activities. • The photocatalytic mechanisms of graphene-wrapped ZnO nanospheres were discussed.

  7. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    Science.gov (United States)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  8. Integrating nanosphere lithography in device fabrication

    Science.gov (United States)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  9. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.M.

    2011-01-01

    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a

  10. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications.

    Science.gov (United States)

    Ni, Dalong; Jiang, Dawei; Ehlerding, Emily B; Huang, Peng; Cai, Weibo

    2018-03-20

    As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124 I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes ( 64 Cu, 89 Zr, 18 F, 68 Ga, 124 I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO 2 ), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper

  11. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  12. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: foziaics@yahoo.com [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmed, Khalid; Airoldi, Claudio [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Gaisford, Simon; Buanz, Asma [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Rahim, Abdur; Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil)

    2017-03-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m{sup 2} g{sup −1}. The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  13. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    International Nuclear Information System (INIS)

    Rehman, Fozia; Ahmed, Khalid; Airoldi, Claudio; Gaisford, Simon; Buanz, Asma; Rahim, Abdur; Muhammad, Nawshad; Volpe, Pedro L.O.

    2017-01-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m 2 g −1 . The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  14. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  15. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  16. Sliding behavior of oil droplets on nanosphere stacking layers with different surface textures

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Wu, Fang-Lin; Chen, Wei-Yu

    2010-01-01

    Two facile coating techniques, gravitational sediment and spin coating, were applied for the creation of silica sphere stacking layers with different textures onto glass substrates that display various sliding abilities toward liquid drops with different surface tensions, ranged from 25.6 to 72.3 mN/m. The resulting silica surface exhibits oil repellency, long-period durability > 30 days, and oil sliding capability. The two-tier texture offers a better roll-off ability toward liquid drops with a wide range of γ L , ranged from 30.2 to 72.3 mN/m, i.e., when the sliding angle (SA) ad ) appears to describe the sliding behavior within the W ad region: 2.20-3.03 mN/m. The smaller W ad , the easier drop sliding (i.e., the smaller SA value) takes place on the surfaces. The W ad value ∼3.03 mN/m shows a critical kinetic barrier for drop sliding on the silica surfaces from stationary to movement states. This work proposes a mathematical model to simulate the sliding behavior of oil drops on a nanosphere stacking layer, confirming the anti-oil contamination capability.

  17. In Situ Loading of Drugs into Mesoporous Silica SBA-15.

    Science.gov (United States)

    Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua

    2016-04-25

    In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation.

    Science.gov (United States)

    Zhang, Ning; Zhao, Fenfang; Zou, Qianli; Li, Yongxin; Ma, Guanghui; Yan, Xuehai

    2016-11-01

    Tumor-responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein-based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross-linking and surface polyethylene glycol coupling, can be used as versatile tumor-responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6-encapsulated nanospheres (Ce6-Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6-Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6-Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6-Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6-Ns and the biocompatibility of Ce6-Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.

  20. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment

    International Nuclear Information System (INIS)

    Yang, Ke-Ni; Zhang, Chun-Qiu; Wang, Wei; Wang, Paul C.; Zhou, Jian-Ping; Liang, Xing-Jie

    2014-01-01

    In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanoparticles, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail

  1. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    International Nuclear Information System (INIS)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-01-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications

  2. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    Science.gov (United States)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-02-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.

  3. Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2015-01-01

    Full Text Available Novel nanocomposite containing fullerenol nanoparticles (FNP and porous silica nanoparticles (PSNs was constructed and characterized. The capability of FNP to serve as a pore-capping agent and for entrapping 9-aminoacridine (9-AA inside the pores of the PSN material was also demonstrated. Nitrogen sorption measurements evidence the successful capping of the silica pores while thermogravimetric analysis of FNP loaded PSN indicates the existence of pore-loaded fullerenol molecules. Higher amount of the drug release was noted by exposing the material to weakly acidic conditions in comparison to physiological pH, which may find application in targeted treatment of weakly acidic tumor tissues.

  4. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  5. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  6. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  7. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Kaminski, M. D.; Chen, H.; Torno, M.; Taylor, L.; Rosengart, A. J.; Univ. of Chicago

    2007-05-14

    The objective of this study was to develop high magnetization, biodegradable/biocompatible polymer-coated magnetic nanospheres for biomedical applications. Magnetic spheres were prepared by a modified single oil-in-water emulsion-solvent evaporation method utilizing highly-concentrated hydrophobic magnetite and poly(d,l lactide-co-glycolide) (PLGA). Hydrophobic magnetite prepared using oleic acid exhibited high magnetite concentrations (84 wt.%) and good miscibility with biopolymer solvents to form a stable oily suspension. The oily suspension was then emulsified within an aqueous solution containing poly(vinyl alcohol). After rapid evaporation of the organic solvent, we obtained solid magnetic nanospheres. We characterized these spheres in terms of external morphology, microstructure, size and zeta potential, magnetite content and distribution within the nanospheres, and magnetic properties. The results showed good encapsulation where the magnetite distorted the smooth surface morphology only at the highest magnetite concentrations. The mean diameter was 360-370 nm with polydispersity indices of 0.12-0.20. We obtained high magnetite content (40-60%) and high magnetization (26-40 emu/g). The high magnetization properties were obtained while leaving sufficient polymer to retain drugs making these biodegradable spheres suitable as a potential platform for the design of magnetically-guided drug delivery and other in vivo biomagnetic applications.

  8. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    Science.gov (United States)

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  9. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  10. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjuan [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Qiu, Jianhui, E-mail: qiu@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Feng, Huixia [College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Zang, Limin; Sakai, Eiichi [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan)

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase.

  11. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    International Nuclear Information System (INIS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-01-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase

  12. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  13. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Science.gov (United States)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  14. Nanocasting synthesis of co-doped In{sub 2}O{sub 3}: a 3D diluted magnetic semiconductor composed of nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ni; Li, Jing; Hong, Bo; Jin, Dingfeng; Peng, Xiaoling; Wang, Xinqing; Ge, Hongliang; Jin, Hongxiao, E-mail: hxjin@cjlu.edu.cn, E-mail: hxjin5704@qq.com [China Jiliang University, Zhejiang Province Key Laboratory of Magnetism, College of Materials Science and Engineering (China)

    2015-04-15

    Mesoporous 3D nanosphere arrays of In{sub 2−x}Co{sub x}O{sub 3} (x = 0, 0.01, 0.03, 0.05, and 0.07) were synthesized via nanocasting using the mesoporous silica LP-FDU-12 as a hard template. The mesostructure, morphology, optical properties, and magnetic properties of the materials were determined. The diameter of the nanospheres was about 15–22 nm, and the nanospheres stacked into 0.5–5 μm arrays (particles). The data revealed that the Co ions entered the lattice of the In{sub 2}O{sub 3} bixbyite phase leading to a reduction of the cell parameter. The result also demonstrated that the size of the mesostructured ordering was approximately the same as the particle diameter. Moreover, the optical band gap of Co-doped In{sub 2}O{sub 3} decreased monotonically with the increase of Co concentration and the room-temperature photoluminescence was also observed. The un-doped In{sub 2}O{sub 3} exhibited a ferromagnetic behavior superimposed on a diamagnetic background, while the doped In{sub 2}O{sub 3} displayed a room-temperature ferromagnetic behavior superimposed on a paramagnetic background, which may be correlated with the surface texture of the mesostructure. The mesoporous diluted magnetic semiconductors may find their applications in spintronic nanodevices because of their 3D uniform arrangement of nanospheres and their room-temperature ferromagnetic behavior.

  15. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design

    Directory of Open Access Journals (Sweden)

    S. Sukhbir

    2016-09-01

    Full Text Available Nefopam hydrochloride (NFH is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 35 Box–Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetric (DSC and X-ray diffraction (XRD affirmed absence of drug–polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL 21.41 ± 0.89. Dynamic light scattering (DLS, zeta potential analysis and scanning electron microscopy (SEM validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior (p < 0.05 as compared to free NFH over 10 h indicating sustained action. Long term and accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10−4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  16. Effect of Pore Size on the Carbon Dioxide Adsorption Behavior of Porous Liquids Based on Hollow Silica.

    Science.gov (United States)

    Shi, Ting; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong

    2018-01-05

    Porous liquids are an expanding class of material that has huge potential in gas separation and gas adsorption. Pore size has a dramatic influence on the gas adsorption of porous liquids. In this article, we chose hollow silica nanoparticles as cores, 3-(trihydroxysilyl)-1-propanesulfonic acid (SIT) as corona, and inexpensive industrial reagent polyether amine (M2070) as canopy to obtain a new type of porous liquids. Hollow silica nanospheres with different pore sizes were chosen to investigate the influence of porosity size on CO 2 adsorption capacity of porous liquids. Their chemical structure, morphology, thermal behavior and possible adsorption mechanism are discussed in detail. It was proved that with similar grafting density, porous liquid that has bigger pore size possesses a better CO 2 adsorption capacity (2.182 mmol g -1 under 2.5 MPa at 298 K). More than that, this article demonstrates a more facile and low-cost method to obtain porous liquids with good CO 2 adsorption capacity, recyclability, and huge variability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Amorphous silica maturation in chemically weathered clastic sediments

    Science.gov (United States)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  18. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water

    International Nuclear Information System (INIS)

    Milja, Thazhathuparambil Elias; Prathish, Krishnapillai Padmajakumari; Prasada Rao, Talasila

    2011-01-01

    Graphical abstract: Surface imprinted nanospheres synthesized by modified precipitation polymerization method offer higher retention capacity and imprinting coefficients for removal of uranium from natural waters. - Abstract: Imprinted polymer nanospheres for uranium were prepared by complexing uranyl ion on to quinoline-8-ol functionalized 3-aminopropyltrimethoxysilane modified silica nanoparticles followed by surface imprinting with 4-VP (4-vinyl pyridine), HEMA (2-hydroxy ethyl methacrylate) and EGDMA (ethylene glycol dimethacrylate) as the functional monomers and cross linking agent respectively with AIBN (2,2'-azo-bis-isobutyronitrile) as initiator and 2-methoxyethanol as the porogen. Non-imprinted polymer material was also prepared under similar conditions omitting uranyl ion. The above materials were used for solid phase extraction of uranium. Recent realization that its chemical toxicity is dominant than radiation hazards makes decontamination a relevant topic for environmental point of view, particularly in the light of projected global thrust for uranium fuel based atomic power plants. The material offers high retention capacity of 97.1 μmol g -1 for 10 mg L -1 of uranium that does not require tedious grinding and sieving steps, is water compatible and works in the pH range of 5-7, making it ideal for possible use in decontamination of polluted natural water samples or front end effluents of nuclear power reactors.

  19. Fabrication and characterization of DNA-loaded zein nanospheres.

    Science.gov (United States)

    Regier, Mary C; Taylor, Jessica D; Borcyk, Tyler; Yang, Yiqi; Pannier, Angela K

    2012-12-02

    Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and microspheres. The hydrophobic nature of zein resulted in

  20. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Zhao, Qinfu; Geng, Hongjian; Wang, Ying; Gao, Yikun; Huang, Jiahao; Wang, Yan; Zhang, Jinghai; Wang, Siling

    2014-11-26

    A redox-responsive delivery system based on colloidal mesoporous silica (CMS) has been developed, in which 6-mercaptopurine (6-MP) was conjugated to vehicles by cleavable disulfide bonds. The oligosaccharide of hyaluronic acid (oHA) was modified on the surface of CMS by disulfide bonds as a targeting ligand and was able to increase the stability and biocompatibility of CMS under physiological conditions. In vitro release studies indicated that the cumulative release of 6-MP was less than 3% in the absence of glutathione (GSH), and reached nearly 80% within 2 h in the presence of 3 mM GSH. Confocal microscopy and fluorescence-activated cell sorter (FACS) methods were used to evaluate the cellular uptake performance of fluorescein isothiocyanate (FITC) labeled CMS, with and without oHA modification. The CMS-SS-oHA exhibited a higher cellular uptake performance via CD44 receptor-mediated endocytosis in HCT-116 (CD44 receptor-positive) cells than in NIH-3T3 (CD44 receptor-negative) cells. 6-MP loaded CMS-SS-oHA exhibited greater cytotoxicity against HCT-116 cells than NIH-3T3 cells due to the enhanced cell uptake behavior of CMS-SS-oHA. This study provides a novel strategy to covalently link bioactive drug and targeting ligand to the interiors and exteriors of mesoporous silica to construct a stimulus-responsive targeted drug delivery system.

  1. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  2. Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Enrichi, F.; Ricco, R.; Scopece, P.; Parma, A.; Mazaheri, A. R.; Riello, P.; Benedetti, A.

    2010-01-01

    In this study, we report the comparison between Eu 3+ -doped silica nanoparticles synthesized by Stoeber method using Eu(NO 3 ) 3 or Eu(acac) 3 as precursors. The impact of different europium species on the properties of the final silica nanospheres is investigated in details in terms of size, morphology, reachable doping amount, and luminescence efficiency. Moreover, the results obtained for different thermal treatments are presented and discussed. It is shown that the organic complex modify the silica growing process, leading to bigger and irregular nanoparticles (500-800 nm) with respect to the perfectly spherical ones (400 nm) obtained by the nitrate salt, but their luminescence intensity and lifetime is significantly higher when 800-900 o C annealing is performed.

  3. Controlled drug release from bifunctionalized mesoporous silica

    Science.gov (United States)

    Xu, Wujun; Gao, Qiang; Xu, Yao; Wu, Dong; Sun, Yuhan; Shen, Wanling; Deng, Feng

    2008-10-01

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

  4. Optical response of Lorentzian nanospheres in the quasistatic limit

    Energy Technology Data Exchange (ETDEWEB)

    Guelen, Demet, E-mail: dgul@metu.edu.tr [Physics Department, Middle East Technical University, Ankara 06531 (Turkey)

    2012-03-15

    Significance of the Lorentzian dispersion relationship in controlling the optical response of the nanospheres surrounded by a homogeneous non-absorbing dielectric medium is examined. Nanospheres with size much smaller than the wavelength of the incident light are considered as prototype systems that can cover the generic optical response of Lorentzian nanoparticles. Absorption cross-section of the Lorentzian nanospheres is treated in the quasistatic approximation of classical electrodynamics and the resulting optical resonance is evaluated in terms of its dependencies on the parameters of the system. It has been illustrated that the underlying dispersion governs both the amount and the direction of the shift experienced by the optical resonance of nanospheres. Contrary to Drude nanospheres (well-known red shifters), Lorentzian nanospheres are shown to be blue shifters of the optical resonance. The amount of blue shift is dominated by the increase in the oscillator strength of the nanosphere material. Embedding media with higher dielectric constant and/or materials with larger high frequency dielectric constant lead to a suppression of the amount of blue shift induced by the oscillator strength. Further quantification of the blue shift characteristics against the red shift characteristics of Drude nanospheres is provided. The results can be instrumental for manipulating the optical response of plexcitonic nanophotonic devices. - Highlights: Black-Right-Pointing-Pointer Optical resonance of Lorentzian nanospheres (LNS) is examined for the first time. Black-Right-Pointing-Pointer LNS are shown to be blue shifters of the nanoparticle (NP) resonance. Black-Right-Pointing-Pointer This is opposite of the well-studied response of Drude NP (red-shifters). Black-Right-Pointing-Pointer Nanoscale optical response of the two cases is compared in depth. Black-Right-Pointing-Pointer The results are imperative for manipulating the optical response of exciton-plasmon hybrid NPs.

  5. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  6. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots

    Science.gov (United States)

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng

    2011-01-01

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627

  7. In vitro⿿in vivo performance of bare and drug loaded silica gel synthesized via optimized process parameters

    Science.gov (United States)

    Chakraborty, Suparna; Biswas, Supratim

    2016-01-01

    Silica xerogel as a potential drug carrier system for the in vivo as well as in vitro delivery of andrographolide was tested. The present study aims to optimize the effective experimental parameters; volume of ethanol, volume of water and drying temperature by applying response surface methodology coupled with Box⿿Behnken experimental design. The in vitro drug release in simulated body fluid at 37 οC from the selected formulation was significantly highest (44.83 ± 0.9%) among rest of the formulations. Results indicate that sol⿿gel method is useful for entrapping andrographolide in the silica gel and for releasing the same via diffusion through the porous matrix under the in vitro/in vivo conditions. Silica gel exhibited slow matrix degradation as well as sustained release of andrographolide within the experimental time frame of 168 h. In vivo study was performed with three increasing doses [2 mg (S1), 8 mg (S2), and 16 mg (S3)] of silica. Histological fates of different organs were executed with those doses.

  8. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H [Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan [Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Guturu, Praveen [Department of Internal Medicine, UTMB, Galveston, TX 77555 (United States); Frost, Megan C, E-mail: patra.chittaranjan@mayo.edu, E-mail: patra.chitta@gmail.com [Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-07-30

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  9. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    International Nuclear Information System (INIS)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H; Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan; Guturu, Praveen; Frost, Megan C

    2010-01-01

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  10. A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe{sub 2}O{sub 4} nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Penchal, E-mail: reddy@nimte.ac.cn [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Zhou, X.B.; Du, S.; Huang, Q. [Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, Zhejiang, RP China (China)

    2015-08-15

    Mesoporous CoFe{sub 2}O{sub 4} nanospheres with an average size of 180 nm were fabricated via a facile hydrothermal process using ethylene glycol as solvent and sodium acetate (NaAc) as electrostatic stabilizer. In this method, ethylene glycol plays a vital role in the formation of cobalt nanoospheres as a solvent and reducing agent. The structure and morphology of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nanospheres exhibited ferromagnetic properties with high saturation magnetization value of about 60.19 emu/g at room temperature. The BET surface area of the nanospheres was determined using the nitrogen absorption method. The porous CoFe{sub 2}O{sub 4} nanospheres displayed good magnetic properties, which may provide a very promising candidate for their applications in target drug delivery. - Highlights: • CoFe{sub 2}O{sub 4} nanospheres were prepared by hydrothermal synthesis for the first time. • Average grain size was found to be 180 nm. • Its structural, morphological, magnetic behavior was studied. • TEM observations confirmed the spherical morphology of the mesoporous ferrites.

  11. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    Science.gov (United States)

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  12. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems

    International Nuclear Information System (INIS)

    Chen, Yu-Cheng; Huang, Xin-Chun; Luo, Yun-Ling; Chang, Yung-Chen; Hsieh, You-Zung; Hsu, Hsin-Yun

    2013-01-01

    The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances. (review)

  13. The contribution of polystyrene nanospheres towards the crystallization of proteins.

    Directory of Open Access Journals (Sweden)

    Johanna M Kallio

    Full Text Available BACKGROUND: Protein crystallization is a slow process of trial and error and limits the amount of solved protein structures. Search of a universal heterogeneous nucleant is an effort to facilitate crystallizability of proteins. METHODOLOGY: The effect of polystyrene nanospheres on protein crystallization were tested with three commercial proteins: lysozyme, xylanase, xylose isomerase, and with five research target proteins: hydrophobins HFBI and HFBII, laccase, sarcosine dimethylglycine N-methyltransferase (SDMT, and anti-testosterone Fab fragment 5F2. The use of nanospheres both in screening and as an additive for known crystallization conditions was studied. In screening, the addition of an aqueous solution of nanosphere to the crystallization drop had a significant positive effect on crystallization success in comparison to the control screen. As an additive in hydrophobin crystallization, the nanospheres altered the crystal packing, most likely due to the amphiphilic nature of hydrophobins. In the case of laccase, nanospheres could be used as an alternative for streak-seeding, which insofar had remained the only technique to produce high-diffracting crystals. With methyltransferase SDMT the nanospheres, used also as an additive, produced fewer, larger crystals in less time. Nanospheres, combined with the streak-seeding method, produced single 5F2 Fab crystals in shorter equilibration times. CONCLUSIONS: All in all, the use of nanospheres in protein crystallization proved to be beneficial, both when screening new crystallization conditions to promote nucleation and when used as an additive to produce better quality crystals, faster. The polystyrene nanospheres are easy to use, commercially available and close to being inert, as even with amphiphilic proteins only the crystal packing is altered and the nanospheres do not interfere with the structure and function of the protein.

  14. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2015-01-01

    Full Text Available The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics, which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  15. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.

    Science.gov (United States)

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  16. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  17. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  18. Synthesis and Characterization of Highly Sensitive Hydrogen (H2 Sensing Device Based on Ag Doped SnO2 Nanospheres

    Directory of Open Access Journals (Sweden)

    Zhaorui Lu

    2018-03-01

    Full Text Available In this paper, pure and Ag-doped SnO2 nanospheres were synthesized by hydrothermal method and characterized via X-ray powder diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive spectroscopy (EDS, and X-ray photoelectron spectra (XPS, respectively. The gas sensing performance of the pure, 1 at.%, 3 at.%, and 5 at.% Ag-doped SnO2 sensing devices toward hydrogen (H2 were systematically evaluated. The results indicated that compared with pure SnO2 nanospheres, Ag-doped SnO2 nanospheres could not only decrease the optimum working temperature but also significantly improve H2 sensing such as higher gas response and faster response-recovery. Among all the samples, the 3 at.% Ag-doped SnO2 showed the highest response 39 to 100 μL/L H2 at 300 °C. Moreover, its gas sensing mechanism was discussed, and the results will provide reference and theoretical guidance for the development of high-performance SnO2-based H2 sensing devices.

  19. Kinetic and theoretical studies of novel biodegradable thermo-sensitive xerogels based on PEG/PVP/silica for sustained release of enrofloxacin

    Science.gov (United States)

    Ebadi, Azra; Rafati, Amir Abbas; Bavafa, Sadeghali; Mohammadi, Masoumah

    2017-12-01

    This study involves the synthesis of a new silica-based colloidal hybrid system. In this new hybrid system, poly (ethylene glycol) (PEG) and thermo-sensitive amphiphilic biocompatible poly (vinyl pyrrolidone) (PVP) were used to create suitable storage for hydrophobic drugs. The possibility of using variable PVP/PEG molar ratios to modulate drug release rate from silica nanoparticles was a primary goal of the current research. In addition, an investigation of the drug release kinetic was conducted. To achieve this, silica nanoparticles were synthesized in poly (ethylene glycol) (PEG) and poly (vinyl pyrrolidone) (PVP) solution incorporated with enrofloxacin (EFX) (as a model hydrophobic drug), using a simple synthetic strategy of hybrid materials which avoided waste and multi-step processes. The impacts of PVP/PEG molar ratios, temperature, and pH of the release medium on release kinetic were investigated. The physicochemical properties of the drug-loaded composites were studied by Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). In vitro drug release studies demonstrated that the drug release rate, which was evaluated by analyzing the experimental data with seven kinetic models in a primarily non-Fickian diffusion-controlled process, aligned well with both Ritger-Peppas and Sahlin-Peppas equations.

  20. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  1. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  2. Mn(ii) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo

    Science.gov (United States)

    Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang

    2015-07-01

    Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy.Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in

  3. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  4. One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts

    Science.gov (United States)

    Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang

    2018-03-01

    Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.

  5. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  6. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    Science.gov (United States)

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)(3)(2+)-encapsulated silica nanosphere labels.

    Science.gov (United States)

    Qian, Jing; Zhou, Zhenxian; Cao, Xiaodong; Liu, Songqin

    2010-04-14

    Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)(3)(2+)-encapsulated silica nanoparticle (SiO(2)@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO(2)@Ru nanoparticles. The as-synthesized SiO(2)@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)(3)(2+) inside the silica shell and of alpha-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)(3)(2+) into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)(3)(2+) and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)(3)(2+). The as-synthesized SiO(2)@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL(-1) with linear relation from 0.05 to 20 ng mL(-1) and a detection limit of 0.035 ng mL(-1) at 3sigma. The resulting immunosensors possess high sensitivity and good analytical performance. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    Science.gov (United States)

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  9. Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Eum, Chul; Hun; Choi, Seong Ho; Kim, Woon Jung [Dept. of Chemistry, Hannam University, Daejeon (Korea, Republic of)

    2016-11-15

    Silica nanoparticles were synthesized by emulsion polymerization by mixing ethanol, ammonium hydroxide, water, and tetraethyl orthosilicate. An apparatus was designed and assembled for a large-scale synthesis of silica nanospheres, which was aimed for uniform mixing of the reactants. Then sedimentation field-flow fractionation (SdFFF) was used to determine the size distribution of the silica nanoparticles. SdFFF provided mass-based separation where the retention time increased with the particle size, thus the size distribution of silica nanoparticles obtained from SdFFF appeared more accurate than that from dynamic light scattering, particularly for those having broad and multimodal size distributions. A disk-shaped porous carbon membrane (PCM) was manufactured for application as an adsorbent by pressurizing the silica particles, followed by calcination. Results showed that PCM manufactured in this study has relatively high surface area and temperature stability. The PCM surface was modified by attaching a carboxyl group (PCM-COOH) and then by incorporating silver (PCM-COOH-Ag). The amount of COOH group on PCM was measured electrochemically by cyclic voltammetry, and the surface area, pore size, pore volume of PCM-COOH-Ag by Brunauer–Emmet–Teller measurement. The surface area was 40.65 and reduced to 13.02 after loading a COOH group then increased up to 30.37 after incorporating Ag.

  10. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    Science.gov (United States)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  11. Fabrication and characterization of DNA-loaded zein nanospheres

    Directory of Open Access Journals (Sweden)

    Regier Mary C

    2012-12-01

    Full Text Available Abstract Background Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated

  12. Poly(furfuryl alcohol) nanospheres: a facile synthesis approach ...

    Indian Academy of Sciences (India)

    poly(furfuryl alcohol) (PFA) nanospheres with an average diameter of 350 nm in the presence of poly(vinyl pyrroli- done) (PVP) ... with metal cations and subsequent conversion to metal oxide ... 2.2 Preparation of α-Fe2O3 hollow nanospheres.

  13. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  14. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  15. Influence of silica nanospheres on corrosion behavior of magnesium matrix syntactic foam

    Science.gov (United States)

    Qureshi, W.; Kannan, S.; Vincent, S.; Eddine, N. N.; Muhammed, A.; Gupta, M.; Karthikeyan, R.; Badari, V.

    2018-04-01

    Over the years, the development of Magnesium alloys as biodegradable implants has seen significant advancements. Magnesium based materials tend to provide numerous advantages in the field of biomedical implants over existing materials such as titanium or stainless steel. The present research focuses on corrosive behavior of Magnesium reinforced with different volume percentages of Hollow Silica Nano Spheres (HSNS). These behaviors were tested in two different simulated body fluids (SBF) namely, Hank’s Buffered Saline Solution (HBSS) and Phosphate Buffered Solution (PBS). This corrosion study was done using the method of electrochemical polarization with a three-electrode configuration. Comparative studies were established by testing pure Mg which provided critical information on the effects of the reinforcing material. The HSNS reinforced Mg displayed desirable characteristics after corrosion experiments; increased corrosion resistance was witnessed with higher volume percentage of HSNS.

  16. Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Lugo, Madeline [University of Puerto Rico, Mayagueez Campus, Department of Chemical Engineering (United States); Peppas, Nicholas A. [Purdue University, NSF Program on Therapeutic and Diagnostic Devices, School of Chemical Engineering (United States)], E-mail: peppas@ecn.purdue.edu

    2002-04-15

    Novel complexation hydrogel nanospheres of poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) were prepared by dispersion polymerization to be used for protein delivery applications. Polymerization was conducted in solvents such as deionized water, ethanol/water, sodium hydroxide, hydrochloric acid, and acetic acid solutions. When polymerizing in deionized water we produced nanospheres without agglomeration. Photon correlation spectroscopy studies revealed that the nanospheres possessed a narrow particle size distribution and the size was inversely proportional to the concentration of poly(ethylene glycol) incorporated in the monomer mixture. These nanospheres exhibited pH-sensitivity comparable to that encountered in hydrogel films with the same composition. The composition of the nanospheres was investigated by transmission Fourier transform infrared spectroscopy. The comparison between hydrogel films and nanospheres with the same monomer composition revealed that nanospheres possessed similar spectral characteristics than hydrogel films prepared by the same techniques. These nanospheres could be used for calcitonin release under physiological conditions.

  17. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications

    Science.gov (United States)

    Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.

    2018-05-01

    Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.

  18. MnO{sub 2}-wrapped hollow graphitized carbon nanosphere electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jing; Yang, Xing; Zhou, Haiyan; Kang, Liping; Lei, Zhibin [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062 (China); School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Zong-Huai, E-mail: zhliu@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062 (China); School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-01-15

    Highlights: • MnO{sub 2}/HGC nanospheres are prepared by a cooperative template wrapping method. • MnO{sub 2}/HGC nanospheres possess large specific surface area. • MnO{sub 2}/HGC nanospheres are benefit for transmission of ions and electrons. • MnO{sub 2}/HGC electrodes exhibit a high specific capacitance. - Abstract: MnO{sub 2}-wrapped hollow graphitized carbon nanospheres (MnO{sub 2}/HGC) electrodes are prepared by a cooperative template wrapping method. hollow Graphitized carbon nanospheres (HGC) are firstly obtained by carbonizing phenolic resin followed by etching the SiO{sub 2} template, then the MnO{sub 2} ultrathin nanoplates are coated on the surfaces of the HGC nanospheres through a redox reaction between KMnO{sub 4} and HGC nanospheres. The as-prepared MnO{sub 2}/HGC hollow nanospheres possess porous structure and large specific surface area (∼230 m{sup 2} g{sup −1}). The specific capacitances of MnO{sub 2}/HGC nanosphere electrodes with different mass ratios of MnO{sub 2} to HGC are about 340–380 F g{sup −1} at a scan rate of 5 mV s{sup −1} in Na{sub 2}SO{sub 4} solution, and shows relative good cycling performance of the initial capacitance after 1000 cycles. The good specific capacitance is ascribed to the novel hollow nanosphere structure, which possesses high surface-to-volume ratio, and makes it easy for the mass diffusion of electrolyte and transmission of ions and electrons and also maintains the mechanical integrality.

  19. Characterization of Polycaprolactone and Rice Husk Silica Composite (PCL-SiO2) by E-Spinning to Apply Supporter for Drug Release

    Science.gov (United States)

    Song, Sinae; Hilonga, Askwar; Taik Kim, Hee

    2018-03-01

    Polycaprolactone (PCL) is an interesting material to apply biomedical field owing to its biodegradability and biocompatibility which is suitable for a specific site with longer healing times. Blending the polymer with other materials has degradation property improved with the effective and economic method. This study was conducted to fabricate supporter based on Polycaprolactone and Rice husk silica (PCL-SiO2) by using electrospinning. Nano-porous silica in the composite was synthesized from rice husk having properties of economic, eco-friendly and high surface area. It drew to enhance the amount of drug loading in the carrier. Electrospinning technique is used to fabricate fibrous component by optimization condition obtained from previous mechanical properties experiments. Release experiment was carried out by the degree of dye absorbance at 544nm by ultraviolet–visible spectroscopy, the RhB in SiO2 alternative drug for modelling of drug release was released for 1 ~ 20 days at 37°C in phosphate buffer. Furthermore, the Mechanical property was confirmed by DSC, TGA. Morphology and degree of biodegradation were shown as SEM images and EDS.

  20. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  1. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.

    Science.gov (United States)

    Ali, Gomaa A M; Divyashree, A; Supriya, S; Chong, Kwok Feng; Ethiraj, Anita S; Reddy, M V; Algarni, H; Hegde, Gurumurthy

    2017-10-17

    Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD. They were later fabricated into electrodes for cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy testing. The specific capacitances were found to be 300, 265 and 175 F g -1 in 5 M KOH electrolyte for carbon nanospheres synthesized at 800, 700 and 500 °C, respectively. These are on a par with those of prior electrodes made of biologically derived carbon nanospheres but the cycle lives were remarkably higher than those of any previous efforts. The electrodes showed 94% capacitance retention even after 5200 charge/discharge cycles entailing excellent recycling durability. In addition, the practical symmetrical supercapacitor showed good electrochemical behaviour under a potential window up to 1.7 V. This brings us one step closer to fabricating a commercial green electrode which exhibits high performance for supercapacitors. This is also a waste to wealth approach based carbon material for cost effective supercapacitors with high performance for power storage devices.

  2. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  3. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    Science.gov (United States)

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  6. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method

    Science.gov (United States)

    Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting

    2006-07-01

    The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.

  7. Self-reduction and size controlled synthesis of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-02-01

    A facile, self-reduction and size controlled synthesis method has been explored to fabricate silver nanoparticles (Ag NPs) on carbon nanosphere (CNs) under mild conditions. Without using predeposition of seed metals and reducing agent, a uniform and complete layer of Ag NPs was formed through grafting a molecular layer on CNs surfaces under UV irradiation. The size and thickness of Ag NPs were effectively tuned by adjusting the UV irradiation time. This direct formation of Ag NPs was attributed to self seed in aqueous Ag(NH3)2+ complex solution through a triazine-based silane coupling agent molecular layer, even at 25 °C. Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to characterize the Ag NPs' properties. A substantial conductivity improvement of prepared Ag NPs on carbon nanosphere was demonstrated. The presented method is simple and environmentally friendly and thus should be of significant value for the industrial fabrication of Ag NPs on carbon nanosphere in conduct electricity paint and coating applications.

  8. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    Science.gov (United States)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  9. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    Science.gov (United States)

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  10. Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Xinyue Huang

    2014-01-01

    Full Text Available In this study we have investigated the suitability of a number of different mesoporous silica nanoparticle structures for carrying a drug cargo. We have fully characterized the nanoparticles in terms of their physical parameters; size, surface area, internal pore size and structure. These data are all required if we are to make an informed judgement on the suitability of the structure for drug delivery in vivo. With these parameters in mind, we investigated the loading/ unloading profile of a model therapeutic into the pore structure of the nanoparticles. We demonstrate that the release can be controlled by capping the pores on the nanoparticles to achieve temporal control of the unloading. We have also examined the rate and mechanism of the degradation of the nanoparticles over an extended period of time. The eventual dissolution of the nanoparticles after cargo release is a desirable property for a drug delivery system.

  11. Increasing the dissolution rate and oral bioavailability of the poorly water-soluble drug valsartan using novel hierarchical porous carbon monoliths.

    Science.gov (United States)

    Zhang, Yanzhuo; Che, Erxi; Zhang, Miao; Sun, Baoxiang; Gao, Jian; Han, Jin; Song, Yaling

    2014-10-01

    In the present study, a novel hierarchical porous carbon monolith (HPCM) with three-dimensionally (3D) ordered macropores (∼ 400 nm) and uniform accessible mesopores (∼ 5.2 nm) was synthesized via a facile dual-templating technique using colloidal silica nanospheres and Poloxamer 407 as templates. The feasibility of the prepared HPCM for oral drug delivery was studied. Valsartan (VAL) was chosen as a poorly water-soluble model drug and loaded into the HPCM matrix using the solvent evaporation method. Scanning electron microscopy (SEM) and specific surface area analysis were employed to characterize the drug-loaded HPCM-based formulation, confirming the successful inclusion of VAL into the nanopores of HPCM. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) demonstrated that the incorporated drug in the HPCM matrix was in an amorphous state and the VAL formulation exhibited good physical stability for up to 6 months. In vitro tests showed that the dissolution rate of HPCM-based formulation was increased significantly compared with that of crystalline VAL or VAL-loaded 3D ordered macroporous carbon monoliths (OMCMs). Furthermore, a pharmacokinetic study in rats demonstrated about 2.4-fold increase in oral bioavailability of VAL in the case of HPCM-based formulation compared with the commercially available VAL preparation (Valzaar(®)). These results therefore suggest that HPCM is a promising carrier able to improve the dissolution rate and oral bioavailability of the poorly water-soluble drug VAL. Copyright © 2014. Published by Elsevier B.V.

  12. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need...... to understand the mechanism and variables of dry amorphisation. Method: Ibuprofen (IBU) and Syloid® silica at different ratios were co-milled at variable milling times between 1 and 90 min. The interaction with; and amorphisation of IBU; on Syloid® silica was analyzed using SEM, FTIR, DSC and XRD. The co...

  13. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Zhang, Ying [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China. (China); Zhao, Qinfu, E-mail: zqf021110505@163.com [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China)

    2016-10-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  14. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    International Nuclear Information System (INIS)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua; Zhang, Ying; Zhao, Qinfu; Wang, Siling

    2016-01-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  15. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  16. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods

    Directory of Open Access Journals (Sweden)

    Tatjana Momić

    2016-01-01

    Full Text Available Organophosphorus pesticide dimethoate was adsorbed onto gold nanospheres and nanorods in aqueous solution using batch technique. Adsorption of dimethoate onto gold nanoparticles was confirmed by UV-Vis spectrophotometry, TEM, AFM, and FTIR analysis. The adsorption of nanospheres resulted in aggregation which was not the case with nanorods. Nanoparticles adsorption features were characterized using Langmuir and Freundlich isotherm models. The Langmuir adsorption isotherm was found to have the best fit to the experimental data for both types of nanoparticles. Adsorption capacity detected for nanospheres is 456 mg/g and for nanorods is 57.1 mg/g. Also, nanoparticles were successfully used for dimethoate removal from spiked drinking water while nanospheres were shown to be more efficient than nanorods.

  17. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha

    2015-05-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  18. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha; Katsiev, Habib; AlYami, Noktan; Anjum, Dalaver H.; Khan, Waheed S.; Hussain, Irshad

    2015-01-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  19. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  20. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  1. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Polypropylene Nano composites Obtained by In Situ Polymerization Using Metallocenes Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology

    International Nuclear Information System (INIS)

    Zapata, P.; Quijada, R.

    2012-01-01

    Polypropylene nano composites containing silica nanospheres based on the sol-gel methods were produced via in situ polymerization using a rac-Et(Ind) 2 ZrCl 2 /methylaluminoxane (MAO) system. Two different routes were used depending on the interaction between the silica nanoparticles with the catalytic system. In route 1 the nanoparticles were added together with the catalytic system (rac-Et(Ind) 2 ZrCl 2 )/(MAO) directly into the reactor, and in route 2 the metallocenes rac-Et(Ind) 2 ZrCl 2 was supported on silica nanospheres pretreated with (MAO). SEM images show that when the nanospheres were added by both routes, they were replicated in the final polymer particle morphology; this phenomenon was more pronounced for PP obtained by route 2. The polypropylene (PP) nano composites obtained by both routes had a slightly higher percent crystallinity and crystallinity temperatures than pure PP. Transmission electron microscopy (TEM) images show that the nanospheres were well dispersed into the polypropylene matrix, particularly in the nano composites obtained by the support system (route 2).

  3. Polypropylene Nanocomposites Obtained by In Situ Polymerization Using Metallocene Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology

    Directory of Open Access Journals (Sweden)

    Paula Zapata

    2012-01-01

    Full Text Available Polypropylene nanocomposites containing silica nanospheres based on the sol-gel methods were produced via in situ polymerization using a rac-Et(Ind2ZrCl2/methylaluminoxane (MAO system. Two different routes were used depending on the interaction between the silica nanoparticles with the catalytic system. In route 1 the nanoparticles were added together with the catalytic system (rac-Et(Ind2ZrCl2/(MAO directly into the reactor, and in route 2 the metallocene rac-Et(Ind2ZrCl2 was supported on silica nanospheres pretreated with (MAO. SEM images show that when the nanospheres were added by both routes, they were replicated in the final polymer particle morphology; this phenomenon was more pronounced for PP obtained by route 2. The polypropylene (PP nanocomposites obtained by both routes had a slightly higher percent crystallinities and crystallinity temperatures than pure PP. Transmission electron microscopy (TEM images show that the nanospheres were well dispersed into the polypropylene matrix, particularly in the nanocomposites obtained by the support system (route 2.

  4. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  5. One-pot synthesis of redox-responsive polymers-coated mesoporous silica nanoparticles and their controlled drug release.

    Science.gov (United States)

    Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan

    2013-09-01

    A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    Science.gov (United States)

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.

  7. Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2018-01-01

    Full Text Available Vitrimers represent a new class of smart materials. They are covalently crosslinked like thermosets, yet they can be reprocessed like thermoplastics. The underlying mechanism is the rapid exchange reactions which form new bonds while breaking the old ones. So far, heating is the most widely used stimulus to activate the exchange reaction. Compared to heating, light not only is much more convenient to achieve remote and regional control, but can also offer fast healing. Gold nanospheres are excellent photothermal agents, but they are difficult to disperse into vitrimers as they easily aggregate. In this paper, we use polydopamine to prepare gold nanospheres. The resultant polydopamine-coated gold nanospheres (GNS can be well dispersed into epoxy vitrimers, endowing epoxy vitrimers with light responsivity. The composites can be reshaped permanently and temporarily with light at different intensity. Efficient surface patterning and healing are also demonstrated.

  8. Ferroelectric behavior of a lead titanate nanosphere due to depolarization fields and mechanical stresses

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Landeta, J.; Lascano, I.

    2017-07-01

    A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)

  9. Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

    Science.gov (United States)

    Xie, Min; Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Pang, Dai-Wen

    2012-01-01

    Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.

  10. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  11. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs).

    Science.gov (United States)

    Tran, Vy Anh; Lee, Sang-Wha

    2018-01-15

    This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  13. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres

    KAUST Repository

    Yang, Miaoxin

    2010-01-01

    Understanding the mechanism of nanoparticle self-assembly is of critical significance for developing synthetic strategies for complex nanostructures. By encapsulating aggregates of Au nanospheres in shells of polystyrene-block- poly(acrylic acid), we prevent the dissociation and aggregation typically associated with the drying of solution samples on TEM/SEM substrates. In our study of the salt-induced aggregation of 2-naphthalenethiol-functionalized Au nanospheres in DMF, the trapping of the solution species under various experimental conditions permits new insights in the mechanism thereof. We provide evidence that the spontaneous linear aggregation in this system is a kinetically controlled process and hence the long-range charge repulsion at the "transition state" before the actual contact of the Au nanospheres is the key factor. Thus, the charge repulsion potential (i.e. the activation energy) a nanosphere must overcome before attaching to either end of a nanochain is smaller than attaching on its sides, which has been previously established. This factor alone could give rise to the selective end-on attachment and lead to the linear assembly of originally isotropic Au nanospheres. © 2010 the Owner Societies.

  14. Poly(NIPAM-co-MPS-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2017-05-01

    Full Text Available Hybrid drug delivery systems (DDS have been prepared by grafting poly(NIPAM-co-MPS chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature (LCST of the copolymer. The results have revealed that due to the presence of small diameter (~1.3 nm micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.

  15. Nanosphere Lithography of Chitin and Chitosan with Colloidal and Self-Masking Patterning

    Directory of Open Access Journals (Sweden)

    Rakkiyappan Chandran

    2018-02-01

    Full Text Available Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up” processes. We demonstrated that a synthetic “top-down” fabrication technique—nanosphere lithography—generates surfaces of chitin or chitosan that mimic the arrangement of nanostructures found on the surface of certain insect wings and eyes. Chitin and chitosan are flexible and biocompatible abundant natural polymers, and are a sustainable resource. The fabrication of nanostructured chitin and chitosan materials enables the development of new biopolymer materials. Finally, we demonstrated that another property of chitin and chitosan—the ability to self-assemble nanosilver particles—enables a novel and powerful new tool for the nanosphere lithographic method: the ability to generate a self-masking thin film. The scalability of the nanosphere lithographic technique is a major limitation; however, the silver nanoparticle self-masking enables a one-step thin-film cast or masking process, which can be used to generate nanostructured surfaces over a wide range of surfaces and areas.

  16. Enriching PMMA nanospheres with adjustable charges as novel templates for multicolored dye-PMMA nanocomposites

    International Nuclear Information System (INIS)

    Wang Xumei; Xu Shuping; Xu Weiqing; Liang Chongyang; Li Hongrui; Sun Fei

    2011-01-01

    Multicolored fluorescent dye loaded PMMA nanospheres were synthesized by the electrostatic adsorption of dye molecules on the charged PMMA nanospheres, whose charges were adjusted by choosing different initiators. The charged PMMA nanospheres have a wider capacity and advantage for combining the charged dyes. The fluorescent dye-PMMA composite nanospheres possess the advantages of higher brightness, longer lifetime and stronger resistance to photobleaching relative to dye molecules. Dye leakage remained lower than 5% over one week. These fluorescent nanospheres have been used in biological labels in cell imaging. They can easily stain blood cancer cells without further surface modification.

  17. Synthesis of magnetic hollow silica using polystyrene bead as a template

    International Nuclear Information System (INIS)

    Wu, W.; Caruntu, D.; Martin, A.; Yu, M.H.; O'Connor, C.J.; Zhou, W.L.; Chen, J.-F.

    2007-01-01

    In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe 3 O 4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe 3 O 4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe 3 O 4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe 3 O 4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine

  18. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  19. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  20. One-by-one imprinting in two eccentric layers of hollow core-shells: Sequential electroanalysis of anti-HIV drugs.

    Science.gov (United States)

    Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali

    2018-07-15

    Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  2. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    Science.gov (United States)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  3. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma

    2018-04-20

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance. The computational method used is the finite-difference time-domain method. The advantages of this approach include simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

  4. Pore fabrication in various silica-based nanoparticles by controlled etching

    KAUST Repository

    Zhao, Lan

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  5. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy){sub 3}{sup 2+}-encapsulated silica nanosphere labels

    Energy Technology Data Exchange (ETDEWEB)

    Qian Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Zhou Zhenxian [Nanjing Second Hospital, Nanjing, 210003 (China); Cao Xiaodong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Liu Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2010-04-14

    Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy){sub 3}{sup 2+}-encapsulated silica nanoparticle (SiO{sub 2}-Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO{sub 2}-Ru nanoparticles. The as-synthesized SiO{sub 2}-Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy){sub 3}{sup 2+} inside the silica shell and of {alpha}-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy){sub 3}{sup 2+} into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy){sub 3}{sup 2+} and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy){sub 3}{sup 2+}. The as-synthesized SiO{sub 2}-Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL{sup -1} with linear relation from 0.05 to 20 ng mL{sup -1} and a detection limit of 0.035 ng mL{sup -1} at 3{sigma}. The resulting immunosensors possess high sensitivity and good analytical performance.

  6. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  7. Preparation of a novel KCC-1/nylon 6 nanocomposite via electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Aghakhani, Ali [Material and Energy Research Center, Department of Semiconductors (Iran, Islamic Republic of); Kazemi, Ensiyeh; Kazemzad, Mahmood, E-mail: m-kazemzad@merc.ac.ir [Material and Energy Research Center, Department of Energy (Iran, Islamic Republic of)

    2015-10-15

    In this research, a novel nanofibrous composite of KCC-1/nylon 6 was prepared using electrospinning techniques. First, fibrous silica nanospheres (KCC-1) were synthesized via conventional polycondensation method with a new solvent system. The scanning electron microscopy (SEM) images showed a spongy spherical morphology with a uniform distribution of particle sizes and an average diameter of around 305 nm. Synthesized KCC-1 nanospheres are considered as mesoporous materials due to their high BET specific surface area of 576 m{sup 2} g{sup −1} and BJH average pore diameter of 3.28 nm. The KCC-1/nylon 6 composite was fabricated by preparing a dispersion of nanosilica (10–50 % w/w) in a solution of nylon 6 (15 % w/v) in formic acid. Upon applying a high voltage, the nonwoven electrospun KCC-1/nylon 6 composite nanofibers were obtained. The KCC-1 nanospheres were arranged in line along the nylon 6 fibers like rosary beads wrapped in the polymer. Based on the SEM images, we obtained a well-distributed nanocomposite even at higher silica content. The prepared KCC-1/nylon 6 composite showed 29–55 % higher BET specific surface area compared with pure nylon 6 nanofibers which makes it a good candidate to be used as a sorbent material for environmental or drug delivery applications.

  8. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  9. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  10. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    Science.gov (United States)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this

  11. Bio-inspired nanobowl/nanoball structures fabricated via solvent etching/swelling on nanosphere assembly patterns

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wan-Yi; Liu, Pang-Hsin; Wu, You [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Chung, Yi-Chang, E-mail: ycchung@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    Ordered self-assembled nanopatterns have attracted much attention for their ability to mimic moth-eye structures and display unique optical properties. In the study, emulsifier-free emulsion polymerization was performed to prepare polystyrene nanospheres with uniform size distribution. Various hydrophilic monomers were added to copolymerize with styrene, including 2-hydroxyethyl methacrylate, acrylic acid, and methyl acrylic acid, respectively, to enhance the self-assembling ability of nanospheres. The nanosphere suspension was injected into an air–water interface to self-assemble a nanosphere array, and then the resulting photonic crystal film was deposited on a substrate using a scooping transfer technique. The layer-by-layer scooping transfer technique can be applied to produce 2D and 3D assembled nanosphere layers on an area as large as a 4-inch wafer. The pattern of the 2D nanosphere array was attached to a UV-curable precursor surface and then encapsulated and transferred to the crosslinked resin after UV irradiation. The sample was then immersed into some solvents which could partially swell the resin surface to produce nanoball structures or etch the surface to generate nanobowl structures. The size of the as-prepared polystyrene spheres was about 360 nm, while the feature size of the nanoballs was about 230 nm after undergoing acetonitrile swelling. The facile and inexpensive technique can be applied to produce ordered nanoball patterns for various applications, such as optical coatings, superhydrophobic coatings, biophotosensors, antireflection films, dry adhesives, and so on. - Highlights: • We prepared core-shell PS nanosphere suspensions with narrow-size-distribution. • We employed a scooping technique to fabricate large-area nanosphere monolayers. • Swelling by acetonitrile formed nanoballs on a UV resin/nanosphere laminated layer. • Etching by toluene produced nanobowl on the UV resin/nanosphere laminated layer. • The parted nanoball

  12. Controlled synthesis of mesoporous β-Ni(OH)2 and NiO nanospheres with enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Xing, Shengtao; Wang, Qian; Ma, Zichuan; Wu, Yinsu; Gao, Yuanzhe

    2012-01-01

    Highlights: ► Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH) 2 and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH) 2 and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  13. Size effect of PLGA spheres on drug loading efficiency and release profiles

    NARCIS (Netherlands)

    Dawes, G.J.S.; Fratila-Apachitei, L.E.; Mulia, K.; Apachitei, I.; Witkamp, G.J.; Duszczyk, J.

    2009-01-01

    Drug delivery systems (DDS) based on poly (lactide-co-glycolide) (PLGA) microspheres and nanospheres have been separately studied in previous works as a means of delivering bioactive compounds over an extended period of time. In the present study, two DDS having different sizes of the PLGA spheres

  14. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  15. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  16. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  17. Detection of Methanol with Fast Response by Monodispersed Indium Tungsten Oxide Ellipsoidal Nanospheres.

    Science.gov (United States)

    Wang, Chong; Kou, Xueying; Xie, Ning; Guo, Lanlan; Sun, Yanfeng; Chuai, Xiaohong; Ma, Jian; Sun, Peng; Wang, Yue; Lu, Geyu

    2017-05-26

    Indium tungsten oxide ellipsoidal nanospheres were prepared with different In/W ratios by using a simple hydrothermal method without any surfactant for the first time. Sensors based on different In/W ratios samples were fabricated, and one of the samples exhibited better response to methanol compared with others. High content of defective oxygen (Ov) and proper output proportion of In to W might be the main reasons for the better gas sensing properties. The length of the nanosphere was about 150-200 nm, and the width was about 100 nm. Various techniques were applied to investigate the nanospheres. Sensing characteristics toward methanol were investigated. Significantly, the sensor exhibited ultrafast response to methanol. The response time to 400 ppm methanol was no more than 2 s and the recovery time was 9 s at 312 °C. Most importantly, the humidity almost had no effect on the response of the sensor fabricated here, which is hard to achieve in gas-sensing applications.

  18. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  19. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas; Fatieiev, Yevhen; Julfakyan, Khachatur; Lu, Jie; Emwas, Abdelhamid; Anjum, Dalaver; Omar, Haneen; Tamanoi, Fuyuhiko; Zink, Jeffrey; Khashab, Niveen M.

    2016-01-01

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a

  20. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N. Sanjeeva [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Zhang, Zheng [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Borsadia, Siddharth [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Kohn, Joachim [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA

    2018-01-01

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  1. Nanoparticle and nanosphere mask for etching of ITO nanostructures and their reflection properties

    International Nuclear Information System (INIS)

    Xu, Cigang; Deng, Ligang; Holder, Adam; Bailey, Louise R.; Proudfoot, Gary; Thomas, Owain; Gunn, Robert; Cooke, Mike; Leendertz, Caspar; Bergmann, Joachim

    2015-01-01

    Au nanoparticles and polystyrene nanospheres were used as mask for plasma etching of indium tin oxide (ITO) layer. By reactive ion etching (RIE) processes, the morphology of polystyrene nanospheres can be tuned through chemical or physical etching, and Au nanoparticle mask can result in ITO nanostructures with larger aspect ratio than nanosphere mask. During inductively coupled plasma (ICP) processes, Au nanoparticle mask was not affected by the thermal effect of plasma, whereas temperature of the substrate was essential to protect nanospheres from the damaging effect of plasma. Physical bombardment in the plasma can also modify the nanospheres. It was observed that under the same process conditions, the ratio of CH 4 and H 2 in the process gas can affect the etching rate of ITO without completely etching the nanospheres. The morphology of ITO nanostructures also depends on process conditions. The resulting ITO nanostructures show lower reflection in a spectral range of 400-1000 nm than c-Si and conventional antireflection layer of SiN x film. ITO nanostructures obtained after etching (scale bar = 200 nm). (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  3. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Seisno, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO{sub 2} nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO{sub 2} templates were fully coated with magnetite nanoparticles. Dissolution of the SiO{sub 2} core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe{sub 3}O{sub 4} grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO{sub 2} templates contributed to the adsorption of the Fe ion precursor and/or Fe{sub 3}O{sub 4} seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere. - Highlights: • A procedure to synthesize hollow magnetic nanospheres with Au inside was reported. • The Au nanoparticles inside the hollow showed high Au-S binding affinity. • The nanospheres are expected to be suitable as a new magnetic carrier for DDS.

  4. Multifunctional magnetic core–shell dendritic mesoporous silica nanospheres decorated with tiny Ag nanoparticles as a highly active heterogeneous catalyst

    International Nuclear Information System (INIS)

    Sun, Zebin; Li, Haizhen; Cui, Guijia; Tian, Yaxi; Yan, Shiqiang

    2016-01-01

    Graphical abstract: - Highlights: • A multifunctional magnetic core–shell dendritic silica nanocatalyst was successfully fabricated by an oil–water biphase stratification coating strategy. • The magnetic core–shell dendritic silica nanomaterials Fe_3O_4@SiO_2@Dendritic-SiO_2 were chosen as the catalyst's support for the first time. • The as-synthesized nanocatalyst exhibited excellent catalytic activity and reusability due to easy accessibility of active sites and superparamagnetism. • The novel catalyst could be conveniently recovered by magnetic separation from the reaction system. - Abstract: In present work, a multifunctional magnetic core–shell dendritic silica nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag with easy accessibility of active sites and convenient recovery was successfully fabricated by an oil–water biphase stratification coating strategy, and characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N_2 adsorption–desorption, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The as-synthesized nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag displayed excellent catalytic activity for the catalytic reduction of 4-nitrophenol and 2-nitroaniline using sodium borohydride in aqueous solution at room temperature due to easy accessibility of active sites. Interestingly, the novel catalyst could be conveniently recovered by magnetic separation from the reaction system and recycled for at least five times without significant loss in activity. These results indicate that the above mentioned approach based on magnetic core–shell dendritic silica Fe_3O_4@SiO_2@Dendritic-SiO_2 provided a useful platform for the preparation of noble metal nanocatalysts with easy accessibility, excellent catalytic activity and convenient recovery.

  5. Controlled synthesis of mesoporous β-Ni(OH){sub 2} and NiO nanospheres with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Shengtao; Wang, Qian [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Ma, Zichuan, E-mail: mazc@vip.163.com [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Wu, Yinsu; Gao, Yuanzhe [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China)

    2012-09-15

    Highlights: ► Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH){sub 2} and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH){sub 2} and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  6. Synthesis and Characteristics of ZnS Nanospheres for Heterojunction Photovoltaic Device

    Science.gov (United States)

    Chou, Sheng-Hung; Hsiao, Yu-Jen; Fang, Te-Hua; Chou, Po-Hsun

    2015-06-01

    The synthesis of ZnS nanospheres produced using the microwave hydrothermal method was studied. The microstructure and surface and optical properties of ZnS nanospheres on glass were characterized using scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. The influence of deposition time on the transmission and photovoltaic performance was determined. The power conversion efficiency of an Al-doped ZnO/ZnS nanosphere/textured p-Si device improved from 0.93 to 1.77% when the thickness of the ZnS nanostructured film was changed from 75 to 150 nm.

  7. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Betancor, Lorena; Spain, Jim C

    2006-01-01

    .... The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity...

  8. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  9. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  10. Three-dimensional immobilization of beta-galactosidase on a silicon surface.

    Science.gov (United States)

    Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C

    2008-02-01

    Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity. (c) 2007 Wiley Periodicals, Inc.

  11. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.; Chen, Tianyou; Almahdali, Sarah; Bukhriakov, Konstantin; Rodionov, Valentin

    2016-01-01

    are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere

  12. Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols.

    Science.gov (United States)

    Liu, Qiang; Xu, Guoqiang; Wang, Zhendong; Liu, Xiaoran; Wang, Xicheng; Dong, Linlin; Mu, Xindong; Liu, Huizhou

    2017-12-08

    C-H methylation is an attractive chemical transformation for C-C bonds construction in organic chemistry, yet efficient methylation of readily available (bio)alcohols in water using methanol as sustainable C1 feedstock is limited. Herein, iridium nanocatalysts encapsulated in yolk-shell-structured mesoporous carbon nanospheres (Ir@YSMCNs) were synthesized for this transformation. Monodispersed Ir clusters (ca. 1.0 nm) were encapsulated in situ and spatially isolated within YSMCNs by a silica-assisted sol-gel emulsion strategy. A selection of (bio)alcohols (19 examples) was selectively methylated in aqueous phase with good-to-high yields over the developed Ir@YSMCNs. The improved catalytic efficiencies in terms of activity and selectivity together with the good stability and recyclability were contributable to the ultrasmall Ir clusters with oxidation chemical state as a consequence of the confinement effect of YSMCNs with interconnected nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dispersion of Functionalized Silica Micro- and Nanoparticles into Poly(nonamethylene Azelate by Ultrasonic Micro-Molding

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2015-11-01

    Full Text Available Ultrasound micro-molding technology has proved useful in processing biodegradable polymers with minimum material loss. This makes this technology particularly suitable for the production of biomedical microdevices. The use of silica (SiO2 nanoparticles is also interesting because of advantages like low cost and enhancement of final properties. Evaluation of the capacity to create a homogeneous dispersion of particles is crucial. Specifically, this feature was explored taking into account micro- and nano-sized silica particles and a biodegradable polyester derived from 1,9-nonanodiol and azelaic acid as a matrix. Results demonstrated that composites could be obtained with up to 6 wt. % of silica and that no degradation occurred even if particles were functionalized with a compatibilizer like (3-aminopropyl triethoxysilane. Incorporation of nanoparticles should have a great influence on properties. Specifically, the effect on crystallization was evaluated by calorimetric and optical microscopy analyses. The overall crystallization rate was enhanced upon addition of functionalized silica nanospheres, even at the low percentage of 3 wt. %. This increase was mainly due to the ability of nanoparticles to act as heterogeneous nuclei during crystallization. However, the enhancement of the secondary nucleation process also played a significant role, as demonstrated by Lauritzen and Hoffmann analysis.

  14. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  15. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  16. Nanoporous Silica-Based Protocells at Multiple Scales for Designs of Life and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2015-01-01

    Full Text Available Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1 to emulate life in order to understand it; and (2 to use biomimicry to engineer desired cellular interactions.

  17. Angular reflectance of suspended gold, aluminum and silver nanospheres on a gold film: Effects of concentration and size distribution

    International Nuclear Information System (INIS)

    Aslan, Mustafa M.; Wriedt, Thomas

    2010-01-01

    In this article, we describe a parametric study of the effects of the size distribution (SD) and the concentration of nanospheres in ethanol on the angular reflectance. Calculations are based on an effective medium approach in which the effective dielectric constant of the mixture is obtained using the Maxwell-Garnett formula. The detectable size limits of gold, aluminum, and silver nanospheres on a 50-nm-thick gold film are calculated to investigate the sensitivity of the reflectance to the SD and the concentration of the nanospheres. The following assumptions are made: (1) the total number of particles in the unit volume of suspension is constant, (2) the nanospheres in the suspension on a gold film have a SD with three different concentrations, and (3) there is no agglomeration and the particles have a log-normal SD, where the effective diameter, d eff and the effective variance, ν eff are given. The dependence of the reflectance on the d eff , ν eff , and the width of the SD are also investigated numerically. The angular variation of the reflectance as a function of the incident angle shows a strong dependence on the effective size of the metallic nanospheres. The results confirm that the size of the nanospheres (d eff o and 75 o for a given concentration with a particular SD.

  18. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres

    KAUST Repository

    Shi, Huanhuan

    2016-11-29

    Herein we report the control synthesis of lepidocrocite VOOH hollow nanospheres and further their applications in electrocatalytic water splitting for the first time. By tuning the surface area of the nanospheres, the optimal performance can be achieved with low overpotentials of 270 mV for the oxygen evolution reaction (OER) and 164 mV for the hydrogen evolution reaction (HER) at 10 mA cm-2 in 1 m KOH, respectively. Furthermore, when used as both the anode and cathode for overall water splitting, a low cell voltage of 1.62 V is required to reach the current density of 10 mA cm-2 , making the VOOH hollow nanospheres an efficient alternative to water splitting.

  19. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles.

    Science.gov (United States)

    Luo, Yiheng; Dou, Wenchao; Zhao, Guangying

    2017-07-01

    In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 10 2 to 1.27 × 10 5  CFU mL -1 , with a detection limit of 7.2 × 10 1  CFU mL -1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry. Graphical abstract A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).

  20. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  1. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Xue; Wang, Ling-Ling; Wang, Ya-Ya; Zhang, Xiao-Yan

    2014-01-01

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  2. Storage and sustained release of volatile substances from a hollow silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Ding Haomin [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Tao Xia [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Chen Jianfeng [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China)

    2007-06-20

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO{sub 3} template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 ml{sub perfume}/mg{sub carrier}) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  3. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems

    Science.gov (United States)

    Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Vittorio, Orazio; Puoci, Francesco; Picci, Nevio; Iemma, Francesca

    2013-04-01

    Native gelatin, N, N'-ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100-500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug-polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.

  4. Drug delivery from hydrophobic-modified mesoporous silicas: Control via modification level and site-selective modification

    International Nuclear Information System (INIS)

    Tang Qunli; Chen Yuxi; Chen Jianghua; Li Jin; Xu Yao; Wu Dong; Sun Yuhan

    2010-01-01

    Dimethylsilyl (DMS) modified mesoporous silicas were successfully prepared via co-condensation and post-grafting modification methods. The post-grafting modification was carried out by the reaction of the as-synthesized MCM-41 material (before CTAB removal) with diethoxydimethylsinale (DEDMS). N 2 adsorption-desorption and 29 Si MAS NMR characterization demonstrated that different amount of DMS groups were successfully incorporated into the co-condensation modified samples, and the functional DMS groups were placed selectively on the pore openings and external pore surfaces in the post-grafting modified samples. Subsequently, the controlled drug delivery properties from the resulting DMS-modified mesoporous silicas were investigated in detail. The drug adsorption experiments showed that the adsorption capacities were mainly depended on the content of silanol group (CSG) in the corresponding carriers. The in vitro tests exhibited that the incorporation of DMS groups greatly retarded the ibuprofen release rate. Moreover, the ibuprofen release profiles could be well modulated by varying DMS modification levels and site-selective distribution of functional groups in mesoporous carriers. - The distribution of DMS groups on the pore surfaces of the mesostructures strongly affects the drug release rate. The P-M41-1 and the P-M41-2 possess the close DMS modification levels as the C-M41-10, but the ibuprofen release rates from the P-M41-1 and P-M41-2 are much slower than that from the C-M41-10.

  5. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine.

    Science.gov (United States)

    Zhou, Yang; Han, Xiaoxia; Jing, Xiangxiang; Chen, Yu

    2017-09-01

    Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A highly flexible polymerization technique to prepare fluorescent nanospheres for trace ammonia detection

    International Nuclear Information System (INIS)

    Waich, K.; Sandholzer, M.; Mayr, T.; Slugovc, C.; Klimant, I.

    2010-01-01

    The preparation of pH-sensitive nanospheres by emulsion polymerization for the detection of trace levels of ammonia is described. A fluorescent, polymerizable xanthene dye was copolymerized with styrene, crosslinkers and further copolymers aimed at enhancing the sensitivity to obtain materials for sensing of ammonia. A half-seeded technique was used to obtain stable emulsions of the monomers which were cured to obtain nanospheres with covalently attached active components. The nanospheres were embedded in a silicon matrix and the sensor films obtained were investigated regarding their response to ammonia at concentrations between 25 and 1,000 ppb. Sensors containing polystyrene nanospheres crosslinked with divinylbenzene showed the best performance in ammonia measurements exhibiting detection limits (LODs) of less than 25 ppb ammonia.

  7. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  8. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-01-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  9. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  10. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  11. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco, E-mail: g.spizzirri@unical.it; Cirillo, Giuseppe [University of Calabria, Department of Pharmacy, Health and Nutrition Sciences (Italy); Vittorio, Orazio [NEST Scuola Normale Superiore, Istituto Nanoscienze-CNR (Italy); Puoci, Francesco; Picci, Nevio; Iemma, Francesca [University of Calabria, Department of Pharmacy, Health and Nutrition Sciences (Italy)

    2013-04-15

    Native gelatin, N,N Prime -ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100-500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug-polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.

  12. Facile synthesis of highly biocompatible folic acid-functionalised SiO2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery.

    Science.gov (United States)

    Xu, Xiuling; Hu, Fan; Shuai, Qi

    2017-11-14

    Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC 2 @SiO 2 -FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er 2 (p-CPA) 6 (H 2 O) 6 ] RC 1 , [Ho 2 (p-CPA) 6 (H 2 O) 6 ] RC 2 , [Sm(p-CPA) 3 (H 2 O)] RC 3 , [Pr(p-CPA) 3 (H 2 O)]·3H 2 O RC 4 and [Ce(p-CPA) 3 (H 2 O) 2 ]·2H 2 O RC 5 . The carboxyl groups showed two kinds of coordination modes, namely μ 2 -η 1 :η 1 and μ 2 -η 1 :η 2 , among RC 1 -RC 5 . The flexible -OCH 2 COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 μg mL -1 . Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC 2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC 2 @SiO 2 -FA nanospheres was higher than that of lone RC 2 . These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.

  13. Optical properties of an atom in the presence of a two-nanosphere cluster

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Guzatov, D V

    2007-01-01

    The optical properties of an atom located near a cluster of two arbitrarily arranged nanospheres of an arbitrary composition are studied. Changes in the spontaneous decay rates of excited states and emission frequency shifts are considered for different orientations of the dipole moment and different positions of the atom with respect to the cluster. It is shown that a two-nanosphere cluster can be used to control efficiently the spontaneous decay rates of excited states of the atom by changing the distance between spheres. It is found that spontaneous decay rates of the excited states of an atom located between silver nanospheres and having the dipole moment directed along the axis connecting the centres of spheres can increase by a factor of 10 5 and more when nanospheres are brought closer together. (invited paper)

  14. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  15. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.c [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Zhang Di; Yang Na [Fudan University, Ministry of Education, Key Lab of Molecular Engineering of Polymers (China)

    2009-04-15

    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance ({sup 1}H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm{sup 3} g{sup -1}), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  16. Optoacoustic characterization of synthetic opals

    International Nuclear Information System (INIS)

    Mechri, C; Ruello, P; Mounier, D; Breteau, J M; Povey, I; Pemble, M; Romanov, S G; Gusev, V

    2007-01-01

    The development of laser-based ultrafast acoustic techniques allowed the investigation of the vibrations of nanostructures. In this communication, we report the results of the characterization of crystals composed of silica nanospheres (opals) by pump-probe setup. In our study, the excitation and detection of the vibrations of nanospheres by femtosecond laser pulses was facilitated by filling the pores in the opals by GaAs semiconducting material

  17. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  18. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  19. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    Science.gov (United States)

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  20. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  1. Shaping surface of palladium nanospheres through the control of reaction parameters

    International Nuclear Information System (INIS)

    Wang Lianmeng; Tan Enzhong; Guo Lin; Wang Lihua; Han Xiaodong

    2011-01-01

    Solid, cracked, and flower-shaped surfaces of palladium nanospheres with high yields and good uniformity were successfully prepared by a wet chemical method. On the basis of the experimental data, the same size of palladium nanosphere with different surface morphologies can be regulated only by changing the amount of ammonium hydroxide and reductant in one experimental system. The as-prepared products were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). In addition, surface-enhanced Raman scattering (SERS) spectra on the as-prepared different surface of palladium nanospheres exhibit high activity towards p-aminothiophenol (PATP) detection, and the result further reveals that the predominance of the a1 vibration mode in the SERS spectra via an electromagnetic (EM) mechanism is significant.

  2. Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    International Nuclear Information System (INIS)

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki; Nakashima, Kenichi

    2012-01-01

    Graphical abstract: Nb 2 O 5 hollow nanosphere constructed electrode delivers high capacity of 172 mAh g −1 after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb 2 O 5 hollow nanospheres synthesis was synthesized by soft-template. ► Nb 2 O 5 hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb 2 O 5 hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb 2 O 5 hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g −1 . The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb 2 O 5 shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  3. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  4. Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo

    Science.gov (United States)

    Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing

    2013-04-01

    With the development of nanotechnology, special attention has been given to the nanomaterial application in tumor treatment. Here, a modified desolvation-cross-linking method was successfully applied to fabricate gemcitabine-loaded albumin nanospheres (GEM-ANPs), with 110 and 406 nm of mean diameter, respectively. The aim of this study was to assess the drug distribution, side effects, and antitumor activity of GEM-ANPs in vivo. The metabolic viability and flow cytometry analysis revealed that both GEM-ANPs, especially 406-nm GEM-ANPs, could effectively inhibit the metabolism and proliferation and promote the apoptosis of human pancreatic carcinoma (PANC-1) in vitro. Intravenous injection of 406-nm GEM-ANPs exhibited a significant increase of gemcitabine in the pancreas, liver, and spleen of Sprague-Dawley rats ( p PANC-1-induced tumor mice, intravenous injection of 406-nm GEM-ANPs also could effectively reduce the tumor volume by comparison with free gemcitabine. With these findings, albumin nanosphere-loading approach might be efficacious to improve the antitumor activity of gemcitabine, and the efficacy is associated with the size of GEM-ANPs.

  5. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Tiwari, Archana [Department of Physics, Sikkim University, 737102 Sikkim (India); Chatterjee, Somenath, E-mail: somenath@gmail.com [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Electronics & Communication Engineering Department, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India)

    2017-01-01

    Highlights: • ZnS nanosphere synthesis in hydrothermal method with biomolecule as capping ligand. • Effect of reaction parameters to tune the size of ZnS nanoparticles. • Obtain multiple defect emission, which arises from interstitials/vacancies. • 87% degradation of Rh-B in the presence of ZnS nanoparticles under solar radiation. - Abstract: Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV–vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  6. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    Science.gov (United States)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  7. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit

    Science.gov (United States)

    Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue

    2011-03-01

    A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  8. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment

    Science.gov (United States)

    Wu, Lingjie; Wu, Ming; Zeng, Yongyi; Zhang, Da; Zheng, Aixian; Liu, Xiaolong; Liu, Jingfeng

    2015-01-01

    The combination of a multi-therapeutic mode with a controlled fashion is a key improvement in nanomedicine. Here, we synthesized polyethylene glycol (PEG)-modified doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) @CuS nanohybrids as efficient drug delivery carriers, combined with photothermal therapy and chemotherapy to enhance the therapeutic efficacy on hepatocellular carcinoma (HCC). The physical properties of the nanohybrids were characterized by transmission electron microscopy (TEM), N2 adsorption and desorption experiments and by the Vis-NIR absorption spectra. The results showed that the doxorubicin could be stored in the inner pores of mesoporous silica nanoparticles; the CuS nanoparticles, which are coated on the surface of a mesoporous silica nanoparticle, could serve as efficient photothermal therapy (PTT) agents; the loaded drug release could be easily triggered by NIR irradiation. The combination of the PTT treatment with controlled chemotherapy could further enhance the cancer ablation ability compared to any of the single approaches alone. Hence, the reported PEG-modified DOX-loaded mesoporous silica nanoparticle@CuS nanohybrids might be very promising therapeutic agents for HCC treatment.

  9. Differently-catalyzed silica-based precursors as functional additives for the epoxy-based hybrid materials

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Beneš, Hynek; Zhigunov, Alexander; Serkis, Magdalena; Pavlova, Ewa

    2016-01-01

    Roč. 99, 2 September (2016), s. 434-446 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA14-05146S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid material * solvent-free sol-gel process * silica-based precursor Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.684, year: 2016

  10. Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract

    Science.gov (United States)

    Pool, Hector; Luna-Barcenas, Gabriel; McClements, David Julian; Mendoza, Sandra

    2017-09-01

    In this study, pH-sensitive nanospheres were fabricated using a polymethacrylate-based copolymer to encapsulate, protect, and release catechin, and thereby overcome its poor water solubility and low oral bioaccessibility. The polymer used was a polymethacrylic acid-co-ethyl acrylate 1:1 copolymer that dissolves above pH 5.5, and so can be used to retain and protect bioactives within the stomach but releases them in the small intestine. Catechin-loaded nanospheres were fabricated using the solvent displacement method. Physicochemical characterization of the nanospheres indicated that they were relatively small ( d = 160 nm) and had a high negative charge ( ζ = - 36 mV), which meant that they had good stability to aggregation under physiological conditions (pH 7.2). Catechin was trapped within the nanospheres at an encapsulation efficiency of about 51% in an amorphous state. A simulated gastrointestinal study showed that catechin was slowly released under gastric conditions (pH 2.5), but rapidly released under small intestine conditions (pH 7.2). The observed improvement in the antioxidant activity and bioaccessibility of catechin after encapsulation was attributed to the fact that it was in an amorphous state and had good water dispersibility. This study provides useful information for the formulation of novel delivery systems to improve the dispersibility, bioaccessibility, and bioactivity of catechin and potentially other active components. These delivery systems could be used to improve the efficacy of bioactive components in foods, supplements, and pharmaceutical products.

  11. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  12. Preparation and characterization of PLGA nanospheres encapsulated with Autoclaved Leishmania Major (ALM) and Quillaja Saponin

    International Nuclear Information System (INIS)

    Tafaghodi, M.; Tabasi, S. Abolghasem Sajadi; Kharazizdeh, M.

    2008-01-01

    Several antigens, adjuvants and delivery systems have been evaluated for induction of protective immune responses against leishmaniasis, but have mostly been inefficient. In this study, poly (d,1-lactide-co-glycolide) (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as an immunoadjuvant have been used to increase the immune responses against Autoclaved Lieshmania major (ALM). PLGA nanospheres were prepared using a double emulsion (W/O/W) technique. The internal aqueous phase contained ALM and saponin, while the oily phase contained the solution of PLGA in dichloromethane and the external aqueous phase was polyvinylacohol (PVA) 7.5% (W/V) solution. Particulate characteristics were studied by scanning electron microscope and particle size analyzer. The encapsulation efficiency was determined by Lowry method and the release profile of antigen and saponin from nanospheres was evaluated for one week. Nanospheres were spherical in shape having smooth surfaces. Mean diameters for nanospheres loaded with ALM and ALM+QS were 300+-123 nm and 294+-106 nm respectively. Encapsulation efficiencies for ALM and QS were found 71+-14.8% and 55.8+- 23.1% respectively. Evaluation of the release profiles of ALM and QS from nanospheres in one week showed that 44.8 +-0.8% of ALM and 29.5+- 0.21% of QS had been released from naospheres. In conclusion, the prepared nanospheres with desirable size, encapsulation efficiency, and slow rate of release, had acceptable features for future in vivo studies. (author)

  13. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Cao, Yi; Lu, Yun, E-mail: yunlu@nju.edu.cn [Nanjing University, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering (China)

    2015-05-15

    The size-controllable polypyrrole (PPy) nanospheres are successfully synthesized by oxidative polymerization of pyrrole using N-methylene phosphonic chitosan (NMPC) as a structure-directing agent. By simply changing the amount of NMPC, the size of the PPy nanospheres can be adjusted from 190 to 50 nm in diameter. The spectrometric results suggest that the electrostatic interactions of phosphate groups in NMPC molecule with pyrrole ring might be a driving force for formation of the uniform and size-controllable PPy nanospheres. The PPy nanospheres with the diameter of 100 nm exhibit the largest capacity and a good cycling stability as electrode materials of supercapacitors. The as-prepared PPy nanospheres also can be combined with carbon dots to form composite nanospheres presenting enhanced fluorescence intensity, which show potential application in fluorescence detection.

  14. C@Fe 3 O 4 /NTA-Ni magnetic nanospheres purify histidine-tagged ...

    African Journals Online (AJOL)

    This study reports synthesis of Ni-nitrilotriacetic acid (Ni-NTA) modified carbon nanospheres containing magnetic Fe3O4 particles (C@Fe3O4), which can act as a general tool to separate and purify histidine-tagged fetidin. In this experiment, C nanospheres are prepared from glucose using the hydrothermal process, ...

  15. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

    Directory of Open Access Journals (Sweden)

    Wangjia Tang

    2018-01-01

    Full Text Available Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1. The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

  16. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  17. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres

    International Nuclear Information System (INIS)

    Wilson, A.; Mishra, S.R.; Gupta, R.; Ghosh, K.

    2012-01-01

    Magnetically separable and reusable core–shell CoFe 2 O 4 –ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core–shell hybrid structure of CoFe 2 O 4 –ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: ► Synthesis of novel hybrid magnetic-ZnO core–shell composite nanospheres. ► High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. ► The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. ► Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. ► The photocatalysis rate was observed to be ZnO shell thickness dependent.

  18. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wen, Yuanqing, E-mail: m18600788382@163.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2017-08-01

    Graphical abstract: A novel strategy for surface PEGylation of mesoporous silica nanoparticles was developed based on the light induced surface-initiated atom transfer radical polymerization. - Highlights: • Surface modification of silica nanoparticles through light induced surface-initiated ATRP. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites show high water dispersity. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites are promising for biomedical applications. • The light induced ATRP possesses many advantages as compared with traditional ATRP. - Abstract: The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH{sub 2}-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH{sub 2}-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization

  19. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  20. Plasmon-Polariton Properties in Metallic Nanosphere Chains

    Directory of Open Access Journals (Sweden)

    Witold Aleksander Jacak

    2015-06-01

    Full Text Available The propagation of collective wave type plasmonic excitations along infinite chains of metallic nanospheres has been analyzed, including near-, medium- and far-field contributions to the plasmon dipole interaction with all retardation effects taken into account. It is proven that there exist weakly-damped self-modes of plasmon-polaritons in the chain for which the propagation range is limited by relatively small Ohmic losses only. In this regime, the Lorentz friction irradiation losses on each nanosphere in the chain are ideally compensated by the energy income from the rest of the chain. The completely undamped collective waves were identified in the case of the presence of persistent external excitation of some fragment of the chain. The obtained characteristics of these excitations fit the experimental observations well.

  1. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  2. Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshini, Balasankar Meera; Fawzy, Amr S., E-mail: denasfmf@nus.edu.sg [National University of Singapore, Discipline of Oral Sciences, Faculty of Dentistry (Singapore)

    2017-04-15

    In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag{sup +} ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be <160 nm and indicated that CHXg treatment drastically shifted the surface charge from negative to high positive values, with homogenous distribution. TEM revealed spherical Ag-NSP/CHXg nanospheres with a clearly visible surface coating of CHXg. FTIR confirmed association of CHXg with Ag-NSP nanospheres, whereas SEM/EDX data verified presence of spectral peaks specific to silver (Ag), CHXg, and PVP. The %LE gradually increased with increasing incubation times. In vitro CHXg release exhibited a bi-phasic fashion showing maximum release of ~74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag{sup +} ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H–tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all

  3. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    Science.gov (United States)

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  4. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  5. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum.

    Science.gov (United States)

    Jin, Shupei; Qiao, Yinghua; Xing, Jun

    2018-06-01

    In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.

  6. Improving hydrogen storage in Ni-doped carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Menendez, J.A.; Pis, J.J.; Arenillas, A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-04-15

    The effect of nickel distribution and content in Ni-doped carbon nanospheres on hydrogen storage capacity under conditions of moderate temperature and pressure was studied. It was found that the nickel distribution, obtained by using different doping techniques and conditions, has a noticeable influence on hydrogen storage capacity. The samples with the most homogeneous nickel distribution, obtained by pre-oxidising the carbon nanospheres, displayed the highest storage capacity. In addition, storage capacity is influenced by the amount of nickel. It was found a higher storage capacity in samples containing 5 wt.% of Ni. This is due to the greater interactions between the nickel and the support that produce a higher activation of the solid through a spillover effect. (author)

  7. Polymer-filler interactions in polyether based thermoplastic polyureathane/silica nanocomposites

    OpenAIRE

    Heinz, Özge; Heinz, Ozge

    2013-01-01

    Thermoplastic polyurethaneureas (TPU) are a unique class of materials that are used in a broad range of applications due to their tailorable chemistry and morphology that allow engineering materials with targeted properties. The central theme of this dissertation is to develop an understanding on polymer-filler interfacial interactions and related reinforcing mechanism of silica nanoparticles in polyether based TPU/silica nanocomposites. Prior to our investigation on nanocomposite materials, ...

  8. Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Liu, Qi [School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-05

    Highlights: • Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. • The NiO nanospheres consist of nanocrystals and porous structure. • NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}. • The NiO nanospheres also delivered a high supercapacitance of 736 F g{sup −1}. -- Abstract: Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. The as-synthesised NiO nanospheres were characterised by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. It was found that NiO nanosphere consists of a nanoporous structure and nanosize crystals. When applied as anode materials in lithium-ion batteries, NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}, an excellent cycling performance and a good high rate capability. NiO nanospheres also showed a high specific capacitance as electrode materials for supercapacitors.

  9. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    Science.gov (United States)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  10. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    Science.gov (United States)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  11. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  12. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  13. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    Science.gov (United States)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  14. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    Science.gov (United States)

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  15. Preparation and photocatalytic properties of hybrid core-shell reusable CoFe{sub 2}O{sub 4}-ZnO nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A. [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Gupta, R.; Ghosh, K. [Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO (United States)

    2012-08-15

    Magnetically separable and reusable core-shell CoFe{sub 2}O{sub 4}-ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core-shell hybrid structure of CoFe{sub 2}O{sub 4}-ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis of novel hybrid magnetic-ZnO core-shell composite nanospheres. Black-Right-Pointing-Pointer High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. Black-Right-Pointing-Pointer The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. Black-Right-Pointing-Pointer Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. Black-Right-Pointing-Pointer The photocatalysis rate was observed to be ZnO shell thickness dependent.

  16. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  17. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g −1 at 0.1 C, and 476 mA h g −1 at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path

  18. Lattice doped Zn–SnO{sub 2} nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Baraneedharan, P. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Imran Hussain, S. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Dinesh, V.P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Siva, C. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203 (India); Biji, P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India)

    2015-12-01

    Graphical abstract: - Highlights: • A simple, novel and surfactant free hydrothermal route to prepare SnO{sub 2} nanospheres. • A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images. • Incorporation of Zn ions into SnO{sub 2} lattices clearly elucidated with XRD and XPS spectrums. • Three fold time increased response in Zn–SnO{sub 2} nanospheres when compared to undoped SnO{sub 2}. - Abstract: A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn{sup 2+}) doped SnO{sub 2} nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn{sup 2+} ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn{sup 2+} ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn{sup 2+} ions has a significant effect on the electrical conductivity of SnO{sub 2} nanospheres. Comparative tests for gas sensors based on Zn doped SnO{sub 2} nanospheres and SnO{sub 2} nanospheres clearly show that the former exhibited excellent NO{sub 2} sensing performance. The responses of Zn{sup 2+} ions incorporated SnO{sub 2} nanospheres sensor were increased 3 fold at trace level NO{sub 2} gas concentrations ranging from 1 to 5 ppm. The excellent sensitivity, selectivity and fast response make the Zn{sup 2+} doped SnO{sub 2} nanospheres ideal for NO{sub 2} sensing.

  19. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering

    Science.gov (United States)

    Zhu, Wei; Cui, Haitao; Boualam, Benchaa; Masood, Fahed; Flynn, Erin; Rao, Raj D.; Zhang, Zhi-Yong; Zhang, Lijie Grace

    2018-05-01

    Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-β1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-β1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-β1-containing nanospheres is a promising strategy for cartilage regeneration.

  20. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    Full Text Available Jia Wang,1,* Guofeng Wu,2,* Xiangwei Liu,3,* Guanyang Sun,1 Dehua Li,3 Hongbo Wei3 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 3State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Although percutaneous titanium implants have become one of the best choices as retainers in the facial defects, peri-implantitis still occurs at a significant rate. This unwanted complication occurs due to adhesion of bacteria and subsequent biofilm formation. To solve this problem, we have developed a novel antibiotic nanodelivery system based on self-decomposable silica nanoparticles. In this study, silica-gentamycin (SG nanoparticles were successfully fabricated using an innovative one-pot solution. The nanoparticles were incorporated within a gelatin matrix and cross-linked on microarc-oxidized titanium. To characterize the SG nanoparticles, their particle size, zeta potential, surface morphology, in vitro drug release, and decomposition process were sequentially evaluated. The antibacterial properties against the gram-positive Staphylococcus aureus, including bacterial viability, antibacterial rate, and bacteria morphology, were analyzed using SG-loaded titanium specimens. Any possible influence of released gentamycin on the viability of human fibroblasts, which are the main component of soft tissues, was investigated. SG nanoparticles from the

  1. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  2. General access to metal oxide (Metal = Mn, Co, Ni) double-layer nanospheres for application in lithium ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Xia, Yuan; Wang, Gang; Zhang, Xing; Wang, Beibei; Wang, Hui

    2016-01-01

    Highlights: • A series of metal oxide double layer nanospheres were prepared. • The obtained materials show excellent performances in lithium ion batteries and supercapacitors. • The unique structure of double layers is beneficial for superior electrochemical performances. - Abstract: In this work, a series of metal oxide double-layer nanospheres (DLNs), such as Mn 2 O 3 , Co 3 O 4 , NiO, NiCo 2 O 4 , and MnCo 2 O 4 have been successfully synthesized through a general template method. The layers of nanospheres were assembled by different nanostructure units and the removing of the SiO 2 template formed a void of several ten nanometers between the double layers, resulting large specific surface areas for them. The energy storage performances of the as-prepared double-layer nanospheres were further investigated in lithium ion battery and supercapacitor systems. Based on their unique nanostructures, the double-layer nanospheres exhibit excellent electrochemical performance with long cycle stability and high specific capacities or capacitances. The best of these, DLNs-NiCo 2 O 4 can deliver a reversible capacity of 1107 mAh g −1 at 0.25C after 200 cycles in lithium ion battery system, and shows a capacitance of 1088 F g −1 with capacitance loss of less than 3% at 5 A g −1 after 5000 cycles in supercapacitors.

  3. Nanodisk fabrication by nanosphere lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lozhkina, O. A.; Lozhkin, M. S., E-mail: maksim.lozhkin@spbu.ru; Kapitonov, Yu. V. [St.Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    Top-down fabrication of regular nanodisk arrays from an A{sub 3}B{sub 5} epitaxial heterostructure containing quantum well is demonstrated. Dry ion etching through the mask was emloyed. The spin-coated monolayer of polystyrene nanospheres served as a mask. Nanodisk diameter could be precisely controlled by oxygen plasma resizing of spheres after deposition. Nanodisks with diameters down to 200 nm were made.

  4. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  5. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  6. Fe3O4@polyaniline yolk-shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption

    Science.gov (United States)

    Wang, Xiaoliang; Zhang, Minwei; Zhao, Jianming; Huang, Guoyong; Sun, Hongyu

    2018-01-01

    Unique Fe3O4/polyaniline (PANI) composite with yolk-shell micro/nanostructure (FPys) has been successfully synthesized by a facile silica-assisted in-situ polymerization and subsequent etching strategy. The structural and compositional studies of the FPys composites are performed by employing X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The yolk-shell morphology of the products is confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. When evaluated as anode material for lithium-ion batteries, the as-prepared FPys electrodes deliver superior capacity, better cycling stability and rate capability than those of bare Fe3O4 micro/nanospheres and Fe3O4/PANI core-shell (FPcs) electrodes. Moreover, FPys also exhibits excellent electromagnetic wave absorption performance when comparing to the synthesized Fe3O4-based electromagnetic wave absorbers, in which strong reflection loss and extensive response bandwidth can be achieved simultaneously. The excellent bifunctional properties of FPys material are associated with the specially designed hierarchical micro/nanostructures. The current strategy that application directed structural design can be applied to the synthesis of other multifunctional materials.

  7. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    Science.gov (United States)

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaluation of the Biological Effects of Externally Tunable, Hydrogel Encapsulated Quantum Dot Nanospheres in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somesree GhoshMitra

    2011-08-01

    Full Text Available Quantum Dots (QDs have become an interesting subject of study for labeling and drug delivery in biomedical research due to their unique responses to external stimuli. In this paper, the biological effects of a novel hydrogel based QD nano-structure on E. coli bacteria are presented. The experimental evidence reveals that cadmium telluride (CdTe QDs that are encapsulated inside biocompatible polymeric shells have reduced or negligible toxicity to this model cell system, even when exposed at higher dosages. Furthermore, a preliminary gene expression study indicates that QD-hydrogel nanospheres do not inhibit the Green Fluorescent Protein (GFP gene expression. As the biocompatible and externally tunable polymer shells possess the capability to control the QD packing density at nanometer scales, the resulting luminescence efficiency of the nanostructures, besides reducing the cytotoxic potential, may be suitable for various biomedical applications.

  9. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO{sub 2} nanocomposite based dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Sahoo, Satyaprakash, E-mail: satya504@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Chitturi, Venkateswara Rao [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Williams, Joseph D. [Department of Biomedical and Chemical Engineering, Syracuse University, L.C. Smith College of Engineering and Computer Science, Syracuse, NY (United States); Resto, Oscar [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Katiyar, Ram S., E-mail: rkatiyar@hpcf.uprrp.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States)

    2015-08-25

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO{sub 2}/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO{sub 2} composite was noticed. - Abstract: In this work, we report a novel carbon based TiO{sub 2} nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO{sub 2} nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO{sub 2} nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (J{sub SC}) and open circuit voltage (V{sub OC}) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO{sub 2} photoanode was observed as compare to DSSC with pure TiO{sub 2} photoanode.

  10. Improvements to the hierarchically structured ZnO nanosphere based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wu Lihui; Liu Yanping; Xie Erqing, E-mail: zhangyzh04@126.co, E-mail: xieeq@lzu.edu.c [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2009-04-21

    Hierarchically structured ZnO nanospheres are synthesized by a wet-chemical method and ZnO sphere-consisting films are applied to dye-sensitized solar cells (DSSCs). It is found that the overall light-to-electricity conversion efficiency ({eta}) is significantly enhanced from 0.474% to 1.03% due to light scattering compared with the ZnO nanoparticle-based DSSC. However, the fill factor (FF) and open-circuit voltage (V{sub oc}) decrease obviously. After annealing the films in an oxygen environment and placing a ZnO blocking layer on the fluorine-doped SnO{sub 2} (FTO) conducting substrate, the FF and V{sub oc} are greatly improved and {eta} increases from 1.03% to 1.59% and 2.25%, respectively. According to the results of x-ray diffraction and photoluminescence, the significant improvements in the cell performances might be due to the suppression of the recombination and the decrease in the resistances existing in the cell.

  11. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  12. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    International Nuclear Information System (INIS)

    Sparnacci, K.; Antonioli, D.; Deregibus, S.; Laus, M.; Zuccheri, G.; Boarino, L.; De Leo, N.; Comoretto, D.

    2012-01-01

    Nano sized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  13. A low cost preparation of WO3 nanospheres film with improved thermal stability of gasochromic and its application in smart windows

    Science.gov (United States)

    Zhou, Baoyu; Feng, Wei; Gao, Guohua; Wu, Guangming; Chen, Yue; Li, Wen

    2017-11-01

    Porous WO3 nanospheres film was successfully synthesized by employing a low-cost and facile template-assisted sol-gel method. The effects of template agent (Pluronic F127) on structure, morphology and specific surface area were systematically studied by Fourier transform infrared (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption. It was found that F127 played a significant role in governing the morphology of WO3 sol clusters, and the optimal post-processing for ‘naked’ WO3 nanospheres film is acetone extraction and subsequent annealing treatment at 350 °C. As anticipated, the relative fast coloring/bleaching rates of WO3 nanospheres film are believed to be the results of porous microstructure and nanocrystalline, where provides much surface active position (166 m2 g-1) and shortens the proton diffusion distance. We believe that this unique approach to synthesize nanospheres structure may has beneficial effects on applications which also are based on insertion/extraction and diffusion abilities, such as supercapacitor, batteries and gas sensors.

  14. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed; Ranga, Chanakya; Fihri, Aziz; Shaikh, Rafik; Sarawade, Pradip; Emwas, Abdul-Hamid M.; Hedhili, Mohamed N.; Polshettiwar, Vivek

    2013-01-01

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  15. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed

    2013-09-03

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  16. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  17. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors

    Science.gov (United States)

    Xiong, Yachao; Zhou, Min; Chen, Hao; Feng, Lei; Wang, Zhao; Yan, Xinzhu; Guan, Shiyou

    2015-12-01

    Improving the electrochemical performance of manganese dioxide (MnO2) electrodes is of great significance for supercapacitors. In this study, a novel honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites has been fabricated through freeze-drying method. The honeycomb MnO2 nanospheres are well inserted and dispersed on the graphene. Carbon nanoparticles in the composites act as spacers to effectively prevent graphene from restacking and agglomeration, construct efficient 3D conducting architecture with graphene for honeycomb MnO2 nanospheres, and alleviate the aggregation of honeycomb MnO2 nanospheres by separating them from each other. As a result, such honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites display much improved electrochemical capacitive performance of 255 F g-1 at a current density of 0.5 A g-1, outstanding rate capability (150 F g-1 remained at a current density of 20 A g-1) and good cycling stability (83% of the initial capacitance retained after 1000 charge/discharge cycles). The strategy for the synthesis of these composites is very effective.

  18. Mesoporous silica for drug delivery: Interactions with model fluorescent lipid vesicles and live cells.

    Science.gov (United States)

    Bardhan, Munmun; Majumdar, Anupa; Jana, Sayantan; Ghosh, Tapas; Pal, Uttam; Swarnakar, Snehasikta; Senapati, Dulal

    2018-01-01

    Formulated mesoporous silica nanoparticle (MSN) systems offer the best possible drug delivery system through the release of drug molecules from the accessible pores. In the present investigation, steady state and time resolved fluorescence techniques along with the fluorescence imaging were applied to investigate the interactions of dye loaded MSN with fluorescent unilamellar vesicles and live cells. Here 1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC) was used to prepare Small Unilamellar Vesicles (SUVs) as the model membrane with fluorescent 1,6-diphenyl-1,3,5-hexatriene (DPH) molecule incorporated inside the lipid bilayer. The interaction of DPH incorporated DMPC membrane with Fluorescein loaded MSN lead to the release of Fluorescein (Fl) dye from the interior pores of MSN systems. The extent of release of Fl and spatial distribution of the DPH molecule has been explored by monitoring steady-state fluorescence intensity and fluorescence lifetime at physiological condition. To investigate the fate of drug molecule released from MSN, fluorescence anisotropy has been used. The drug delivery efficiency of the MSN as a carrier for doxorubicin (DOX), a fluorescent chemotherapeutic drug, has also been investigated at physiological conditions. The study gives a definite confirmation for high uptake and steady release of DOX in primary oral mucosal non-keratinized squamous cells in comparison to naked DOX treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nanospheric Chemotherapeutic and Chemoprotective Agents

    Science.gov (United States)

    2008-09-01

    Rutgers scientists led by Prof. Joachim Kohn and TyRx Pharma, Inc., announced the FDA’s clearance of a new medical device for hernia repair that...significant decrease of the cell metabolic activity of KB cervical carcinoma cells was detected, confirming that these nanospheres do not induce any short...term cytotoxicity. Cell viability was analyzed by MTS colorimetric assay after 3 days. Figure 11: Metabolic activity of KB cervical carcinoma cells

  20. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  1. A sensitive electrochemical aptasensor based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xu, Wenju; Xue, Shuyan; Yi, Huayu; Jing, Pei; Chai, Yaqin; Yuan, Ruo

    2015-01-28

    In this work, a sensitive electrochemical aptasensor for the detection of thrombin (TB) is developed and demonstrated based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles (PtNPs) and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes (MWCNT-MnO2).

  2. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Thangam, Ramar [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN (India); Sujitha, Mohanan V.; Vimala, Karuppaiya [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Kannan, Soundarapandian, E-mail: skperiyaruniv@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Zoology, Periyar University, Salem 636 011, TN (India)

    2014-03-15

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.

  3. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    International Nuclear Information System (INIS)

    Sundarraj, Shenbagamoorthy; Thangam, Ramar; Sujitha, Mohanan V.; Vimala, Karuppaiya; Kannan, Soundarapandian

    2014-01-01

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA 2 α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models

  4. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M

    2007-01-01

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|χ (3) |) and the linear absorption coefficient (α) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |χ (3) |/α for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape

  5. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  6. Electrospinning of doxorubicin loaded silica/poly(ɛ-caprolactone) hybrid fiber mats for sustained drug release

    Science.gov (United States)

    El Gohary, Mohammed I.; El Hady, Bothaina M. Abd; Saeed, Aziza A. Al; Tolba, Emad; El Rashedi, Ahlam M. I.; Saleh, Safaa

    2018-06-01

    Loading of anticancer drugs into electrospun fiber matrices is a portentous approach for clinical treatment of diseased tissues or organs. In this study, doxorubicin hydrochloride (DOX) is added to silica nanoparticles () during the formation of via the sol-gel approach. The obtained nanoparticles are then added to poly(-caprolactone) (PCL) and poly(ethylene oxide) (PEO) blend before electrospinning process via different methods. The effects of DOX addition as a free form or as nanoparticles on physical and chemical properties of obtained PCL-PEO fibers, as well as release profiles are evaluated to give a continual DOX release for several days. The morphology observed with scanning electron microscope (FESEM) revealed significant changes in the average diameter of obtained fibers ranging from 2164 nm to 659 nm and distribution of drug-loaded nanoparticles in the final mats according to the mode of additions. With the same manner, the releasing performances of obtained mats are quite different. Therefore, fabrication of drug loaded mats would offer a powerful approach to minimize serious side effects for clinical patients and allows us to control the drug concentration in the bloodstream.

  7. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Manickam [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan); Gunawardhana, Nanda [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  8. Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

    Directory of Open Access Journals (Sweden)

    Estevanato L

    2011-08-01

    Full Text Available Luciana Estevanato1, Débora Cintra1, Nayara Baldini1, Flávia Portilho1, Luzirlane Barbosa1, Olímpia Martins2, Bruno Lacava3, Ana Luisa Miranda-Vilela1, Antônio Cláudio Tedesco2, Sônia Báo1, Paulo C Morais4, Zulmira GM Lacava11Instituto de Ciências Biológicas, Universidade de Brasília, 2Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 3Instituto de Química, Universidade de Brasília, Brasília, 4Instituto de Física, Universidade de Brasília, Brasília, BrazilBackground: The magnetic albumin nanosphere (MAN, encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich's tumors by the magnetohyperthermia procedure.Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed.Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS.Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.Keywords: nanotoxicity, nanoparticle, genotoxicity, cytotoxicity, brain

  9. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume

    International Nuclear Information System (INIS)

    Han, Ta-Yuan; Lin, Wei-Ting; Cheng, An; Huang, Ran; Huang, Chin-Cheng

    2012-01-01

    Highlights: ► Experimental study is focus on the engineering properties of cement-based composites. ► Different mixes containing fiber and silica fume proportions have been tested. ► The influence of different mixes on the engineering properties has been discussed. ► The properties are included strength, ductility, permeability and microstructure. -- Abstract: This study evaluated the mechanical properties of cement-based composites produced with added polyolefin fibers and silica fume. Material variables included the water-cementitious ratio, the dosage of silica fume, and the length and dosage of polyolefin fiber. Researchers conducted tests on compressive strength, splitting tensile strength, direct tensile strength, resistivity, rapid chloride penetration, and initial surface absorption, and performed microscopic observation. Test results indicate that the specimens containing silica fume have higher compressive strength than the control and specimen made with fibers. The specimens with polyolefin fiber and silica fume have considerably higher tensile strength and ductility than the control and specimens made with silica fume. The specimens containing silica fume and polyolefin fiber demonstrated better resistance to chloride penetration than composites with polyolefin fiber or silica fume. For a given volume fraction, short polyolefin fiber performs better than its long counterpart in improving the properties of concrete. Specimens containing silica fume demonstrated a significant increase in resistivity and decrease in the total charge passed and absorption. Scanning electron microscopy illustrates that the polyolefin fiber acts to arrest the propagation of internal cracks.

  10. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    Science.gov (United States)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  11. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C

    Science.gov (United States)

    Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.

    2018-04-01

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  12. The fabrication of highly conductive and flexible Ag pattern through baking Ag nanospheres - nanoplates hybrid ink at a low temperature of 100°C.

    Science.gov (United States)

    Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y

    2018-01-24

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.

  13. Silica-scavenging effects in ceria-based solid electrolytes

    Directory of Open Access Journals (Sweden)

    Ivanova, D.

    2008-08-01

    Full Text Available Composite materials based on gadolinium doped ceria (CGO with additions of silica, with both silica and lanthanum oxide, and with lanthanum silicate, were prepared by the conventional ceramic route, to assess the silica scavenging role of lanthanum oxide additions. Structural, microstructural and electrical characterization of these samples confirmed the formation of one apatite type lanthanum silicate-based phase from reaction of silica with lanthanum oxide. The formation of this phase occurred in parallel with a significant enhancement of the grain boundary conductivity of these composite materials. Further interaction between constituents, involving diffusion of La to CGO, and Ce and Gd to the apatite phase, had no significant consequences on the electrical performance of these materials. Overall, lanthanum oxide was shown to remove the siliceous phases from the grain boundaries of CGO.

    Se prepararon materiales compuestos basados en óxido de cerio dopado con gadolinio (TGO con adicciones de sílice, con sílice y óxido de lantano y silicato del lantano, mediante procesamiento cerámico convencional con objeto de confirmar el papel secuestrante de sílice de las adicciones. La caracterización estructural, microestructural y eléctrica de las muestras confirmó la formación de una fase tipo apatito basada en silicato de lantano a partir de la reacción de la sílice con el óxido de lantano. La formación de esta fase ocurre en paralelo con un incremento significativo de la conductividad a través del borde de grano de estos materiales. La interacción entre los constituyentes, incluyendo la difusión del La al CGO, y el Ce y el Gd a la fase apatito, no tiene consecuencias significativas sobre el comportamiento eléctrico de estos materiales. Resumiendo, el óxido de lantano es capaz de eliminar las fases silicias del borde de grano del CGO.

  14. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    Science.gov (United States)

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Silica Based Superhydrophobic Nanocoatings for Natural Rubber Surfaces

    Directory of Open Access Journals (Sweden)

    Veromee Kalpana Wimalasiri

    2017-01-01

    Full Text Available Silica based nonfluorinated superhydrophobic coatings for natural rubber surfaces have been developed. The coating was synthesized using nanosilica dispersion and a polychloroprene type binder as a compatibilizer. This nanocoating of silica was applied on to the surface of finished natural rubber gloves, by spray coating or dipped coating methods. The nanocoating demonstrates a water contact angle of more than 150° and sliding angle of 7°. The morphological features of the coating have been studied using scanning electron microscopy and atomic force microscopy while Fourier transform infrared spectroscopy was used to understand the nature of surface functional groups. Both imaging techniques provided evidence for the presence of nanosized particles in the coating. Coated gloves demonstrated comparable mechanical properties and significantly better alcohol resistivity when compared to those of the uncoated gloves.

  16. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M [Ultrafast Studies Section, Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2007-08-08

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|{chi}{sup (3)}|) and the linear absorption coefficient ({alpha}) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |{chi}{sup (3)}|/{alpha} for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape.

  17. An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-01-01

    The adult mammalian central nervous system has limited ability to regenerate after injury. This is due, in part, to the presence of myelin-associated axon growth inhibitory proteins such as Nogo-A that bind and activate the Nogo receptor, leading to profound inhibition of actin-based motility within the growing axon tip. This paper presents an in vitro study of the use of a Nogo receptor-blocking peptide to antagonize the inhibitory effect of Nogo-A on axon growth. Alginate nanospheres were fabricated using an emulsion technique and loaded with Nogo receptor-blocking peptide, or with other model proteins. Protein release profiles were studied, and retention of the bioactivity of released proteins was verified. Primary dorsal root ganglion neurons were cultured and their ability to grow neurites was challenged with Nogo-A chimeric protein in the absence or presence of Nogo receptor antagonist peptide-loaded alginate nanospheres. Our results demonstrate that peptide released from alginate nanospheres could overcome the growth inhibitory effect of Nogo-A, suggesting that a similar peptide delivery strategy using alginate nanospheres might be used to improve axon regeneration within the injured central nervous system. (paper)

  18. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    Science.gov (United States)

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  19. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Science.gov (United States)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  20. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    Science.gov (United States)

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  1. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-04-01

    Full Text Available The nanosphere lithography (NSL method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single‐layer NSL mask was formed by using self‐assembly nano-scale polystyrene (PS nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single‐layer NSL mask. From the observations of scanning electronic microscopy (SEM, we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single‐layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e

  2. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    OpenAIRE

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an i...

  4. Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Jin, Lanming; Chronakis, Ioannis S.

    2014-01-01

    In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties...

  5. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.

    Science.gov (United States)

    Zhou, Xiaoping; Xu, Bin; Lin, Zhengfeng; Shu, Dong; Ma, Lin

    2014-09-01

    Flower-like MoS2 nanospheres were synthesized by a hydrothermal route. The structure and surface morphology of the as-prepared MoS2 was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of MoS2 in 1 M KCl electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD results indicate that the as-prepared MoS2 has good crystallinity. SEM images show that the MoS2 nanospheres have uniform sizes with mean diameter about 300 nm. Many nanosheets growing on the surface make the MoS2 nanospheres to be a flower-like structure. The specific capacitance of MoS2 is 122 F x g(-1) at 1 A x g(-1) or 114 F x g(-1) at 2 mv s(-1). All the experimental results indicate that MoS2 is a promising electrode material for electrochemical supercapacitors.

  6. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  7. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    Science.gov (United States)

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  8. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites

    Directory of Open Access Journals (Sweden)

    Agnieszka Kierys

    2017-11-01

    Full Text Available The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS. The polymers selected for this study were poly(TRIM and poly(HEMA-co-TRIM produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM-IBS and/or poly(HEMA-co-TRIM-IBS with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  9. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.

    Science.gov (United States)

    Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-10-12

    DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.

  10. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.

    Science.gov (United States)

    Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y

    2018-02-12

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  11. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  12. Electrospun bioactive mats enriched with Ca-polyphosphate/retinol nanospheres as potential wound dressing

    OpenAIRE

    Müller, Werner E.G.; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-01-01

    Background While electrospun materials have been frequently used in tissue engineering no wound dressings exist that significantly improved wound healing effectively. Methods We succeeded to fabricate three-dimensional (3D) electrospun poly(D,l-lactide) (PLA) fiber mats into which nanospheres, formed from amorphous calcium polyphosphate (polyP) nanoparticles (NP) and encapsulated retinol (“retinol/aCa-polyP-NS” nanospheres [NS]), had been incorporated. Results Experiments with MC3T3-E1 cells ...

  13. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2016-04-01

    Full Text Available Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure.

  14. Drug loaded silica coated MnFe2O4 ferromagnetic biomaterials for targeted cancer treatment

    Science.gov (United States)

    Anand, Vikas; Singh, K. J.; Kaur, Kulwinder; Bhatia, Gaurav

    2017-05-01

    Magnetically attracted silica coated MnFe2O4 samples have been prepared by using co-precipitation method. Structural changes have been confirmed from XRD spectra. Ferromagnetic behavior of samples has been studied by using vibration sample magnetometer. Cytotoxicity and cell culture of samples have been investigated by using human MG63 cell line and found that sample provide a healthy environment to the growth of cell lines. Drug carrier ability of sample has been checked with gentamycin as an antibiotic and results show that sample can be used as excellent drug carriers. Drug loaded samples can be easily targeted to specific area due to their attractive nature towards external magnetic field. Moreover, magnetic nanoparticles can also be used to kill the cancer cells by using hyperthermia technique. Hyperthermia is a process to raise the temperature of surrounding cells in the presence of external AC magnetic field above the maximum temperature limit for surviving of the cancer cells. Cancer cell can survive only up to 47°C. After that cancer cells start to die, but healthy cells can easily survive up to higher temperature. Our results indicate that prepared samples possess good drug carrier ability and hence, can be potential candidates for cancer cell treatment.

  15. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells.

    Science.gov (United States)

    Chen, Yu; Yin, Qi; Ji, Xiufeng; Zhang, Shengjian; Chen, Hangrong; Zheng, Yuanyi; Sun, Yang; Qu, Haiyun; Wang, Zheng; Li, Yaping; Wang, Xia; Zhang, Kun; Zhang, Linlin; Shi, Jianlin

    2012-10-01

    Nano-biotechnology has been introduced into cancer theranostics by engineering a new generation of highly versatile hybrid mesoporous composite nanocapsules (HMCNs) for manganese-based pH-responsive dynamic T(1)-weighted magnetic resonance imaging (MRI) to efficiently respond and detect the tumor acidic microenvironment, which was further integrated with ultrasonographic function based on the intrinsic unique hollow nanostructures of HMCNs for potentially in vitro and in vivo dual-modality cancer imaging. The manganese oxide-based multifunctionalization of hollow mesoporous silica nanoparticles was achieved by an in situ redox reaction using mesopores as the nanoreactors. Due to the dissolution nature of manganese oxide nanoparticles under weak acidic conditions, the relaxation rate r(1) of manganese-based mesoporous MRI-T(1) contrast agents (CAs) could reach 8.81 mM(-1)s(-1), which is a 11-fold magnitude increase compared to the neutral condition, and is almost two times higher than commercial Gd(III)-based complex agents. This is also the highest r(1) value ever reported for manganese oxide nanoparticles-based MRI-T(1) CAs. In addition, the hollow interiors and thin mesoporous silica shells endow HMCNs with the functions of CAs for efficient in vitro and in vivo ultrasonography under both harmonic- and B-modes. Importantly, the well-defined mesopores and large hollow interiors of HMCNs could encapsulate and deliver anticancer agents (doxorubicin) intracellularly to circumvent the multidrug resistance (MDR) of cancer cells and restore the anti-proliferative effect of drugs by nanoparticle-mediated endocytosis process, intracellular drug release and P-gp inhibition/ATP depletion in cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Synthesis of Zn-Cu-Cd sulfide nanospheres with controlled copper locations and their effects on photocatalytic activities for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yabo; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Wang, Yongsheng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2010-06-15

    In this work, a two-step solvothermal method was used to synthesize Zn-Cu-Cd sulfide nanospheres with controlled copper locations. The structural and other physical properties of the nanospheres were investigated by XRD, FESEM, TEM, energy-filtered TEM, XPS, ICP and UV-vis DRS methods. By varying the addition of the copper precursor during the two synthesis steps, Zn-Cu-Cd sulfide nanospheres with three distinctive copper distribution patterns can be obtained with copper (i) only in the core, (ii) only on the surface shell, and (iii) both in the core and on the surface shell. The influence of the location and concentration of copper on the photocatalytic activity for hydrogen production from water under visible light was investigated. It was found that the activity of the sample with copper only on the surface shell is about two times of that with copper only in the core. The highest hydrogen production rate was obtained on the nanosphere sample with copper both in the core and on the surface shell. The possible mechanism was discussed. The findings from this study are important for the development of efficient photocatalysts based on ternary or multinary systems. (author)

  17. Design of Protein-Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells.

    Science.gov (United States)

    Fiegel, Vincent; Harlepp, Sebastien; Begin-Colin, Sylvie; Begin, Dominique; Mertz, Damien

    2018-03-26

    One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres

    International Nuclear Information System (INIS)

    Shi Jiahua; Wu Qiang; Li Runming; Zhu Yinxu; Qiao Congzhen; Qin Yujun

    2013-01-01

    To explore the dependences of polyaniline (PANI) morphology on the oxidant and the initial pH value (referred to as ‘pH-initial’) of the reaction system, a series of oxidative polymerization experiments on aniline using chloroaurate acid (HAuCl 4 ) as the oxidant are carried out in aqueous solutions with different values of pH-initial. The smooth morphology transition of PANI nanostructures from nanofibers to solid and hollow nanospheres can be controlled by simply changing pH-initial for the reaction solution using HAuCl 4 as the oxidant. In aqueous solutions with different values of pH-initial, the anilinium ions and neutral aniline molecules coexist in different proportions, leading to different PANI nanostructures under different nucleation mechanisms. In strongly acidic media (pH-initial < 2), the homogeneous nucleation of PANI will result in PANI nanofibers. When pH-initial is raised to 2 or above, the heterogeneous nucleation will lead to solid or hollow PANI nanospheres. The solid PANI nanospheres are obtained in mildly acidic media (pH-initial=2–4) and the diameter decreases as the initial pH value of the reaction solution increases from 2 to 4. However, in weakly acidic and neutral media (pH-initial=5–7), hollow PANI nanospheres are formed and the diameter increases with the increase of pH-initial for the solution from 5 to 7. (paper)

  19. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    International Nuclear Information System (INIS)

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-01-01

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  20. Nanospheres Prepared by Self-Assembly of Random Copolymers in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Eri Yoshida

    2012-01-01

    Full Text Available The synthesis of spherical particles was attained by the direct self-assembly of poly[2-(perfluorooctylethyl acrylate-random-acrylic acid], P(POA-r-AA, and by the indirect self-assembly poly[POA-random-2-(dimethylaminoethyl acrylate], P(POA-r-DAA, with dicarboxylic acids in supercritical carbon dioxide (scCO2. The copolymers formed spherical particles with hundreds of nanometer diameters in a heterogeneous state at pressures lower than the cloud point pressure. The formation of spherical particles was also dependent on the temperature. The formation of spherical particles could be optimized through varying the solvent quality by the manipulation of the CO2 pressure and temperature for the different copolymer compositions. The dynamic light scattering and 1H NMR studies demonstrated that the nanospheres had the micellar structures consisting of the CO2-philic POA shells and the CO2-phobic AA or DAA cores including the main chain cores. The nanospheres produced the superhydrophobic surfaces based on the water-proof shells of the POA units.

  1. Walnut kernel-like mesoporous silica nanoparticles as effective drug carrier for cancer therapy in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Kun; Ren, Huihui; Sun, Wentong [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zhao, Qi [Hebei University, College of Clinical Science (China); Jia, Guang [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zang, Aimin [Affiliated Hospital of Hebei University (China); Zhang, Cuimiao, E-mail: cmzhanghbu@163.com; Zhang, Jinchao, E-mail: jczhang6970@163.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China)

    2016-03-15

    In drug delivery systems, nanocarriers could reduce the degradation and renal clearance of drugs, increase the half-life in the bloodstream and payload of drugs, control the release patterns, and improve the solubility of some insoluble drugs. In particular, mesoporous silica nanoparticles (MSNs) are considered to be attractive nanocarriers for application of delivery systems because of their large surface areas, large pore volume, tunable pore sizes, good biocompatibility, and the ease of surface functionalization. However, the large-scale synthesis of monodisperse MSNs that are smaller than 200 nm remains a challenge. In this study, monodisperse walnut kernel-like MSNs with diameters of approximately 100 nm were synthesized by a sol–gel route on a large scale. The morphology and structure of MSNs were characterized by scanning electron microscope, and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms, Zeta potentials, and dynamic light scattering. Drug loading and release profile, cellular uptake, subcellular localization, and anticancer effect in vitro were further investigated. The results indicated that the loading efficiency of doxorubicinhydrochloride (DOX) into the MSNs was 57 %. The MSNs–DOX delivery system exhibited a drug-pronounced initial burst release within 12 h, followed by the slow sustained release of DOX molecules; moreover, MSNs could improve DOX release efficiency in acidic medium. Most free DOX was localized in the cytoplasm, whereas the MSNs–DOX was primarily distributed in lysosome. MSNs–DOX exhibited a potential anticancer effect against MCF-7, HeLa, and A549 cells in dose- and time-dependent manners. In summary, the as-synthesized MSNs may have well function as a promising drug carrier in drug delivery fields.Graphical Abstract.

  2. Drug repurposing based on drug-drug interaction.

    Science.gov (United States)

    Zhou, Bin; Wang, Rong; Wu, Ping; Kong, De-Xin

    2015-02-01

    Given the high risk and lengthy procedure of traditional drug development, drug repurposing is gaining more and more attention. Although many types of drug information have been used to repurpose drugs, drug-drug interaction data, which imply possible physiological effects or targets of drugs, remain unexploited. In this work, similarity of drug interaction was employed to infer similarity of the physiological effects or targets for the drugs. We collected 10,835 drug-drug interactions concerning 1074 drugs, and for 700 of them, drug similarity scores based on drug interaction profiles were computed and rendered using a drug association network with 589 nodes (drugs) and 2375 edges (drug similarity scores). The 589 drugs were clustered into 98 groups with Markov Clustering Algorithm, most of which were significantly correlated with certain drug functions. This indicates that the network can be used to infer the physiological effects of drugs. Furthermore, we evaluated the ability of this drug association network to predict drug targets. The results show that the method is effective for 317 of 561 drugs that have known targets. Comparison of this method with the structure-based approach shows that they are complementary. In summary, this study demonstrates the feasibility of drug repurposing based on drug-drug interaction data. © 2014 John Wiley & Sons A/S.

  3. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage

    CSIR Research Space (South Africa)

    Khawula, TNY

    2016-03-01

    Full Text Available Molybdenum disulfide-modified carbon nanospheres (MoS(sub2)/CNS) with two different morphologies (spherical and flower-like) have been synthesized using hydrothermal techniques and investigated as symmetric pseudocapacitors in an aqueous electrolyte...

  4. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Science.gov (United States)

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems

    International Nuclear Information System (INIS)

    Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Vittorio, Orazio; Puoci, Francesco; Picci, Nevio; Iemma, Francesca

    2013-01-01

    Native gelatin, N,N′-ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100–500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug–polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.

  7. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    Science.gov (United States)

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  8. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application.

    Science.gov (United States)

    Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang

    2018-03-01

    A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Facile Synthesis of Uniform Zinc-blende ZnS Nanospheres with Excellent Photocatalytic Activity toward Methylene Blue Degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Si-Yan; YANG Liu-Sai; LV Ying-Ying; YU Le-Shu; HUANG Hai-Jin; WU Li-Dan

    2017-01-01

    Uniform and well-dispersed ZnS nanospheres have been successfully synthesized via a facile chemical route.The crystal structure,morphology,surface area and photocatalytic properties of the sample were characterized by powder X-ray diffraction (XRD),scanning electron microscopy (SEM),Brunauer-Emmett-Teller (BET) and ultraviolet-visible (UV-vis) spectrum.The results of characterizations indicate that the products are identified as mesoporous zinc-blende ZnS nanospheres with an average diameter of 200 nm,which are comprised of nanoparticles with the crystallite size of about 3.2 nm calculated by XRD.Very importantly,photocatalytic degradation of methylene blue (MB)shows that the as-prepared ZnS nanospheres exhibit excellent photocatalytic activity with nearly 100% of MB decomposed after UV-light irradiation for 25 min.The excellent photocatalytic activity of ZnS nanospheres can be ascribed to the large specific surface area and hierarchical mesoporous structure.

  10. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate core–shell composite nanoparticles

    Directory of Open Access Journals (Sweden)

    Dafu Wei

    2017-09-01

    Full Text Available Carbon nanospheres with a high Brunauer–Emmett–Teller (BET specific surface area were fabricated via the pyrolysis of polyacrylonitrile–poly(methyl methacrylate (PAN–PMMA core–shell nanoparticles. Firstly, PAN–PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon and the PMMA shell was sacrificed via the subsequent heat treatment steps. The thickness of the PMMA shell can be easily adjusted by changing the feeding volume ratio (FVR of methyl methacrylate (MMA to acrylonitrile (AN. At an FVR of 1.6, the coarse PAN cores were completely buried in the PMMA shells, and the surface of the obtained PAN–PMMA nanoparticles became smooth. The thick PMMA shell can inhibit the adhesion between carbon nanospheres caused by cyclization reactions during heat treatment. The carbon nanospheres with a diameter of 35–65 nm and a high BET specific surface area of 612.8 m2/g were obtained from the PAN–PMMA nanoparticles synthesized at an FVR of 1.6. The carbon nanospheres exhibited a large adsorption capacity of 190.0 mg/g for methylene blue, thus making them excellent adsorbents for the removal of organic pollutants from water.

  12. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  13. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Liu Jie; Wang Yichao; Peng Hongshang; Hou Yanbing; Wang Yongsheng

    2011-01-01

    In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu 2 S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu 2 S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 10 4 , which was dependent on the mass ratios of Cu 2 S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

  14. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and improvement of nanopillar InGaN/GaN light-emitting diodes using nanosphere lithography

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Zhan, Teng

    2015-01-01

    Surface-patterning technologies have enabled the improvement of currently existinglight-emitting diodes (LEDs) and can be used to overcome the issue of low quantum efficiency ofgreen GaN-based LEDs. We have applied nanosphere lithography to fabricate nanopillars onInGaN∕GaN quantum-well LEDs. By ...

  16. Facile synthesis of monodisperse superparamagnetic Fe{sub 3}O{sub 4}/PMMA composite nanospheres with high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lan Fang; Liu Kexia; Jiang Wen; Zeng Xiaobo; Wu Yao; Gu Zhongwei, E-mail: Yaowu_amanda@126.com, E-mail: zwgu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2011-06-03

    Monodisperse superparamagnetic Fe{sub 3}O{sub 4}/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe{sub 3}O{sub 4}/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe{sub 3}O{sub 4} nanoparticles. VSM and TGA showed that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g{sup -1} (total mass), which was only decreased by 17% compared with the initial bare Fe{sub 3}O{sub 4} nanoparticles.

  17. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Glass sponges, as examples of natural biocomposites, inspire investigations aiming at both a better understanding of biomineralization mechanisms and novel developments in the synthesis of nanostructured biomimetic materials. Different representatives of marine glass sponges of the class Hexactinellida (Porifera are remarkable because of their highly flexible basal anchoring spicules. Therefore, investigations of the biochemical compositions and the micro- and nanostructure of the spicules as examples of naturally structured biomaterials are of fundamental scientific relevance. Here we present a detailed study of the structural and biochemical properties of the basal spicules of the marine glass sponge Monorhaphis chuni. The results show unambiguously that in this glass sponge a fibrillar protein of collagenous nature is the template for the silica mineralization in all silica-containing structural layers of the spicule. The structural similarity and homology of collagens derived from M. chuni spicules to other sponge and vertebrate collagens have been confirmed by us using FTIR, amino acid analysis and mass spectrometric sequencing techniques. We suggest that nanomorphology of silica formed on proteinous structures could be determined as an example of biodirected epitaxial nanodistribution of amorphous silica phase on oriented fibrillar collagen templates. Finally, the present work includes a discussion relating to silica-collagen-based hybrid materials for practical applications as biomaterials.

  18. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  19. Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections

    Directory of Open Access Journals (Sweden)

    Manuela Donalisio

    2018-04-01

    Full Text Available Acyclovir is not a good candidate for passive permeation since its polarity and solubility limit is partitioning into the stratum corneum. This work aims to develop a new topical formulation for the acyclovir delivery. New chitosan nanospheres (NS were prepared by a modified nano-emulsion template method. Chitosan NS were characterized by Dynamic Light Scattering (DLS, Transmission Electron Microscopy (TEM, and an in vitro release study. The in vitro skin permeation experiment was carried out using Franz cells and was equipped with porcine skin. Biological studies were performed on the Vero cell line infected by HSV-1 and HSV-2 strains. The acyclovir loaded chitosan NS appeared with a spherical shape, a size of about 200 nm, and a negative zeta potential of about 40.0 mV. The loading capacity of the drug was about 8.5%. In vitro release demonstrated that the percentage of acyclovir delivered from the nanospheres was approximately 30% after six hours. The in vitro skin permeation studies confirmed an improved amount of permeated acyclovir. The acyclovir-NS complex displayed a higher antiviral activity than that of free acyclovir against both the HSV-1 and the HSV-2 strain. The acyclovir-loaded NS showed no anti-proliferative activity and no signs of cytotoxicity induced by NS was detected. Confocal laser scanning microscopy confirmed that the NS are taken up by the cells.

  20. Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe₂O₄/Au Hybrid Nanospheres Modified Glass Carbon Electrode.

    Science.gov (United States)

    Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing

    2016-06-22

    Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.

  1. A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Zeng, Guangjian; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Mesoporous silica nanoparticles (MSNs) should be one of the most important materials for biomedical application owing to their high specific surface area, regular porous structure, adjustable pore size and chemical inert. However, the biomedical applications of unmodified MSNs are largely impeded for their poor hydrophilicity and lack of functional groups. In this work, a novel photo-initiated atom transfer radical polymerization (ATRP) strategy has been reported for modified mesoporous silica nanoparticles (MSNs) with hydrophilicility copolymers using FeBr3 as the novel photocatalyst and itaconic acid (IA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) as monomers. Because of the hydrophilicity and anticancer agent cis-dichlorodiamineplatinum(II) (CDDP) loading capacity of poly(MPC-co-IA), the controlled drug delivery applications MSNs-NH2-poly(MPC-co-IA) composites toward CDDP were further investigated. A series of characterization results demonstrated that MSNs-NH2-poly(MPC-co-IA) composites can be successfully fabricated through the novel photo-initiated ATRP. MSNs-NH2-poly(MPC-co-IA) composites showed obvious enhancement of water dispersibility, desirable biocompatibility, high drug loading capability, making them great potential for controlled drug delivery of CDDP. Moreover, as compared with the traditional ATRP, that using the transition metal ions and organic ligands as the catalysis systems in elevated temperature, our method provides a more facile, benign and cost-effective route for fabrication of multifunctional MSNs with great potential for biomedical applications. Finally, this FeBr3 based photoATRP strategy should be further extended for the fabrication of many other polymeric composites owing to its good monomer adoptability.

  2. Influence of silica fume and fly ash on hydration, microstructure and strength of cement based mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Kaimao

    1992-10-01

    The influence of fly ash and silica fume on the hydration, microstructure and strength of cement-based mixtures was investigated. A literature review of the hydration processes, compressive strength development, and microstructure of Portland cement is presented, followed by description of materials and specimens preparation and experimental methodology. It was found that silica fume retards cement hydration at low water/concrete ratios. It reduces calcium hydroxide significantly and increases the amount of hydrates at early ages. Fly ash retards hydration more significantly at high water/concrete ratios than at low ratios. The combination of silica fume and fly ash further retards hydration at one day. Silica fume dominates the reaction with calcium hydroxide. Silica fume significantly increases early strength of mortars and concrete, while fly ash reduces early strength. Silica fume can substantially increase strength of fly ash mortar and concrete after 7 days. Silica fume refines pores in the range 100-500 A, while fly ash mortars exhibit gradual pore refinement as hydration proceeds. Silica fume dominates the pore refinement if used with fly ash. 89 refs., 74 figs., 16 tabs.

  3. Optimization of Broadband Optical Response of Multilayer Nanospheres

    Science.gov (United States)

    2012-07-27

    D. Levit , P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010). #169722...metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron. 40, 246–248 (2010). 1. Introduction Nanoparticles with strong optical

  4. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  5. Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Qiu

    2015-06-01

    Full Text Available Large scale syntheses of uniform metal nanoparticles with hollow porous structure have attracted much attention owning to their high surface area, abundant active sites and relatively efficient catalytic activity. Herein, we report a general method to synthesize hollow porous Pd nanospheres (Pd HPNSs by templating sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride (PAH through layer-by-layer self-assembly. The chemically inert PAH is acting as an efficient stabilizer and complex agent to control the synthesis of Pd HPNSs, probably accounting for its long aliphatic alkyl chains, excellent coordination capability and good hydrophilic property. The physicochemical properties of Pd HPNSs are thoroughly characterized by various techniques, such as transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The growth mechanism of Pd HPNSs is studied based on the analysis of diverse experimental observations. The as-prepared Pd HPNSs exhibit clearly enhanced electrocatalytic activity and durability for the formic oxidation reaction (FAOR in acid medium compared with commercial Pd black.

  6. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposed {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.

  7. Evaluation of optimum conditions for pachyman encapsulated in poly(D,L-lactic acid nanospheres by response surface methodology and results of a related in vitro study

    Directory of Open Access Journals (Sweden)

    Zheng S

    2016-09-01

    Full Text Available Sisi Zheng, Li Luo, Ruonan Bo, Zhenguang Liu, Jie Xing, Yale Niu, Yuanliang Hu, Jiaguo Liu, Deyun Wang Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China Abstract: This study aimed to optimize the preparation conditions of pachyman (PHY-loaded poly(D,L-lactic acid (PLA (PHYP nanospheres by response surface methodology, explore their characteristics, and assess their effects on splenic lymphocytes. Double emulsion solvent evaporation was used to synthesize PHYP nanospheres, and the optimal preparation conditions were identified as a concentration of poloxamer 188 (F68 (w/v of 0.33%, a concentration of PLA of 30 mg/mL, and a ratio of PLA to drug (w/w of 10.25:1 required to reach the highest encapsulation efficiency, which was calculated to be 59.10%. PHYP had a spherical shape with a smooth surface and uniform size and an evident effect of sustained release and relative stability. Splenic lymphocytes are crucial and multifunctional cells in the immune system, and their immunological properties could be enhanced significantly by PHYP treatment. This study confirmed that PHY encapsulated in PLA nanospheres had comparatively steady properties and exerted obvious immune enhancement. Keywords: PHYP, optimal preparation condition, RSM, in vitro study

  8. Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Cheng, Qiushi; Liang, Jianwen; Lin, Ning; Guo, Cong; Zhu, Yongchun; Qian, Yitai

    2015-01-01

    Graphical abstract: Due to the combinative merits of porosity and nanostructure, porous TiNb 2 O 7 nanospheres exhibit ultra long cyclic life and excellent rate performance for lithium ion batteries. - Highlights: • Porous TiNb 2 O 7 nanospheres have been fabricated with the assistance of block copolymer P123. • The as-prepared TiNb 2 O 7 anodes present a reversible capacity of 160 mA h/g after 10000 cycles at 5 C with a capacity loss of only 0.0033% per cycle. • The TiNb 2 O 7 anodes show good rate performance of 167 mA h/g at 50C. • The TiNb 2 O 7 materials maintain the morphology of nanospheres and the porous structure even after 10000 cycles. - Abstract: Porous TiNb 2 O 7 nanospheres comprised of nanoparticles have been synthesized with the assistance of block copolymer P123 (EO 20 PO 70 EO 20 ). Such porous TiNb 2 O 7 nanospheres, with diameter of 500 nm, exhibit a BET surface area of 23.4 m 2 /g and pore volume of 0.155 cm 3 /g. As the anodes for lithium-ion batteries, the TiNb 2 O 7 nanospheres present a reversible capacity of 160 mA h/g after 10000 cycles at 5 C with a capacity loss of only 0.0033% per cycle, and good rate performance of 167 mA h/g at 50 C. Furthermore, the TiNb 2 O 7 materials still maintain the morphology of nanospheres and the porous structure even after 10000 cycles

  9. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    International Nuclear Information System (INIS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-01-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO_2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO_2@mSiO_2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO_2 and AuNFs@SiO_2@mSiO_2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  10. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: yinwanzhong88@hotmail.com [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: wsyang@mail.jlu.edu.cn [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)

    2016-04-15

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  11. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Science.gov (United States)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  12. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres

    Directory of Open Access Journals (Sweden)

    M. Negahdary

    2017-07-01

    Full Text Available Today, identification of pathogenic bacteria using modern and accurate methods is inevitable. Integration in electrochemical measurements with nanotechnology has led to the design of efficient and sensitive DNA biosensors against bacterial agents. Here, efforts were made to detect Aeromonas hydrophila using aptamers as probes and zinc sulfide (ZnS nanospheres as signal enhancers and electron transfer facilitators. After modification of the working electrode area (in a screen-printed electrode with ZnS nanospheres through electrodeposition, the coated surface of a modified electrode with ZnS nanospheres was investigated through scanning electron microscopy (SEM. The size of synthesized ZnS nanospheres was estimated at about 20–50 nm and their shape was in the form of porous plates in microscopic observations. All electrochemical measurements were performed using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and constant potential amperometry (CPA techniques. The designed DNA biosensor was able to detect deoxyribonucleic acid (DNA of Aeromonas hydrophila in the range 1.0  ×  10−4 to 1.0  ×  10−9 mol L−1; the limit of detection (LOD in this study was 1  ×  10−13 mol L−1. This DNA biosensor showed satisfactory thermal and pH stability. Reproducibility for this DNA biosensor was measured and the relative standard deviation (RSD of the performance of this DNA biosensor was calculated as 5 % during 42 days.

  13. Mesoporous silica-coated NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} particles for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Kong Deyan; Fan Yong; Zhang Cuimiao; Lin Jun, E-mail: jlin@ciac.jl.c [Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (China)

    2010-02-15

    NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO{sub 20}PO{sub 70}EO{sub 20} (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er{sup 3+}) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.

  14. Fano resonances in heterogeneous dimers of silicon and gold nanospheres

    Science.gov (United States)

    Zhao, Qian; Yang, Zhong-Jian; He, Jun

    2018-06-01

    We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

  15. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin

    Directory of Open Access Journals (Sweden)

    Li C

    2012-12-01

    Full Text Available Chong Li, Yan Zhang, Tingting Su, Lianlian Feng, Yingying Long, Zhangbao ChenKey Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, ChinaAbstract: We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.Keywords: silica, flexible liposome, oral bioavailability, curcumin

  16. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  17. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    Science.gov (United States)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  18. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  19. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  20. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  1. Diatomite silica nanoparticles for drug delivery

    OpenAIRE

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite p...

  2. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  3. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  4. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  5. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    International Nuclear Information System (INIS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-01-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  6. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Jin, Tingting [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Zheng, Xing, E-mail: znhk113@163.com [Beijing ZNHK Science and Technology Development Co., Ltd. (China); Jiang, Bo; Zhu, Chaosheng [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Yuan, Xiangdong [Baotou Light Industry and Vocational Technical College (China); Zheng, Jingtang, E-mail: jtzheng03@163.com; Wu, Mingbo [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China)

    2016-11-15

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  7. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  8. Diatomite silica nanoparticles for drug delivery.

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  9. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Science.gov (United States)

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  10. Optical coupling of cold atoms to a levitated nanosphere

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew

    2017-04-01

    Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.

  11. Different Effects of the Immunomodulatory Drug GMDP Immobilized onto Aminopropyl Modified and Unmodified Mesoporous Silica Nanoparticles upon Peritoneal Macrophages of Women with Endometriosis

    Directory of Open Access Journals (Sweden)

    Yuliya Antsiferova

    2013-01-01

    Full Text Available The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs and modified by aminopropyl groups silica nanoparticles (AMNPs for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1, was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  12. Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis.

    Science.gov (United States)

    Antsiferova, Yuliya; Sotnikova, Nataliya; Parfenyuk, Elena

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  13. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  14. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with ...

  15. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    International Nuclear Information System (INIS)

    Escobar Zapata, Edna V.; Martínez Pérez, Carlos A.; Rodríguez González, Claudia A.; Castro Carmona, Javier S.; Quevedo Lopez, Manuel A.; García-Casillas, Perla E.

    2012-01-01

    Highlights: ► Chitosan silica magnetite adsorbs antineoplastic drug. ► Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV–Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  16. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  17. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    Science.gov (United States)

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  18. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  19. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  20. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  1. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  2. Synthesis of silver doped hydroxyapatite nanospheres using Ouzo effect

    Directory of Open Access Journals (Sweden)

    Marija Prekajski

    2016-09-01

    Full Text Available Nanoemulsion technique, based on Ouzo effect, was applied for synthesis of the pure and silver doped (2.5 and 5 mol% calcium hydroxyapatite (HAp. After calcination at 500 °C fully crystallized powders were obtained. X-ray powder diffraction analysis accompanied with Rietveld refinement revealed that the synthesized powders were single-phase hydroxyapatite. Raman spectroscopy also confirmed that the synthesized powders were single-phase. The obtained HAp particles were spherical in shape and their sizes were in the nanometer range which was revealed by field emission scanning electron microscopy analysis (FESEM. The successful synthesis of the single-phase Ag doped HAp showed that nanoemulsion method is a simple technique for obtaining pure and doped hydroxyapatite nanospheres.

  3. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  4. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  5. Synthesis, characterization and adsorptive performance of MgFe{sub 2}O{sub 4} nanospheres for SO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Qidong; Qu Zhenping; Yuan Deling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Liu Shaomin [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia); Hu Xijun; Chen Guohua [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO{sub 2} adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe{sub 2}O{sub 4} nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe{sub 2}O{sub 4} nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO{sub 2} oxidative adsorption on MgFe{sub 2}O{sub 4} nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe{sub 2}O{sub 4}. The adsorption equilibrium isotherm of SO{sub 2} was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe{sub 2}O{sub 4} nanospheres possess a good potential as the solid-state SO{sub 2} adsorbent for applications in hot fuel gas desulfurization.

  6. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2014-03-01

    Full Text Available A research has been carried out to develop natural rubber (NR hybrid composites reinforced with marble sludge (MS/Silica and MS/rice husk derived silica (RHS. The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc.

  7. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  8. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  9. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  10. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica-chitosan nanospheres and multiwall carbon nanotubes composite

    International Nuclear Information System (INIS)

    Chen Shihong; Yuan Ruo; Chai Yaqin; Yin Bin; Li Wenjun; Min Ligen

    2009-01-01

    The application of the composites of multiwall carbon nanotubes (MWNTs) and core-shell organosilica-chitosan crosslinked nanospheres as an immobilization matrix for the construction of an amperometric hydrogen peroxide (H 2 O 2 ) biosensor was described. MWNTs and positively charged organosilica-chitosan nanospheres were dispersed in acetic acid solution (0.6 wt%) to achieve organosilica-chitosan/MWNTs composites, which were cast onto a glass carbon electrode (GCE) surface directly. And then, horseradish peroxidase (HRP), as a model enzyme, was immobilized onto it through electrostatic interaction between oppositely charged organosilica-chitosan nanospheres and HRP. The direct electron transfer of HRP was achieved at HRP/organosilica-chitosan/MWNTs/GCE, which exhibited excellent electrocatalytic activity for the reduction of H 2 O 2 . The catalysis currents increased linearly to H 2 O 2 concentration in a wide range of 7.0 x 10 -7 to 2.8 x 10 -3 M, with a sensitivity of 49.8 μA mM -1 cm -2 and with a detection limit of 2.5 x 10 -7 M at 3σ. A Michaelies-Menten constant K M app value was estimated to be 0.32 mM, indicating a high-catalytic activity of HRP. Moreover, the proposed biosensor displayed a rapid response to H 2 O 2 and possessed good stability and reproducibility. When used to detect H 2 O 2 concentration in disinfector samples and sterilized milks, respectively, it showed satisfactory results

  11. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  12. Large-scale nanofabrication of periodic nanostructures using nanosphere-related techniques for green technology applications (Conference Presentation)

    Science.gov (United States)

    Yen, Chen-Chung; Wu, Jyun-De; Chien, Yi-Hsin; Wang, Chang-Han; Liu, Chi-Ching; Ku, Chen-Ta; Chen, Yen-Jon; Chou, Meng-Cheng; Chang, Yun-Chorng

    2016-09-01

    Nanotechnology has been developed for decades and many interesting optical properties have been demonstrated. However, the major hurdle for the further development of nanotechnology depends on finding economic ways to fabricate such nanostructures in large-scale. Here, we demonstrate how to achieve low-cost fabrication using nanosphere-related techniques, such as Nanosphere Lithography (NSL) and Nanospherical-Lens Lithography (NLL). NSL is a low-cost nano-fabrication technique that has the ability to fabricate nano-triangle arrays that cover a very large area. NLL is a very similar technique that uses polystyrene nanospheres to focus the incoming ultraviolet light and exposure the underlying photoresist (PR) layer. PR hole arrays form after developing. Metal nanodisk arrays can be fabricated following metal evaporation and lifting-off processes. Nanodisk or nano-ellipse arrays with various sizes and aspect ratios are routinely fabricated in our research group. We also demonstrate we can fabricate more complicated nanostructures, such as nanodisk oligomers, by combining several other key technologies such as angled exposure and deposition, we can modify these methods to obtain various metallic nanostructures. The metallic structures are of high fidelity and in large scale. The metallic nanostructures can be transformed into semiconductor nanostructures and be used in several green technology applications.

  13. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    Science.gov (United States)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  14. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: fozia@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Rahim, Abdur [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Airoldi, Claudio; Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2 m{sup 2} g{sup −1} and pore volume was reduced from 1.98 to 0.89 cm{sup 3} g{sup −1}, when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer–Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH 1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8 h, while comparatively high release rates were observed in simulated intestinal (pH 6.8) and simulated body fluids (pH 7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. - Highlights: • Modified SBA-15 silica with long hydrophobic chains was evaluated as drug carrier. • This silica showed improved loading capacity and controlled release of ibuprofen. • Compared to gastric pH high release rate of mesalamine was observed at colonic pH.

  15. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release

    International Nuclear Information System (INIS)

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L.O.

    2016-01-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2 m 2 g −1 and pore volume was reduced from 1.98 to 0.89 cm 3 g −1 , when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer–Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH 1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8 h, while comparatively high release rates were observed in simulated intestinal (pH 6.8) and simulated body fluids (pH 7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. - Highlights: • Modified SBA-15 silica with long hydrophobic chains was evaluated as drug carrier. • This silica showed improved loading capacity and controlled release of ibuprofen. • Compared to gastric pH high release rate of mesalamine was observed at colonic pH. • Modified silica

  16. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    Science.gov (United States)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  17. SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Guo, Wenbin; Wang, Yong; Li, Qingyuan; Wang, Dongxia; Zhang, Fanchao; Yang, Yiqing; Yu, Yang

    2018-05-02

    Porous SnO 2 @C@VO 2 composite hollow nanospheres were ingeniously constructed through the combination of layer-by-layer deposition and redox reaction. Moreover, to optimize the electrochemical properties, SnO 2 @C@VO 2 composite hollow nanospheres with different contents of the external VO 2 were also studied. On the one hand, the elastic and conductive carbon as interlayer in the SnO 2 @C@VO 2 composite can not only buffer the huge volume variation during repetitive cycling but also effectively improve electronic conductivity and enhance the utilizing rate of SnO 2 and VO 2 with high theoretical capacity. On the other hand, hollow nanostructures of the composite can be consolidated by the multilayered nanocomponents, resulting in outstanding cyclic stability. In virtue of the above synergetic contribution from individual components, SnO 2 @C@VO 2 composite hollow nanospheres exhibit a large initial discharge capacity (1305.6 mAhg -1 ) and outstanding cyclic stability (765.1 mAhg -1 after 100 cycles). This design of composite hollow nanospheres may be extended to the synthesis of other nanomaterials for electrochemical energy storage.

  18. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  19. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    Science.gov (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  20. Comparison of two silica-based extraction methods for DNA isolation from bones.

    Science.gov (United States)

    Rothe, Jessica; Nagy, Marion

    2016-09-01

    One of the most demanding DNA extractions is from bones and teeth due to the robustness of the material and the relatively low DNA content. The greatest challenge is due to the manifold nature of the material, which is defined by various factors, including age, storage, environmental conditions, and contamination with inhibitors. However, most published protocols do not distinguish between different types or qualities of bone material, but are described as being generally applicable. Our laboratory works with two different extraction methods based on silica membranes or the use of silica beads. We compared the amplification success of the two methods from bone samples with different qualities and in the presence of inhibitors. We found that the DNA extraction using the silica membrane method results an in higher DNA yield but also in a higher risk of co-extracting impurities, which can act as inhibitors. In contrast the silica beads method shows decreased co-extraction of inhibitors but also less DNA yield. Related to our own experiences it has to be considered that each bone material should be reviewed independently regarding the analysis and extraction method. Therefore, the most ambitious task is determining the quality of the bone material, which requires substantial experience. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.